diff options
author | Matt Roper <matthew.d.roper@intel.com> | 2024-10-08 09:29:17 -0700 |
---|---|---|
committer | Matt Roper <matthew.d.roper@intel.com> | 2024-10-08 09:29:17 -0700 |
commit | f7d9ccf024be01fa8d57f3bddce1d7fde8f0b994 (patch) | |
tree | dc30c42030e69a8f17ba4a79bd98e6732c661dc8 /rr-cache/5d940fb2eb5fc22b4dd8cfd9fb6b06575bb02d1e | |
parent | 4322eb81b9984022e93fde7c5f86c02de2aee4ff (diff) |
2024y-10m-08d-16h-28m-48s UTC: drm-tip rerere cache update
git version 2.46.2
Diffstat (limited to 'rr-cache/5d940fb2eb5fc22b4dd8cfd9fb6b06575bb02d1e')
-rw-r--r-- | rr-cache/5d940fb2eb5fc22b4dd8cfd9fb6b06575bb02d1e/postimage | 795 | ||||
-rw-r--r-- | rr-cache/5d940fb2eb5fc22b4dd8cfd9fb6b06575bb02d1e/preimage | 799 |
2 files changed, 1594 insertions, 0 deletions
diff --git a/rr-cache/5d940fb2eb5fc22b4dd8cfd9fb6b06575bb02d1e/postimage b/rr-cache/5d940fb2eb5fc22b4dd8cfd9fb6b06575bb02d1e/postimage new file mode 100644 index 000000000000..e21eb6c0fc20 --- /dev/null +++ b/rr-cache/5d940fb2eb5fc22b4dd8cfd9fb6b06575bb02d1e/postimage @@ -0,0 +1,795 @@ +// SPDX-License-Identifier: MIT +/* + * Copyright © 2022 Intel Corporation + */ + +#include "xe_gt_mcr.h" + +#include "regs/xe_gt_regs.h" +#include "xe_assert.h" +#include "xe_gt.h" +#include "xe_gt_printk.h" +#include "xe_gt_topology.h" +#include "xe_gt_types.h" +#include "xe_guc_hwconfig.h" +#include "xe_mmio.h" +#include "xe_sriov.h" + +/** + * DOC: GT Multicast/Replicated (MCR) Register Support + * + * Some GT registers are designed as "multicast" or "replicated" registers: + * multiple instances of the same register share a single MMIO offset. MCR + * registers are generally used when the hardware needs to potentially track + * independent values of a register per hardware unit (e.g., per-subslice, + * per-L3bank, etc.). The specific types of replication that exist vary + * per-platform. + * + * MMIO accesses to MCR registers are controlled according to the settings + * programmed in the platform's MCR_SELECTOR register(s). MMIO writes to MCR + * registers can be done in either multicast (a single write updates all + * instances of the register to the same value) or unicast (a write updates only + * one specific instance) form. Reads of MCR registers always operate in a + * unicast manner regardless of how the multicast/unicast bit is set in + * MCR_SELECTOR. Selection of a specific MCR instance for unicast operations is + * referred to as "steering." + * + * If MCR register operations are steered toward a hardware unit that is + * fused off or currently powered down due to power gating, the MMIO operation + * is "terminated" by the hardware. Terminated read operations will return a + * value of zero and terminated unicast write operations will be silently + * ignored. During device initialization, the goal of the various + * ``init_steering_*()`` functions is to apply the platform-specific rules for + * each MCR register type to identify a steering target that will select a + * non-terminated instance. + * + * MCR registers are not available on Virtual Function (VF). + */ + +#define STEER_SEMAPHORE XE_REG(0xFD0) + +static inline struct xe_reg to_xe_reg(struct xe_reg_mcr reg_mcr) +{ + return reg_mcr.__reg; +} + +enum { + MCR_OP_READ, + MCR_OP_WRITE +}; + +static const struct xe_mmio_range xelp_l3bank_steering_table[] = { + { 0x00B100, 0x00B3FF }, + {}, +}; + +static const struct xe_mmio_range xehp_l3bank_steering_table[] = { + { 0x008C80, 0x008CFF }, + { 0x00B100, 0x00B3FF }, + {}, +}; + +/* + * Although the bspec lists more "MSLICE" ranges than shown here, some of those + * are of a "GAM" subclass that has special rules and doesn't need to be + * included here. + */ +static const struct xe_mmio_range xehp_mslice_steering_table[] = { + { 0x00DD00, 0x00DDFF }, + { 0x00E900, 0x00FFFF }, /* 0xEA00 - OxEFFF is unused */ + {}, +}; + +static const struct xe_mmio_range xehp_lncf_steering_table[] = { + { 0x00B000, 0x00B0FF }, + { 0x00D880, 0x00D8FF }, + {}, +}; + +/* + * We have several types of MCR registers where steering to (0,0) will always + * provide us with a non-terminated value. We'll stick them all in the same + * table for simplicity. + */ +static const struct xe_mmio_range xehpc_instance0_steering_table[] = { + { 0x004000, 0x004AFF }, /* HALF-BSLICE */ + { 0x008800, 0x00887F }, /* CC */ + { 0x008A80, 0x008AFF }, /* TILEPSMI */ + { 0x00B000, 0x00B0FF }, /* HALF-BSLICE */ + { 0x00B100, 0x00B3FF }, /* L3BANK */ + { 0x00C800, 0x00CFFF }, /* HALF-BSLICE */ + { 0x00D800, 0x00D8FF }, /* HALF-BSLICE */ + { 0x00DD00, 0x00DDFF }, /* BSLICE */ + { 0x00E900, 0x00E9FF }, /* HALF-BSLICE */ + { 0x00EC00, 0x00EEFF }, /* HALF-BSLICE */ + { 0x00F000, 0x00FFFF }, /* HALF-BSLICE */ + { 0x024180, 0x0241FF }, /* HALF-BSLICE */ + {}, +}; + +static const struct xe_mmio_range xelpg_instance0_steering_table[] = { + { 0x000B00, 0x000BFF }, /* SQIDI */ + { 0x001000, 0x001FFF }, /* SQIDI */ + { 0x004000, 0x0048FF }, /* GAM */ + { 0x008700, 0x0087FF }, /* SQIDI */ + { 0x00B000, 0x00B0FF }, /* NODE */ + { 0x00C800, 0x00CFFF }, /* GAM */ + { 0x00D880, 0x00D8FF }, /* NODE */ + { 0x00DD00, 0x00DDFF }, /* OAAL2 */ + {}, +}; + +static const struct xe_mmio_range xelpg_l3bank_steering_table[] = { + { 0x00B100, 0x00B3FF }, + {}, +}; + +static const struct xe_mmio_range xelp_dss_steering_table[] = { + { 0x008150, 0x00815F }, + { 0x009520, 0x00955F }, + { 0x00DE80, 0x00E8FF }, + { 0x024A00, 0x024A7F }, + {}, +}; + +/* DSS steering is used for GSLICE ranges as well */ +static const struct xe_mmio_range xehp_dss_steering_table[] = { + { 0x005200, 0x0052FF }, /* GSLICE */ + { 0x005400, 0x007FFF }, /* GSLICE */ + { 0x008140, 0x00815F }, /* GSLICE (0x8140-0x814F), DSS (0x8150-0x815F) */ + { 0x008D00, 0x008DFF }, /* DSS */ + { 0x0094D0, 0x00955F }, /* GSLICE (0x94D0-0x951F), DSS (0x9520-0x955F) */ + { 0x009680, 0x0096FF }, /* DSS */ + { 0x00D800, 0x00D87F }, /* GSLICE */ + { 0x00DC00, 0x00DCFF }, /* GSLICE */ + { 0x00DE80, 0x00E8FF }, /* DSS (0xE000-0xE0FF reserved ) */ + { 0x017000, 0x017FFF }, /* GSLICE */ + { 0x024A00, 0x024A7F }, /* DSS */ + {}, +}; + +/* DSS steering is used for COMPUTE ranges as well */ +static const struct xe_mmio_range xehpc_dss_steering_table[] = { + { 0x008140, 0x00817F }, /* COMPUTE (0x8140-0x814F & 0x8160-0x817F), DSS (0x8150-0x815F) */ + { 0x0094D0, 0x00955F }, /* COMPUTE (0x94D0-0x951F), DSS (0x9520-0x955F) */ + { 0x009680, 0x0096FF }, /* DSS */ + { 0x00DC00, 0x00DCFF }, /* COMPUTE */ + { 0x00DE80, 0x00E7FF }, /* DSS (0xDF00-0xE1FF reserved ) */ + {}, +}; + +/* DSS steering is used for SLICE ranges as well */ +static const struct xe_mmio_range xelpg_dss_steering_table[] = { + { 0x005200, 0x0052FF }, /* SLICE */ + { 0x005500, 0x007FFF }, /* SLICE */ + { 0x008140, 0x00815F }, /* SLICE (0x8140-0x814F), DSS (0x8150-0x815F) */ + { 0x0094D0, 0x00955F }, /* SLICE (0x94D0-0x951F), DSS (0x9520-0x955F) */ + { 0x009680, 0x0096FF }, /* DSS */ + { 0x00D800, 0x00D87F }, /* SLICE */ + { 0x00DC00, 0x00DCFF }, /* SLICE */ + { 0x00DE80, 0x00E8FF }, /* DSS (0xE000-0xE0FF reserved) */ + {}, +}; + +static const struct xe_mmio_range xelpmp_oaddrm_steering_table[] = { + { 0x393200, 0x39323F }, + { 0x393400, 0x3934FF }, + {}, +}; + +static const struct xe_mmio_range dg2_implicit_steering_table[] = { + { 0x000B00, 0x000BFF }, /* SF (SQIDI replication) */ + { 0x001000, 0x001FFF }, /* SF (SQIDI replication) */ + { 0x004000, 0x004AFF }, /* GAM (MSLICE replication) */ + { 0x008700, 0x0087FF }, /* MCFG (SQIDI replication) */ + { 0x00C800, 0x00CFFF }, /* GAM (MSLICE replication) */ + { 0x00F000, 0x00FFFF }, /* GAM (MSLICE replication) */ + {}, +}; + +static const struct xe_mmio_range xe2lpg_dss_steering_table[] = { + { 0x005200, 0x0052FF }, /* SLICE */ + { 0x005500, 0x007FFF }, /* SLICE */ + { 0x008140, 0x00815F }, /* SLICE (0x8140-0x814F), DSS (0x8150-0x815F) */ + { 0x0094D0, 0x00955F }, /* SLICE (0x94D0-0x951F), DSS (0x9520-0x955F) */ + { 0x009680, 0x0096FF }, /* DSS */ + { 0x00D800, 0x00D87F }, /* SLICE */ + { 0x00DC00, 0x00DCFF }, /* SLICE */ + { 0x00DE80, 0x00E8FF }, /* DSS (0xE000-0xE0FF reserved) */ + { 0x00E980, 0x00E9FF }, /* SLICE */ + { 0x013000, 0x0133FF }, /* DSS (0x13000-0x131FF), SLICE (0x13200-0x133FF) */ + {}, +}; + +static const struct xe_mmio_range xe2lpg_sqidi_psmi_steering_table[] = { + { 0x000B00, 0x000BFF }, + { 0x001000, 0x001FFF }, + {}, +}; + +static const struct xe_mmio_range xe2lpg_instance0_steering_table[] = { + { 0x004000, 0x004AFF }, /* GAM, rsvd, GAMWKR */ + { 0x008700, 0x00887F }, /* SQIDI, MEMPIPE */ + { 0x00B000, 0x00B3FF }, /* NODE, L3BANK */ + { 0x00C800, 0x00CFFF }, /* GAM */ + { 0x00D880, 0x00D8FF }, /* NODE */ + { 0x00DD00, 0x00DDFF }, /* MEMPIPE */ + { 0x00E900, 0x00E97F }, /* MEMPIPE */ + { 0x00F000, 0x00FFFF }, /* GAM, GAMWKR */ + { 0x013400, 0x0135FF }, /* MEMPIPE */ + {}, +}; + +static const struct xe_mmio_range xe2lpm_gpmxmt_steering_table[] = { + { 0x388160, 0x38817F }, + { 0x389480, 0x3894CF }, + {}, +}; + +static const struct xe_mmio_range xe2lpm_instance0_steering_table[] = { + { 0x384000, 0x3847DF }, /* GAM, rsvd, GAM */ + { 0x384900, 0x384AFF }, /* GAM */ + { 0x389560, 0x3895FF }, /* MEDIAINF */ + { 0x38B600, 0x38B8FF }, /* L3BANK */ + { 0x38C800, 0x38D07F }, /* GAM, MEDIAINF */ + { 0x38F000, 0x38F0FF }, /* GAM */ + { 0x393C00, 0x393C7F }, /* MEDIAINF */ + {}, +}; + +static const struct xe_mmio_range xe3lpm_instance0_steering_table[] = { + { 0x384000, 0x3847DF }, /* GAM, rsvd, GAM */ + { 0x384900, 0x384AFF }, /* GAM */ + { 0x389560, 0x3895FF }, /* MEDIAINF */ + { 0x38B600, 0x38B8FF }, /* L3BANK */ + { 0x38C800, 0x38D07F }, /* GAM, MEDIAINF */ + { 0x38D0D0, 0x38F0FF }, /* MEDIAINF, GAM */ + { 0x393C00, 0x393C7F }, /* MEDIAINF */ + {}, +}; + +static void init_steering_l3bank(struct xe_gt *gt) +{ + struct xe_mmio *mmio = >->mmio; + + if (GRAPHICS_VERx100(gt_to_xe(gt)) >= 1270) { + u32 mslice_mask = REG_FIELD_GET(MEML3_EN_MASK, + xe_mmio_read32(mmio, MIRROR_FUSE3)); + u32 bank_mask = REG_FIELD_GET(GT_L3_EXC_MASK, + xe_mmio_read32(mmio, XEHP_FUSE4)); + + /* + * Group selects mslice, instance selects bank within mslice. + * Bank 0 is always valid _except_ when the bank mask is 010b. + */ + gt->steering[L3BANK].group_target = __ffs(mslice_mask); + gt->steering[L3BANK].instance_target = + bank_mask & BIT(0) ? 0 : 2; + } else if (gt_to_xe(gt)->info.platform == XE_DG2) { + u32 mslice_mask = REG_FIELD_GET(MEML3_EN_MASK, + xe_mmio_read32(mmio, MIRROR_FUSE3)); + u32 bank = __ffs(mslice_mask) * 8; + + /* + * Like mslice registers, look for a valid mslice and steer to + * the first L3BANK of that quad. Access to the Nth L3 bank is + * split between the first bits of group and instance + */ + gt->steering[L3BANK].group_target = (bank >> 2) & 0x7; + gt->steering[L3BANK].instance_target = bank & 0x3; + } else { + u32 fuse = REG_FIELD_GET(L3BANK_MASK, + ~xe_mmio_read32(mmio, MIRROR_FUSE3)); + + gt->steering[L3BANK].group_target = 0; /* unused */ + gt->steering[L3BANK].instance_target = __ffs(fuse); + } +} + +static void init_steering_mslice(struct xe_gt *gt) +{ + u32 mask = REG_FIELD_GET(MEML3_EN_MASK, + xe_mmio_read32(>->mmio, MIRROR_FUSE3)); + + /* + * mslice registers are valid (not terminated) if either the meml3 + * associated with the mslice is present, or at least one DSS associated + * with the mslice is present. There will always be at least one meml3 + * so we can just use that to find a non-terminated mslice and ignore + * the DSS fusing. + */ + gt->steering[MSLICE].group_target = __ffs(mask); + gt->steering[MSLICE].instance_target = 0; /* unused */ + + /* + * LNCF termination is also based on mslice presence, so we'll set + * it up here. Either LNCF within a non-terminated mslice will work, + * so we just always pick LNCF 0 here. + */ + gt->steering[LNCF].group_target = __ffs(mask) << 1; + gt->steering[LNCF].instance_target = 0; /* unused */ +} + +static unsigned int dss_per_group(struct xe_gt *gt) +{ + struct xe_guc *guc = >->uc.guc; + u32 max_slices = 0, max_subslices = 0; + int ret; + + /* + * Try to query the GuC's hwconfig table for the maximum number of + * slices and subslices. These don't reflect the platform's actual + * slice/DSS counts, just the physical layout by which we should + * determine the steering targets. On older platforms with older GuC + * firmware releases it's possible that these attributes may not be + * included in the table, so we can always fall back to the old + * hardcoded layouts. + */ +#define HWCONFIG_ATTR_MAX_SLICES 1 +#define HWCONFIG_ATTR_MAX_SUBSLICES 70 + + ret = xe_guc_hwconfig_lookup_u32(guc, HWCONFIG_ATTR_MAX_SLICES, + &max_slices); + if (ret < 0 || max_slices == 0) + goto fallback; + + ret = xe_guc_hwconfig_lookup_u32(guc, HWCONFIG_ATTR_MAX_SUBSLICES, + &max_subslices); + if (ret < 0 || max_subslices == 0) + goto fallback; + + return DIV_ROUND_UP(max_subslices, max_slices); + +fallback: + xe_gt_dbg(gt, "GuC hwconfig cannot provide dss/slice; using typical fallback values\n"); + if (gt_to_xe(gt)->info.platform == XE_PVC) + return 8; + else if (GRAPHICS_VERx100(gt_to_xe(gt)) >= 1250) + return 4; + else + return 6; +} + +/** + * xe_gt_mcr_get_dss_steering - Get the group/instance steering for a DSS + * @gt: GT structure + * @dss: DSS ID to obtain steering for + * @group: pointer to storage for steering group ID + * @instance: pointer to storage for steering instance ID + */ +void xe_gt_mcr_get_dss_steering(struct xe_gt *gt, unsigned int dss, u16 *group, u16 *instance) +{ + xe_gt_assert(gt, dss < XE_MAX_DSS_FUSE_BITS); + + *group = dss / gt->steering_dss_per_grp; + *instance = dss % gt->steering_dss_per_grp; +} + +static void init_steering_dss(struct xe_gt *gt) +{ + gt->steering_dss_per_grp = dss_per_group(gt); + + xe_gt_mcr_get_dss_steering(gt, + min(xe_dss_mask_group_ffs(gt->fuse_topo.g_dss_mask, 0, 0), + xe_dss_mask_group_ffs(gt->fuse_topo.c_dss_mask, 0, 0)), + >->steering[DSS].group_target, + >->steering[DSS].instance_target); +} + +static void init_steering_oaddrm(struct xe_gt *gt) +{ + /* + * First instance is only terminated if the entire first media slice + * is absent (i.e., no VCS0 or VECS0). + */ + if (gt->info.engine_mask & (XE_HW_ENGINE_VCS0 | XE_HW_ENGINE_VECS0)) + gt->steering[OADDRM].group_target = 0; + else + gt->steering[OADDRM].group_target = 1; + + gt->steering[OADDRM].instance_target = 0; /* unused */ +} + +static void init_steering_sqidi_psmi(struct xe_gt *gt) +{ + u32 mask = REG_FIELD_GET(XE2_NODE_ENABLE_MASK, + xe_mmio_read32(>->mmio, MIRROR_FUSE3)); + u32 select = __ffs(mask); + + gt->steering[SQIDI_PSMI].group_target = select >> 1; + gt->steering[SQIDI_PSMI].instance_target = select & 0x1; +} + +static void init_steering_inst0(struct xe_gt *gt) +{ + gt->steering[INSTANCE0].group_target = 0; /* unused */ + gt->steering[INSTANCE0].instance_target = 0; /* unused */ +} + +static const struct { + const char *name; + void (*init)(struct xe_gt *gt); +} xe_steering_types[] = { + [L3BANK] = { "L3BANK", init_steering_l3bank }, + [MSLICE] = { "MSLICE", init_steering_mslice }, + [LNCF] = { "LNCF", NULL }, /* initialized by mslice init */ + [DSS] = { "DSS", init_steering_dss }, + [OADDRM] = { "OADDRM / GPMXMT", init_steering_oaddrm }, + [SQIDI_PSMI] = { "SQIDI_PSMI", init_steering_sqidi_psmi }, + [INSTANCE0] = { "INSTANCE 0", init_steering_inst0 }, + [IMPLICIT_STEERING] = { "IMPLICIT", NULL }, +}; + +/** + * xe_gt_mcr_init_early - Early initialization of the MCR support + * @gt: GT structure + * + * Perform early software only initialization of the MCR lock to allow + * the synchronization on accessing the STEER_SEMAPHORE register and + * use the xe_gt_mcr_multicast_write() function. + */ +void xe_gt_mcr_init_early(struct xe_gt *gt) +{ + BUILD_BUG_ON(IMPLICIT_STEERING + 1 != NUM_STEERING_TYPES); + BUILD_BUG_ON(ARRAY_SIZE(xe_steering_types) != NUM_STEERING_TYPES); + + spin_lock_init(>->mcr_lock); +} + +/** + * xe_gt_mcr_init - Normal initialization of the MCR support + * @gt: GT structure + * + * Perform normal initialization of the MCR for all usages. + */ +void xe_gt_mcr_init(struct xe_gt *gt) +{ + struct xe_device *xe = gt_to_xe(gt); + + if (IS_SRIOV_VF(xe)) + return; + + if (gt->info.type == XE_GT_TYPE_MEDIA) { + drm_WARN_ON(&xe->drm, MEDIA_VER(xe) < 13); + + if (MEDIA_VER(xe) >= 30) { + gt->steering[OADDRM].ranges = xe2lpm_gpmxmt_steering_table; + gt->steering[INSTANCE0].ranges = xe3lpm_instance0_steering_table; + } else if (MEDIA_VERx100(xe) >= 1301) { + gt->steering[OADDRM].ranges = xe2lpm_gpmxmt_steering_table; + gt->steering[INSTANCE0].ranges = xe2lpm_instance0_steering_table; + } else { + gt->steering[OADDRM].ranges = xelpmp_oaddrm_steering_table; + } + } else { + if (GRAPHICS_VER(xe) >= 20) { + gt->steering[DSS].ranges = xe2lpg_dss_steering_table; + gt->steering[SQIDI_PSMI].ranges = xe2lpg_sqidi_psmi_steering_table; + gt->steering[INSTANCE0].ranges = xe2lpg_instance0_steering_table; + } else if (GRAPHICS_VERx100(xe) >= 1270) { + gt->steering[INSTANCE0].ranges = xelpg_instance0_steering_table; + gt->steering[L3BANK].ranges = xelpg_l3bank_steering_table; + gt->steering[DSS].ranges = xelpg_dss_steering_table; + } else if (xe->info.platform == XE_PVC) { + gt->steering[INSTANCE0].ranges = xehpc_instance0_steering_table; + gt->steering[DSS].ranges = xehpc_dss_steering_table; + } else if (xe->info.platform == XE_DG2) { + gt->steering[L3BANK].ranges = xehp_l3bank_steering_table; + gt->steering[MSLICE].ranges = xehp_mslice_steering_table; + gt->steering[LNCF].ranges = xehp_lncf_steering_table; + gt->steering[DSS].ranges = xehp_dss_steering_table; + gt->steering[IMPLICIT_STEERING].ranges = dg2_implicit_steering_table; + } else { + gt->steering[L3BANK].ranges = xelp_l3bank_steering_table; + gt->steering[DSS].ranges = xelp_dss_steering_table; + } + } + + /* Select non-terminated steering target for each type */ + for (int i = 0; i < NUM_STEERING_TYPES; i++) + if (gt->steering[i].ranges && xe_steering_types[i].init) + xe_steering_types[i].init(gt); +} + +/** + * xe_gt_mcr_set_implicit_defaults - Initialize steer control registers + * @gt: GT structure + * + * Some register ranges don't need to have their steering control registers + * changed on each access - it's sufficient to set them once on initialization. + * This function sets those registers for each platform * + */ +void xe_gt_mcr_set_implicit_defaults(struct xe_gt *gt) +{ + struct xe_device *xe = gt_to_xe(gt); + + if (IS_SRIOV_VF(xe)) + return; + + if (xe->info.platform == XE_DG2) { + u32 steer_val = REG_FIELD_PREP(MCR_SLICE_MASK, 0) | + REG_FIELD_PREP(MCR_SUBSLICE_MASK, 2); + + xe_mmio_write32(>->mmio, MCFG_MCR_SELECTOR, steer_val); + xe_mmio_write32(>->mmio, SF_MCR_SELECTOR, steer_val); + /* + * For GAM registers, all reads should be directed to instance 1 + * (unicast reads against other instances are not allowed), + * and instance 1 is already the hardware's default steering + * target, which we never change + */ + } +} + +/* + * xe_gt_mcr_get_nonterminated_steering - find group/instance values that + * will steer a register to a non-terminated instance + * @gt: GT structure + * @reg: register for which the steering is required + * @group: return variable for group steering + * @instance: return variable for instance steering + * + * This function returns a group/instance pair that is guaranteed to work for + * read steering of the given register. Note that a value will be returned even + * if the register is not replicated and therefore does not actually require + * steering. + * + * Returns true if the caller should steer to the @group/@instance values + * returned. Returns false if the caller need not perform any steering + */ +static bool xe_gt_mcr_get_nonterminated_steering(struct xe_gt *gt, + struct xe_reg_mcr reg_mcr, + u8 *group, u8 *instance) +{ + const struct xe_reg reg = to_xe_reg(reg_mcr); + const struct xe_mmio_range *implicit_ranges; + + for (int type = 0; type < IMPLICIT_STEERING; type++) { + if (!gt->steering[type].ranges) + continue; + + for (int i = 0; gt->steering[type].ranges[i].end > 0; i++) { + if (xe_mmio_in_range(>->mmio, >->steering[type].ranges[i], reg)) { + *group = gt->steering[type].group_target; + *instance = gt->steering[type].instance_target; + return true; + } + } + } + + implicit_ranges = gt->steering[IMPLICIT_STEERING].ranges; + if (implicit_ranges) + for (int i = 0; implicit_ranges[i].end > 0; i++) + if (xe_mmio_in_range(>->mmio, &implicit_ranges[i], reg)) + return false; + + /* + * Not found in a steering table and not a register with implicit + * steering. Just steer to 0/0 as a guess and raise a warning. + */ + drm_WARN(>_to_xe(gt)->drm, true, + "Did not find MCR register %#x in any MCR steering table\n", + reg.addr); + *group = 0; + *instance = 0; + + return true; +} + +/* + * Obtain exclusive access to MCR steering. On MTL and beyond we also need + * to synchronize with external clients (e.g., firmware), so a semaphore + * register will also need to be taken. + */ +static void mcr_lock(struct xe_gt *gt) __acquires(>->mcr_lock) +{ + struct xe_device *xe = gt_to_xe(gt); + int ret = 0; + + spin_lock(>->mcr_lock); + + /* + * Starting with MTL we also need to grab a semaphore register + * to synchronize with external agents (e.g., firmware) that now + * shares the same steering control register. The semaphore is obtained + * when a read to the relevant register returns 1. + */ + if (GRAPHICS_VERx100(xe) >= 1270) + ret = xe_mmio_wait32(>->mmio, STEER_SEMAPHORE, 0x1, 0x1, 10, NULL, + true); + + drm_WARN_ON_ONCE(&xe->drm, ret == -ETIMEDOUT); +} + +static void mcr_unlock(struct xe_gt *gt) __releases(>->mcr_lock) +{ + /* Release hardware semaphore - this is done by writing 1 to the register */ + if (GRAPHICS_VERx100(gt_to_xe(gt)) >= 1270) + xe_mmio_write32(>->mmio, STEER_SEMAPHORE, 0x1); + + spin_unlock(>->mcr_lock); +} + +/* + * Access a register with specific MCR steering + * + * Caller needs to make sure the relevant forcewake wells are up. + */ +static u32 rw_with_mcr_steering(struct xe_gt *gt, struct xe_reg_mcr reg_mcr, + u8 rw_flag, int group, int instance, u32 value) +{ + const struct xe_reg reg = to_xe_reg(reg_mcr); + struct xe_mmio *mmio = >->mmio; + struct xe_reg steer_reg; + u32 steer_val, val = 0; + + lockdep_assert_held(>->mcr_lock); + + if (GRAPHICS_VERx100(gt_to_xe(gt)) >= 1270) { + steer_reg = MTL_MCR_SELECTOR; + steer_val = REG_FIELD_PREP(MTL_MCR_GROUPID, group) | + REG_FIELD_PREP(MTL_MCR_INSTANCEID, instance); + } else { + steer_reg = MCR_SELECTOR; + steer_val = REG_FIELD_PREP(MCR_SLICE_MASK, group) | + REG_FIELD_PREP(MCR_SUBSLICE_MASK, instance); + } + + /* + * Always leave the hardware in multicast mode when doing reads and only + * change it to unicast mode when doing writes of a specific instance. + * + * The setting of the multicast/unicast bit usually wouldn't matter for + * read operations (which always return the value from a single register + * instance regardless of how that bit is set), but some platforms may + * have workarounds requiring us to remain in multicast mode for reads, + * e.g. Wa_22013088509 on PVC. There's no real downside to this, so + * we'll just go ahead and do so on all platforms; we'll only clear the + * multicast bit from the mask when explicitly doing a write operation. + * + * No need to save old steering reg value. + */ + if (rw_flag == MCR_OP_READ) + steer_val |= MCR_MULTICAST; + + xe_mmio_write32(mmio, steer_reg, steer_val); + + if (rw_flag == MCR_OP_READ) + val = xe_mmio_read32(mmio, reg); + else + xe_mmio_write32(mmio, reg, value); + + /* + * If we turned off the multicast bit (during a write) we're required + * to turn it back on before finishing. The group and instance values + * don't matter since they'll be re-programmed on the next MCR + * operation. + */ + if (rw_flag == MCR_OP_WRITE) + xe_mmio_write32(mmio, steer_reg, MCR_MULTICAST); + + return val; +} + +/** + * xe_gt_mcr_unicast_read_any - reads a non-terminated instance of an MCR register + * @gt: GT structure + * @reg_mcr: register to read + * + * Reads a GT MCR register. The read will be steered to a non-terminated + * instance (i.e., one that isn't fused off or powered down by power gating). + * This function assumes the caller is already holding any necessary forcewake + * domains. + * + * Returns the value from a non-terminated instance of @reg. + */ +u32 xe_gt_mcr_unicast_read_any(struct xe_gt *gt, struct xe_reg_mcr reg_mcr) +{ + const struct xe_reg reg = to_xe_reg(reg_mcr); + u8 group, instance; + u32 val; + bool steer; + + xe_gt_assert(gt, !IS_SRIOV_VF(gt_to_xe(gt))); + + steer = xe_gt_mcr_get_nonterminated_steering(gt, reg_mcr, + &group, &instance); + + if (steer) { + mcr_lock(gt); + val = rw_with_mcr_steering(gt, reg_mcr, MCR_OP_READ, + group, instance, 0); + mcr_unlock(gt); + } else { + val = xe_mmio_read32(>->mmio, reg); + } + + return val; +} + +/** + * xe_gt_mcr_unicast_read - read a specific instance of an MCR register + * @gt: GT structure + * @reg_mcr: the MCR register to read + * @group: the MCR group + * @instance: the MCR instance + * + * Returns the value read from an MCR register after steering toward a specific + * group/instance. + */ +u32 xe_gt_mcr_unicast_read(struct xe_gt *gt, + struct xe_reg_mcr reg_mcr, + int group, int instance) +{ + u32 val; + + xe_gt_assert(gt, !IS_SRIOV_VF(gt_to_xe(gt))); + + mcr_lock(gt); + val = rw_with_mcr_steering(gt, reg_mcr, MCR_OP_READ, group, instance, 0); + mcr_unlock(gt); + + return val; +} + +/** + * xe_gt_mcr_unicast_write - write a specific instance of an MCR register + * @gt: GT structure + * @reg_mcr: the MCR register to write + * @value: value to write + * @group: the MCR group + * @instance: the MCR instance + * + * Write an MCR register in unicast mode after steering toward a specific + * group/instance. + */ +void xe_gt_mcr_unicast_write(struct xe_gt *gt, struct xe_reg_mcr reg_mcr, + u32 value, int group, int instance) +{ + xe_gt_assert(gt, !IS_SRIOV_VF(gt_to_xe(gt))); + + mcr_lock(gt); + rw_with_mcr_steering(gt, reg_mcr, MCR_OP_WRITE, group, instance, value); + mcr_unlock(gt); +} + +/** + * xe_gt_mcr_multicast_write - write a value to all instances of an MCR register + * @gt: GT structure + * @reg_mcr: the MCR register to write + * @value: value to write + * + * Write an MCR register in multicast mode to update all instances. + */ +void xe_gt_mcr_multicast_write(struct xe_gt *gt, struct xe_reg_mcr reg_mcr, + u32 value) +{ + struct xe_reg reg = to_xe_reg(reg_mcr); + + xe_gt_assert(gt, !IS_SRIOV_VF(gt_to_xe(gt))); + + /* + * Synchronize with any unicast operations. Once we have exclusive + * access, the MULTICAST bit should already be set, so there's no need + * to touch the steering register. + */ + mcr_lock(gt); + xe_mmio_write32(>->mmio, reg, value); + mcr_unlock(gt); +} + +void xe_gt_mcr_steering_dump(struct xe_gt *gt, struct drm_printer *p) +{ + for (int i = 0; i < NUM_STEERING_TYPES; i++) { + if (gt->steering[i].ranges) { + drm_printf(p, "%s steering: group=%#x, instance=%#x\n", + xe_steering_types[i].name, + gt->steering[i].group_target, + gt->steering[i].instance_target); + for (int j = 0; gt->steering[i].ranges[j].end; j++) + drm_printf(p, "\t0x%06x - 0x%06x\n", + gt->steering[i].ranges[j].start, + gt->steering[i].ranges[j].end); + } + } +} diff --git a/rr-cache/5d940fb2eb5fc22b4dd8cfd9fb6b06575bb02d1e/preimage b/rr-cache/5d940fb2eb5fc22b4dd8cfd9fb6b06575bb02d1e/preimage new file mode 100644 index 000000000000..b72a956296ca --- /dev/null +++ b/rr-cache/5d940fb2eb5fc22b4dd8cfd9fb6b06575bb02d1e/preimage @@ -0,0 +1,799 @@ +// SPDX-License-Identifier: MIT +/* + * Copyright © 2022 Intel Corporation + */ + +#include "xe_gt_mcr.h" + +#include "regs/xe_gt_regs.h" +#include "xe_assert.h" +#include "xe_gt.h" +#include "xe_gt_printk.h" +#include "xe_gt_topology.h" +#include "xe_gt_types.h" +#include "xe_guc_hwconfig.h" +#include "xe_mmio.h" +#include "xe_sriov.h" + +/** + * DOC: GT Multicast/Replicated (MCR) Register Support + * + * Some GT registers are designed as "multicast" or "replicated" registers: + * multiple instances of the same register share a single MMIO offset. MCR + * registers are generally used when the hardware needs to potentially track + * independent values of a register per hardware unit (e.g., per-subslice, + * per-L3bank, etc.). The specific types of replication that exist vary + * per-platform. + * + * MMIO accesses to MCR registers are controlled according to the settings + * programmed in the platform's MCR_SELECTOR register(s). MMIO writes to MCR + * registers can be done in either multicast (a single write updates all + * instances of the register to the same value) or unicast (a write updates only + * one specific instance) form. Reads of MCR registers always operate in a + * unicast manner regardless of how the multicast/unicast bit is set in + * MCR_SELECTOR. Selection of a specific MCR instance for unicast operations is + * referred to as "steering." + * + * If MCR register operations are steered toward a hardware unit that is + * fused off or currently powered down due to power gating, the MMIO operation + * is "terminated" by the hardware. Terminated read operations will return a + * value of zero and terminated unicast write operations will be silently + * ignored. During device initialization, the goal of the various + * ``init_steering_*()`` functions is to apply the platform-specific rules for + * each MCR register type to identify a steering target that will select a + * non-terminated instance. + * + * MCR registers are not available on Virtual Function (VF). + */ + +#define STEER_SEMAPHORE XE_REG(0xFD0) + +static inline struct xe_reg to_xe_reg(struct xe_reg_mcr reg_mcr) +{ + return reg_mcr.__reg; +} + +enum { + MCR_OP_READ, + MCR_OP_WRITE +}; + +static const struct xe_mmio_range xelp_l3bank_steering_table[] = { + { 0x00B100, 0x00B3FF }, + {}, +}; + +static const struct xe_mmio_range xehp_l3bank_steering_table[] = { + { 0x008C80, 0x008CFF }, + { 0x00B100, 0x00B3FF }, + {}, +}; + +/* + * Although the bspec lists more "MSLICE" ranges than shown here, some of those + * are of a "GAM" subclass that has special rules and doesn't need to be + * included here. + */ +static const struct xe_mmio_range xehp_mslice_steering_table[] = { + { 0x00DD00, 0x00DDFF }, + { 0x00E900, 0x00FFFF }, /* 0xEA00 - OxEFFF is unused */ + {}, +}; + +static const struct xe_mmio_range xehp_lncf_steering_table[] = { + { 0x00B000, 0x00B0FF }, + { 0x00D880, 0x00D8FF }, + {}, +}; + +/* + * We have several types of MCR registers where steering to (0,0) will always + * provide us with a non-terminated value. We'll stick them all in the same + * table for simplicity. + */ +static const struct xe_mmio_range xehpc_instance0_steering_table[] = { + { 0x004000, 0x004AFF }, /* HALF-BSLICE */ + { 0x008800, 0x00887F }, /* CC */ + { 0x008A80, 0x008AFF }, /* TILEPSMI */ + { 0x00B000, 0x00B0FF }, /* HALF-BSLICE */ + { 0x00B100, 0x00B3FF }, /* L3BANK */ + { 0x00C800, 0x00CFFF }, /* HALF-BSLICE */ + { 0x00D800, 0x00D8FF }, /* HALF-BSLICE */ + { 0x00DD00, 0x00DDFF }, /* BSLICE */ + { 0x00E900, 0x00E9FF }, /* HALF-BSLICE */ + { 0x00EC00, 0x00EEFF }, /* HALF-BSLICE */ + { 0x00F000, 0x00FFFF }, /* HALF-BSLICE */ + { 0x024180, 0x0241FF }, /* HALF-BSLICE */ + {}, +}; + +static const struct xe_mmio_range xelpg_instance0_steering_table[] = { + { 0x000B00, 0x000BFF }, /* SQIDI */ + { 0x001000, 0x001FFF }, /* SQIDI */ + { 0x004000, 0x0048FF }, /* GAM */ + { 0x008700, 0x0087FF }, /* SQIDI */ + { 0x00B000, 0x00B0FF }, /* NODE */ + { 0x00C800, 0x00CFFF }, /* GAM */ + { 0x00D880, 0x00D8FF }, /* NODE */ + { 0x00DD00, 0x00DDFF }, /* OAAL2 */ + {}, +}; + +static const struct xe_mmio_range xelpg_l3bank_steering_table[] = { + { 0x00B100, 0x00B3FF }, + {}, +}; + +static const struct xe_mmio_range xelp_dss_steering_table[] = { + { 0x008150, 0x00815F }, + { 0x009520, 0x00955F }, + { 0x00DE80, 0x00E8FF }, + { 0x024A00, 0x024A7F }, + {}, +}; + +/* DSS steering is used for GSLICE ranges as well */ +static const struct xe_mmio_range xehp_dss_steering_table[] = { + { 0x005200, 0x0052FF }, /* GSLICE */ + { 0x005400, 0x007FFF }, /* GSLICE */ + { 0x008140, 0x00815F }, /* GSLICE (0x8140-0x814F), DSS (0x8150-0x815F) */ + { 0x008D00, 0x008DFF }, /* DSS */ + { 0x0094D0, 0x00955F }, /* GSLICE (0x94D0-0x951F), DSS (0x9520-0x955F) */ + { 0x009680, 0x0096FF }, /* DSS */ + { 0x00D800, 0x00D87F }, /* GSLICE */ + { 0x00DC00, 0x00DCFF }, /* GSLICE */ + { 0x00DE80, 0x00E8FF }, /* DSS (0xE000-0xE0FF reserved ) */ + { 0x017000, 0x017FFF }, /* GSLICE */ + { 0x024A00, 0x024A7F }, /* DSS */ + {}, +}; + +/* DSS steering is used for COMPUTE ranges as well */ +static const struct xe_mmio_range xehpc_dss_steering_table[] = { + { 0x008140, 0x00817F }, /* COMPUTE (0x8140-0x814F & 0x8160-0x817F), DSS (0x8150-0x815F) */ + { 0x0094D0, 0x00955F }, /* COMPUTE (0x94D0-0x951F), DSS (0x9520-0x955F) */ + { 0x009680, 0x0096FF }, /* DSS */ + { 0x00DC00, 0x00DCFF }, /* COMPUTE */ + { 0x00DE80, 0x00E7FF }, /* DSS (0xDF00-0xE1FF reserved ) */ + {}, +}; + +/* DSS steering is used for SLICE ranges as well */ +static const struct xe_mmio_range xelpg_dss_steering_table[] = { + { 0x005200, 0x0052FF }, /* SLICE */ + { 0x005500, 0x007FFF }, /* SLICE */ + { 0x008140, 0x00815F }, /* SLICE (0x8140-0x814F), DSS (0x8150-0x815F) */ + { 0x0094D0, 0x00955F }, /* SLICE (0x94D0-0x951F), DSS (0x9520-0x955F) */ + { 0x009680, 0x0096FF }, /* DSS */ + { 0x00D800, 0x00D87F }, /* SLICE */ + { 0x00DC00, 0x00DCFF }, /* SLICE */ + { 0x00DE80, 0x00E8FF }, /* DSS (0xE000-0xE0FF reserved) */ + {}, +}; + +static const struct xe_mmio_range xelpmp_oaddrm_steering_table[] = { + { 0x393200, 0x39323F }, + { 0x393400, 0x3934FF }, + {}, +}; + +static const struct xe_mmio_range dg2_implicit_steering_table[] = { + { 0x000B00, 0x000BFF }, /* SF (SQIDI replication) */ + { 0x001000, 0x001FFF }, /* SF (SQIDI replication) */ + { 0x004000, 0x004AFF }, /* GAM (MSLICE replication) */ + { 0x008700, 0x0087FF }, /* MCFG (SQIDI replication) */ + { 0x00C800, 0x00CFFF }, /* GAM (MSLICE replication) */ + { 0x00F000, 0x00FFFF }, /* GAM (MSLICE replication) */ + {}, +}; + +static const struct xe_mmio_range xe2lpg_dss_steering_table[] = { + { 0x005200, 0x0052FF }, /* SLICE */ + { 0x005500, 0x007FFF }, /* SLICE */ + { 0x008140, 0x00815F }, /* SLICE (0x8140-0x814F), DSS (0x8150-0x815F) */ + { 0x0094D0, 0x00955F }, /* SLICE (0x94D0-0x951F), DSS (0x9520-0x955F) */ + { 0x009680, 0x0096FF }, /* DSS */ + { 0x00D800, 0x00D87F }, /* SLICE */ + { 0x00DC00, 0x00DCFF }, /* SLICE */ + { 0x00DE80, 0x00E8FF }, /* DSS (0xE000-0xE0FF reserved) */ + { 0x00E980, 0x00E9FF }, /* SLICE */ + { 0x013000, 0x0133FF }, /* DSS (0x13000-0x131FF), SLICE (0x13200-0x133FF) */ + {}, +}; + +static const struct xe_mmio_range xe2lpg_sqidi_psmi_steering_table[] = { + { 0x000B00, 0x000BFF }, + { 0x001000, 0x001FFF }, + {}, +}; + +static const struct xe_mmio_range xe2lpg_instance0_steering_table[] = { + { 0x004000, 0x004AFF }, /* GAM, rsvd, GAMWKR */ + { 0x008700, 0x00887F }, /* SQIDI, MEMPIPE */ + { 0x00B000, 0x00B3FF }, /* NODE, L3BANK */ + { 0x00C800, 0x00CFFF }, /* GAM */ + { 0x00D880, 0x00D8FF }, /* NODE */ + { 0x00DD00, 0x00DDFF }, /* MEMPIPE */ + { 0x00E900, 0x00E97F }, /* MEMPIPE */ + { 0x00F000, 0x00FFFF }, /* GAM, GAMWKR */ + { 0x013400, 0x0135FF }, /* MEMPIPE */ + {}, +}; + +static const struct xe_mmio_range xe2lpm_gpmxmt_steering_table[] = { + { 0x388160, 0x38817F }, + { 0x389480, 0x3894CF }, + {}, +}; + +static const struct xe_mmio_range xe2lpm_instance0_steering_table[] = { + { 0x384000, 0x3847DF }, /* GAM, rsvd, GAM */ + { 0x384900, 0x384AFF }, /* GAM */ + { 0x389560, 0x3895FF }, /* MEDIAINF */ + { 0x38B600, 0x38B8FF }, /* L3BANK */ + { 0x38C800, 0x38D07F }, /* GAM, MEDIAINF */ + { 0x38F000, 0x38F0FF }, /* GAM */ + { 0x393C00, 0x393C7F }, /* MEDIAINF */ + {}, +}; + +static const struct xe_mmio_range xe3lpm_instance0_steering_table[] = { + { 0x384000, 0x3847DF }, /* GAM, rsvd, GAM */ + { 0x384900, 0x384AFF }, /* GAM */ + { 0x389560, 0x3895FF }, /* MEDIAINF */ + { 0x38B600, 0x38B8FF }, /* L3BANK */ + { 0x38C800, 0x38D07F }, /* GAM, MEDIAINF */ + { 0x38D0D0, 0x38F0FF }, /* MEDIAINF, GAM */ + { 0x393C00, 0x393C7F }, /* MEDIAINF */ + {}, +}; + +static void init_steering_l3bank(struct xe_gt *gt) +{ + struct xe_mmio *mmio = >->mmio; + + if (GRAPHICS_VERx100(gt_to_xe(gt)) >= 1270) { + u32 mslice_mask = REG_FIELD_GET(MEML3_EN_MASK, + xe_mmio_read32(mmio, MIRROR_FUSE3)); + u32 bank_mask = REG_FIELD_GET(GT_L3_EXC_MASK, + xe_mmio_read32(mmio, XEHP_FUSE4)); + + /* + * Group selects mslice, instance selects bank within mslice. + * Bank 0 is always valid _except_ when the bank mask is 010b. + */ + gt->steering[L3BANK].group_target = __ffs(mslice_mask); + gt->steering[L3BANK].instance_target = + bank_mask & BIT(0) ? 0 : 2; + } else if (gt_to_xe(gt)->info.platform == XE_DG2) { + u32 mslice_mask = REG_FIELD_GET(MEML3_EN_MASK, + xe_mmio_read32(mmio, MIRROR_FUSE3)); + u32 bank = __ffs(mslice_mask) * 8; + + /* + * Like mslice registers, look for a valid mslice and steer to + * the first L3BANK of that quad. Access to the Nth L3 bank is + * split between the first bits of group and instance + */ + gt->steering[L3BANK].group_target = (bank >> 2) & 0x7; + gt->steering[L3BANK].instance_target = bank & 0x3; + } else { + u32 fuse = REG_FIELD_GET(L3BANK_MASK, + ~xe_mmio_read32(mmio, MIRROR_FUSE3)); + + gt->steering[L3BANK].group_target = 0; /* unused */ + gt->steering[L3BANK].instance_target = __ffs(fuse); + } +} + +static void init_steering_mslice(struct xe_gt *gt) +{ + u32 mask = REG_FIELD_GET(MEML3_EN_MASK, + xe_mmio_read32(>->mmio, MIRROR_FUSE3)); + + /* + * mslice registers are valid (not terminated) if either the meml3 + * associated with the mslice is present, or at least one DSS associated + * with the mslice is present. There will always be at least one meml3 + * so we can just use that to find a non-terminated mslice and ignore + * the DSS fusing. + */ + gt->steering[MSLICE].group_target = __ffs(mask); + gt->steering[MSLICE].instance_target = 0; /* unused */ + + /* + * LNCF termination is also based on mslice presence, so we'll set + * it up here. Either LNCF within a non-terminated mslice will work, + * so we just always pick LNCF 0 here. + */ + gt->steering[LNCF].group_target = __ffs(mask) << 1; + gt->steering[LNCF].instance_target = 0; /* unused */ +} + +static unsigned int dss_per_group(struct xe_gt *gt) +{ + struct xe_guc *guc = >->uc.guc; + u32 max_slices = 0, max_subslices = 0; + int ret; + + /* + * Try to query the GuC's hwconfig table for the maximum number of + * slices and subslices. These don't reflect the platform's actual + * slice/DSS counts, just the physical layout by which we should + * determine the steering targets. On older platforms with older GuC + * firmware releases it's possible that these attributes may not be + * included in the table, so we can always fall back to the old + * hardcoded layouts. + */ +#define HWCONFIG_ATTR_MAX_SLICES 1 +#define HWCONFIG_ATTR_MAX_SUBSLICES 70 + + ret = xe_guc_hwconfig_lookup_u32(guc, HWCONFIG_ATTR_MAX_SLICES, + &max_slices); + if (ret < 0 || max_slices == 0) + goto fallback; + + ret = xe_guc_hwconfig_lookup_u32(guc, HWCONFIG_ATTR_MAX_SUBSLICES, + &max_subslices); + if (ret < 0 || max_subslices == 0) + goto fallback; + + return DIV_ROUND_UP(max_subslices, max_slices); + +fallback: + xe_gt_dbg(gt, "GuC hwconfig cannot provide dss/slice; using typical fallback values\n"); + if (gt_to_xe(gt)->info.platform == XE_PVC) + return 8; + else if (GRAPHICS_VERx100(gt_to_xe(gt)) >= 1250) + return 4; + else + return 6; +} + +/** + * xe_gt_mcr_get_dss_steering - Get the group/instance steering for a DSS + * @gt: GT structure + * @dss: DSS ID to obtain steering for + * @group: pointer to storage for steering group ID + * @instance: pointer to storage for steering instance ID + */ +void xe_gt_mcr_get_dss_steering(struct xe_gt *gt, unsigned int dss, u16 *group, u16 *instance) +{ + xe_gt_assert(gt, dss < XE_MAX_DSS_FUSE_BITS); + + *group = dss / gt->steering_dss_per_grp; + *instance = dss % gt->steering_dss_per_grp; +} + +static void init_steering_dss(struct xe_gt *gt) +{ + gt->steering_dss_per_grp = dss_per_group(gt); + + xe_gt_mcr_get_dss_steering(gt, + min(xe_dss_mask_group_ffs(gt->fuse_topo.g_dss_mask, 0, 0), + xe_dss_mask_group_ffs(gt->fuse_topo.c_dss_mask, 0, 0)), + >->steering[DSS].group_target, + >->steering[DSS].instance_target); +} + +static void init_steering_oaddrm(struct xe_gt *gt) +{ + /* + * First instance is only terminated if the entire first media slice + * is absent (i.e., no VCS0 or VECS0). + */ + if (gt->info.engine_mask & (XE_HW_ENGINE_VCS0 | XE_HW_ENGINE_VECS0)) + gt->steering[OADDRM].group_target = 0; + else + gt->steering[OADDRM].group_target = 1; + + gt->steering[OADDRM].instance_target = 0; /* unused */ +} + +static void init_steering_sqidi_psmi(struct xe_gt *gt) +{ + u32 mask = REG_FIELD_GET(XE2_NODE_ENABLE_MASK, + xe_mmio_read32(>->mmio, MIRROR_FUSE3)); + u32 select = __ffs(mask); + + gt->steering[SQIDI_PSMI].group_target = select >> 1; + gt->steering[SQIDI_PSMI].instance_target = select & 0x1; +} + +static void init_steering_inst0(struct xe_gt *gt) +{ + gt->steering[INSTANCE0].group_target = 0; /* unused */ + gt->steering[INSTANCE0].instance_target = 0; /* unused */ +} + +static const struct { + const char *name; + void (*init)(struct xe_gt *gt); +} xe_steering_types[] = { + [L3BANK] = { "L3BANK", init_steering_l3bank }, + [MSLICE] = { "MSLICE", init_steering_mslice }, + [LNCF] = { "LNCF", NULL }, /* initialized by mslice init */ + [DSS] = { "DSS", init_steering_dss }, + [OADDRM] = { "OADDRM / GPMXMT", init_steering_oaddrm }, + [SQIDI_PSMI] = { "SQIDI_PSMI", init_steering_sqidi_psmi }, + [INSTANCE0] = { "INSTANCE 0", init_steering_inst0 }, + [IMPLICIT_STEERING] = { "IMPLICIT", NULL }, +}; + +/** + * xe_gt_mcr_init_early - Early initialization of the MCR support + * @gt: GT structure + * + * Perform early software only initialization of the MCR lock to allow + * the synchronization on accessing the STEER_SEMAPHORE register and + * use the xe_gt_mcr_multicast_write() function. + */ +void xe_gt_mcr_init_early(struct xe_gt *gt) +{ + BUILD_BUG_ON(IMPLICIT_STEERING + 1 != NUM_STEERING_TYPES); + BUILD_BUG_ON(ARRAY_SIZE(xe_steering_types) != NUM_STEERING_TYPES); + + spin_lock_init(>->mcr_lock); +} + +/** + * xe_gt_mcr_init - Normal initialization of the MCR support + * @gt: GT structure + * + * Perform normal initialization of the MCR for all usages. + */ +void xe_gt_mcr_init(struct xe_gt *gt) +{ + struct xe_device *xe = gt_to_xe(gt); + + if (IS_SRIOV_VF(xe)) + return; + + if (gt->info.type == XE_GT_TYPE_MEDIA) { + drm_WARN_ON(&xe->drm, MEDIA_VER(xe) < 13); + +<<<<<<< + if (MEDIA_VER(xe) >= 30) { + gt->steering[OADDRM].ranges = xe2lpm_gpmxmt_steering_table; + gt->steering[INSTANCE0].ranges = xe3lpm_instance0_steering_table; + } else if (MEDIA_VERx100(xe) >= 1301) { +======= + if (MEDIA_VERx100(xe) >= 1301) { +>>>>>>> + gt->steering[OADDRM].ranges = xe2lpm_gpmxmt_steering_table; + gt->steering[INSTANCE0].ranges = xe2lpm_instance0_steering_table; + } else { + gt->steering[OADDRM].ranges = xelpmp_oaddrm_steering_table; + } + } else { + if (GRAPHICS_VER(xe) >= 20) { + gt->steering[DSS].ranges = xe2lpg_dss_steering_table; + gt->steering[SQIDI_PSMI].ranges = xe2lpg_sqidi_psmi_steering_table; + gt->steering[INSTANCE0].ranges = xe2lpg_instance0_steering_table; + } else if (GRAPHICS_VERx100(xe) >= 1270) { + gt->steering[INSTANCE0].ranges = xelpg_instance0_steering_table; + gt->steering[L3BANK].ranges = xelpg_l3bank_steering_table; + gt->steering[DSS].ranges = xelpg_dss_steering_table; + } else if (xe->info.platform == XE_PVC) { + gt->steering[INSTANCE0].ranges = xehpc_instance0_steering_table; + gt->steering[DSS].ranges = xehpc_dss_steering_table; + } else if (xe->info.platform == XE_DG2) { + gt->steering[L3BANK].ranges = xehp_l3bank_steering_table; + gt->steering[MSLICE].ranges = xehp_mslice_steering_table; + gt->steering[LNCF].ranges = xehp_lncf_steering_table; + gt->steering[DSS].ranges = xehp_dss_steering_table; + gt->steering[IMPLICIT_STEERING].ranges = dg2_implicit_steering_table; + } else { + gt->steering[L3BANK].ranges = xelp_l3bank_steering_table; + gt->steering[DSS].ranges = xelp_dss_steering_table; + } + } + + /* Select non-terminated steering target for each type */ + for (int i = 0; i < NUM_STEERING_TYPES; i++) + if (gt->steering[i].ranges && xe_steering_types[i].init) + xe_steering_types[i].init(gt); +} + +/** + * xe_gt_mcr_set_implicit_defaults - Initialize steer control registers + * @gt: GT structure + * + * Some register ranges don't need to have their steering control registers + * changed on each access - it's sufficient to set them once on initialization. + * This function sets those registers for each platform * + */ +void xe_gt_mcr_set_implicit_defaults(struct xe_gt *gt) +{ + struct xe_device *xe = gt_to_xe(gt); + + if (IS_SRIOV_VF(xe)) + return; + + if (xe->info.platform == XE_DG2) { + u32 steer_val = REG_FIELD_PREP(MCR_SLICE_MASK, 0) | + REG_FIELD_PREP(MCR_SUBSLICE_MASK, 2); + + xe_mmio_write32(>->mmio, MCFG_MCR_SELECTOR, steer_val); + xe_mmio_write32(>->mmio, SF_MCR_SELECTOR, steer_val); + /* + * For GAM registers, all reads should be directed to instance 1 + * (unicast reads against other instances are not allowed), + * and instance 1 is already the hardware's default steering + * target, which we never change + */ + } +} + +/* + * xe_gt_mcr_get_nonterminated_steering - find group/instance values that + * will steer a register to a non-terminated instance + * @gt: GT structure + * @reg: register for which the steering is required + * @group: return variable for group steering + * @instance: return variable for instance steering + * + * This function returns a group/instance pair that is guaranteed to work for + * read steering of the given register. Note that a value will be returned even + * if the register is not replicated and therefore does not actually require + * steering. + * + * Returns true if the caller should steer to the @group/@instance values + * returned. Returns false if the caller need not perform any steering + */ +static bool xe_gt_mcr_get_nonterminated_steering(struct xe_gt *gt, + struct xe_reg_mcr reg_mcr, + u8 *group, u8 *instance) +{ + const struct xe_reg reg = to_xe_reg(reg_mcr); + const struct xe_mmio_range *implicit_ranges; + + for (int type = 0; type < IMPLICIT_STEERING; type++) { + if (!gt->steering[type].ranges) + continue; + + for (int i = 0; gt->steering[type].ranges[i].end > 0; i++) { + if (xe_mmio_in_range(>->mmio, >->steering[type].ranges[i], reg)) { + *group = gt->steering[type].group_target; + *instance = gt->steering[type].instance_target; + return true; + } + } + } + + implicit_ranges = gt->steering[IMPLICIT_STEERING].ranges; + if (implicit_ranges) + for (int i = 0; implicit_ranges[i].end > 0; i++) + if (xe_mmio_in_range(>->mmio, &implicit_ranges[i], reg)) + return false; + + /* + * Not found in a steering table and not a register with implicit + * steering. Just steer to 0/0 as a guess and raise a warning. + */ + drm_WARN(>_to_xe(gt)->drm, true, + "Did not find MCR register %#x in any MCR steering table\n", + reg.addr); + *group = 0; + *instance = 0; + + return true; +} + +/* + * Obtain exclusive access to MCR steering. On MTL and beyond we also need + * to synchronize with external clients (e.g., firmware), so a semaphore + * register will also need to be taken. + */ +static void mcr_lock(struct xe_gt *gt) __acquires(>->mcr_lock) +{ + struct xe_device *xe = gt_to_xe(gt); + int ret = 0; + + spin_lock(>->mcr_lock); + + /* + * Starting with MTL we also need to grab a semaphore register + * to synchronize with external agents (e.g., firmware) that now + * shares the same steering control register. The semaphore is obtained + * when a read to the relevant register returns 1. + */ + if (GRAPHICS_VERx100(xe) >= 1270) + ret = xe_mmio_wait32(>->mmio, STEER_SEMAPHORE, 0x1, 0x1, 10, NULL, + true); + + drm_WARN_ON_ONCE(&xe->drm, ret == -ETIMEDOUT); +} + +static void mcr_unlock(struct xe_gt *gt) __releases(>->mcr_lock) +{ + /* Release hardware semaphore - this is done by writing 1 to the register */ + if (GRAPHICS_VERx100(gt_to_xe(gt)) >= 1270) + xe_mmio_write32(>->mmio, STEER_SEMAPHORE, 0x1); + + spin_unlock(>->mcr_lock); +} + +/* + * Access a register with specific MCR steering + * + * Caller needs to make sure the relevant forcewake wells are up. + */ +static u32 rw_with_mcr_steering(struct xe_gt *gt, struct xe_reg_mcr reg_mcr, + u8 rw_flag, int group, int instance, u32 value) +{ + const struct xe_reg reg = to_xe_reg(reg_mcr); + struct xe_mmio *mmio = >->mmio; + struct xe_reg steer_reg; + u32 steer_val, val = 0; + + lockdep_assert_held(>->mcr_lock); + + if (GRAPHICS_VERx100(gt_to_xe(gt)) >= 1270) { + steer_reg = MTL_MCR_SELECTOR; + steer_val = REG_FIELD_PREP(MTL_MCR_GROUPID, group) | + REG_FIELD_PREP(MTL_MCR_INSTANCEID, instance); + } else { + steer_reg = MCR_SELECTOR; + steer_val = REG_FIELD_PREP(MCR_SLICE_MASK, group) | + REG_FIELD_PREP(MCR_SUBSLICE_MASK, instance); + } + + /* + * Always leave the hardware in multicast mode when doing reads and only + * change it to unicast mode when doing writes of a specific instance. + * + * The setting of the multicast/unicast bit usually wouldn't matter for + * read operations (which always return the value from a single register + * instance regardless of how that bit is set), but some platforms may + * have workarounds requiring us to remain in multicast mode for reads, + * e.g. Wa_22013088509 on PVC. There's no real downside to this, so + * we'll just go ahead and do so on all platforms; we'll only clear the + * multicast bit from the mask when explicitly doing a write operation. + * + * No need to save old steering reg value. + */ + if (rw_flag == MCR_OP_READ) + steer_val |= MCR_MULTICAST; + + xe_mmio_write32(mmio, steer_reg, steer_val); + + if (rw_flag == MCR_OP_READ) + val = xe_mmio_read32(mmio, reg); + else + xe_mmio_write32(mmio, reg, value); + + /* + * If we turned off the multicast bit (during a write) we're required + * to turn it back on before finishing. The group and instance values + * don't matter since they'll be re-programmed on the next MCR + * operation. + */ + if (rw_flag == MCR_OP_WRITE) + xe_mmio_write32(mmio, steer_reg, MCR_MULTICAST); + + return val; +} + +/** + * xe_gt_mcr_unicast_read_any - reads a non-terminated instance of an MCR register + * @gt: GT structure + * @reg_mcr: register to read + * + * Reads a GT MCR register. The read will be steered to a non-terminated + * instance (i.e., one that isn't fused off or powered down by power gating). + * This function assumes the caller is already holding any necessary forcewake + * domains. + * + * Returns the value from a non-terminated instance of @reg. + */ +u32 xe_gt_mcr_unicast_read_any(struct xe_gt *gt, struct xe_reg_mcr reg_mcr) +{ + const struct xe_reg reg = to_xe_reg(reg_mcr); + u8 group, instance; + u32 val; + bool steer; + + xe_gt_assert(gt, !IS_SRIOV_VF(gt_to_xe(gt))); + + steer = xe_gt_mcr_get_nonterminated_steering(gt, reg_mcr, + &group, &instance); + + if (steer) { + mcr_lock(gt); + val = rw_with_mcr_steering(gt, reg_mcr, MCR_OP_READ, + group, instance, 0); + mcr_unlock(gt); + } else { + val = xe_mmio_read32(>->mmio, reg); + } + + return val; +} + +/** + * xe_gt_mcr_unicast_read - read a specific instance of an MCR register + * @gt: GT structure + * @reg_mcr: the MCR register to read + * @group: the MCR group + * @instance: the MCR instance + * + * Returns the value read from an MCR register after steering toward a specific + * group/instance. + */ +u32 xe_gt_mcr_unicast_read(struct xe_gt *gt, + struct xe_reg_mcr reg_mcr, + int group, int instance) +{ + u32 val; + + xe_gt_assert(gt, !IS_SRIOV_VF(gt_to_xe(gt))); + + mcr_lock(gt); + val = rw_with_mcr_steering(gt, reg_mcr, MCR_OP_READ, group, instance, 0); + mcr_unlock(gt); + + return val; +} + +/** + * xe_gt_mcr_unicast_write - write a specific instance of an MCR register + * @gt: GT structure + * @reg_mcr: the MCR register to write + * @value: value to write + * @group: the MCR group + * @instance: the MCR instance + * + * Write an MCR register in unicast mode after steering toward a specific + * group/instance. + */ +void xe_gt_mcr_unicast_write(struct xe_gt *gt, struct xe_reg_mcr reg_mcr, + u32 value, int group, int instance) +{ + xe_gt_assert(gt, !IS_SRIOV_VF(gt_to_xe(gt))); + + mcr_lock(gt); + rw_with_mcr_steering(gt, reg_mcr, MCR_OP_WRITE, group, instance, value); + mcr_unlock(gt); +} + +/** + * xe_gt_mcr_multicast_write - write a value to all instances of an MCR register + * @gt: GT structure + * @reg_mcr: the MCR register to write + * @value: value to write + * + * Write an MCR register in multicast mode to update all instances. + */ +void xe_gt_mcr_multicast_write(struct xe_gt *gt, struct xe_reg_mcr reg_mcr, + u32 value) +{ + struct xe_reg reg = to_xe_reg(reg_mcr); + + xe_gt_assert(gt, !IS_SRIOV_VF(gt_to_xe(gt))); + + /* + * Synchronize with any unicast operations. Once we have exclusive + * access, the MULTICAST bit should already be set, so there's no need + * to touch the steering register. + */ + mcr_lock(gt); + xe_mmio_write32(>->mmio, reg, value); + mcr_unlock(gt); +} + +void xe_gt_mcr_steering_dump(struct xe_gt *gt, struct drm_printer *p) +{ + for (int i = 0; i < NUM_STEERING_TYPES; i++) { + if (gt->steering[i].ranges) { + drm_printf(p, "%s steering: group=%#x, instance=%#x\n", + xe_steering_types[i].name, + gt->steering[i].group_target, + gt->steering[i].instance_target); + for (int j = 0; gt->steering[i].ranges[j].end; j++) + drm_printf(p, "\t0x%06x - 0x%06x\n", + gt->steering[i].ranges[j].start, + gt->steering[i].ranges[j].end); + } + } +} |