/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */ /************************************************************************* * * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * Copyright 2000, 2010 Oracle and/or its affiliates. * * OpenOffice.org - a multi-platform office productivity suite * * This file is part of OpenOffice.org. * * OpenOffice.org is free software: you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License version 3 * only, as published by the Free Software Foundation. * * OpenOffice.org is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public License version 3 for more details * (a copy is included in the LICENSE file that accompanied this code). * * You should have received a copy of the GNU Lesser General Public License * version 3 along with OpenOffice.org. If not, see * * for a copy of the LGPLv3 License. * ************************************************************************/ #include #include #include #include #include #include #include #include ////////////////////////////////////////////////////////////////////////////// namespace basegfx { namespace tools { B2DPolyPolygon correctOrientations(const B2DPolyPolygon& rCandidate) { B2DPolyPolygon aRetval(rCandidate); const sal_uInt32 nCount(aRetval.count()); for(sal_uInt32 a(0L); a < nCount; a++) { const B2DPolygon aCandidate(rCandidate.getB2DPolygon(a)); const B2VectorOrientation aOrientation(tools::getOrientation(aCandidate)); sal_uInt32 nDepth(0L); for(sal_uInt32 b(0L); b < nCount; b++) { if(b != a) { const B2DPolygon aCompare(rCandidate.getB2DPolygon(b)); if(tools::isInside(aCompare, aCandidate, true)) { nDepth++; } } } const bool bShallBeHole(1L == (nDepth & 0x00000001)); const bool bIsHole(ORIENTATION_NEGATIVE == aOrientation); if(bShallBeHole != bIsHole && ORIENTATION_NEUTRAL != aOrientation) { B2DPolygon aFlipped(aCandidate); aFlipped.flip(); aRetval.setB2DPolygon(a, aFlipped); } } return aRetval; } B2DPolyPolygon correctOutmostPolygon(const B2DPolyPolygon& rCandidate) { const sal_uInt32 nCount(rCandidate.count()); if(nCount > 1L) { for(sal_uInt32 a(0L); a < nCount; a++) { const B2DPolygon aCandidate(rCandidate.getB2DPolygon(a)); sal_uInt32 nDepth(0L); for(sal_uInt32 b(0L); b < nCount; b++) { if(b != a) { const B2DPolygon aCompare(rCandidate.getB2DPolygon(b)); if(tools::isInside(aCompare, aCandidate, true)) { nDepth++; } } } if(!nDepth) { B2DPolyPolygon aRetval(rCandidate); if(a != 0L) { // exchange polygon a and polygon 0L aRetval.setB2DPolygon(0L, aCandidate); aRetval.setB2DPolygon(a, rCandidate.getB2DPolygon(0L)); } // exit return aRetval; } } } return rCandidate; } B2DPolyPolygon adaptiveSubdivideByDistance(const B2DPolyPolygon& rCandidate, double fDistanceBound) { if(rCandidate.areControlPointsUsed()) { const sal_uInt32 nPolygonCount(rCandidate.count()); B2DPolyPolygon aRetval; for(sal_uInt32 a(0L); a < nPolygonCount; a++) { const B2DPolygon aCandidate(rCandidate.getB2DPolygon(a)); if(aCandidate.areControlPointsUsed()) { aRetval.append(tools::adaptiveSubdivideByDistance(aCandidate, fDistanceBound)); } else { aRetval.append(aCandidate); } } return aRetval; } else { return rCandidate; } } B2DPolyPolygon adaptiveSubdivideByAngle(const B2DPolyPolygon& rCandidate, double fAngleBound) { if(rCandidate.areControlPointsUsed()) { const sal_uInt32 nPolygonCount(rCandidate.count()); B2DPolyPolygon aRetval; for(sal_uInt32 a(0L); a < nPolygonCount; a++) { const B2DPolygon aCandidate(rCandidate.getB2DPolygon(a)); if(aCandidate.areControlPointsUsed()) { aRetval.append(tools::adaptiveSubdivideByAngle(aCandidate, fAngleBound)); } else { aRetval.append(aCandidate); } } return aRetval; } else { return rCandidate; } } B2DPolyPolygon adaptiveSubdivideByCount(const B2DPolyPolygon& rCandidate, sal_uInt32 nCount) { if(rCandidate.areControlPointsUsed()) { const sal_uInt32 nPolygonCount(rCandidate.count()); B2DPolyPolygon aRetval; for(sal_uInt32 a(0L); a < nPolygonCount; a++) { const B2DPolygon aCandidate(rCandidate.getB2DPolygon(a)); if(aCandidate.areControlPointsUsed()) { aRetval.append(tools::adaptiveSubdivideByCount(aCandidate, nCount)); } else { aRetval.append(aCandidate); } } return aRetval; } else { return rCandidate; } } bool isInside(const B2DPolyPolygon& rCandidate, const B2DPoint& rPoint, bool bWithBorder) { const sal_uInt32 nPolygonCount(rCandidate.count()); if(1L == nPolygonCount) { return isInside(rCandidate.getB2DPolygon(0L), rPoint, bWithBorder); } else { sal_Int32 nInsideCount(0L); for(sal_uInt32 a(0L); a < nPolygonCount; a++) { const B2DPolygon aPolygon(rCandidate.getB2DPolygon(a)); const bool bInside(isInside(aPolygon, rPoint, bWithBorder)); if(bInside) { nInsideCount++; } } return (nInsideCount % 2L); } } B2DRange getRange(const B2DPolyPolygon& rCandidate) { B2DRange aRetval; const sal_uInt32 nPolygonCount(rCandidate.count()); for(sal_uInt32 a(0L); a < nPolygonCount; a++) { B2DPolygon aCandidate = rCandidate.getB2DPolygon(a); aRetval.expand(tools::getRange(aCandidate)); } return aRetval; } void applyLineDashing(const B2DPolyPolygon& rCandidate, const ::std::vector& rDotDashArray, B2DPolyPolygon* pLineTarget, B2DPolyPolygon* pGapTarget, double fFullDashDotLen) { if(0.0 == fFullDashDotLen && rDotDashArray.size()) { // calculate fFullDashDotLen from rDotDashArray fFullDashDotLen = ::std::accumulate(rDotDashArray.begin(), rDotDashArray.end(), 0.0); } if(rCandidate.count() && fFullDashDotLen > 0.0) { B2DPolyPolygon aLineTarget, aGapTarget; for(sal_uInt32 a(0L); a < rCandidate.count(); a++) { const B2DPolygon aCandidate(rCandidate.getB2DPolygon(a)); applyLineDashing( aCandidate, rDotDashArray, pLineTarget ? &aLineTarget : 0, pGapTarget ? &aGapTarget : 0, fFullDashDotLen); if(pLineTarget) { pLineTarget->append(aLineTarget); } if(pGapTarget) { pGapTarget->append(aGapTarget); } } } } bool isInEpsilonRange(const B2DPolyPolygon& rCandidate, const B2DPoint& rTestPosition, double fDistance) { const sal_uInt32 nPolygonCount(rCandidate.count()); for(sal_uInt32 a(0L); a < nPolygonCount; a++) { B2DPolygon aCandidate(rCandidate.getB2DPolygon(a)); if(isInEpsilonRange(aCandidate, rTestPosition, fDistance)) { return true; } } return false; } B3DPolyPolygon createB3DPolyPolygonFromB2DPolyPolygon(const B2DPolyPolygon& rCandidate, double fZCoordinate) { const sal_uInt32 nPolygonCount(rCandidate.count()); B3DPolyPolygon aRetval; for(sal_uInt32 a(0L); a < nPolygonCount; a++) { B2DPolygon aCandidate(rCandidate.getB2DPolygon(a)); aRetval.append(createB3DPolygonFromB2DPolygon(aCandidate, fZCoordinate)); } return aRetval; } B2DPolyPolygon createB2DPolyPolygonFromB3DPolyPolygon(const B3DPolyPolygon& rCandidate, const B3DHomMatrix& rMat) { const sal_uInt32 nPolygonCount(rCandidate.count()); B2DPolyPolygon aRetval; for(sal_uInt32 a(0L); a < nPolygonCount; a++) { B3DPolygon aCandidate(rCandidate.getB3DPolygon(a)); aRetval.append(createB2DPolygonFromB3DPolygon(aCandidate, rMat)); } return aRetval; } double getSmallestDistancePointToPolyPolygon(const B2DPolyPolygon& rCandidate, const B2DPoint& rTestPoint, sal_uInt32& rPolygonIndex, sal_uInt32& rEdgeIndex, double& rCut) { double fRetval(DBL_MAX); const double fZero(0.0); const sal_uInt32 nPolygonCount(rCandidate.count()); for(sal_uInt32 a(0L); a < nPolygonCount; a++) { const B2DPolygon aCandidate(rCandidate.getB2DPolygon(a)); sal_uInt32 nNewEdgeIndex; double fNewCut; const double fNewDistance(getSmallestDistancePointToPolygon(aCandidate, rTestPoint, nNewEdgeIndex, fNewCut)); if(DBL_MAX == fRetval || fNewDistance < fRetval) { fRetval = fNewDistance; rPolygonIndex = a; rEdgeIndex = nNewEdgeIndex; rCut = fNewCut; if(fTools::equal(fRetval, fZero)) { // already found zero distance, cannot get better. Ensure numerical zero value and end loop. fRetval = 0.0; break; } } } return fRetval; } B2DPolyPolygon distort(const B2DPolyPolygon& rCandidate, const B2DRange& rOriginal, const B2DPoint& rTopLeft, const B2DPoint& rTopRight, const B2DPoint& rBottomLeft, const B2DPoint& rBottomRight) { const sal_uInt32 nPolygonCount(rCandidate.count()); B2DPolyPolygon aRetval; for(sal_uInt32 a(0L); a < nPolygonCount; a++) { const B2DPolygon aCandidate(rCandidate.getB2DPolygon(a)); aRetval.append(distort(aCandidate, rOriginal, rTopLeft, rTopRight, rBottomLeft, rBottomRight)); } return aRetval; } B2DPolyPolygon expandToCurve(const B2DPolyPolygon& rCandidate) { const sal_uInt32 nPolygonCount(rCandidate.count()); B2DPolyPolygon aRetval; for(sal_uInt32 a(0L); a < nPolygonCount; a++) { const B2DPolygon aCandidate(rCandidate.getB2DPolygon(a)); aRetval.append(expandToCurve(aCandidate)); } return aRetval; } B2DPolyPolygon growInNormalDirection(const B2DPolyPolygon& rCandidate, double fValue) { if(0.0 != fValue) { B2DPolyPolygon aRetval; for(sal_uInt32 a(0L); a < rCandidate.count(); a++) { aRetval.append(growInNormalDirection(rCandidate.getB2DPolygon(a), fValue)); } return aRetval; } else { return rCandidate; } } void correctGrowShrinkPolygonPair(SAL_UNUSED_PARAMETER B2DPolyPolygon& /*rOriginal*/, SAL_UNUSED_PARAMETER B2DPolyPolygon& /*rGrown*/) { //TODO! } B2DPolyPolygon reSegmentPolyPolygon(const B2DPolyPolygon& rCandidate, sal_uInt32 nSegments) { B2DPolyPolygon aRetval; for(sal_uInt32 a(0L); a < rCandidate.count(); a++) { aRetval.append(reSegmentPolygon(rCandidate.getB2DPolygon(a), nSegments)); } return aRetval; } B2DPolyPolygon interpolate(const B2DPolyPolygon& rOld1, const B2DPolyPolygon& rOld2, double t) { OSL_ENSURE(rOld1.count() == rOld2.count(), "B2DPolyPolygon interpolate: Different geometry (!)"); B2DPolyPolygon aRetval; for(sal_uInt32 a(0L); a < rOld1.count(); a++) { aRetval.append(interpolate(rOld1.getB2DPolygon(a), rOld2.getB2DPolygon(a), t)); } return aRetval; } bool isRectangle( const B2DPolyPolygon& rPoly ) { // exclude some cheap cases first if( rPoly.count() != 1 ) return false; return isRectangle( rPoly.getB2DPolygon(0) ); } // #i76891# B2DPolyPolygon simplifyCurveSegments(const B2DPolyPolygon& rCandidate) { if(rCandidate.areControlPointsUsed()) { B2DPolyPolygon aRetval; for(sal_uInt32 a(0L); a < rCandidate.count(); a++) { aRetval.append(simplifyCurveSegments(rCandidate.getB2DPolygon(a))); } return aRetval; } else { return rCandidate; } } ////////////////////////////////////////////////////////////////////// // comparators with tolerance for 2D PolyPolygons bool equal(const B2DPolyPolygon& rCandidateA, const B2DPolyPolygon& rCandidateB, const double& rfSmallValue) { const sal_uInt32 nPolygonCount(rCandidateA.count()); if(nPolygonCount != rCandidateB.count()) return false; for(sal_uInt32 a(0); a < nPolygonCount; a++) { const B2DPolygon aCandidate(rCandidateA.getB2DPolygon(a)); if(!equal(aCandidate, rCandidateB.getB2DPolygon(a), rfSmallValue)) return false; } return true; } B2DPolyPolygon snapPointsOfHorizontalOrVerticalEdges(const B2DPolyPolygon& rCandidate) { B2DPolyPolygon aRetval; for(sal_uInt32 a(0L); a < rCandidate.count(); a++) { aRetval.append(snapPointsOfHorizontalOrVerticalEdges(rCandidate.getB2DPolygon(a))); } return aRetval; } } // end of namespace tools } // end of namespace basegfx ////////////////////////////////////////////////////////////////////////////// // eof /* vim:set shiftwidth=4 softtabstop=4 expandtab: */