diff options
author | Michael Stahl <MichaelSt@cib.de> | 2020-12-03 17:42:18 +0100 |
---|---|---|
committer | Andras Timar <andras.timar@collabora.com> | 2021-05-07 15:06:20 +0200 |
commit | b74c89cbab48cb6acf100ce2d369af4083105371 (patch) | |
tree | 2eb7895bde887349951f5c02257f9d547f116361 | |
parent | 7467a34330aa75664af60dd5bc5b45d780b7f362 (diff) |
pdfium: MSVC 2015 build
-rw-r--r-- | external/pdfium/UnpackedTarball_pdfium.mk | 3 | ||||
-rw-r--r-- | external/pdfium/msvc2015.patch.1 | 202 | ||||
-rw-r--r-- | external/pdfium/pdfium4137-numerics.patch.3 | 3364 |
3 files changed, 3569 insertions, 0 deletions
diff --git a/external/pdfium/UnpackedTarball_pdfium.mk b/external/pdfium/UnpackedTarball_pdfium.mk index f4643376cee0..8b12e494f94b 100644 --- a/external/pdfium/UnpackedTarball_pdfium.mk +++ b/external/pdfium/UnpackedTarball_pdfium.mk @@ -14,6 +14,9 @@ pdfium_patches += build.patch.1 # Avoids Windows 8 build dependency. pdfium_patches += windows7.patch.1 pdfium_patches += c++20-comparison.patch +ifeq (MSC,$(COM)) +pdfium_patches += pdfium4137-numerics.patch.3 msvc2015.patch.1 +endif $(eval $(call gb_UnpackedTarball_UnpackedTarball,pdfium)) diff --git a/external/pdfium/msvc2015.patch.1 b/external/pdfium/msvc2015.patch.1 new file mode 100644 index 000000000000..36cb5332c7b0 --- /dev/null +++ b/external/pdfium/msvc2015.patch.1 @@ -0,0 +1,202 @@ +Fix MSVC 2015 build + +--- pdfium/third_party/base/optional.h.orig 2020-10-26 19:26:04.000000000 +0100 ++++ pdfium/third_party/base/optional.h 2020-12-03 16:00:54.879883100 +0100 +@@ -36,7 +36,7 @@ + struct OptionalStorageBase { + // Provide non-defaulted default ctor to make sure it's not deleted by + // non-trivial T::T() in the union. +- constexpr OptionalStorageBase() : dummy_() {} ++ OptionalStorageBase() : dummy_() {} + + template <class... Args> + constexpr explicit OptionalStorageBase(in_place_t, Args&&... args) +@@ -88,7 +88,7 @@ + struct OptionalStorageBase<T, true /* trivially destructible */> { + // Provide non-defaulted default ctor to make sure it's not deleted by + // non-trivial T::T() in the union. +- constexpr OptionalStorageBase() : dummy_() {} ++ OptionalStorageBase() : dummy_() {} + + template <class... Args> + constexpr explicit OptionalStorageBase(in_place_t, Args&&... args) +@@ -607,32 +607,32 @@ + return *this; + } + +- constexpr const T* operator->() const { ++ const T* operator->() const { + CHECK(storage_.is_populated_); + return &storage_.value_; + } + +- constexpr T* operator->() { ++ T* operator->() { + CHECK(storage_.is_populated_); + return &storage_.value_; + } + +- constexpr const T& operator*() const & { ++ const T& operator*() const & { + CHECK(storage_.is_populated_); + return storage_.value_; + } + +- constexpr T& operator*() & { ++ T& operator*() & { + CHECK(storage_.is_populated_); + return storage_.value_; + } + +- constexpr const T&& operator*() const && { ++ const T&& operator*() const && { + CHECK(storage_.is_populated_); + return std::move(storage_.value_); + } + +- constexpr T&& operator*() && { ++ T&& operator*() && { + CHECK(storage_.is_populated_); + return std::move(storage_.value_); + } +@@ -641,22 +641,22 @@ + + constexpr bool has_value() const { return storage_.is_populated_; } + +- constexpr T& value() & { ++ T& value() & { + CHECK(storage_.is_populated_); + return storage_.value_; + } + +- constexpr const T& value() const & { ++ const T& value() const & { + CHECK(storage_.is_populated_); + return storage_.value_; + } + +- constexpr T&& value() && { ++ T&& value() && { + CHECK(storage_.is_populated_); + return std::move(storage_.value_); + } + +- constexpr const T&& value() const && { ++ const T&& value() const && { + CHECK(storage_.is_populated_); + return std::move(storage_.value_); + } +--- pdfium/third_party/base/span.h.orig 2020-10-26 19:26:04.000000000 +0100 ++++ pdfium/third_party/base/span.h 2020-12-03 16:28:15.642138100 +0100 +@@ -193,7 +193,7 @@ + + // TODO(dcheng): Implement construction from a |begin| and |end| pointer. + template <size_t N> +- constexpr span(T (&array)[N]) noexcept : span(array, N) {} ++ span(T (&array)[N]) noexcept : span(array, N) {} + // TODO(dcheng): Implement construction from std::array. + // Conversion from a container that provides |T* data()| and |integral_type + // size()|. +--- pdfium/core/fpdfapi/page/cpdf_colorspace.cpp.orig 2020-12-03 16:54:15.514659400 +0100 ++++ pdfium/core/fpdfapi/page/cpdf_colorspace.cpp 2020-12-03 16:38:52.167650200 +0100 +@@ -905,7 +905,7 @@ + float R; + float G; + float B; +- GetRGB(lab, &R, &G, &B); ++ GetRGB(pdfium::span<float>(lab), &R, &G, &B); + pDestBuf[0] = static_cast<int32_t>(B * 255); + pDestBuf[1] = static_cast<int32_t>(G * 255); + pDestBuf[2] = static_cast<int32_t>(R * 255); +--- pdfium/core/fpdfapi/page/cpdf_meshstream.cpp.orig 2020-12-03 16:54:09.233498800 +0100 ++++ pdfium/core/fpdfapi/page/cpdf_meshstream.cpp 2020-12-03 16:41:29.173766500 +0100 +@@ -209,7 +209,7 @@ + func->Call(color_value, 1, result, &nResults); + } + +- m_pCS->GetRGB(result, &r, &g, &b); ++ m_pCS->GetRGB(pdfium::span<float>(result), &r, &g, &b); + return std::tuple<float, float, float>(r, g, b); + } + +--- pdfium/core/fpdfapi/parser/cpdf_security_handler.cpp.orig 2020-12-03 16:53:56.077095400 +0100 ++++ pdfium/core/fpdfapi/parser/cpdf_security_handler.cpp 2020-12-03 16:44:23.951334200 +0100 +@@ -481,7 +481,7 @@ + uint8_t passcode[32]; + GetPassCode(owner_password, passcode); + uint8_t digest[16]; +- CRYPT_MD5Generate(passcode, digest); ++ CRYPT_MD5Generate(pdfium::span<uint8_t>(passcode), digest); + if (m_Revision >= 3) { + for (uint32_t i = 0; i < 50; i++) + CRYPT_MD5Generate(digest, digest); +@@ -570,10 +570,10 @@ + uint8_t passcode[32]; + GetPassCode(owner_password_copy, passcode); + uint8_t digest[16]; +- CRYPT_MD5Generate(passcode, digest); ++ CRYPT_MD5Generate(pdfium::span<uint8_t>(passcode), digest); + if (m_Revision >= 3) { + for (uint32_t i = 0; i < 50; i++) +- CRYPT_MD5Generate(digest, digest); ++ CRYPT_MD5Generate(pdfium::span<uint8_t>(digest), digest); + } + uint8_t enckey[32]; + memcpy(enckey, digest, key_len); +--- pdfium/core/fpdfapi/page/cpdf_dib.cpp.orig 2020-12-03 16:53:44.548444600 +0100 ++++ pdfium/core/fpdfapi/page/cpdf_dib.cpp 2020-12-03 16:49:11.937584700 +0100 +@@ -874,7 +874,7 @@ + color_values[0] += m_CompData[0].m_DecodeStep; + color_values[1] += m_CompData[0].m_DecodeStep; + color_values[2] += m_CompData[0].m_DecodeStep; +- m_pColorSpace->GetRGB(color_values, &R, &G, &B); ++ m_pColorSpace->GetRGB(pdfium::span<float>(color_values), &R, &G, &B); + FX_ARGB argb1 = ArgbEncode(255, FXSYS_roundf(R * 255), + FXSYS_roundf(G * 255), FXSYS_roundf(B * 255)); + if (argb0 != 0xFF000000 || argb1 != 0xFFFFFFFF) { +--- pdfium/third_party/base/allocator/partition_allocator/partition_alloc.cc.orig 2020-12-03 17:09:02.887283800 +0100 ++++ pdfium/third_party/base/allocator/partition_allocator/partition_alloc.cc 2020-12-03 17:07:22.198993800 +0100 +@@ -67,12 +67,12 @@ + // Chained hooks are not supported. Registering a non-null hook when a + // non-null hook is already registered indicates somebody is trying to + // overwrite a hook. +- CHECK((!allocation_observer_hook_ && !free_observer_hook_) || ++ CHECK((!allocation_observer_hook_.load() && !free_observer_hook_.load()) || + (!alloc_hook && !free_hook)); + allocation_observer_hook_ = alloc_hook; + free_observer_hook_ = free_hook; + +- hooks_enabled_ = allocation_observer_hook_ || allocation_override_hook_; ++ hooks_enabled_ = allocation_observer_hook_.load() || allocation_override_hook_.load(); + } + + void PartitionAllocHooks::SetOverrideHooks(AllocationOverrideHook* alloc_hook, +@@ -80,14 +80,14 @@ + ReallocOverrideHook realloc_hook) { + subtle::SpinLock::Guard guard(set_hooks_lock_); + +- CHECK((!allocation_override_hook_ && !free_override_hook_ && +- !realloc_override_hook_) || ++ CHECK((!allocation_override_hook_.load() && !free_override_hook_.load() && ++ !realloc_override_hook_.load()) || + (!alloc_hook && !free_hook && !realloc_hook)); + allocation_override_hook_ = alloc_hook; + free_override_hook_ = free_hook; + realloc_override_hook_ = realloc_hook; + +- hooks_enabled_ = allocation_observer_hook_ || allocation_override_hook_; ++ hooks_enabled_ = allocation_observer_hook_.load() || allocation_override_hook_.load(); + } + + void PartitionAllocHooks::AllocationObserverHookIfEnabled( +--- pdfium/third_party/base/allocator/partition_allocator/partition_page.h.orig 2020-12-03 17:13:56.944624000 +0100 ++++ pdfium/third_party/base/allocator/partition_allocator/partition_page.h 2020-12-03 17:13:34.385932300 +0100 +@@ -25,6 +25,8 @@ + struct DeferredUnmap { + void* ptr = nullptr; + size_t size = 0; ++ DeferredUnmap(void* const p, size_t const s) : ptr(p), size(s) {} ++ DeferredUnmap() = default; + // In most cases there is no page to unmap and ptr == nullptr. This function + // is inlined to avoid the overhead of a function call in the common case. + ALWAYS_INLINE void Run(); diff --git a/external/pdfium/pdfium4137-numerics.patch.3 b/external/pdfium/pdfium4137-numerics.patch.3 new file mode 100644 index 000000000000..7d27ccd7f3cb --- /dev/null +++ b/external/pdfium/pdfium4137-numerics.patch.3 @@ -0,0 +1,3364 @@ +Restore numerics headers from release 4137 + +diff -Naur workdir/UnpackedTarball/pdfium/third_party/base/numerics/checked_math.h workdir/UnpackedTarball/pdfium.4137/third_party/base/numerics/checked_math.h +--- workdir/UnpackedTarball/pdfium/third_party/base/numerics/checked_math.h 2020-10-26 19:26:04.000000000 +0100 ++++ workdir/UnpackedTarball/pdfium.4137/third_party/base/numerics/checked_math.h 1970-01-01 01:00:00.000000000 +0100 +@@ -1,395 +0,0 @@ +-// Copyright 2017 The Chromium Authors. All rights reserved. +-// Use of this source code is governed by a BSD-style license that can be +-// found in the LICENSE file. +- +-#ifndef THIRD_PARTY_BASE_NUMERICS_CHECKED_MATH_H_ +-#define THIRD_PARTY_BASE_NUMERICS_CHECKED_MATH_H_ +- +-#include <stddef.h> +- +-#include <limits> +-#include <type_traits> +- +-#include "third_party/base/numerics/checked_math_impl.h" +- +-namespace pdfium { +-namespace base { +-namespace internal { +- +-template <typename T> +-class CheckedNumeric { +- static_assert(std::is_arithmetic<T>::value, +- "CheckedNumeric<T>: T must be a numeric type."); +- +- public: +- using type = T; +- +- constexpr CheckedNumeric() = default; +- +- // Copy constructor. +- template <typename Src> +- constexpr CheckedNumeric(const CheckedNumeric<Src>& rhs) +- : state_(rhs.state_.value(), rhs.IsValid()) {} +- +- template <typename Src> +- friend class CheckedNumeric; +- +- // This is not an explicit constructor because we implicitly upgrade regular +- // numerics to CheckedNumerics to make them easier to use. +- template <typename Src> +- constexpr CheckedNumeric(Src value) // NOLINT(runtime/explicit) +- : state_(value) { +- static_assert(std::is_arithmetic<Src>::value, "Argument must be numeric."); +- } +- +- // This is not an explicit constructor because we want a seamless conversion +- // from StrictNumeric types. +- template <typename Src> +- constexpr CheckedNumeric( +- StrictNumeric<Src> value) // NOLINT(runtime/explicit) +- : state_(static_cast<Src>(value)) {} +- +- // IsValid() - The public API to test if a CheckedNumeric is currently valid. +- // A range checked destination type can be supplied using the Dst template +- // parameter. +- template <typename Dst = T> +- constexpr bool IsValid() const { +- return state_.is_valid() && +- IsValueInRangeForNumericType<Dst>(state_.value()); +- } +- +- // AssignIfValid(Dst) - Assigns the underlying value if it is currently valid +- // and is within the range supported by the destination type. Returns true if +- // successful and false otherwise. +- template <typename Dst> +-#if defined(__clang__) || defined(__GNUC__) +- __attribute__((warn_unused_result)) +-#elif defined(_MSC_VER) +- _Check_return_ +-#endif +- constexpr bool +- AssignIfValid(Dst* result) const { +- return BASE_NUMERICS_LIKELY(IsValid<Dst>()) +- ? ((*result = static_cast<Dst>(state_.value())), true) +- : false; +- } +- +- // ValueOrDie() - The primary accessor for the underlying value. If the +- // current state is not valid it will CHECK and crash. +- // A range checked destination type can be supplied using the Dst template +- // parameter, which will trigger a CHECK if the value is not in bounds for +- // the destination. +- // The CHECK behavior can be overridden by supplying a handler as a +- // template parameter, for test code, etc. However, the handler cannot access +- // the underlying value, and it is not available through other means. +- template <typename Dst = T, class CheckHandler = CheckOnFailure> +- constexpr StrictNumeric<Dst> ValueOrDie() const { +- return BASE_NUMERICS_LIKELY(IsValid<Dst>()) +- ? static_cast<Dst>(state_.value()) +- : CheckHandler::template HandleFailure<Dst>(); +- } +- +- // ValueOrDefault(T default_value) - A convenience method that returns the +- // current value if the state is valid, and the supplied default_value for +- // any other state. +- // A range checked destination type can be supplied using the Dst template +- // parameter. WARNING: This function may fail to compile or CHECK at runtime +- // if the supplied default_value is not within range of the destination type. +- template <typename Dst = T, typename Src> +- constexpr StrictNumeric<Dst> ValueOrDefault(const Src default_value) const { +- return BASE_NUMERICS_LIKELY(IsValid<Dst>()) +- ? static_cast<Dst>(state_.value()) +- : checked_cast<Dst>(default_value); +- } +- +- // Returns a checked numeric of the specified type, cast from the current +- // CheckedNumeric. If the current state is invalid or the destination cannot +- // represent the result then the returned CheckedNumeric will be invalid. +- template <typename Dst> +- constexpr CheckedNumeric<typename UnderlyingType<Dst>::type> Cast() const { +- return *this; +- } +- +- // This friend method is available solely for providing more detailed logging +- // in the the tests. Do not implement it in production code, because the +- // underlying values may change at any time. +- template <typename U> +- friend U GetNumericValueForTest(const CheckedNumeric<U>& src); +- +- // Prototypes for the supported arithmetic operator overloads. +- template <typename Src> +- constexpr CheckedNumeric& operator+=(const Src rhs); +- template <typename Src> +- constexpr CheckedNumeric& operator-=(const Src rhs); +- template <typename Src> +- constexpr CheckedNumeric& operator*=(const Src rhs); +- template <typename Src> +- constexpr CheckedNumeric& operator/=(const Src rhs); +- template <typename Src> +- constexpr CheckedNumeric& operator%=(const Src rhs); +- template <typename Src> +- constexpr CheckedNumeric& operator<<=(const Src rhs); +- template <typename Src> +- constexpr CheckedNumeric& operator>>=(const Src rhs); +- template <typename Src> +- constexpr CheckedNumeric& operator&=(const Src rhs); +- template <typename Src> +- constexpr CheckedNumeric& operator|=(const Src rhs); +- template <typename Src> +- constexpr CheckedNumeric& operator^=(const Src rhs); +- +- constexpr CheckedNumeric operator-() const { +- // The negation of two's complement int min is int min, so we simply +- // check for that in the constexpr case. +- // We use an optimized code path for a known run-time variable. +- return MustTreatAsConstexpr(state_.value()) || !std::is_signed<T>::value || +- std::is_floating_point<T>::value +- ? CheckedNumeric<T>( +- NegateWrapper(state_.value()), +- IsValid() && (!std::is_signed<T>::value || +- std::is_floating_point<T>::value || +- NegateWrapper(state_.value()) != +- std::numeric_limits<T>::lowest())) +- : FastRuntimeNegate(); +- } +- +- constexpr CheckedNumeric operator~() const { +- return CheckedNumeric<decltype(InvertWrapper(T()))>( +- InvertWrapper(state_.value()), IsValid()); +- } +- +- constexpr CheckedNumeric Abs() const { +- return !IsValueNegative(state_.value()) ? *this : -*this; +- } +- +- template <typename U> +- constexpr CheckedNumeric<typename MathWrapper<CheckedMaxOp, T, U>::type> Max( +- const U rhs) const { +- using R = typename UnderlyingType<U>::type; +- using result_type = typename MathWrapper<CheckedMaxOp, T, U>::type; +- // TODO(jschuh): This can be converted to the MathOp version and remain +- // constexpr once we have C++14 support. +- return CheckedNumeric<result_type>( +- static_cast<result_type>( +- IsGreater<T, R>::Test(state_.value(), Wrapper<U>::value(rhs)) +- ? state_.value() +- : Wrapper<U>::value(rhs)), +- state_.is_valid() && Wrapper<U>::is_valid(rhs)); +- } +- +- template <typename U> +- constexpr CheckedNumeric<typename MathWrapper<CheckedMinOp, T, U>::type> Min( +- const U rhs) const { +- using R = typename UnderlyingType<U>::type; +- using result_type = typename MathWrapper<CheckedMinOp, T, U>::type; +- // TODO(jschuh): This can be converted to the MathOp version and remain +- // constexpr once we have C++14 support. +- return CheckedNumeric<result_type>( +- static_cast<result_type>( +- IsLess<T, R>::Test(state_.value(), Wrapper<U>::value(rhs)) +- ? state_.value() +- : Wrapper<U>::value(rhs)), +- state_.is_valid() && Wrapper<U>::is_valid(rhs)); +- } +- +- // This function is available only for integral types. It returns an unsigned +- // integer of the same width as the source type, containing the absolute value +- // of the source, and properly handling signed min. +- constexpr CheckedNumeric<typename UnsignedOrFloatForSize<T>::type> +- UnsignedAbs() const { +- return CheckedNumeric<typename UnsignedOrFloatForSize<T>::type>( +- SafeUnsignedAbs(state_.value()), state_.is_valid()); +- } +- +- constexpr CheckedNumeric& operator++() { +- *this += 1; +- return *this; +- } +- +- constexpr CheckedNumeric operator++(int) { +- CheckedNumeric value = *this; +- *this += 1; +- return value; +- } +- +- constexpr CheckedNumeric& operator--() { +- *this -= 1; +- return *this; +- } +- +- constexpr CheckedNumeric operator--(int) { +- CheckedNumeric value = *this; +- *this -= 1; +- return value; +- } +- +- // These perform the actual math operations on the CheckedNumerics. +- // Binary arithmetic operations. +- template <template <typename, typename, typename> class M, +- typename L, +- typename R> +- static constexpr CheckedNumeric MathOp(const L lhs, const R rhs) { +- using Math = typename MathWrapper<M, L, R>::math; +- T result = 0; +- bool is_valid = +- Wrapper<L>::is_valid(lhs) && Wrapper<R>::is_valid(rhs) && +- Math::Do(Wrapper<L>::value(lhs), Wrapper<R>::value(rhs), &result); +- return CheckedNumeric<T>(result, is_valid); +- } +- +- // Assignment arithmetic operations. +- template <template <typename, typename, typename> class M, typename R> +- constexpr CheckedNumeric& MathOp(const R rhs) { +- using Math = typename MathWrapper<M, T, R>::math; +- T result = 0; // Using T as the destination saves a range check. +- bool is_valid = state_.is_valid() && Wrapper<R>::is_valid(rhs) && +- Math::Do(state_.value(), Wrapper<R>::value(rhs), &result); +- *this = CheckedNumeric<T>(result, is_valid); +- return *this; +- } +- +- private: +- CheckedNumericState<T> state_; +- +- CheckedNumeric FastRuntimeNegate() const { +- T result; +- bool success = CheckedSubOp<T, T>::Do(T(0), state_.value(), &result); +- return CheckedNumeric<T>(result, IsValid() && success); +- } +- +- template <typename Src> +- constexpr CheckedNumeric(Src value, bool is_valid) +- : state_(value, is_valid) {} +- +- // These wrappers allow us to handle state the same way for both +- // CheckedNumeric and POD arithmetic types. +- template <typename Src> +- struct Wrapper { +- static constexpr bool is_valid(Src) { return true; } +- static constexpr Src value(Src value) { return value; } +- }; +- +- template <typename Src> +- struct Wrapper<CheckedNumeric<Src>> { +- static constexpr bool is_valid(const CheckedNumeric<Src> v) { +- return v.IsValid(); +- } +- static constexpr Src value(const CheckedNumeric<Src> v) { +- return v.state_.value(); +- } +- }; +- +- template <typename Src> +- struct Wrapper<StrictNumeric<Src>> { +- static constexpr bool is_valid(const StrictNumeric<Src>) { return true; } +- static constexpr Src value(const StrictNumeric<Src> v) { +- return static_cast<Src>(v); +- } +- }; +-}; +- +-// Convenience functions to avoid the ugly template disambiguator syntax. +-template <typename Dst, typename Src> +-constexpr bool IsValidForType(const CheckedNumeric<Src> value) { +- return value.template IsValid<Dst>(); +-} +- +-template <typename Dst, typename Src> +-constexpr StrictNumeric<Dst> ValueOrDieForType( +- const CheckedNumeric<Src> value) { +- return value.template ValueOrDie<Dst>(); +-} +- +-template <typename Dst, typename Src, typename Default> +-constexpr StrictNumeric<Dst> ValueOrDefaultForType( +- const CheckedNumeric<Src> value, +- const Default default_value) { +- return value.template ValueOrDefault<Dst>(default_value); +-} +- +-// Convience wrapper to return a new CheckedNumeric from the provided arithmetic +-// or CheckedNumericType. +-template <typename T> +-constexpr CheckedNumeric<typename UnderlyingType<T>::type> MakeCheckedNum( +- const T value) { +- return value; +-} +- +-// These implement the variadic wrapper for the math operations. +-template <template <typename, typename, typename> class M, +- typename L, +- typename R> +-constexpr CheckedNumeric<typename MathWrapper<M, L, R>::type> CheckMathOp( +- const L lhs, +- const R rhs) { +- using Math = typename MathWrapper<M, L, R>::math; +- return CheckedNumeric<typename Math::result_type>::template MathOp<M>(lhs, +- rhs); +-} +- +-// General purpose wrapper template for arithmetic operations. +-template <template <typename, typename, typename> class M, +- typename L, +- typename R, +- typename... Args> +-constexpr CheckedNumeric<typename ResultType<M, L, R, Args...>::type> +-CheckMathOp(const L lhs, const R rhs, const Args... args) { +- return CheckMathOp<M>(CheckMathOp<M>(lhs, rhs), args...); +-} +- +-BASE_NUMERIC_ARITHMETIC_OPERATORS(Checked, Check, Add, +, +=) +-BASE_NUMERIC_ARITHMETIC_OPERATORS(Checked, Check, Sub, -, -=) +-BASE_NUMERIC_ARITHMETIC_OPERATORS(Checked, Check, Mul, *, *=) +-BASE_NUMERIC_ARITHMETIC_OPERATORS(Checked, Check, Div, /, /=) +-BASE_NUMERIC_ARITHMETIC_OPERATORS(Checked, Check, Mod, %, %=) +-BASE_NUMERIC_ARITHMETIC_OPERATORS(Checked, Check, Lsh, <<, <<=) +-BASE_NUMERIC_ARITHMETIC_OPERATORS(Checked, Check, Rsh, >>, >>=) +-BASE_NUMERIC_ARITHMETIC_OPERATORS(Checked, Check, And, &, &=) +-BASE_NUMERIC_ARITHMETIC_OPERATORS(Checked, Check, Or, |, |=) +-BASE_NUMERIC_ARITHMETIC_OPERATORS(Checked, Check, Xor, ^, ^=) +-BASE_NUMERIC_ARITHMETIC_VARIADIC(Checked, Check, Max) +-BASE_NUMERIC_ARITHMETIC_VARIADIC(Checked, Check, Min) +- +-// These are some extra StrictNumeric operators to support simple pointer +-// arithmetic with our result types. Since wrapping on a pointer is always +-// bad, we trigger the CHECK condition here. +-template <typename L, typename R> +-L* operator+(L* lhs, const StrictNumeric<R> rhs) { +- uintptr_t result = CheckAdd(reinterpret_cast<uintptr_t>(lhs), +- CheckMul(sizeof(L), static_cast<R>(rhs))) +- .template ValueOrDie<uintptr_t>(); +- return reinterpret_cast<L*>(result); +-} +- +-template <typename L, typename R> +-L* operator-(L* lhs, const StrictNumeric<R> rhs) { +- uintptr_t result = CheckSub(reinterpret_cast<uintptr_t>(lhs), +- CheckMul(sizeof(L), static_cast<R>(rhs))) +- .template ValueOrDie<uintptr_t>(); +- return reinterpret_cast<L*>(result); +-} +- +-} // namespace internal +- +-using internal::CheckedNumeric; +-using internal::IsValidForType; +-using internal::ValueOrDieForType; +-using internal::ValueOrDefaultForType; +-using internal::MakeCheckedNum; +-using internal::CheckMax; +-using internal::CheckMin; +-using internal::CheckAdd; +-using internal::CheckSub; +-using internal::CheckMul; +-using internal::CheckDiv; +-using internal::CheckMod; +-using internal::CheckLsh; +-using internal::CheckRsh; +-using internal::CheckAnd; +-using internal::CheckOr; +-using internal::CheckXor; +- +-} // namespace base +-} // namespace pdfium +- +-#endif // THIRD_PARTY_BASE_NUMERICS_CHECKED_MATH_H_ +diff -Naur workdir/UnpackedTarball/pdfium/third_party/base/numerics/checked_math_impl.h workdir/UnpackedTarball/pdfium.4137/third_party/base/numerics/checked_math_impl.h +--- workdir/UnpackedTarball/pdfium/third_party/base/numerics/checked_math_impl.h 2020-10-26 19:26:04.000000000 +0100 ++++ workdir/UnpackedTarball/pdfium.4137/third_party/base/numerics/checked_math_impl.h 1970-01-01 01:00:00.000000000 +0100 +@@ -1,579 +0,0 @@ +-// Copyright 2017 The Chromium Authors. All rights reserved. +-// Use of this source code is governed by a BSD-style license that can be +-// found in the LICENSE file. +- +-#ifndef THIRD_PARTY_BASE_NUMERICS_CHECKED_MATH_IMPL_H_ +-#define THIRD_PARTY_BASE_NUMERICS_CHECKED_MATH_IMPL_H_ +- +-#include <stddef.h> +-#include <stdint.h> +- +-#include <climits> +-#include <cmath> +-#include <cstdlib> +-#include <limits> +-#include <type_traits> +- +-#include "third_party/base/numerics/safe_conversions.h" +-#include "third_party/base/numerics/safe_math_shared_impl.h" +- +-namespace pdfium { +-namespace base { +-namespace internal { +- +-template <typename T> +-constexpr bool CheckedAddImpl(T x, T y, T* result) { +- static_assert(std::is_integral<T>::value, "Type must be integral"); +- // Since the value of x+y is undefined if we have a signed type, we compute +- // it using the unsigned type of the same size. +- using UnsignedDst = typename std::make_unsigned<T>::type; +- using SignedDst = typename std::make_signed<T>::type; +- UnsignedDst ux = static_cast<UnsignedDst>(x); +- UnsignedDst uy = static_cast<UnsignedDst>(y); +- UnsignedDst uresult = static_cast<UnsignedDst>(ux + uy); +- *result = static_cast<T>(uresult); +- // Addition is valid if the sign of (x + y) is equal to either that of x or +- // that of y. +- return (std::is_signed<T>::value) +- ? static_cast<SignedDst>((uresult ^ ux) & (uresult ^ uy)) >= 0 +- : uresult >= uy; // Unsigned is either valid or underflow. +-} +- +-template <typename T, typename U, class Enable = void> +-struct CheckedAddOp {}; +- +-template <typename T, typename U> +-struct CheckedAddOp<T, +- U, +- typename std::enable_if<std::is_integral<T>::value && +- std::is_integral<U>::value>::type> { +- using result_type = typename MaxExponentPromotion<T, U>::type; +- template <typename V> +- static constexpr bool Do(T x, U y, V* result) { +- // TODO(jschuh) Make this "constexpr if" once we're C++17. +- if (CheckedAddFastOp<T, U>::is_supported) +- return CheckedAddFastOp<T, U>::Do(x, y, result); +- +- // Double the underlying type up to a full machine word. +- using FastPromotion = typename FastIntegerArithmeticPromotion<T, U>::type; +- using Promotion = +- typename std::conditional<(IntegerBitsPlusSign<FastPromotion>::value > +- IntegerBitsPlusSign<intptr_t>::value), +- typename BigEnoughPromotion<T, U>::type, +- FastPromotion>::type; +- // Fail if either operand is out of range for the promoted type. +- // TODO(jschuh): This could be made to work for a broader range of values. +- if (BASE_NUMERICS_UNLIKELY(!IsValueInRangeForNumericType<Promotion>(x) || +- !IsValueInRangeForNumericType<Promotion>(y))) { +- return false; +- } +- +- Promotion presult = {}; +- bool is_valid = true; +- if (IsIntegerArithmeticSafe<Promotion, T, U>::value) { +- presult = static_cast<Promotion>(x) + static_cast<Promotion>(y); +- } else { +- is_valid = CheckedAddImpl(static_cast<Promotion>(x), +- static_cast<Promotion>(y), &presult); +- } +- *result = static_cast<V>(presult); +- return is_valid && IsValueInRangeForNumericType<V>(presult); +- } +-}; +- +-template <typename T> +-constexpr bool CheckedSubImpl(T x, T y, T* result) { +- static_assert(std::is_integral<T>::value, "Type must be integral"); +- // Since the value of x+y is undefined if we have a signed type, we compute +- // it using the unsigned type of the same size. +- using UnsignedDst = typename std::make_unsigned<T>::type; +- using SignedDst = typename std::make_signed<T>::type; +- UnsignedDst ux = static_cast<UnsignedDst>(x); +- UnsignedDst uy = static_cast<UnsignedDst>(y); +- UnsignedDst uresult = static_cast<UnsignedDst>(ux - uy); +- *result = static_cast<T>(uresult); +- // Subtraction is valid if either x and y have same sign, or (x-y) and x have +- // the same sign. +- return (std::is_signed<T>::value) +- ? static_cast<SignedDst>((uresult ^ ux) & (ux ^ uy)) >= 0 +- : x >= y; +-} +- +-template <typename T, typename U, class Enable = void> +-struct CheckedSubOp {}; +- +-template <typename T, typename U> +-struct CheckedSubOp<T, +- U, +- typename std::enable_if<std::is_integral<T>::value && +- std::is_integral<U>::value>::type> { +- using result_type = typename MaxExponentPromotion<T, U>::type; +- template <typename V> +- static constexpr bool Do(T x, U y, V* result) { +- // TODO(jschuh) Make this "constexpr if" once we're C++17. +- if (CheckedSubFastOp<T, U>::is_supported) +- return CheckedSubFastOp<T, U>::Do(x, y, result); +- +- // Double the underlying type up to a full machine word. +- using FastPromotion = typename FastIntegerArithmeticPromotion<T, U>::type; +- using Promotion = +- typename std::conditional<(IntegerBitsPlusSign<FastPromotion>::value > +- IntegerBitsPlusSign<intptr_t>::value), +- typename BigEnoughPromotion<T, U>::type, +- FastPromotion>::type; +- // Fail if either operand is out of range for the promoted type. +- // TODO(jschuh): This could be made to work for a broader range of values. +- if (BASE_NUMERICS_UNLIKELY(!IsValueInRangeForNumericType<Promotion>(x) || +- !IsValueInRangeForNumericType<Promotion>(y))) { +- return false; +- } +- +- Promotion presult = {}; +- bool is_valid = true; +- if (IsIntegerArithmeticSafe<Promotion, T, U>::value) { +- presult = static_cast<Promotion>(x) - static_cast<Promotion>(y); +- } else { +- is_valid = CheckedSubImpl(static_cast<Promotion>(x), +- static_cast<Promotion>(y), &presult); +- } +- *result = static_cast<V>(presult); +- return is_valid && IsValueInRangeForNumericType<V>(presult); +- } +-}; +- +-template <typename T> +-constexpr bool CheckedMulImpl(T x, T y, T* result) { +- static_assert(std::is_integral<T>::value, "Type must be integral"); +- // Since the value of x*y is potentially undefined if we have a signed type, +- // we compute it using the unsigned type of the same size. +- using UnsignedDst = typename std::make_unsigned<T>::type; +- using SignedDst = typename std::make_signed<T>::type; +- const UnsignedDst ux = SafeUnsignedAbs(x); +- const UnsignedDst uy = SafeUnsignedAbs(y); +- UnsignedDst uresult = static_cast<UnsignedDst>(ux * uy); +- const bool is_negative = +- std::is_signed<T>::value && static_cast<SignedDst>(x ^ y) < 0; +- *result = is_negative ? 0 - uresult : uresult; +- // We have a fast out for unsigned identity or zero on the second operand. +- // After that it's an unsigned overflow check on the absolute value, with +- // a +1 bound for a negative result. +- return uy <= UnsignedDst(!std::is_signed<T>::value || is_negative) || +- ux <= (std::numeric_limits<T>::max() + UnsignedDst(is_negative)) / uy; +-} +- +-template <typename T, typename U, class Enable = void> +-struct CheckedMulOp {}; +- +-template <typename T, typename U> +-struct CheckedMulOp<T, +- U, +- typename std::enable_if<std::is_integral<T>::value && +- std::is_integral<U>::value>::type> { +- using result_type = typename MaxExponentPromotion<T, U>::type; +- template <typename V> +- static constexpr bool Do(T x, U y, V* result) { +- // TODO(jschuh) Make this "constexpr if" once we're C++17. +- if (CheckedMulFastOp<T, U>::is_supported) +- return CheckedMulFastOp<T, U>::Do(x, y, result); +- +- using Promotion = typename FastIntegerArithmeticPromotion<T, U>::type; +- // Verify the destination type can hold the result (always true for 0). +- if (BASE_NUMERICS_UNLIKELY((!IsValueInRangeForNumericType<Promotion>(x) || +- !IsValueInRangeForNumericType<Promotion>(y)) && +- x && y)) { +- return false; +- } +- +- Promotion presult = {}; +- bool is_valid = true; +- if (CheckedMulFastOp<Promotion, Promotion>::is_supported) { +- // The fast op may be available with the promoted type. +- is_valid = CheckedMulFastOp<Promotion, Promotion>::Do(x, y, &presult); +- } else if (IsIntegerArithmeticSafe<Promotion, T, U>::value) { +- presult = static_cast<Promotion>(x) * static_cast<Promotion>(y); +- } else { +- is_valid = CheckedMulImpl(static_cast<Promotion>(x), +- static_cast<Promotion>(y), &presult); +- } +- *result = static_cast<V>(presult); +- return is_valid && IsValueInRangeForNumericType<V>(presult); +- } +-}; +- +-// Division just requires a check for a zero denominator or an invalid negation +-// on signed min/-1. +-template <typename T, typename U, class Enable = void> +-struct CheckedDivOp {}; +- +-template <typename T, typename U> +-struct CheckedDivOp<T, +- U, +- typename std::enable_if<std::is_integral<T>::value && +- std::is_integral<U>::value>::type> { +- using result_type = typename MaxExponentPromotion<T, U>::type; +- template <typename V> +- static constexpr bool Do(T x, U y, V* result) { +- if (BASE_NUMERICS_UNLIKELY(!y)) +- return false; +- +- // The overflow check can be compiled away if we don't have the exact +- // combination of types needed to trigger this case. +- using Promotion = typename BigEnoughPromotion<T, U>::type; +- if (BASE_NUMERICS_UNLIKELY( +- (std::is_signed<T>::value && std::is_signed<U>::value && +- IsTypeInRangeForNumericType<T, Promotion>::value && +- static_cast<Promotion>(x) == +- std::numeric_limits<Promotion>::lowest() && +- y == static_cast<U>(-1)))) { +- return false; +- } +- +- // This branch always compiles away if the above branch wasn't removed. +- if (BASE_NUMERICS_UNLIKELY((!IsValueInRangeForNumericType<Promotion>(x) || +- !IsValueInRangeForNumericType<Promotion>(y)) && +- x)) { +- return false; +- } +- +- Promotion presult = Promotion(x) / Promotion(y); +- *result = static_cast<V>(presult); +- return IsValueInRangeForNumericType<V>(presult); +- } +-}; +- +-template <typename T, typename U, class Enable = void> +-struct CheckedModOp {}; +- +-template <typename T, typename U> +-struct CheckedModOp<T, +- U, +- typename std::enable_if<std::is_integral<T>::value && +- std::is_integral<U>::value>::type> { +- using result_type = typename MaxExponentPromotion<T, U>::type; +- template <typename V> +- static constexpr bool Do(T x, U y, V* result) { +- if (BASE_NUMERICS_UNLIKELY(!y)) +- return false; +- +- using Promotion = typename BigEnoughPromotion<T, U>::type; +- if (BASE_NUMERICS_UNLIKELY( +- (std::is_signed<T>::value && std::is_signed<U>::value && +- IsTypeInRangeForNumericType<T, Promotion>::value && +- static_cast<Promotion>(x) == +- std::numeric_limits<Promotion>::lowest() && +- y == static_cast<U>(-1)))) { +- *result = 0; +- return true; +- } +- +- Promotion presult = static_cast<Promotion>(x) % static_cast<Promotion>(y); +- *result = static_cast<Promotion>(presult); +- return IsValueInRangeForNumericType<V>(presult); +- } +-}; +- +-template <typename T, typename U, class Enable = void> +-struct CheckedLshOp {}; +- +-// Left shift. Shifts less than 0 or greater than or equal to the number +-// of bits in the promoted type are undefined. Shifts of negative values +-// are undefined. Otherwise it is defined when the result fits. +-template <typename T, typename U> +-struct CheckedLshOp<T, +- U, +- typename std::enable_if<std::is_integral<T>::value && +- std::is_integral<U>::value>::type> { +- using result_type = T; +- template <typename V> +- static constexpr bool Do(T x, U shift, V* result) { +- // Disallow negative numbers and verify the shift is in bounds. +- if (BASE_NUMERICS_LIKELY(!IsValueNegative(x) && +- as_unsigned(shift) < +- as_unsigned(std::numeric_limits<T>::digits))) { +- // Shift as unsigned to avoid undefined behavior. +- *result = static_cast<V>(as_unsigned(x) << shift); +- // If the shift can be reversed, we know it was valid. +- return *result >> shift == x; +- } +- +- // Handle the legal corner-case of a full-width signed shift of zero. +- return std::is_signed<T>::value && !x && +- as_unsigned(shift) == as_unsigned(std::numeric_limits<T>::digits); +- } +-}; +- +-template <typename T, typename U, class Enable = void> +-struct CheckedRshOp {}; +- +-// Right shift. Shifts less than 0 or greater than or equal to the number +-// of bits in the promoted type are undefined. Otherwise, it is always defined, +-// but a right shift of a negative value is implementation-dependent. +-template <typename T, typename U> +-struct CheckedRshOp<T, +- U, +- typename std::enable_if<std::is_integral<T>::value && +- std::is_integral<U>::value>::type> { +- using result_type = T; +- template <typename V> +- static bool Do(T x, U shift, V* result) { +- // Use the type conversion push negative values out of range. +- if (BASE_NUMERICS_LIKELY(as_unsigned(shift) < +- IntegerBitsPlusSign<T>::value)) { +- T tmp = x >> shift; +- *result = static_cast<V>(tmp); +- return IsValueInRangeForNumericType<V>(tmp); +- } +- return false; +- } +-}; +- +-template <typename T, typename U, class Enable = void> +-struct CheckedAndOp {}; +- +-// For simplicity we support only unsigned integer results. +-template <typename T, typename U> +-struct CheckedAndOp<T, +- U, +- typename std::enable_if<std::is_integral<T>::value && +- std::is_integral<U>::value>::type> { +- using result_type = typename std::make_unsigned< +- typename MaxExponentPromotion<T, U>::type>::type; +- template <typename V> +- static constexpr bool Do(T x, U y, V* result) { +- result_type tmp = static_cast<result_type>(x) & static_cast<result_type>(y); +- *result = static_cast<V>(tmp); +- return IsValueInRangeForNumericType<V>(tmp); +- } +-}; +- +-template <typename T, typename U, class Enable = void> +-struct CheckedOrOp {}; +- +-// For simplicity we support only unsigned integers. +-template <typename T, typename U> +-struct CheckedOrOp<T, +- U, +- typename std::enable_if<std::is_integral<T>::value && +- std::is_integral<U>::value>::type> { +- using result_type = typename std::make_unsigned< +- typename MaxExponentPromotion<T, U>::type>::type; +- template <typename V> +- static constexpr bool Do(T x, U y, V* result) { +- result_type tmp = static_cast<result_type>(x) | static_cast<result_type>(y); +- *result = static_cast<V>(tmp); +- return IsValueInRangeForNumericType<V>(tmp); +- } +-}; +- +-template <typename T, typename U, class Enable = void> +-struct CheckedXorOp {}; +- +-// For simplicity we support only unsigned integers. +-template <typename T, typename U> +-struct CheckedXorOp<T, +- U, +- typename std::enable_if<std::is_integral<T>::value && +- std::is_integral<U>::value>::type> { +- using result_type = typename std::make_unsigned< +- typename MaxExponentPromotion<T, U>::type>::type; +- template <typename V> +- static constexpr bool Do(T x, U y, V* result) { +- result_type tmp = static_cast<result_type>(x) ^ static_cast<result_type>(y); +- *result = static_cast<V>(tmp); +- return IsValueInRangeForNumericType<V>(tmp); +- } +-}; +- +-// Max doesn't really need to be implemented this way because it can't fail, +-// but it makes the code much cleaner to use the MathOp wrappers. +-template <typename T, typename U, class Enable = void> +-struct CheckedMaxOp {}; +- +-template <typename T, typename U> +-struct CheckedMaxOp< +- T, +- U, +- typename std::enable_if<std::is_arithmetic<T>::value && +- std::is_arithmetic<U>::value>::type> { +- using result_type = typename MaxExponentPromotion<T, U>::type; +- template <typename V> +- static constexpr bool Do(T x, U y, V* result) { +- result_type tmp = IsGreater<T, U>::Test(x, y) ? static_cast<result_type>(x) +- : static_cast<result_type>(y); +- *result = static_cast<V>(tmp); +- return IsValueInRangeForNumericType<V>(tmp); +- } +-}; +- +-// Min doesn't really need to be implemented this way because it can't fail, +-// but it makes the code much cleaner to use the MathOp wrappers. +-template <typename T, typename U, class Enable = void> +-struct CheckedMinOp {}; +- +-template <typename T, typename U> +-struct CheckedMinOp< +- T, +- U, +- typename std::enable_if<std::is_arithmetic<T>::value && +- std::is_arithmetic<U>::value>::type> { +- using result_type = typename LowestValuePromotion<T, U>::type; +- template <typename V> +- static constexpr bool Do(T x, U y, V* result) { +- result_type tmp = IsLess<T, U>::Test(x, y) ? static_cast<result_type>(x) +- : static_cast<result_type>(y); +- *result = static_cast<V>(tmp); +- return IsValueInRangeForNumericType<V>(tmp); +- } +-}; +- +-// This is just boilerplate that wraps the standard floating point arithmetic. +-// A macro isn't the nicest solution, but it beats rewriting these repeatedly. +-#define BASE_FLOAT_ARITHMETIC_OPS(NAME, OP) \ +- template <typename T, typename U> \ +- struct Checked##NAME##Op< \ +- T, U, \ +- typename std::enable_if<std::is_floating_point<T>::value || \ +- std::is_floating_point<U>::value>::type> { \ +- using result_type = typename MaxExponentPromotion<T, U>::type; \ +- template <typename V> \ +- static constexpr bool Do(T x, U y, V* result) { \ +- using Promotion = typename MaxExponentPromotion<T, U>::type; \ +- Promotion presult = x OP y; \ +- *result = static_cast<V>(presult); \ +- return IsValueInRangeForNumericType<V>(presult); \ +- } \ +- }; +- +-BASE_FLOAT_ARITHMETIC_OPS(Add, +) +-BASE_FLOAT_ARITHMETIC_OPS(Sub, -) +-BASE_FLOAT_ARITHMETIC_OPS(Mul, *) +-BASE_FLOAT_ARITHMETIC_OPS(Div, /) +- +-#undef BASE_FLOAT_ARITHMETIC_OPS +- +-// Floats carry around their validity state with them, but integers do not. So, +-// we wrap the underlying value in a specialization in order to hide that detail +-// and expose an interface via accessors. +-enum NumericRepresentation { +- NUMERIC_INTEGER, +- NUMERIC_FLOATING, +- NUMERIC_UNKNOWN +-}; +- +-template <typename NumericType> +-struct GetNumericRepresentation { +- static const NumericRepresentation value = +- std::is_integral<NumericType>::value +- ? NUMERIC_INTEGER +- : (std::is_floating_point<NumericType>::value ? NUMERIC_FLOATING +- : NUMERIC_UNKNOWN); +-}; +- +-template <typename T, +- NumericRepresentation type = GetNumericRepresentation<T>::value> +-class CheckedNumericState {}; +- +-// Integrals require quite a bit of additional housekeeping to manage state. +-template <typename T> +-class CheckedNumericState<T, NUMERIC_INTEGER> { +- private: +- // is_valid_ precedes value_ because member intializers in the constructors +- // are evaluated in field order, and is_valid_ must be read when initializing +- // value_. +- bool is_valid_; +- T value_; +- +- // Ensures that a type conversion does not trigger undefined behavior. +- template <typename Src> +- static constexpr T WellDefinedConversionOrZero(const Src value, +- const bool is_valid) { +- using SrcType = typename internal::UnderlyingType<Src>::type; +- return (std::is_integral<SrcType>::value || is_valid) +- ? static_cast<T>(value) +- : static_cast<T>(0); +- } +- +- public: +- template <typename Src, NumericRepresentation type> +- friend class CheckedNumericState; +- +- constexpr CheckedNumericState() : is_valid_(true), value_(0) {} +- +- template <typename Src> +- constexpr CheckedNumericState(Src value, bool is_valid) +- : is_valid_(is_valid && IsValueInRangeForNumericType<T>(value)), +- value_(WellDefinedConversionOrZero(value, is_valid_)) { +- static_assert(std::is_arithmetic<Src>::value, "Argument must be numeric."); +- } +- +- // Copy constructor. +- template <typename Src> +- constexpr CheckedNumericState(const CheckedNumericState<Src>& rhs) +- : is_valid_(rhs.IsValid()), +- value_(WellDefinedConversionOrZero(rhs.value(), is_valid_)) {} +- +- template <typename Src> +- constexpr explicit CheckedNumericState(Src value) +- : is_valid_(IsValueInRangeForNumericType<T>(value)), +- value_(WellDefinedConversionOrZero(value, is_valid_)) {} +- +- constexpr bool is_valid() const { return is_valid_; } +- constexpr T value() const { return value_; } +-}; +- +-// Floating points maintain their own validity, but need translation wrappers. +-template <typename T> +-class CheckedNumericState<T, NUMERIC_FLOATING> { +- private: +- T value_; +- +- // Ensures that a type conversion does not trigger undefined behavior. +- template <typename Src> +- static constexpr T WellDefinedConversionOrNaN(const Src value, +- const bool is_valid) { +- using SrcType = typename internal::UnderlyingType<Src>::type; +- return (StaticDstRangeRelationToSrcRange<T, SrcType>::value == +- NUMERIC_RANGE_CONTAINED || +- is_valid) +- ? static_cast<T>(value) +- : std::numeric_limits<T>::quiet_NaN(); +- } +- +- public: +- template <typename Src, NumericRepresentation type> +- friend class CheckedNumericState; +- +- constexpr CheckedNumericState() : value_(0.0) {} +- +- template <typename Src> +- constexpr CheckedNumericState(Src value, bool is_valid) +- : value_(WellDefinedConversionOrNaN(value, is_valid)) {} +- +- template <typename Src> +- constexpr explicit CheckedNumericState(Src value) +- : value_(WellDefinedConversionOrNaN( +- value, +- IsValueInRangeForNumericType<T>(value))) {} +- +- // Copy constructor. +- template <typename Src> +- constexpr CheckedNumericState(const CheckedNumericState<Src>& rhs) +- : value_(WellDefinedConversionOrNaN( +- rhs.value(), +- rhs.is_valid() && IsValueInRangeForNumericType<T>(rhs.value()))) {} +- +- constexpr bool is_valid() const { +- // Written this way because std::isfinite is not reliably constexpr. +- return MustTreatAsConstexpr(value_) +- ? value_ <= std::numeric_limits<T>::max() && +- value_ >= std::numeric_limits<T>::lowest() +- : std::isfinite(value_); +- } +- constexpr T value() const { return value_; } +-}; +- +-} // namespace internal +-} // namespace base +-} // namespace pdfium +- +-#endif // THIRD_PARTY_BASE_NUMERICS_CHECKED_MATH_IMPL_H_ +diff -Naur workdir/UnpackedTarball/pdfium/third_party/base/numerics/clamped_math.h workdir/UnpackedTarball/pdfium.4137/third_party/base/numerics/clamped_math.h +--- workdir/UnpackedTarball/pdfium/third_party/base/numerics/clamped_math.h 2020-10-26 19:26:04.000000000 +0100 ++++ workdir/UnpackedTarball/pdfium.4137/third_party/base/numerics/clamped_math.h 1970-01-01 01:00:00.000000000 +0100 +@@ -1,266 +0,0 @@ +-// Copyright 2017 The Chromium Authors. All rights reserved. +-// Use of this source code is governed by a BSD-style license that can be +-// found in the LICENSE file. +- +-#ifndef THIRD_PARTY_BASE_NUMERICS_CLAMPED_MATH_H_ +-#define THIRD_PARTY_BASE_NUMERICS_CLAMPED_MATH_H_ +- +-#include <stddef.h> +- +-#include <limits> +-#include <type_traits> +- +-#include "third_party/base/numerics/clamped_math_impl.h" +- +-namespace pdfium { +-namespace base { +-namespace internal { +- +-template <typename T> +-class ClampedNumeric { +- static_assert(std::is_arithmetic<T>::value, +- "ClampedNumeric<T>: T must be a numeric type."); +- +- public: +- using type = T; +- +- constexpr ClampedNumeric() : value_(0) {} +- +- // Copy constructor. +- template <typename Src> +- constexpr ClampedNumeric(const ClampedNumeric<Src>& rhs) +- : value_(saturated_cast<T>(rhs.value_)) {} +- +- template <typename Src> +- friend class ClampedNumeric; +- +- // This is not an explicit constructor because we implicitly upgrade regular +- // numerics to ClampedNumerics to make them easier to use. +- template <typename Src> +- constexpr ClampedNumeric(Src value) // NOLINT(runtime/explicit) +- : value_(saturated_cast<T>(value)) { +- static_assert(std::is_arithmetic<Src>::value, "Argument must be numeric."); +- } +- +- // This is not an explicit constructor because we want a seamless conversion +- // from StrictNumeric types. +- template <typename Src> +- constexpr ClampedNumeric( +- StrictNumeric<Src> value) // NOLINT(runtime/explicit) +- : value_(saturated_cast<T>(static_cast<Src>(value))) {} +- +- // Returns a ClampedNumeric of the specified type, cast from the current +- // ClampedNumeric, and saturated to the destination type. +- template <typename Dst> +- constexpr ClampedNumeric<typename UnderlyingType<Dst>::type> Cast() const { +- return *this; +- } +- +- // Prototypes for the supported arithmetic operator overloads. +- template <typename Src> +- constexpr ClampedNumeric& operator+=(const Src rhs); +- template <typename Src> +- constexpr ClampedNumeric& operator-=(const Src rhs); +- template <typename Src> +- constexpr ClampedNumeric& operator*=(const Src rhs); +- template <typename Src> +- constexpr ClampedNumeric& operator/=(const Src rhs); +- template <typename Src> +- constexpr ClampedNumeric& operator%=(const Src rhs); +- template <typename Src> +- constexpr ClampedNumeric& operator<<=(const Src rhs); +- template <typename Src> +- constexpr ClampedNumeric& operator>>=(const Src rhs); +- template <typename Src> +- constexpr ClampedNumeric& operator&=(const Src rhs); +- template <typename Src> +- constexpr ClampedNumeric& operator|=(const Src rhs); +- template <typename Src> +- constexpr ClampedNumeric& operator^=(const Src rhs); +- +- constexpr ClampedNumeric operator-() const { +- // The negation of two's complement int min is int min, so that's the +- // only overflow case where we will saturate. +- return ClampedNumeric<T>(SaturatedNegWrapper(value_)); +- } +- +- constexpr ClampedNumeric operator~() const { +- return ClampedNumeric<decltype(InvertWrapper(T()))>(InvertWrapper(value_)); +- } +- +- constexpr ClampedNumeric Abs() const { +- // The negation of two's complement int min is int min, so that's the +- // only overflow case where we will saturate. +- return ClampedNumeric<T>(SaturatedAbsWrapper(value_)); +- } +- +- template <typename U> +- constexpr ClampedNumeric<typename MathWrapper<ClampedMaxOp, T, U>::type> Max( +- const U rhs) const { +- using result_type = typename MathWrapper<ClampedMaxOp, T, U>::type; +- return ClampedNumeric<result_type>( +- ClampedMaxOp<T, U>::Do(value_, Wrapper<U>::value(rhs))); +- } +- +- template <typename U> +- constexpr ClampedNumeric<typename MathWrapper<ClampedMinOp, T, U>::type> Min( +- const U rhs) const { +- using result_type = typename MathWrapper<ClampedMinOp, T, U>::type; +- return ClampedNumeric<result_type>( +- ClampedMinOp<T, U>::Do(value_, Wrapper<U>::value(rhs))); +- } +- +- // This function is available only for integral types. It returns an unsigned +- // integer of the same width as the source type, containing the absolute value +- // of the source, and properly handling signed min. +- constexpr ClampedNumeric<typename UnsignedOrFloatForSize<T>::type> +- UnsignedAbs() const { +- return ClampedNumeric<typename UnsignedOrFloatForSize<T>::type>( +- SafeUnsignedAbs(value_)); +- } +- +- constexpr ClampedNumeric& operator++() { +- *this += 1; +- return *this; +- } +- +- constexpr ClampedNumeric operator++(int) { +- ClampedNumeric value = *this; +- *this += 1; +- return value; +- } +- +- constexpr ClampedNumeric& operator--() { +- *this -= 1; +- return *this; +- } +- +- constexpr ClampedNumeric operator--(int) { +- ClampedNumeric value = *this; +- *this -= 1; +- return value; +- } +- +- // These perform the actual math operations on the ClampedNumerics. +- // Binary arithmetic operations. +- template <template <typename, typename, typename> class M, +- typename L, +- typename R> +- static constexpr ClampedNumeric MathOp(const L lhs, const R rhs) { +- using Math = typename MathWrapper<M, L, R>::math; +- return ClampedNumeric<T>( +- Math::template Do<T>(Wrapper<L>::value(lhs), Wrapper<R>::value(rhs))); +- } +- +- // Assignment arithmetic operations. +- template <template <typename, typename, typename> class M, typename R> +- constexpr ClampedNumeric& MathOp(const R rhs) { +- using Math = typename MathWrapper<M, T, R>::math; +- *this = +- ClampedNumeric<T>(Math::template Do<T>(value_, Wrapper<R>::value(rhs))); +- return *this; +- } +- +- template <typename Dst> +- constexpr operator Dst() const { +- return saturated_cast<typename ArithmeticOrUnderlyingEnum<Dst>::type>( +- value_); +- } +- +- // This method extracts the raw integer value without saturating it to the +- // destination type as the conversion operator does. This is useful when +- // e.g. assigning to an auto type or passing as a deduced template parameter. +- constexpr T RawValue() const { return value_; } +- +- private: +- T value_; +- +- // These wrappers allow us to handle state the same way for both +- // ClampedNumeric and POD arithmetic types. +- template <typename Src> +- struct Wrapper { +- static constexpr Src value(Src value) { +- return static_cast<typename UnderlyingType<Src>::type>(value); +- } +- }; +-}; +- +-// Convience wrapper to return a new ClampedNumeric from the provided arithmetic +-// or ClampedNumericType. +-template <typename T> +-constexpr ClampedNumeric<typename UnderlyingType<T>::type> MakeClampedNum( +- const T value) { +- return value; +-} +- +-#if !BASE_NUMERICS_DISABLE_OSTREAM_OPERATORS +-// Overload the ostream output operator to make logging work nicely. +-template <typename T> +-std::ostream& operator<<(std::ostream& os, const ClampedNumeric<T>& value) { +- os << static_cast<T>(value); +- return os; +-} +-#endif +- +-// These implement the variadic wrapper for the math operations. +-template <template <typename, typename, typename> class M, +- typename L, +- typename R> +-constexpr ClampedNumeric<typename MathWrapper<M, L, R>::type> ClampMathOp( +- const L lhs, +- const R rhs) { +- using Math = typename MathWrapper<M, L, R>::math; +- return ClampedNumeric<typename Math::result_type>::template MathOp<M>(lhs, +- rhs); +-} +- +-// General purpose wrapper template for arithmetic operations. +-template <template <typename, typename, typename> class M, +- typename L, +- typename R, +- typename... Args> +-constexpr ClampedNumeric<typename ResultType<M, L, R, Args...>::type> +-ClampMathOp(const L lhs, const R rhs, const Args... args) { +- return ClampMathOp<M>(ClampMathOp<M>(lhs, rhs), args...); +-} +- +-BASE_NUMERIC_ARITHMETIC_OPERATORS(Clamped, Clamp, Add, +, +=) +-BASE_NUMERIC_ARITHMETIC_OPERATORS(Clamped, Clamp, Sub, -, -=) +-BASE_NUMERIC_ARITHMETIC_OPERATORS(Clamped, Clamp, Mul, *, *=) +-BASE_NUMERIC_ARITHMETIC_OPERATORS(Clamped, Clamp, Div, /, /=) +-BASE_NUMERIC_ARITHMETIC_OPERATORS(Clamped, Clamp, Mod, %, %=) +-BASE_NUMERIC_ARITHMETIC_OPERATORS(Clamped, Clamp, Lsh, <<, <<=) +-BASE_NUMERIC_ARITHMETIC_OPERATORS(Clamped, Clamp, Rsh, >>, >>=) +-BASE_NUMERIC_ARITHMETIC_OPERATORS(Clamped, Clamp, And, &, &=) +-BASE_NUMERIC_ARITHMETIC_OPERATORS(Clamped, Clamp, Or, |, |=) +-BASE_NUMERIC_ARITHMETIC_OPERATORS(Clamped, Clamp, Xor, ^, ^=) +-BASE_NUMERIC_ARITHMETIC_VARIADIC(Clamped, Clamp, Max) +-BASE_NUMERIC_ARITHMETIC_VARIADIC(Clamped, Clamp, Min) +-BASE_NUMERIC_COMPARISON_OPERATORS(Clamped, IsLess, <) +-BASE_NUMERIC_COMPARISON_OPERATORS(Clamped, IsLessOrEqual, <=) +-BASE_NUMERIC_COMPARISON_OPERATORS(Clamped, IsGreater, >) +-BASE_NUMERIC_COMPARISON_OPERATORS(Clamped, IsGreaterOrEqual, >=) +-BASE_NUMERIC_COMPARISON_OPERATORS(Clamped, IsEqual, ==) +-BASE_NUMERIC_COMPARISON_OPERATORS(Clamped, IsNotEqual, !=) +- +-} // namespace internal +- +-using internal::ClampedNumeric; +-using internal::MakeClampedNum; +-using internal::ClampMax; +-using internal::ClampMin; +-using internal::ClampAdd; +-using internal::ClampSub; +-using internal::ClampMul; +-using internal::ClampDiv; +-using internal::ClampMod; +-using internal::ClampLsh; +-using internal::ClampRsh; +-using internal::ClampAnd; +-using internal::ClampOr; +-using internal::ClampXor; +- +-} // namespace base +-} // namespace pdfium +- +-#endif // THIRD_PARTY_BASE_NUMERICS_CLAMPED_MATH_H_ +diff -Naur workdir/UnpackedTarball/pdfium/third_party/base/numerics/clamped_math_impl.h workdir/UnpackedTarball/pdfium.4137/third_party/base/numerics/clamped_math_impl.h +--- workdir/UnpackedTarball/pdfium/third_party/base/numerics/clamped_math_impl.h 2020-10-26 19:26:04.000000000 +0100 ++++ workdir/UnpackedTarball/pdfium.4137/third_party/base/numerics/clamped_math_impl.h 1970-01-01 01:00:00.000000000 +0100 +@@ -1,343 +0,0 @@ +-// Copyright 2017 The Chromium Authors. All rights reserved. +-// Use of this source code is governed by a BSD-style license that can be +-// found in the LICENSE file. +- +-#ifndef THIRD_PARTY_BASE_NUMERICS_CLAMPED_MATH_IMPL_H_ +-#define THIRD_PARTY_BASE_NUMERICS_CLAMPED_MATH_IMPL_H_ +- +-#include <stddef.h> +-#include <stdint.h> +- +-#include <climits> +-#include <cmath> +-#include <cstdlib> +-#include <limits> +-#include <type_traits> +- +-#include "third_party/base/numerics/checked_math.h" +-#include "third_party/base/numerics/safe_conversions.h" +-#include "third_party/base/numerics/safe_math_shared_impl.h" +- +-namespace pdfium { +-namespace base { +-namespace internal { +- +-template <typename T, +- typename std::enable_if<std::is_integral<T>::value && +- std::is_signed<T>::value>::type* = nullptr> +-constexpr T SaturatedNegWrapper(T value) { +- return MustTreatAsConstexpr(value) || !ClampedNegFastOp<T>::is_supported +- ? (NegateWrapper(value) != std::numeric_limits<T>::lowest() +- ? NegateWrapper(value) +- : std::numeric_limits<T>::max()) +- : ClampedNegFastOp<T>::Do(value); +-} +- +-template <typename T, +- typename std::enable_if<std::is_integral<T>::value && +- !std::is_signed<T>::value>::type* = nullptr> +-constexpr T SaturatedNegWrapper(T value) { +- return T(0); +-} +- +-template < +- typename T, +- typename std::enable_if<std::is_floating_point<T>::value>::type* = nullptr> +-constexpr T SaturatedNegWrapper(T value) { +- return -value; +-} +- +-template <typename T, +- typename std::enable_if<std::is_integral<T>::value>::type* = nullptr> +-constexpr T SaturatedAbsWrapper(T value) { +- // The calculation below is a static identity for unsigned types, but for +- // signed integer types it provides a non-branching, saturated absolute value. +- // This works because SafeUnsignedAbs() returns an unsigned type, which can +- // represent the absolute value of all negative numbers of an equal-width +- // integer type. The call to IsValueNegative() then detects overflow in the +- // special case of numeric_limits<T>::min(), by evaluating the bit pattern as +- // a signed integer value. If it is the overflow case, we end up subtracting +- // one from the unsigned result, thus saturating to numeric_limits<T>::max(). +- return static_cast<T>(SafeUnsignedAbs(value) - +- IsValueNegative<T>(SafeUnsignedAbs(value))); +-} +- +-template < +- typename T, +- typename std::enable_if<std::is_floating_point<T>::value>::type* = nullptr> +-constexpr T SaturatedAbsWrapper(T value) { +- return value < 0 ? -value : value; +-} +- +-template <typename T, typename U, class Enable = void> +-struct ClampedAddOp {}; +- +-template <typename T, typename U> +-struct ClampedAddOp<T, +- U, +- typename std::enable_if<std::is_integral<T>::value && +- std::is_integral<U>::value>::type> { +- using result_type = typename MaxExponentPromotion<T, U>::type; +- template <typename V = result_type> +- static constexpr V Do(T x, U y) { +- if (ClampedAddFastOp<T, U>::is_supported) +- return ClampedAddFastOp<T, U>::template Do<V>(x, y); +- +- static_assert(std::is_same<V, result_type>::value || +- IsTypeInRangeForNumericType<U, V>::value, +- "The saturation result cannot be determined from the " +- "provided types."); +- const V saturated = CommonMaxOrMin<V>(IsValueNegative(y)); +- V result = {}; +- return BASE_NUMERICS_LIKELY((CheckedAddOp<T, U>::Do(x, y, &result))) +- ? result +- : saturated; +- } +-}; +- +-template <typename T, typename U, class Enable = void> +-struct ClampedSubOp {}; +- +-template <typename T, typename U> +-struct ClampedSubOp<T, +- U, +- typename std::enable_if<std::is_integral<T>::value && +- std::is_integral<U>::value>::type> { +- using result_type = typename MaxExponentPromotion<T, U>::type; +- template <typename V = result_type> +- static constexpr V Do(T x, U y) { +- // TODO(jschuh) Make this "constexpr if" once we're C++17. +- if (ClampedSubFastOp<T, U>::is_supported) +- return ClampedSubFastOp<T, U>::template Do<V>(x, y); +- +- static_assert(std::is_same<V, result_type>::value || +- IsTypeInRangeForNumericType<U, V>::value, +- "The saturation result cannot be determined from the " +- "provided types."); +- const V saturated = CommonMaxOrMin<V>(!IsValueNegative(y)); +- V result = {}; +- return BASE_NUMERICS_LIKELY((CheckedSubOp<T, U>::Do(x, y, &result))) +- ? result +- : saturated; +- } +-}; +- +-template <typename T, typename U, class Enable = void> +-struct ClampedMulOp {}; +- +-template <typename T, typename U> +-struct ClampedMulOp<T, +- U, +- typename std::enable_if<std::is_integral<T>::value && +- std::is_integral<U>::value>::type> { +- using result_type = typename MaxExponentPromotion<T, U>::type; +- template <typename V = result_type> +- static constexpr V Do(T x, U y) { +- // TODO(jschuh) Make this "constexpr if" once we're C++17. +- if (ClampedMulFastOp<T, U>::is_supported) +- return ClampedMulFastOp<T, U>::template Do<V>(x, y); +- +- V result = {}; +- const V saturated = +- CommonMaxOrMin<V>(IsValueNegative(x) ^ IsValueNegative(y)); +- return BASE_NUMERICS_LIKELY((CheckedMulOp<T, U>::Do(x, y, &result))) +- ? result +- : saturated; +- } +-}; +- +-template <typename T, typename U, class Enable = void> +-struct ClampedDivOp {}; +- +-template <typename T, typename U> +-struct ClampedDivOp<T, +- U, +- typename std::enable_if<std::is_integral<T>::value && +- std::is_integral<U>::value>::type> { +- using result_type = typename MaxExponentPromotion<T, U>::type; +- template <typename V = result_type> +- static constexpr V Do(T x, U y) { +- V result = {}; +- if (BASE_NUMERICS_LIKELY((CheckedDivOp<T, U>::Do(x, y, &result)))) +- return result; +- // Saturation goes to max, min, or NaN (if x is zero). +- return x ? CommonMaxOrMin<V>(IsValueNegative(x) ^ IsValueNegative(y)) +- : SaturationDefaultLimits<V>::NaN(); +- } +-}; +- +-template <typename T, typename U, class Enable = void> +-struct ClampedModOp {}; +- +-template <typename T, typename U> +-struct ClampedModOp<T, +- U, +- typename std::enable_if<std::is_integral<T>::value && +- std::is_integral<U>::value>::type> { +- using result_type = typename MaxExponentPromotion<T, U>::type; +- template <typename V = result_type> +- static constexpr V Do(T x, U y) { +- V result = {}; +- return BASE_NUMERICS_LIKELY((CheckedModOp<T, U>::Do(x, y, &result))) +- ? result +- : x; +- } +-}; +- +-template <typename T, typename U, class Enable = void> +-struct ClampedLshOp {}; +- +-// Left shift. Non-zero values saturate in the direction of the sign. A zero +-// shifted by any value always results in zero. +-template <typename T, typename U> +-struct ClampedLshOp<T, +- U, +- typename std::enable_if<std::is_integral<T>::value && +- std::is_integral<U>::value>::type> { +- using result_type = T; +- template <typename V = result_type> +- static constexpr V Do(T x, U shift) { +- static_assert(!std::is_signed<U>::value, "Shift value must be unsigned."); +- if (BASE_NUMERICS_LIKELY(shift < std::numeric_limits<T>::digits)) { +- // Shift as unsigned to avoid undefined behavior. +- V result = static_cast<V>(as_unsigned(x) << shift); +- // If the shift can be reversed, we know it was valid. +- if (BASE_NUMERICS_LIKELY(result >> shift == x)) +- return result; +- } +- return x ? CommonMaxOrMin<V>(IsValueNegative(x)) : 0; +- } +-}; +- +-template <typename T, typename U, class Enable = void> +-struct ClampedRshOp {}; +- +-// Right shift. Negative values saturate to -1. Positive or 0 saturates to 0. +-template <typename T, typename U> +-struct ClampedRshOp<T, +- U, +- typename std::enable_if<std::is_integral<T>::value && +- std::is_integral<U>::value>::type> { +- using result_type = T; +- template <typename V = result_type> +- static constexpr V Do(T x, U shift) { +- static_assert(!std::is_signed<U>::value, "Shift value must be unsigned."); +- // Signed right shift is odd, because it saturates to -1 or 0. +- const V saturated = as_unsigned(V(0)) - IsValueNegative(x); +- return BASE_NUMERICS_LIKELY(shift < IntegerBitsPlusSign<T>::value) +- ? saturated_cast<V>(x >> shift) +- : saturated; +- } +-}; +- +-template <typename T, typename U, class Enable = void> +-struct ClampedAndOp {}; +- +-template <typename T, typename U> +-struct ClampedAndOp<T, +- U, +- typename std::enable_if<std::is_integral<T>::value && +- std::is_integral<U>::value>::type> { +- using result_type = typename std::make_unsigned< +- typename MaxExponentPromotion<T, U>::type>::type; +- template <typename V> +- static constexpr V Do(T x, U y) { +- return static_cast<result_type>(x) & static_cast<result_type>(y); +- } +-}; +- +-template <typename T, typename U, class Enable = void> +-struct ClampedOrOp {}; +- +-// For simplicity we promote to unsigned integers. +-template <typename T, typename U> +-struct ClampedOrOp<T, +- U, +- typename std::enable_if<std::is_integral<T>::value && +- std::is_integral<U>::value>::type> { +- using result_type = typename std::make_unsigned< +- typename MaxExponentPromotion<T, U>::type>::type; +- template <typename V> +- static constexpr V Do(T x, U y) { +- return static_cast<result_type>(x) | static_cast<result_type>(y); +- } +-}; +- +-template <typename T, typename U, class Enable = void> +-struct ClampedXorOp {}; +- +-// For simplicity we support only unsigned integers. +-template <typename T, typename U> +-struct ClampedXorOp<T, +- U, +- typename std::enable_if<std::is_integral<T>::value && +- std::is_integral<U>::value>::type> { +- using result_type = typename std::make_unsigned< +- typename MaxExponentPromotion<T, U>::type>::type; +- template <typename V> +- static constexpr V Do(T x, U y) { +- return static_cast<result_type>(x) ^ static_cast<result_type>(y); +- } +-}; +- +-template <typename T, typename U, class Enable = void> +-struct ClampedMaxOp {}; +- +-template <typename T, typename U> +-struct ClampedMaxOp< +- T, +- U, +- typename std::enable_if<std::is_arithmetic<T>::value && +- std::is_arithmetic<U>::value>::type> { +- using result_type = typename MaxExponentPromotion<T, U>::type; +- template <typename V = result_type> +- static constexpr V Do(T x, U y) { +- return IsGreater<T, U>::Test(x, y) ? saturated_cast<V>(x) +- : saturated_cast<V>(y); +- } +-}; +- +-template <typename T, typename U, class Enable = void> +-struct ClampedMinOp {}; +- +-template <typename T, typename U> +-struct ClampedMinOp< +- T, +- U, +- typename std::enable_if<std::is_arithmetic<T>::value && +- std::is_arithmetic<U>::value>::type> { +- using result_type = typename LowestValuePromotion<T, U>::type; +- template <typename V = result_type> +- static constexpr V Do(T x, U y) { +- return IsLess<T, U>::Test(x, y) ? saturated_cast<V>(x) +- : saturated_cast<V>(y); +- } +-}; +- +-// This is just boilerplate that wraps the standard floating point arithmetic. +-// A macro isn't the nicest solution, but it beats rewriting these repeatedly. +-#define BASE_FLOAT_ARITHMETIC_OPS(NAME, OP) \ +- template <typename T, typename U> \ +- struct Clamped##NAME##Op< \ +- T, U, \ +- typename std::enable_if<std::is_floating_point<T>::value || \ +- std::is_floating_point<U>::value>::type> { \ +- using result_type = typename MaxExponentPromotion<T, U>::type; \ +- template <typename V = result_type> \ +- static constexpr V Do(T x, U y) { \ +- return saturated_cast<V>(x OP y); \ +- } \ +- }; +- +-BASE_FLOAT_ARITHMETIC_OPS(Add, +) +-BASE_FLOAT_ARITHMETIC_OPS(Sub, -) +-BASE_FLOAT_ARITHMETIC_OPS(Mul, *) +-BASE_FLOAT_ARITHMETIC_OPS(Div, /) +- +-#undef BASE_FLOAT_ARITHMETIC_OPS +- +-} // namespace internal +-} // namespace base +-} // namespace pdfium +- +-#endif // THIRD_PARTY_BASE_NUMERICS_CLAMPED_MATH_IMPL_H_ +diff -Naur workdir/UnpackedTarball/pdfium/third_party/base/numerics/safe_conversions.h workdir/UnpackedTarball/pdfium.4137/third_party/base/numerics/safe_conversions.h +--- workdir/UnpackedTarball/pdfium/third_party/base/numerics/safe_conversions.h 2020-10-26 19:26:04.000000000 +0100 ++++ workdir/UnpackedTarball/pdfium.4137/third_party/base/numerics/safe_conversions.h 2020-05-02 03:06:13.000000000 +0200 +@@ -8,21 +8,18 @@ + #include <stddef.h> + + #include <limits> ++#include <ostream> + #include <type_traits> + + #include "third_party/base/numerics/safe_conversions_impl.h" + +-#if !defined(__native_client__) && (defined(__ARMEL__) || defined(__arch64__)) ++#if defined(__ARMEL__) || defined(__arch64__) + #include "third_party/base/numerics/safe_conversions_arm_impl.h" + #define BASE_HAS_OPTIMIZED_SAFE_CONVERSIONS (1) + #else + #define BASE_HAS_OPTIMIZED_SAFE_CONVERSIONS (0) + #endif + +-#if !BASE_NUMERICS_DISABLE_OSTREAM_OPERATORS +-#include <ostream> +-#endif +- + namespace pdfium { + namespace base { + namespace internal { +@@ -312,14 +309,12 @@ + return value; + } + +-#if !BASE_NUMERICS_DISABLE_OSTREAM_OPERATORS + // Overload the ostream output operator to make logging work nicely. + template <typename T> + std::ostream& operator<<(std::ostream& os, const StrictNumeric<T>& value) { + os << static_cast<T>(value); + return os; + } +-#endif + + #define BASE_NUMERIC_COMPARISON_OPERATORS(CLASS, NAME, OP) \ + template <typename L, typename R, \ +diff -Naur workdir/UnpackedTarball/pdfium/third_party/base/numerics/safe_conversions_impl.h workdir/UnpackedTarball/pdfium.4137/third_party/base/numerics/safe_conversions_impl.h +--- workdir/UnpackedTarball/pdfium/third_party/base/numerics/safe_conversions_impl.h 2020-10-26 19:26:04.000000000 +0100 ++++ workdir/UnpackedTarball/pdfium.4137/third_party/base/numerics/safe_conversions_impl.h 2020-05-02 03:06:13.000000000 +0200 +@@ -81,9 +81,8 @@ + constexpr typename std::make_unsigned<T>::type SafeUnsignedAbs(T value) { + static_assert(std::is_integral<T>::value, "Type must be integral"); + using UnsignedT = typename std::make_unsigned<T>::type; +- return IsValueNegative(value) +- ? static_cast<UnsignedT>(0u - static_cast<UnsignedT>(value)) +- : static_cast<UnsignedT>(value); ++ return IsValueNegative(value) ? 0 - static_cast<UnsignedT>(value) ++ : static_cast<UnsignedT>(value); + } + + // This allows us to switch paths on known compile-time constants. +diff -Naur workdir/UnpackedTarball/pdfium/third_party/base/numerics/safe_math.h workdir/UnpackedTarball/pdfium.4137/third_party/base/numerics/safe_math.h +--- workdir/UnpackedTarball/pdfium/third_party/base/numerics/safe_math.h 2020-10-26 19:26:04.000000000 +0100 ++++ workdir/UnpackedTarball/pdfium.4137/third_party/base/numerics/safe_math.h 2020-05-02 03:06:13.000000000 +0200 +@@ -1,12 +1,510 @@ +-// Copyright 2017 The Chromium Authors. All rights reserved. ++// Copyright 2014 The Chromium Authors. All rights reserved. + // Use of this source code is governed by a BSD-style license that can be + // found in the LICENSE file. + + #ifndef THIRD_PARTY_BASE_NUMERICS_SAFE_MATH_H_ + #define THIRD_PARTY_BASE_NUMERICS_SAFE_MATH_H_ + +-#include "third_party/base/numerics/checked_math.h" +-#include "third_party/base/numerics/clamped_math.h" +-#include "third_party/base/numerics/safe_conversions.h" ++#include <stddef.h> ++ ++#include <limits> ++#include <type_traits> ++ ++#include "third_party/base/numerics/safe_math_impl.h" ++ ++namespace pdfium { ++namespace base { ++namespace internal { ++ ++// CheckedNumeric<> implements all the logic and operators for detecting integer ++// boundary conditions such as overflow, underflow, and invalid conversions. ++// The CheckedNumeric type implicitly converts from floating point and integer ++// data types, and contains overloads for basic arithmetic operations (i.e.: +, ++// -, *, / for all types and %, <<, >>, &, |, ^ for integers). Type promotions ++// are a slightly modified version of the standard C arithmetic rules with the ++// two differences being that there is no default promotion to int and bitwise ++// logical operations always return an unsigned of the wider type. ++// ++// You may also use one of the variadic convenience functions, which accept ++// standard arithmetic or CheckedNumeric types, perform arithmetic operations, ++// and return a CheckedNumeric result. The supported functions are: ++// CheckAdd() - Addition. ++// CheckSub() - Subtraction. ++// CheckMul() - Multiplication. ++// CheckDiv() - Division. ++// CheckMod() - Modulous (integer only). ++// CheckLsh() - Left integer shift (integer only). ++// CheckRsh() - Right integer shift (integer only). ++// CheckAnd() - Bitwise AND (integer only with unsigned result). ++// CheckOr() - Bitwise OR (integer only with unsigned result). ++// CheckXor() - Bitwise XOR (integer only with unsigned result). ++// CheckMax() - Maximum of supplied arguments. ++// CheckMin() - Minimum of supplied arguments. ++// ++// The unary negation, increment, and decrement operators are supported, along ++// with the following unary arithmetic methods, which return a new ++// CheckedNumeric as a result of the operation: ++// Abs() - Absolute value. ++// UnsignedAbs() - Absolute value as an equal-width unsigned underlying type ++// (valid for only integral types). ++// Max() - Returns whichever is greater of the current instance or argument. ++// The underlying return type is whichever has the greatest magnitude. ++// Min() - Returns whichever is lowest of the current instance or argument. ++// The underlying return type is whichever has can represent the lowest ++// number in the smallest width (e.g. int8_t over unsigned, int over ++// int8_t, and float over int). ++// ++// The following methods convert from CheckedNumeric to standard numeric values: ++// AssignIfValid() - Assigns the underlying value to the supplied destination ++// pointer if the value is currently valid and within the range ++// supported by the destination type. Returns true on success. ++// **************************************************************************** ++// * WARNING: All of the following functions return a StrictNumeric, which * ++// * is valid for comparison and assignment operations, but will trigger a * ++// * compile failure on attempts to assign to a type of insufficient range. * ++// **************************************************************************** ++// IsValid() - Returns true if the underlying numeric value is valid (i.e. has ++// has not wrapped and is not the result of an invalid conversion). ++// ValueOrDie() - Returns the underlying value. If the state is not valid this ++// call will crash on a CHECK. ++// ValueOrDefault() - Returns the current value, or the supplied default if the ++// state is not valid (will not trigger a CHECK). ++// ++// The following wrapper functions can be used to avoid the template ++// disambiguator syntax when converting a destination type. ++// IsValidForType<>() in place of: a.template IsValid<Dst>() ++// ValueOrDieForType<>() in place of: a.template ValueOrDie() ++// ValueOrDefaultForType<>() in place of: a.template ValueOrDefault(default) ++// ++// The following are general utility methods that are useful for converting ++// between arithmetic types and CheckedNumeric types: ++// CheckedNumeric::Cast<Dst>() - Instance method returning a CheckedNumeric ++// derived from casting the current instance to a CheckedNumeric of ++// the supplied destination type. ++// MakeCheckedNum() - Creates a new CheckedNumeric from the underlying type of ++// the supplied arithmetic, CheckedNumeric, or StrictNumeric type. ++// ++// Comparison operations are explicitly not supported because they could result ++// in a crash on an unexpected CHECK condition. You should use patterns like the ++// following for comparisons: ++// CheckedNumeric<size_t> checked_size = untrusted_input_value; ++// checked_size += HEADER LENGTH; ++// if (checked_size.IsValid() && checked_size.ValueOrDie() < buffer_size) ++// Do stuff... ++ ++template <typename T> ++class CheckedNumeric { ++ static_assert(std::is_arithmetic<T>::value, ++ "CheckedNumeric<T>: T must be a numeric type."); ++ ++ public: ++ using type = T; ++ ++ constexpr CheckedNumeric() = default; ++ ++ // Copy constructor. ++ template <typename Src> ++ constexpr CheckedNumeric(const CheckedNumeric<Src>& rhs) ++ : state_(rhs.state_.value(), rhs.IsValid()) {} ++ ++ template <typename Src> ++ friend class CheckedNumeric; ++ ++ // This is not an explicit constructor because we implicitly upgrade regular ++ // numerics to CheckedNumerics to make them easier to use. ++ template <typename Src> ++ constexpr CheckedNumeric(Src value) // NOLINT(runtime/explicit) ++ : state_(value) { ++ static_assert(std::is_arithmetic<Src>::value, "Argument must be numeric."); ++ } ++ ++ // This is not an explicit constructor because we want a seamless conversion ++ // from StrictNumeric types. ++ template <typename Src> ++ constexpr CheckedNumeric( ++ StrictNumeric<Src> value) // NOLINT(runtime/explicit) ++ : state_(static_cast<Src>(value)) {} ++ ++ // IsValid() - The public API to test if a CheckedNumeric is currently valid. ++ // A range checked destination type can be supplied using the Dst template ++ // parameter. ++ template <typename Dst = T> ++ constexpr bool IsValid() const { ++ return state_.is_valid() && ++ IsValueInRangeForNumericType<Dst>(state_.value()); ++ } ++ ++ // AssignIfValid(Dst) - Assigns the underlying value if it is currently valid ++ // and is within the range supported by the destination type. Returns true if ++ // successful and false otherwise. ++ template <typename Dst> ++ constexpr bool AssignIfValid(Dst* result) const { ++ return IsValid<Dst>() ? ((*result = static_cast<Dst>(state_.value())), true) ++ : false; ++ } ++ ++ // ValueOrDie() - The primary accessor for the underlying value. If the ++ // current state is not valid it will CHECK and crash. ++ // A range checked destination type can be supplied using the Dst template ++ // parameter, which will trigger a CHECK if the value is not in bounds for ++ // the destination. ++ // The CHECK behavior can be overridden by supplying a handler as a ++ // template parameter, for test code, etc. However, the handler cannot access ++ // the underlying value, and it is not available through other means. ++ template <typename Dst = T, class CheckHandler = CheckOnFailure> ++ constexpr StrictNumeric<Dst> ValueOrDie() const { ++ return IsValid<Dst>() ? static_cast<Dst>(state_.value()) ++ : CheckHandler::template HandleFailure<Dst>(); ++ } ++ ++ // ValueOrDefault(T default_value) - A convenience method that returns the ++ // current value if the state is valid, and the supplied default_value for ++ // any other state. ++ // A range checked destination type can be supplied using the Dst template ++ // parameter. WARNING: This function may fail to compile or CHECK at runtime ++ // if the supplied default_value is not within range of the destination type. ++ template <typename Dst = T, typename Src> ++ constexpr StrictNumeric<Dst> ValueOrDefault(const Src default_value) const { ++ return IsValid<Dst>() ? static_cast<Dst>(state_.value()) ++ : checked_cast<Dst>(default_value); ++ } ++ ++ // Returns a checked numeric of the specified type, cast from the current ++ // CheckedNumeric. If the current state is invalid or the destination cannot ++ // represent the result then the returned CheckedNumeric will be invalid. ++ template <typename Dst> ++ constexpr CheckedNumeric<typename UnderlyingType<Dst>::type> Cast() const { ++ return *this; ++ } ++ ++ // This friend method is available solely for providing more detailed logging ++ // in the tests. Do not implement it in production code, because the ++ // underlying values may change at any time. ++ template <typename U> ++ friend U GetNumericValueForTest(const CheckedNumeric<U>& src); ++ ++ // Prototypes for the supported arithmetic operator overloads. ++ template <typename Src> ++ CheckedNumeric& operator+=(const Src rhs); ++ template <typename Src> ++ CheckedNumeric& operator-=(const Src rhs); ++ template <typename Src> ++ CheckedNumeric& operator*=(const Src rhs); ++ template <typename Src> ++ CheckedNumeric& operator/=(const Src rhs); ++ template <typename Src> ++ CheckedNumeric& operator%=(const Src rhs); ++ template <typename Src> ++ CheckedNumeric& operator<<=(const Src rhs); ++ template <typename Src> ++ CheckedNumeric& operator>>=(const Src rhs); ++ template <typename Src> ++ CheckedNumeric& operator&=(const Src rhs); ++ template <typename Src> ++ CheckedNumeric& operator|=(const Src rhs); ++ template <typename Src> ++ CheckedNumeric& operator^=(const Src rhs); ++ ++ constexpr CheckedNumeric operator-() const { ++ return CheckedNumeric<T>( ++ NegateWrapper(state_.value()), ++ IsValid() && ++ (!std::is_signed<T>::value || std::is_floating_point<T>::value || ++ NegateWrapper(state_.value()) != ++ std::numeric_limits<T>::lowest())); ++ } ++ ++ constexpr CheckedNumeric operator~() const { ++ return CheckedNumeric<decltype(InvertWrapper(T()))>( ++ InvertWrapper(state_.value()), IsValid()); ++ } ++ ++ constexpr CheckedNumeric Abs() const { ++ return CheckedNumeric<T>( ++ AbsWrapper(state_.value()), ++ IsValid() && ++ (!std::is_signed<T>::value || std::is_floating_point<T>::value || ++ AbsWrapper(state_.value()) != std::numeric_limits<T>::lowest())); ++ } ++ ++ template <typename U> ++ constexpr CheckedNumeric<typename MathWrapper<CheckedMaxOp, T, U>::type> Max( ++ const U rhs) const { ++ using R = typename UnderlyingType<U>::type; ++ using result_type = typename MathWrapper<CheckedMaxOp, T, U>::type; ++ // TODO(jschuh): This can be converted to the MathOp version and remain ++ // constexpr once we have C++14 support. ++ return CheckedNumeric<result_type>( ++ static_cast<result_type>( ++ IsGreater<T, R>::Test(state_.value(), Wrapper<U>::value(rhs)) ++ ? state_.value() ++ : Wrapper<U>::value(rhs)), ++ state_.is_valid() && Wrapper<U>::is_valid(rhs)); ++ } ++ ++ template <typename U> ++ constexpr CheckedNumeric<typename MathWrapper<CheckedMinOp, T, U>::type> Min( ++ const U rhs) const { ++ using R = typename UnderlyingType<U>::type; ++ using result_type = typename MathWrapper<CheckedMinOp, T, U>::type; ++ // TODO(jschuh): This can be converted to the MathOp version and remain ++ // constexpr once we have C++14 support. ++ return CheckedNumeric<result_type>( ++ static_cast<result_type>( ++ IsLess<T, R>::Test(state_.value(), Wrapper<U>::value(rhs)) ++ ? state_.value() ++ : Wrapper<U>::value(rhs)), ++ state_.is_valid() && Wrapper<U>::is_valid(rhs)); ++ } ++ ++ // This function is available only for integral types. It returns an unsigned ++ // integer of the same width as the source type, containing the absolute value ++ // of the source, and properly handling signed min. ++ constexpr CheckedNumeric<typename UnsignedOrFloatForSize<T>::type> ++ UnsignedAbs() const { ++ return CheckedNumeric<typename UnsignedOrFloatForSize<T>::type>( ++ SafeUnsignedAbs(state_.value()), state_.is_valid()); ++ } ++ ++ CheckedNumeric& operator++() { ++ *this += 1; ++ return *this; ++ } ++ ++ CheckedNumeric operator++(int) { ++ CheckedNumeric value = *this; ++ *this += 1; ++ return value; ++ } ++ ++ CheckedNumeric& operator--() { ++ *this -= 1; ++ return *this; ++ } ++ ++ CheckedNumeric operator--(int) { ++ CheckedNumeric value = *this; ++ *this -= 1; ++ return value; ++ } ++ ++ // These perform the actual math operations on the CheckedNumerics. ++ // Binary arithmetic operations. ++ template <template <typename, typename, typename> class M, ++ typename L, ++ typename R> ++ static CheckedNumeric MathOp(const L lhs, const R rhs) { ++ using Math = typename MathWrapper<M, L, R>::math; ++ T result = 0; ++ bool is_valid = ++ Wrapper<L>::is_valid(lhs) && Wrapper<R>::is_valid(rhs) && ++ Math::Do(Wrapper<L>::value(lhs), Wrapper<R>::value(rhs), &result); ++ return CheckedNumeric<T>(result, is_valid); ++ } ++ ++ // Assignment arithmetic operations. ++ template <template <typename, typename, typename> class M, typename R> ++ CheckedNumeric& MathOp(const R rhs) { ++ using Math = typename MathWrapper<M, T, R>::math; ++ T result = 0; // Using T as the destination saves a range check. ++ bool is_valid = state_.is_valid() && Wrapper<R>::is_valid(rhs) && ++ Math::Do(state_.value(), Wrapper<R>::value(rhs), &result); ++ *this = CheckedNumeric<T>(result, is_valid); ++ return *this; ++ } ++ ++ private: ++ CheckedNumericState<T> state_; ++ ++ template <typename Src> ++ constexpr CheckedNumeric(Src value, bool is_valid) ++ : state_(value, is_valid) {} ++ ++ // These wrappers allow us to handle state the same way for both ++ // CheckedNumeric and POD arithmetic types. ++ template <typename Src> ++ struct Wrapper { ++ static constexpr bool is_valid(Src) { return true; } ++ static constexpr Src value(Src value) { return value; } ++ }; ++ ++ template <typename Src> ++ struct Wrapper<CheckedNumeric<Src>> { ++ static constexpr bool is_valid(const CheckedNumeric<Src> v) { ++ return v.IsValid(); ++ } ++ static constexpr Src value(const CheckedNumeric<Src> v) { ++ return v.state_.value(); ++ } ++ }; ++ ++ template <typename Src> ++ struct Wrapper<StrictNumeric<Src>> { ++ static constexpr bool is_valid(const StrictNumeric<Src>) { return true; } ++ static constexpr Src value(const StrictNumeric<Src> v) { ++ return static_cast<Src>(v); ++ } ++ }; ++}; ++ ++// Convenience functions to avoid the ugly template disambiguator syntax. ++template <typename Dst, typename Src> ++constexpr bool IsValidForType(const CheckedNumeric<Src> value) { ++ return value.template IsValid<Dst>(); ++} ++ ++template <typename Dst, typename Src> ++constexpr StrictNumeric<Dst> ValueOrDieForType( ++ const CheckedNumeric<Src> value) { ++ return value.template ValueOrDie<Dst>(); ++} ++ ++template <typename Dst, typename Src, typename Default> ++constexpr StrictNumeric<Dst> ValueOrDefaultForType( ++ const CheckedNumeric<Src> value, ++ const Default default_value) { ++ return value.template ValueOrDefault<Dst>(default_value); ++} ++ ++// These variadic templates work out the return types. ++// TODO(jschuh): Rip all this out once we have C++14 non-trailing auto support. ++template <template <typename, typename, typename> class M, ++ typename L, ++ typename R, ++ typename... Args> ++struct ResultType; ++ ++template <template <typename, typename, typename> class M, ++ typename L, ++ typename R> ++struct ResultType<M, L, R> { ++ using type = typename MathWrapper<M, L, R>::type; ++}; ++ ++template <template <typename, typename, typename> class M, ++ typename L, ++ typename R, ++ typename... Args> ++struct ResultType { ++ using type = ++ typename ResultType<M, typename ResultType<M, L, R>::type, Args...>::type; ++}; ++ ++// Convience wrapper to return a new CheckedNumeric from the provided arithmetic ++// or CheckedNumericType. ++template <typename T> ++constexpr CheckedNumeric<typename UnderlyingType<T>::type> MakeCheckedNum( ++ const T value) { ++ return value; ++} ++ ++// These implement the variadic wrapper for the math operations. ++template <template <typename, typename, typename> class M, ++ typename L, ++ typename R> ++CheckedNumeric<typename MathWrapper<M, L, R>::type> ChkMathOp(const L lhs, ++ const R rhs) { ++ using Math = typename MathWrapper<M, L, R>::math; ++ return CheckedNumeric<typename Math::result_type>::template MathOp<M>(lhs, ++ rhs); ++} ++ ++// General purpose wrapper template for arithmetic operations. ++template <template <typename, typename, typename> class M, ++ typename L, ++ typename R, ++ typename... Args> ++CheckedNumeric<typename ResultType<M, L, R, Args...>::type> ++ChkMathOp(const L lhs, const R rhs, const Args... args) { ++ auto tmp = ChkMathOp<M>(lhs, rhs); ++ return tmp.IsValid() ? ChkMathOp<M>(tmp, args...) ++ : decltype(ChkMathOp<M>(tmp, args...))(tmp); ++} ++ ++// The following macros are just boilerplate for the standard arithmetic ++// operator overloads and variadic function templates. A macro isn't the nicest ++// solution, but it beats rewriting these over and over again. ++#define BASE_NUMERIC_ARITHMETIC_VARIADIC(NAME) \ ++ template <typename L, typename R, typename... Args> \ ++ CheckedNumeric<typename ResultType<Checked##NAME##Op, L, R, Args...>::type> \ ++ Check##NAME(const L lhs, const R rhs, const Args... args) { \ ++ return ChkMathOp<Checked##NAME##Op, L, R, Args...>(lhs, rhs, args...); \ ++ } ++ ++#define BASE_NUMERIC_ARITHMETIC_OPERATORS(NAME, OP, COMPOUND_OP) \ ++ /* Binary arithmetic operator for all CheckedNumeric operations. */ \ ++ template <typename L, typename R, \ ++ typename std::enable_if<IsCheckedOp<L, R>::value>::type* = \ ++ nullptr> \ ++ CheckedNumeric<typename MathWrapper<Checked##NAME##Op, L, R>::type> \ ++ operator OP(const L lhs, const R rhs) { \ ++ return decltype(lhs OP rhs)::template MathOp<Checked##NAME##Op>(lhs, rhs); \ ++ } \ ++ /* Assignment arithmetic operator implementation from CheckedNumeric. */ \ ++ template <typename L> \ ++ template <typename R> \ ++ CheckedNumeric<L>& CheckedNumeric<L>::operator COMPOUND_OP(const R rhs) { \ ++ return MathOp<Checked##NAME##Op>(rhs); \ ++ } \ ++ /* Variadic arithmetic functions that return CheckedNumeric. */ \ ++ BASE_NUMERIC_ARITHMETIC_VARIADIC(NAME) ++ ++BASE_NUMERIC_ARITHMETIC_OPERATORS(Add, +, +=) ++BASE_NUMERIC_ARITHMETIC_OPERATORS(Sub, -, -=) ++BASE_NUMERIC_ARITHMETIC_OPERATORS(Mul, *, *=) ++BASE_NUMERIC_ARITHMETIC_OPERATORS(Div, /, /=) ++BASE_NUMERIC_ARITHMETIC_OPERATORS(Mod, %, %=) ++BASE_NUMERIC_ARITHMETIC_OPERATORS(Lsh, <<, <<=) ++BASE_NUMERIC_ARITHMETIC_OPERATORS(Rsh, >>, >>=) ++BASE_NUMERIC_ARITHMETIC_OPERATORS(And, &, &=) ++BASE_NUMERIC_ARITHMETIC_OPERATORS(Or, |, |=) ++BASE_NUMERIC_ARITHMETIC_OPERATORS(Xor, ^, ^=) ++BASE_NUMERIC_ARITHMETIC_VARIADIC(Max) ++BASE_NUMERIC_ARITHMETIC_VARIADIC(Min) ++ ++#undef BASE_NUMERIC_ARITHMETIC_VARIADIC ++#undef BASE_NUMERIC_ARITHMETIC_OPERATORS ++ ++// These are some extra StrictNumeric operators to support simple pointer ++// arithmetic with our result types. Since wrapping on a pointer is always ++// bad, we trigger the CHECK condition here. ++template <typename L, typename R> ++L* operator+(L* lhs, const StrictNumeric<R> rhs) { ++ uintptr_t result = CheckAdd(reinterpret_cast<uintptr_t>(lhs), ++ CheckMul(sizeof(L), static_cast<R>(rhs))) ++ .template ValueOrDie<uintptr_t>(); ++ return reinterpret_cast<L*>(result); ++} ++ ++template <typename L, typename R> ++L* operator-(L* lhs, const StrictNumeric<R> rhs) { ++ uintptr_t result = CheckSub(reinterpret_cast<uintptr_t>(lhs), ++ CheckMul(sizeof(L), static_cast<R>(rhs))) ++ .template ValueOrDie<uintptr_t>(); ++ return reinterpret_cast<L*>(result); ++} ++ ++} // namespace internal ++ ++using internal::CheckedNumeric; ++using internal::IsValidForType; ++using internal::ValueOrDieForType; ++using internal::ValueOrDefaultForType; ++using internal::MakeCheckedNum; ++using internal::CheckMax; ++using internal::CheckMin; ++using internal::CheckAdd; ++using internal::CheckSub; ++using internal::CheckMul; ++using internal::CheckDiv; ++using internal::CheckMod; ++using internal::CheckLsh; ++using internal::CheckRsh; ++using internal::CheckAnd; ++using internal::CheckOr; ++using internal::CheckXor; ++ ++} // namespace base ++} // namespace pdfium + + #endif // THIRD_PARTY_BASE_NUMERICS_SAFE_MATH_H_ +diff -Naur workdir/UnpackedTarball/pdfium/third_party/base/numerics/safe_math_arm_impl.h workdir/UnpackedTarball/pdfium.4137/third_party/base/numerics/safe_math_arm_impl.h +--- workdir/UnpackedTarball/pdfium/third_party/base/numerics/safe_math_arm_impl.h 2020-10-26 19:26:04.000000000 +0100 ++++ workdir/UnpackedTarball/pdfium.4137/third_party/base/numerics/safe_math_arm_impl.h 1970-01-01 01:00:00.000000000 +0100 +@@ -1,124 +0,0 @@ +-// Copyright 2017 The Chromium Authors. All rights reserved. +-// Use of this source code is governed by a BSD-style license that can be +-// found in the LICENSE file. +- +-#ifndef THIRD_PARTY_BASE_NUMERICS_SAFE_MATH_ARM_IMPL_H_ +-#define THIRD_PARTY_BASE_NUMERICS_SAFE_MATH_ARM_IMPL_H_ +- +-#include <cassert> +-#include <limits> +-#include <type_traits> +- +-#include "third_party/base/numerics/safe_conversions.h" +- +-namespace pdfium { +-namespace base { +-namespace internal { +- +-template <typename T, typename U> +-struct CheckedMulFastAsmOp { +- static const bool is_supported = +- FastIntegerArithmeticPromotion<T, U>::is_contained; +- +- // The following is much more efficient than the Clang and GCC builtins for +- // performing overflow-checked multiplication when a twice wider type is +- // available. The below compiles down to 2-3 instructions, depending on the +- // width of the types in use. +- // As an example, an int32_t multiply compiles to: +- // smull r0, r1, r0, r1 +- // cmp r1, r1, asr #31 +- // And an int16_t multiply compiles to: +- // smulbb r1, r1, r0 +- // asr r2, r1, #16 +- // cmp r2, r1, asr #15 +- template <typename V> +- __attribute__((always_inline)) static bool Do(T x, U y, V* result) { +- using Promotion = typename FastIntegerArithmeticPromotion<T, U>::type; +- Promotion presult; +- +- presult = static_cast<Promotion>(x) * static_cast<Promotion>(y); +- *result = static_cast<V>(presult); +- return IsValueInRangeForNumericType<V>(presult); +- } +-}; +- +-template <typename T, typename U> +-struct ClampedAddFastAsmOp { +- static const bool is_supported = +- BigEnoughPromotion<T, U>::is_contained && +- IsTypeInRangeForNumericType< +- int32_t, +- typename BigEnoughPromotion<T, U>::type>::value; +- +- template <typename V> +- __attribute__((always_inline)) static V Do(T x, U y) { +- // This will get promoted to an int, so let the compiler do whatever is +- // clever and rely on the saturated cast to bounds check. +- if (IsIntegerArithmeticSafe<int, T, U>::value) +- return saturated_cast<V>(x + y); +- +- int32_t result; +- int32_t x_i32 = checked_cast<int32_t>(x); +- int32_t y_i32 = checked_cast<int32_t>(y); +- +- asm("qadd %[result], %[first], %[second]" +- : [result] "=r"(result) +- : [first] "r"(x_i32), [second] "r"(y_i32)); +- return saturated_cast<V>(result); +- } +-}; +- +-template <typename T, typename U> +-struct ClampedSubFastAsmOp { +- static const bool is_supported = +- BigEnoughPromotion<T, U>::is_contained && +- IsTypeInRangeForNumericType< +- int32_t, +- typename BigEnoughPromotion<T, U>::type>::value; +- +- template <typename V> +- __attribute__((always_inline)) static V Do(T x, U y) { +- // This will get promoted to an int, so let the compiler do whatever is +- // clever and rely on the saturated cast to bounds check. +- if (IsIntegerArithmeticSafe<int, T, U>::value) +- return saturated_cast<V>(x - y); +- +- int32_t result; +- int32_t x_i32 = checked_cast<int32_t>(x); +- int32_t y_i32 = checked_cast<int32_t>(y); +- +- asm("qsub %[result], %[first], %[second]" +- : [result] "=r"(result) +- : [first] "r"(x_i32), [second] "r"(y_i32)); +- return saturated_cast<V>(result); +- } +-}; +- +-template <typename T, typename U> +-struct ClampedMulFastAsmOp { +- static const bool is_supported = CheckedMulFastAsmOp<T, U>::is_supported; +- +- template <typename V> +- __attribute__((always_inline)) static V Do(T x, U y) { +- // Use the CheckedMulFastAsmOp for full-width 32-bit values, because +- // it's fewer instructions than promoting and then saturating. +- if (!IsIntegerArithmeticSafe<int32_t, T, U>::value && +- !IsIntegerArithmeticSafe<uint32_t, T, U>::value) { +- V result; +- if (CheckedMulFastAsmOp<T, U>::Do(x, y, &result)) +- return result; +- return CommonMaxOrMin<V>(IsValueNegative(x) ^ IsValueNegative(y)); +- } +- +- assert((FastIntegerArithmeticPromotion<T, U>::is_contained)); +- using Promotion = typename FastIntegerArithmeticPromotion<T, U>::type; +- return saturated_cast<V>(static_cast<Promotion>(x) * +- static_cast<Promotion>(y)); +- } +-}; +- +-} // namespace internal +-} // namespace base +-} // namespace pdfium +- +-#endif // THIRD_PARTY_BASE_NUMERICS_SAFE_MATH_ARM_IMPL_H_ +diff -Naur workdir/UnpackedTarball/pdfium/third_party/base/numerics/safe_math_clang_gcc_impl.h workdir/UnpackedTarball/pdfium.4137/third_party/base/numerics/safe_math_clang_gcc_impl.h +--- workdir/UnpackedTarball/pdfium/third_party/base/numerics/safe_math_clang_gcc_impl.h 2020-10-26 19:26:04.000000000 +0100 ++++ workdir/UnpackedTarball/pdfium.4137/third_party/base/numerics/safe_math_clang_gcc_impl.h 1970-01-01 01:00:00.000000000 +0100 +@@ -1,159 +0,0 @@ +-// Copyright 2017 The Chromium Authors. All rights reserved. +-// Use of this source code is governed by a BSD-style license that can be +-// found in the LICENSE file. +- +-#ifndef THIRD_PARTY_BASE_NUMERICS_SAFE_MATH_CLANG_GCC_IMPL_H_ +-#define THIRD_PARTY_BASE_NUMERICS_SAFE_MATH_CLANG_GCC_IMPL_H_ +- +-#include <cassert> +-#include <limits> +-#include <type_traits> +- +-#include "third_party/base/numerics/safe_conversions.h" +- +-#if !defined(__native_client__) && (defined(__ARMEL__) || defined(__arch64__)) +-#include "third_party/base/numerics/safe_math_arm_impl.h" +-#define BASE_HAS_ASSEMBLER_SAFE_MATH (1) +-#else +-#define BASE_HAS_ASSEMBLER_SAFE_MATH (0) +-#endif +- +-namespace pdfium { +-namespace base { +-namespace internal { +- +-// These are the non-functioning boilerplate implementations of the optimized +-// safe math routines. +-#if !BASE_HAS_ASSEMBLER_SAFE_MATH +-template <typename T, typename U> +-struct CheckedMulFastAsmOp { +- static const bool is_supported = false; +- template <typename V> +- static constexpr bool Do(T, U, V*) { +- // Force a compile failure if instantiated. +- return CheckOnFailure::template HandleFailure<bool>(); +- } +-}; +- +-template <typename T, typename U> +-struct ClampedAddFastAsmOp { +- static const bool is_supported = false; +- template <typename V> +- static constexpr V Do(T, U) { +- // Force a compile failure if instantiated. +- return CheckOnFailure::template HandleFailure<V>(); +- } +-}; +- +-template <typename T, typename U> +-struct ClampedSubFastAsmOp { +- static const bool is_supported = false; +- template <typename V> +- static constexpr V Do(T, U) { +- // Force a compile failure if instantiated. +- return CheckOnFailure::template HandleFailure<V>(); +- } +-}; +- +-template <typename T, typename U> +-struct ClampedMulFastAsmOp { +- static const bool is_supported = false; +- template <typename V> +- static constexpr V Do(T, U) { +- // Force a compile failure if instantiated. +- return CheckOnFailure::template HandleFailure<V>(); +- } +-}; +-#endif // BASE_HAS_ASSEMBLER_SAFE_MATH +-#undef BASE_HAS_ASSEMBLER_SAFE_MATH +- +-template <typename T, typename U> +-struct CheckedAddFastOp { +- static const bool is_supported = true; +- template <typename V> +- __attribute__((always_inline)) static constexpr bool Do(T x, U y, V* result) { +- return !__builtin_add_overflow(x, y, result); +- } +-}; +- +-template <typename T, typename U> +-struct CheckedSubFastOp { +- static const bool is_supported = true; +- template <typename V> +- __attribute__((always_inline)) static constexpr bool Do(T x, U y, V* result) { +- return !__builtin_sub_overflow(x, y, result); +- } +-}; +- +-template <typename T, typename U> +-struct CheckedMulFastOp { +-#if defined(__clang__) +- // TODO(jschuh): Get the Clang runtime library issues sorted out so we can +- // support full-width, mixed-sign multiply builtins. +- // https://crbug.com/613003 +- // We can support intptr_t, uintptr_t, or a smaller common type. +- static const bool is_supported = +- (IsTypeInRangeForNumericType<intptr_t, T>::value && +- IsTypeInRangeForNumericType<intptr_t, U>::value) || +- (IsTypeInRangeForNumericType<uintptr_t, T>::value && +- IsTypeInRangeForNumericType<uintptr_t, U>::value); +-#else +- static const bool is_supported = true; +-#endif +- template <typename V> +- __attribute__((always_inline)) static constexpr bool Do(T x, U y, V* result) { +- return CheckedMulFastAsmOp<T, U>::is_supported +- ? CheckedMulFastAsmOp<T, U>::Do(x, y, result) +- : !__builtin_mul_overflow(x, y, result); +- } +-}; +- +-template <typename T, typename U> +-struct ClampedAddFastOp { +- static const bool is_supported = ClampedAddFastAsmOp<T, U>::is_supported; +- template <typename V> +- __attribute__((always_inline)) static V Do(T x, U y) { +- return ClampedAddFastAsmOp<T, U>::template Do<V>(x, y); +- } +-}; +- +-template <typename T, typename U> +-struct ClampedSubFastOp { +- static const bool is_supported = ClampedSubFastAsmOp<T, U>::is_supported; +- template <typename V> +- __attribute__((always_inline)) static V Do(T x, U y) { +- return ClampedSubFastAsmOp<T, U>::template Do<V>(x, y); +- } +-}; +- +-template <typename T, typename U> +-struct ClampedMulFastOp { +- static const bool is_supported = ClampedMulFastAsmOp<T, U>::is_supported; +- template <typename V> +- __attribute__((always_inline)) static V Do(T x, U y) { +- return ClampedMulFastAsmOp<T, U>::template Do<V>(x, y); +- } +-}; +- +-template <typename T> +-struct ClampedNegFastOp { +- static const bool is_supported = std::is_signed<T>::value; +- __attribute__((always_inline)) static T Do(T value) { +- // Use this when there is no assembler path available. +- if (!ClampedSubFastAsmOp<T, T>::is_supported) { +- T result; +- return !__builtin_sub_overflow(T(0), value, &result) +- ? result +- : std::numeric_limits<T>::max(); +- } +- +- // Fallback to the normal subtraction path. +- return ClampedSubFastOp<T, T>::template Do<T>(T(0), value); +- } +-}; +- +-} // namespace internal +-} // namespace base +-} // namespace pdfium +- +-#endif // THIRD_PARTY_BASE_NUMERICS_SAFE_MATH_CLANG_GCC_IMPL_H_ +diff -Naur workdir/UnpackedTarball/pdfium/third_party/base/numerics/safe_math_impl.h workdir/UnpackedTarball/pdfium.4137/third_party/base/numerics/safe_math_impl.h +--- workdir/UnpackedTarball/pdfium/third_party/base/numerics/safe_math_impl.h 1970-01-01 01:00:00.000000000 +0100 ++++ workdir/UnpackedTarball/pdfium.4137/third_party/base/numerics/safe_math_impl.h 2020-05-02 03:06:13.000000000 +0200 +@@ -0,0 +1,647 @@ ++// Copyright 2014 The Chromium Authors. All rights reserved. ++// Use of this source code is governed by a BSD-style license that can be ++// found in the LICENSE file. ++ ++#ifndef THIRD_PARTY_BASE_NUMERICS_SAFE_MATH_IMPL_H_ ++#define THIRD_PARTY_BASE_NUMERICS_SAFE_MATH_IMPL_H_ ++ ++#include <stddef.h> ++#include <stdint.h> ++ ++#include <climits> ++#include <cmath> ++#include <cstdlib> ++#include <limits> ++#include <type_traits> ++ ++#include "third_party/base/numerics/safe_conversions.h" ++ ++namespace pdfium { ++namespace base { ++namespace internal { ++ ++// Everything from here up to the floating point operations is portable C++, ++// but it may not be fast. This code could be split based on ++// platform/architecture and replaced with potentially faster implementations. ++ ++// This is used for UnsignedAbs, where we need to support floating-point ++// template instantiations even though we don't actually support the operations. ++// However, there is no corresponding implementation of e.g. SafeUnsignedAbs, ++// so the float versions will not compile. ++template <typename Numeric, ++ bool IsInteger = std::is_integral<Numeric>::value, ++ bool IsFloat = std::is_floating_point<Numeric>::value> ++struct UnsignedOrFloatForSize; ++ ++template <typename Numeric> ++struct UnsignedOrFloatForSize<Numeric, true, false> { ++ using type = typename std::make_unsigned<Numeric>::type; ++}; ++ ++template <typename Numeric> ++struct UnsignedOrFloatForSize<Numeric, false, true> { ++ using type = Numeric; ++}; ++ ++// Probe for builtin math overflow support on Clang and version check on GCC. ++#if defined(EMSCRIPTEN) ++// Emscripten Clang reports that it has the builtins, it may be lowered to an ++// instruction that is unsupported in asm.js ++#define USE_OVERFLOW_BUILTINS (0) ++#elif defined(__has_builtin) ++#define USE_OVERFLOW_BUILTINS (__has_builtin(__builtin_add_overflow)) ++#elif defined(__GNUC__) ++#define USE_OVERFLOW_BUILTINS (__GNUC__ >= 5) ++#else ++#define USE_OVERFLOW_BUILTINS (0) ++#endif ++ ++template <typename T> ++bool CheckedAddImpl(T x, T y, T* result) { ++ static_assert(std::is_integral<T>::value, "Type must be integral"); ++ // Since the value of x+y is undefined if we have a signed type, we compute ++ // it using the unsigned type of the same size. ++ using UnsignedDst = typename std::make_unsigned<T>::type; ++ using SignedDst = typename std::make_signed<T>::type; ++ auto ux = static_cast<UnsignedDst>(x); ++ auto uy = static_cast<UnsignedDst>(y); ++ auto uresult = static_cast<UnsignedDst>(ux + uy); ++ *result = static_cast<T>(uresult); ++ // Addition is valid if the sign of (x + y) is equal to either that of x or ++ // that of y. ++ return (std::is_signed<T>::value) ++ ? static_cast<SignedDst>((uresult ^ ux) & (uresult ^ uy)) >= 0 ++ : uresult >= uy; // Unsigned is either valid or underflow. ++} ++ ++template <typename T, typename U, class Enable = void> ++struct CheckedAddOp {}; ++ ++template <typename T, typename U> ++struct CheckedAddOp<T, ++ U, ++ typename std::enable_if<std::is_integral<T>::value && ++ std::is_integral<U>::value>::type> { ++ using result_type = typename MaxExponentPromotion<T, U>::type; ++ template <typename V> ++ static bool Do(T x, U y, V* result) { ++#if USE_OVERFLOW_BUILTINS ++ return !__builtin_add_overflow(x, y, result); ++#else ++ using Promotion = typename BigEnoughPromotion<T, U>::type; ++ Promotion presult; ++ // Fail if either operand is out of range for the promoted type. ++ // TODO(jschuh): This could be made to work for a broader range of values. ++ bool is_valid = IsValueInRangeForNumericType<Promotion>(x) && ++ IsValueInRangeForNumericType<Promotion>(y); ++ ++ if (IsIntegerArithmeticSafe<Promotion, T, U>::value) { ++ presult = static_cast<Promotion>(x) + static_cast<Promotion>(y); ++ } else { ++ is_valid &= CheckedAddImpl(static_cast<Promotion>(x), ++ static_cast<Promotion>(y), &presult); ++ } ++ *result = static_cast<V>(presult); ++ return is_valid && IsValueInRangeForNumericType<V>(presult); ++#endif ++ } ++}; ++ ++template <typename T> ++bool CheckedSubImpl(T x, T y, T* result) { ++ static_assert(std::is_integral<T>::value, "Type must be integral"); ++ // Since the value of x+y is undefined if we have a signed type, we compute ++ // it using the unsigned type of the same size. ++ using UnsignedDst = typename std::make_unsigned<T>::type; ++ using SignedDst = typename std::make_signed<T>::type; ++ auto ux = static_cast<UnsignedDst>(x); ++ auto uy = static_cast<UnsignedDst>(y); ++ auto uresult = static_cast<UnsignedDst>(ux - uy); ++ *result = static_cast<T>(uresult); ++ // Subtraction is valid if either x and y have same sign, or (x-y) and x have ++ // the same sign. ++ return (std::is_signed<T>::value) ++ ? static_cast<SignedDst>((uresult ^ ux) & (ux ^ uy)) >= 0 ++ : x >= y; ++} ++ ++template <typename T, typename U, class Enable = void> ++struct CheckedSubOp {}; ++ ++template <typename T, typename U> ++struct CheckedSubOp<T, ++ U, ++ typename std::enable_if<std::is_integral<T>::value && ++ std::is_integral<U>::value>::type> { ++ using result_type = typename MaxExponentPromotion<T, U>::type; ++ template <typename V> ++ static bool Do(T x, U y, V* result) { ++#if USE_OVERFLOW_BUILTINS ++ return !__builtin_sub_overflow(x, y, result); ++#else ++ using Promotion = typename BigEnoughPromotion<T, U>::type; ++ Promotion presult; ++ // Fail if either operand is out of range for the promoted type. ++ // TODO(jschuh): This could be made to work for a broader range of values. ++ bool is_valid = IsValueInRangeForNumericType<Promotion>(x) && ++ IsValueInRangeForNumericType<Promotion>(y); ++ ++ if (IsIntegerArithmeticSafe<Promotion, T, U>::value) { ++ presult = static_cast<Promotion>(x) - static_cast<Promotion>(y); ++ } else { ++ is_valid &= CheckedSubImpl(static_cast<Promotion>(x), ++ static_cast<Promotion>(y), &presult); ++ } ++ *result = static_cast<V>(presult); ++ return is_valid && IsValueInRangeForNumericType<V>(presult); ++#endif ++ } ++}; ++ ++template <typename T> ++bool CheckedMulImpl(T x, T y, T* result) { ++ static_assert(std::is_integral<T>::value, "Type must be integral"); ++ // Since the value of x*y is potentially undefined if we have a signed type, ++ // we compute it using the unsigned type of the same size. ++ using UnsignedDst = typename std::make_unsigned<T>::type; ++ using SignedDst = typename std::make_signed<T>::type; ++ const UnsignedDst ux = SafeUnsignedAbs(x); ++ const UnsignedDst uy = SafeUnsignedAbs(y); ++ auto uresult = static_cast<UnsignedDst>(ux * uy); ++ const bool is_negative = ++ std::is_signed<T>::value && static_cast<SignedDst>(x ^ y) < 0; ++ *result = is_negative ? 0 - uresult : uresult; ++ // We have a fast out for unsigned identity or zero on the second operand. ++ // After that it's an unsigned overflow check on the absolute value, with ++ // a +1 bound for a negative result. ++ return uy <= UnsignedDst(!std::is_signed<T>::value || is_negative) || ++ ux <= (std::numeric_limits<T>::max() + UnsignedDst(is_negative)) / uy; ++} ++ ++template <typename T, typename U, class Enable = void> ++struct CheckedMulOp {}; ++ ++template <typename T, typename U> ++struct CheckedMulOp<T, ++ U, ++ typename std::enable_if<std::is_integral<T>::value && ++ std::is_integral<U>::value>::type> { ++ using result_type = typename MaxExponentPromotion<T, U>::type; ++ template <typename V> ++ static bool Do(T x, U y, V* result) { ++#if USE_OVERFLOW_BUILTINS ++#if defined(__clang__) ++ // TODO(jschuh): Get the Clang runtime library issues sorted out so we can ++ // support full-width, mixed-sign multiply builtins. ++ // https://crbug.com/613003 ++ static const bool kUseMaxInt = ++ // Narrower type than uintptr_t is always safe. ++ std::numeric_limits<__typeof__(x * y)>::digits < ++ std::numeric_limits<intptr_t>::digits || ++ // Safe for intptr_t and uintptr_t if the sign matches. ++ (IntegerBitsPlusSign<__typeof__(x * y)>::value == ++ IntegerBitsPlusSign<intptr_t>::value && ++ std::is_signed<T>::value == std::is_signed<U>::value); ++#else ++ static const bool kUseMaxInt = true; ++#endif ++ if (kUseMaxInt) ++ return !__builtin_mul_overflow(x, y, result); ++#endif ++ using Promotion = typename FastIntegerArithmeticPromotion<T, U>::type; ++ Promotion presult; ++ // Fail if either operand is out of range for the promoted type. ++ // TODO(jschuh): This could be made to work for a broader range of values. ++ bool is_valid = IsValueInRangeForNumericType<Promotion>(x) && ++ IsValueInRangeForNumericType<Promotion>(y); ++ ++ if (IsIntegerArithmeticSafe<Promotion, T, U>::value) { ++ presult = static_cast<Promotion>(x) * static_cast<Promotion>(y); ++ } else { ++ is_valid &= CheckedMulImpl(static_cast<Promotion>(x), ++ static_cast<Promotion>(y), &presult); ++ } ++ *result = static_cast<V>(presult); ++ return is_valid && IsValueInRangeForNumericType<V>(presult); ++ } ++}; ++ ++// Avoid poluting the namespace once we're done with the macro. ++#undef USE_OVERFLOW_BUILTINS ++ ++// Division just requires a check for a zero denominator or an invalid negation ++// on signed min/-1. ++template <typename T> ++bool CheckedDivImpl(T x, T y, T* result) { ++ static_assert(std::is_integral<T>::value, "Type must be integral"); ++ if (y && (!std::is_signed<T>::value || ++ x != std::numeric_limits<T>::lowest() || y != static_cast<T>(-1))) { ++ *result = x / y; ++ return true; ++ } ++ return false; ++} ++ ++template <typename T, typename U, class Enable = void> ++struct CheckedDivOp {}; ++ ++template <typename T, typename U> ++struct CheckedDivOp<T, ++ U, ++ typename std::enable_if<std::is_integral<T>::value && ++ std::is_integral<U>::value>::type> { ++ using result_type = typename MaxExponentPromotion<T, U>::type; ++ template <typename V> ++ static bool Do(T x, U y, V* result) { ++ using Promotion = typename BigEnoughPromotion<T, U>::type; ++ Promotion presult; ++ // Fail if either operand is out of range for the promoted type. ++ // TODO(jschuh): This could be made to work for a broader range of values. ++ bool is_valid = IsValueInRangeForNumericType<Promotion>(x) && ++ IsValueInRangeForNumericType<Promotion>(y); ++ is_valid &= CheckedDivImpl(static_cast<Promotion>(x), ++ static_cast<Promotion>(y), &presult); ++ *result = static_cast<V>(presult); ++ return is_valid && IsValueInRangeForNumericType<V>(presult); ++ } ++}; ++ ++template <typename T> ++bool CheckedModImpl(T x, T y, T* result) { ++ static_assert(std::is_integral<T>::value, "Type must be integral"); ++ if (y > 0) { ++ *result = static_cast<T>(x % y); ++ return true; ++ } ++ return false; ++} ++ ++template <typename T, typename U, class Enable = void> ++struct CheckedModOp {}; ++ ++template <typename T, typename U> ++struct CheckedModOp<T, ++ U, ++ typename std::enable_if<std::is_integral<T>::value && ++ std::is_integral<U>::value>::type> { ++ using result_type = typename MaxExponentPromotion<T, U>::type; ++ template <typename V> ++ static bool Do(T x, U y, V* result) { ++ using Promotion = typename BigEnoughPromotion<T, U>::type; ++ Promotion presult; ++ bool is_valid = CheckedModImpl(static_cast<Promotion>(x), ++ static_cast<Promotion>(y), &presult); ++ *result = static_cast<V>(presult); ++ return is_valid && IsValueInRangeForNumericType<V>(presult); ++ } ++}; ++ ++template <typename T, typename U, class Enable = void> ++struct CheckedLshOp {}; ++ ++// Left shift. Shifts less than 0 or greater than or equal to the number ++// of bits in the promoted type are undefined. Shifts of negative values ++// are undefined. Otherwise it is defined when the result fits. ++template <typename T, typename U> ++struct CheckedLshOp<T, ++ U, ++ typename std::enable_if<std::is_integral<T>::value && ++ std::is_integral<U>::value>::type> { ++ using result_type = T; ++ template <typename V> ++ static bool Do(T x, U shift, V* result) { ++ using ShiftType = typename std::make_unsigned<T>::type; ++ static const ShiftType kBitWidth = IntegerBitsPlusSign<T>::value; ++ const auto real_shift = static_cast<ShiftType>(shift); ++ // Signed shift is not legal on negative values. ++ if (!IsValueNegative(x) && real_shift < kBitWidth) { ++ // Just use a multiplication because it's easy. ++ // TODO(jschuh): This could probably be made more efficient. ++ if (!std::is_signed<T>::value || real_shift != kBitWidth - 1) ++ return CheckedMulOp<T, T>::Do(x, static_cast<T>(1) << shift, result); ++ return !x; // Special case zero for a full width signed shift. ++ } ++ return false; ++ } ++}; ++ ++template <typename T, typename U, class Enable = void> ++struct CheckedRshOp {}; ++ ++// Right shift. Shifts less than 0 or greater than or equal to the number ++// of bits in the promoted type are undefined. Otherwise, it is always defined, ++// but a right shift of a negative value is implementation-dependent. ++template <typename T, typename U> ++struct CheckedRshOp<T, ++ U, ++ typename std::enable_if<std::is_integral<T>::value && ++ std::is_integral<U>::value>::type> { ++ using result_type = T; ++ template <typename V = result_type> ++ static bool Do(T x, U shift, V* result) { ++ // Use the type conversion push negative values out of range. ++ using ShiftType = typename std::make_unsigned<T>::type; ++ if (static_cast<ShiftType>(shift) < IntegerBitsPlusSign<T>::value) { ++ T tmp = x >> shift; ++ *result = static_cast<V>(tmp); ++ return IsValueInRangeForNumericType<V>(tmp); ++ } ++ return false; ++ } ++}; ++ ++template <typename T, typename U, class Enable = void> ++struct CheckedAndOp {}; ++ ++// For simplicity we support only unsigned integer results. ++template <typename T, typename U> ++struct CheckedAndOp<T, ++ U, ++ typename std::enable_if<std::is_integral<T>::value && ++ std::is_integral<U>::value>::type> { ++ using result_type = typename std::make_unsigned< ++ typename MaxExponentPromotion<T, U>::type>::type; ++ template <typename V = result_type> ++ static bool Do(T x, U y, V* result) { ++ result_type tmp = static_cast<result_type>(x) & static_cast<result_type>(y); ++ *result = static_cast<V>(tmp); ++ return IsValueInRangeForNumericType<V>(tmp); ++ } ++}; ++ ++template <typename T, typename U, class Enable = void> ++struct CheckedOrOp {}; ++ ++// For simplicity we support only unsigned integers. ++template <typename T, typename U> ++struct CheckedOrOp<T, ++ U, ++ typename std::enable_if<std::is_integral<T>::value && ++ std::is_integral<U>::value>::type> { ++ using result_type = typename std::make_unsigned< ++ typename MaxExponentPromotion<T, U>::type>::type; ++ template <typename V = result_type> ++ static bool Do(T x, U y, V* result) { ++ result_type tmp = static_cast<result_type>(x) | static_cast<result_type>(y); ++ *result = static_cast<V>(tmp); ++ return IsValueInRangeForNumericType<V>(tmp); ++ } ++}; ++ ++template <typename T, typename U, class Enable = void> ++struct CheckedXorOp {}; ++ ++// For simplicity we support only unsigned integers. ++template <typename T, typename U> ++struct CheckedXorOp<T, ++ U, ++ typename std::enable_if<std::is_integral<T>::value && ++ std::is_integral<U>::value>::type> { ++ using result_type = typename std::make_unsigned< ++ typename MaxExponentPromotion<T, U>::type>::type; ++ template <typename V = result_type> ++ static bool Do(T x, U y, V* result) { ++ result_type tmp = static_cast<result_type>(x) ^ static_cast<result_type>(y); ++ *result = static_cast<V>(tmp); ++ return IsValueInRangeForNumericType<V>(tmp); ++ } ++}; ++ ++// Max doesn't really need to be implemented this way because it can't fail, ++// but it makes the code much cleaner to use the MathOp wrappers. ++template <typename T, typename U, class Enable = void> ++struct CheckedMaxOp {}; ++ ++template <typename T, typename U> ++struct CheckedMaxOp< ++ T, ++ U, ++ typename std::enable_if<std::is_arithmetic<T>::value && ++ std::is_arithmetic<U>::value>::type> { ++ using result_type = typename MaxExponentPromotion<T, U>::type; ++ template <typename V = result_type> ++ static bool Do(T x, U y, V* result) { ++ *result = IsGreater<T, U>::Test(x, y) ? static_cast<result_type>(x) ++ : static_cast<result_type>(y); ++ return true; ++ } ++}; ++ ++// Min doesn't really need to be implemented this way because it can't fail, ++// but it makes the code much cleaner to use the MathOp wrappers. ++template <typename T, typename U, class Enable = void> ++struct CheckedMinOp {}; ++ ++template <typename T, typename U> ++struct CheckedMinOp< ++ T, ++ U, ++ typename std::enable_if<std::is_arithmetic<T>::value && ++ std::is_arithmetic<U>::value>::type> { ++ using result_type = typename LowestValuePromotion<T, U>::type; ++ template <typename V = result_type> ++ static bool Do(T x, U y, V* result) { ++ *result = IsLess<T, U>::Test(x, y) ? static_cast<result_type>(x) ++ : static_cast<result_type>(y); ++ return true; ++ } ++}; ++ ++// This is just boilerplate that wraps the standard floating point arithmetic. ++// A macro isn't the nicest solution, but it beats rewriting these repeatedly. ++#define BASE_FLOAT_ARITHMETIC_OPS(NAME, OP) \ ++ template <typename T, typename U> \ ++ struct Checked##NAME##Op< \ ++ T, U, typename std::enable_if<std::is_floating_point<T>::value || \ ++ std::is_floating_point<U>::value>::type> { \ ++ using result_type = typename MaxExponentPromotion<T, U>::type; \ ++ template <typename V> \ ++ static bool Do(T x, U y, V* result) { \ ++ using Promotion = typename MaxExponentPromotion<T, U>::type; \ ++ Promotion presult = x OP y; \ ++ *result = static_cast<V>(presult); \ ++ return IsValueInRangeForNumericType<V>(presult); \ ++ } \ ++ }; ++ ++BASE_FLOAT_ARITHMETIC_OPS(Add, +) ++BASE_FLOAT_ARITHMETIC_OPS(Sub, -) ++BASE_FLOAT_ARITHMETIC_OPS(Mul, *) ++BASE_FLOAT_ARITHMETIC_OPS(Div, /) ++ ++#undef BASE_FLOAT_ARITHMETIC_OPS ++ ++// Wrap the unary operations to allow SFINAE when instantiating integrals versus ++// floating points. These don't perform any overflow checking. Rather, they ++// exhibit well-defined overflow semantics and rely on the caller to detect ++// if an overflow occured. ++ ++template <typename T, ++ typename std::enable_if<std::is_integral<T>::value>::type* = nullptr> ++constexpr T NegateWrapper(T value) { ++ using UnsignedT = typename std::make_unsigned<T>::type; ++ // This will compile to a NEG on Intel, and is normal negation on ARM. ++ return static_cast<T>(UnsignedT(0) - static_cast<UnsignedT>(value)); ++} ++ ++template < ++ typename T, ++ typename std::enable_if<std::is_floating_point<T>::value>::type* = nullptr> ++constexpr T NegateWrapper(T value) { ++ return -value; ++} ++ ++template <typename T, ++ typename std::enable_if<std::is_integral<T>::value>::type* = nullptr> ++constexpr typename std::make_unsigned<T>::type InvertWrapper(T value) { ++ return ~value; ++} ++ ++template <typename T, ++ typename std::enable_if<std::is_integral<T>::value>::type* = nullptr> ++constexpr T AbsWrapper(T value) { ++ return static_cast<T>(SafeUnsignedAbs(value)); ++} ++ ++template < ++ typename T, ++ typename std::enable_if<std::is_floating_point<T>::value>::type* = nullptr> ++constexpr T AbsWrapper(T value) { ++ return value < 0 ? -value : value; ++} ++ ++// Floats carry around their validity state with them, but integers do not. So, ++// we wrap the underlying value in a specialization in order to hide that detail ++// and expose an interface via accessors. ++enum NumericRepresentation { ++ NUMERIC_INTEGER, ++ NUMERIC_FLOATING, ++ NUMERIC_UNKNOWN ++}; ++ ++template <typename NumericType> ++struct GetNumericRepresentation { ++ static const NumericRepresentation value = ++ std::is_integral<NumericType>::value ++ ? NUMERIC_INTEGER ++ : (std::is_floating_point<NumericType>::value ? NUMERIC_FLOATING ++ : NUMERIC_UNKNOWN); ++}; ++ ++template <typename T, NumericRepresentation type = ++ GetNumericRepresentation<T>::value> ++class CheckedNumericState {}; ++ ++// Integrals require quite a bit of additional housekeeping to manage state. ++template <typename T> ++class CheckedNumericState<T, NUMERIC_INTEGER> { ++ private: ++ // is_valid_ precedes value_ because member intializers in the constructors ++ // are evaluated in field order, and is_valid_ must be read when initializing ++ // value_. ++ bool is_valid_; ++ T value_; ++ ++ // Ensures that a type conversion does not trigger undefined behavior. ++ template <typename Src> ++ static constexpr T WellDefinedConversionOrZero(const Src value, ++ const bool is_valid) { ++ using SrcType = typename internal::UnderlyingType<Src>::type; ++ return (std::is_integral<SrcType>::value || is_valid) ++ ? static_cast<T>(value) ++ : static_cast<T>(0); ++ } ++ ++ public: ++ template <typename Src, NumericRepresentation type> ++ friend class CheckedNumericState; ++ ++ constexpr CheckedNumericState() : is_valid_(true), value_(0) {} ++ ++ template <typename Src> ++ constexpr CheckedNumericState(Src value, bool is_valid) ++ : is_valid_(is_valid && IsValueInRangeForNumericType<T>(value)), ++ value_(WellDefinedConversionOrZero(value, is_valid_)) { ++ static_assert(std::is_arithmetic<Src>::value, "Argument must be numeric."); ++ } ++ ++ // Copy constructor. ++ template <typename Src> ++ constexpr CheckedNumericState(const CheckedNumericState<Src>& rhs) ++ : is_valid_(rhs.IsValid()), ++ value_(WellDefinedConversionOrZero(rhs.value(), is_valid_)) {} ++ ++ template <typename Src> ++ constexpr explicit CheckedNumericState(Src value) ++ : is_valid_(IsValueInRangeForNumericType<T>(value)), ++ value_(WellDefinedConversionOrZero(value, is_valid_)) {} ++ ++ constexpr bool is_valid() const { return is_valid_; } ++ constexpr T value() const { return value_; } ++}; ++ ++// Floating points maintain their own validity, but need translation wrappers. ++template <typename T> ++class CheckedNumericState<T, NUMERIC_FLOATING> { ++ private: ++ T value_; ++ ++ // Ensures that a type conversion does not trigger undefined behavior. ++ template <typename Src> ++ static constexpr T WellDefinedConversionOrNaN(const Src value, ++ const bool is_valid) { ++ using SrcType = typename internal::UnderlyingType<Src>::type; ++ return (StaticDstRangeRelationToSrcRange<T, SrcType>::value == ++ NUMERIC_RANGE_CONTAINED || ++ is_valid) ++ ? static_cast<T>(value) ++ : std::numeric_limits<T>::quiet_NaN(); ++ } ++ ++ public: ++ template <typename Src, NumericRepresentation type> ++ friend class CheckedNumericState; ++ ++ constexpr CheckedNumericState() : value_(0.0) {} ++ ++ template <typename Src> ++ constexpr CheckedNumericState(Src value, bool is_valid) ++ : value_(WellDefinedConversionOrNaN(value, is_valid)) {} ++ ++ template <typename Src> ++ constexpr explicit CheckedNumericState(Src value) ++ : value_(WellDefinedConversionOrNaN( ++ value, ++ IsValueInRangeForNumericType<T>(value))) {} ++ ++ // Copy constructor. ++ template <typename Src> ++ constexpr CheckedNumericState(const CheckedNumericState<Src>& rhs) ++ : value_(WellDefinedConversionOrNaN( ++ rhs.value(), ++ rhs.is_valid() && IsValueInRangeForNumericType<T>(rhs.value()))) {} ++ ++ constexpr bool is_valid() const { ++ // Written this way because std::isfinite is not reliably constexpr. ++ // TODO(jschuh): Fix this if the libraries ever get fixed. ++ return value_ <= std::numeric_limits<T>::max() && ++ value_ >= std::numeric_limits<T>::lowest(); ++ } ++ constexpr T value() const { return value_; } ++}; ++ ++template <template <typename, typename, typename> class M, ++ typename L, ++ typename R> ++struct MathWrapper { ++ using math = M<typename UnderlyingType<L>::type, ++ typename UnderlyingType<R>::type, ++ void>; ++ using type = typename math::result_type; ++}; ++ ++} // namespace internal ++} // namespace base ++} // namespace pdfium ++ ++#endif // THIRD_PARTY_BASE_NUMERICS_SAFE_MATH_IMPL_H_ +diff -Naur workdir/UnpackedTarball/pdfium/third_party/base/numerics/safe_math_shared_impl.h workdir/UnpackedTarball/pdfium.4137/third_party/base/numerics/safe_math_shared_impl.h +--- workdir/UnpackedTarball/pdfium/third_party/base/numerics/safe_math_shared_impl.h 2020-10-26 19:26:04.000000000 +0100 ++++ workdir/UnpackedTarball/pdfium.4137/third_party/base/numerics/safe_math_shared_impl.h 1970-01-01 01:00:00.000000000 +0100 +@@ -1,242 +0,0 @@ +-// Copyright 2017 The Chromium Authors. All rights reserved. +-// Use of this source code is governed by a BSD-style license that can be +-// found in the LICENSE file. +- +-#ifndef THIRD_PARTY_BASE_NUMERICS_SAFE_MATH_SHARED_IMPL_H_ +-#define THIRD_PARTY_BASE_NUMERICS_SAFE_MATH_SHARED_IMPL_H_ +- +-#include <stddef.h> +-#include <stdint.h> +- +-#include <cassert> +-#include <climits> +-#include <cmath> +-#include <cstdlib> +-#include <limits> +-#include <type_traits> +- +-#include "third_party/base/numerics/safe_conversions.h" +- +-#ifdef __asmjs__ +-// Optimized safe math instructions are incompatible with asmjs. +-#define BASE_HAS_OPTIMIZED_SAFE_MATH (0) +-// Where available use builtin math overflow support on Clang and GCC. +-#elif !defined(__native_client__) && \ +- ((defined(__clang__) && \ +- ((__clang_major__ > 3) || \ +- (__clang_major__ == 3 && __clang_minor__ >= 4))) || \ +- (defined(__GNUC__) && __GNUC__ >= 5)) +-#include "third_party/base/numerics/safe_math_clang_gcc_impl.h" +-#define BASE_HAS_OPTIMIZED_SAFE_MATH (1) +-#else +-#define BASE_HAS_OPTIMIZED_SAFE_MATH (0) +-#endif +- +-namespace pdfium { +-namespace base { +-namespace internal { +- +-// These are the non-functioning boilerplate implementations of the optimized +-// safe math routines. +-#if !BASE_HAS_OPTIMIZED_SAFE_MATH +-template <typename T, typename U> +-struct CheckedAddFastOp { +- static const bool is_supported = false; +- template <typename V> +- static constexpr bool Do(T, U, V*) { +- // Force a compile failure if instantiated. +- return CheckOnFailure::template HandleFailure<bool>(); +- } +-}; +- +-template <typename T, typename U> +-struct CheckedSubFastOp { +- static const bool is_supported = false; +- template <typename V> +- static constexpr bool Do(T, U, V*) { +- // Force a compile failure if instantiated. +- return CheckOnFailure::template HandleFailure<bool>(); +- } +-}; +- +-template <typename T, typename U> +-struct CheckedMulFastOp { +- static const bool is_supported = false; +- template <typename V> +- static constexpr bool Do(T, U, V*) { +- // Force a compile failure if instantiated. +- return CheckOnFailure::template HandleFailure<bool>(); +- } +-}; +- +-template <typename T, typename U> +-struct ClampedAddFastOp { +- static const bool is_supported = false; +- template <typename V> +- static constexpr V Do(T, U) { +- // Force a compile failure if instantiated. +- return CheckOnFailure::template HandleFailure<V>(); +- } +-}; +- +-template <typename T, typename U> +-struct ClampedSubFastOp { +- static const bool is_supported = false; +- template <typename V> +- static constexpr V Do(T, U) { +- // Force a compile failure if instantiated. +- return CheckOnFailure::template HandleFailure<V>(); +- } +-}; +- +-template <typename T, typename U> +-struct ClampedMulFastOp { +- static const bool is_supported = false; +- template <typename V> +- static constexpr V Do(T, U) { +- // Force a compile failure if instantiated. +- return CheckOnFailure::template HandleFailure<V>(); +- } +-}; +- +-template <typename T> +-struct ClampedNegFastOp { +- static const bool is_supported = false; +- static constexpr T Do(T) { +- // Force a compile failure if instantiated. +- return CheckOnFailure::template HandleFailure<T>(); +- } +-}; +-#endif // BASE_HAS_OPTIMIZED_SAFE_MATH +-#undef BASE_HAS_OPTIMIZED_SAFE_MATH +- +-// This is used for UnsignedAbs, where we need to support floating-point +-// template instantiations even though we don't actually support the operations. +-// However, there is no corresponding implementation of e.g. SafeUnsignedAbs, +-// so the float versions will not compile. +-template <typename Numeric, +- bool IsInteger = std::is_integral<Numeric>::value, +- bool IsFloat = std::is_floating_point<Numeric>::value> +-struct UnsignedOrFloatForSize; +- +-template <typename Numeric> +-struct UnsignedOrFloatForSize<Numeric, true, false> { +- using type = typename std::make_unsigned<Numeric>::type; +-}; +- +-template <typename Numeric> +-struct UnsignedOrFloatForSize<Numeric, false, true> { +- using type = Numeric; +-}; +- +-// Wrap the unary operations to allow SFINAE when instantiating integrals versus +-// floating points. These don't perform any overflow checking. Rather, they +-// exhibit well-defined overflow semantics and rely on the caller to detect +-// if an overflow occured. +- +-template <typename T, +- typename std::enable_if<std::is_integral<T>::value>::type* = nullptr> +-constexpr T NegateWrapper(T value) { +- using UnsignedT = typename std::make_unsigned<T>::type; +- // This will compile to a NEG on Intel, and is normal negation on ARM. +- return static_cast<T>(UnsignedT(0) - static_cast<UnsignedT>(value)); +-} +- +-template < +- typename T, +- typename std::enable_if<std::is_floating_point<T>::value>::type* = nullptr> +-constexpr T NegateWrapper(T value) { +- return -value; +-} +- +-template <typename T, +- typename std::enable_if<std::is_integral<T>::value>::type* = nullptr> +-constexpr typename std::make_unsigned<T>::type InvertWrapper(T value) { +- return ~value; +-} +- +-template <typename T, +- typename std::enable_if<std::is_integral<T>::value>::type* = nullptr> +-constexpr T AbsWrapper(T value) { +- return static_cast<T>(SafeUnsignedAbs(value)); +-} +- +-template < +- typename T, +- typename std::enable_if<std::is_floating_point<T>::value>::type* = nullptr> +-constexpr T AbsWrapper(T value) { +- return value < 0 ? -value : value; +-} +- +-template <template <typename, typename, typename> class M, +- typename L, +- typename R> +-struct MathWrapper { +- using math = M<typename UnderlyingType<L>::type, +- typename UnderlyingType<R>::type, +- void>; +- using type = typename math::result_type; +-}; +- +-// These variadic templates work out the return types. +-// TODO(jschuh): Rip all this out once we have C++14 non-trailing auto support. +-template <template <typename, typename, typename> class M, +- typename L, +- typename R, +- typename... Args> +-struct ResultType; +- +-template <template <typename, typename, typename> class M, +- typename L, +- typename R> +-struct ResultType<M, L, R> { +- using type = typename MathWrapper<M, L, R>::type; +-}; +- +-template <template <typename, typename, typename> class M, +- typename L, +- typename R, +- typename... Args> +-struct ResultType { +- using type = +- typename ResultType<M, typename ResultType<M, L, R>::type, Args...>::type; +-}; +- +-// The following macros are just boilerplate for the standard arithmetic +-// operator overloads and variadic function templates. A macro isn't the nicest +-// solution, but it beats rewriting these over and over again. +-#define BASE_NUMERIC_ARITHMETIC_VARIADIC(CLASS, CL_ABBR, OP_NAME) \ +- template <typename L, typename R, typename... Args> \ +- constexpr CLASS##Numeric< \ +- typename ResultType<CLASS##OP_NAME##Op, L, R, Args...>::type> \ +- CL_ABBR##OP_NAME(const L lhs, const R rhs, const Args... args) { \ +- return CL_ABBR##MathOp<CLASS##OP_NAME##Op, L, R, Args...>(lhs, rhs, \ +- args...); \ +- } +- +-#define BASE_NUMERIC_ARITHMETIC_OPERATORS(CLASS, CL_ABBR, OP_NAME, OP, CMP_OP) \ +- /* Binary arithmetic operator for all CLASS##Numeric operations. */ \ +- template <typename L, typename R, \ +- typename std::enable_if<Is##CLASS##Op<L, R>::value>::type* = \ +- nullptr> \ +- constexpr CLASS##Numeric< \ +- typename MathWrapper<CLASS##OP_NAME##Op, L, R>::type> \ +- operator OP(const L lhs, const R rhs) { \ +- return decltype(lhs OP rhs)::template MathOp<CLASS##OP_NAME##Op>(lhs, \ +- rhs); \ +- } \ +- /* Assignment arithmetic operator implementation from CLASS##Numeric. */ \ +- template <typename L> \ +- template <typename R> \ +- constexpr CLASS##Numeric<L>& CLASS##Numeric<L>::operator CMP_OP( \ +- const R rhs) { \ +- return MathOp<CLASS##OP_NAME##Op>(rhs); \ +- } \ +- /* Variadic arithmetic functions that return CLASS##Numeric. */ \ +- BASE_NUMERIC_ARITHMETIC_VARIADIC(CLASS, CL_ABBR, OP_NAME) +- +-} // namespace internal +-} // namespace base +-} // namespace pdfium +- +-#endif // THIRD_PARTY_BASE_NUMERICS_SAFE_MATH_SHARED_IMPL_H_ |