/* * LIBOIL - Library of Optimized Inner Loops * Copyright (c) 2006 David A. Schleef * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /* A C-program for MT19937, with initialization improved 2002/1/26. Coded by Takuji Nishimura and Makoto Matsumoto. Before using, initialize the state by using init_genrand(seed) or init_by_array(init_key, key_length). Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura, All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. The names of its contributors may not be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* Notes about the liboil version: This program is an adaptation of the Mersenne Twister example program downloaded from the web site listed below. The kernel of the generator is implemented in liboil, and the function genrand_int32() has been replaced with a library call. Note that the liboil function calculates an entire output array at once instead of individually like the original. This makes it easier to use memcpy to copy out many outputs at once. Notes from the original authors: Any feedback is very welcome. http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html email: m-mat @ math.sci.hiroshima-u.ac.jp (remove space) */ #ifdef HAVE_CONFIG_H #include #endif #include #include /* Period parameters */ #define N 624 #define M 397 #define MATRIX_A 0x9908b0dfUL /* constant vector a */ #define UPPER_MASK 0x80000000UL /* most significant w-r bits */ #define LOWER_MASK 0x7fffffffUL /* least significant r bits */ static uint32_t mt[N]; /* the array for the state vector */ static uint32_t mt_outputs[N]; /* the array for the outputs */ static int mti=N+1; /* mti==N+1 means mt[N] is not initialized */ /* initializes mt[N] with a seed */ void init_genrand(unsigned long s) { mt[0]= s & 0xffffffffUL; for (mti=1; mti> 30)) + mti); /* See Knuth TAOCP Vol2. 3rd Ed. P.106 for multiplier. */ /* In the previous versions, MSBs of the seed affect */ /* only MSBs of the array mt[]. */ /* 2002/01/09 modified by Makoto Matsumoto */ mt[mti] &= 0xffffffffUL; /* for >32 bit machines */ } } /* initialize by an array with array-length */ /* init_key is the array for initializing keys */ /* key_length is its length */ /* slight change for C++, 2004/2/26 */ void init_by_array(unsigned long init_key[], int key_length) { int i, j, k; init_genrand(19650218UL); i=1; j=0; k = (N>key_length ? N : key_length); for (; k; k--) { mt[i] = (mt[i] ^ ((mt[i-1] ^ (mt[i-1] >> 30)) * 1664525UL)) + init_key[j] + j; /* non linear */ mt[i] &= 0xffffffffUL; /* for WORDSIZE > 32 machines */ i++; j++; if (i>=N) { mt[0] = mt[N-1]; i=1; } if (j>=key_length) j=0; } for (k=N-1; k; k--) { mt[i] = (mt[i] ^ ((mt[i-1] ^ (mt[i-1] >> 30)) * 1566083941UL)) - i; /* non linear */ mt[i] &= 0xffffffffUL; /* for WORDSIZE > 32 machines */ i++; if (i>=N) { mt[0] = mt[N-1]; i=1; } } mt[0] = 0x80000000UL; /* MSB is 1; assuring non-zero initial array */ } /* generates a random number on [0,0xffffffff]-interval */ unsigned long genrand_int32(void) { if (mti >= N) { /* generate N words at one time */ oil_mt19937 (mt_outputs, mt); mti = 0; } return mt_outputs[mti++]; } /* generates a random number on [0,0x7fffffff]-interval */ long genrand_int31(void) { return (long)(genrand_int32()>>1); } /* generates a random number on [0,1]-real-interval */ double genrand_real1(void) { return genrand_int32()*(1.0/4294967295.0); /* divided by 2^32-1 */ } /* generates a random number on [0,1)-real-interval */ double genrand_real2(void) { return genrand_int32()*(1.0/4294967296.0); /* divided by 2^32 */ } /* generates a random number on (0,1)-real-interval */ double genrand_real3(void) { return (((double)genrand_int32()) + 0.5)*(1.0/4294967296.0); /* divided by 2^32 */ } /* generates a random number on [0,1) with 53-bit resolution*/ double genrand_res53(void) { unsigned long a=genrand_int32()>>5, b=genrand_int32()>>6; return(a*67108864.0+b)*(1.0/9007199254740992.0); } /* These real versions are due to Isaku Wada, 2002/01/09 added */ int main(void) { int i; unsigned long init[4]={0x123, 0x234, 0x345, 0x456}, length=4; oil_init(); init_by_array(init, length); printf("1000 outputs of genrand_int32()\n"); for (i=0; i<1000; i++) { printf("%10lu ", genrand_int32()); if (i%5==4) printf("\n"); } printf("\n1000 outputs of genrand_real2()\n"); for (i=0; i<1000; i++) { printf("%10.8f ", genrand_real2()); if (i%5==4) printf("\n"); } return 0; }