diff options
author | Lucas De Marchi <lucas.demarchi@intel.com> | 2024-10-24 16:15:44 -0500 |
---|---|---|
committer | Lucas De Marchi <lucas.demarchi@intel.com> | 2024-10-24 16:15:44 -0500 |
commit | 8ccf06f174811c962af31157c247cffbd9317f0a (patch) | |
tree | ccc3e0444827e756b889b9d5105f5ef1370d0661 | |
parent | 5db8be8fbfef01a71cf25202d940bab22f97b0b9 (diff) |
2024y-10m-24d-21h-15m-10s UTC: drm-tip rerere cache update
git version 2.47.0
13 files changed, 14763 insertions, 0 deletions
diff --git a/rr-cache/0ace7964b1b2d66224889bcf0b6a7a221776d8c8/postimage.2 b/rr-cache/0ace7964b1b2d66224889bcf0b6a7a221776d8c8/postimage.2 new file mode 100644 index 000000000000..c260d8840990 --- /dev/null +++ b/rr-cache/0ace7964b1b2d66224889bcf0b6a7a221776d8c8/postimage.2 @@ -0,0 +1,1853 @@ +// SPDX-License-Identifier: MIT +/* + * Copyright © 2022 Intel Corporation + */ + +#include "xe_guc_ct.h" + +#include <linux/bitfield.h> +#include <linux/circ_buf.h> +#include <linux/delay.h> +#include <linux/fault-inject.h> + +#include <kunit/static_stub.h> + +#include <drm/drm_managed.h> + +#include "abi/guc_actions_abi.h" +#include "abi/guc_actions_sriov_abi.h" +#include "abi/guc_klvs_abi.h" +#include "xe_bo.h" +#include "xe_devcoredump.h" +#include "xe_device.h" +#include "xe_gt.h" +#include "xe_gt_pagefault.h" +#include "xe_gt_printk.h" +#include "xe_gt_sriov_pf_control.h" +#include "xe_gt_sriov_pf_monitor.h" +#include "xe_gt_tlb_invalidation.h" +#include "xe_guc.h" +#include "xe_guc_log.h" +#include "xe_guc_relay.h" +#include "xe_guc_submit.h" +#include "xe_map.h" +#include "xe_pm.h" +#include "xe_trace_guc.h" + +#if IS_ENABLED(CONFIG_DRM_XE_DEBUG) +enum { + /* Internal states, not error conditions */ + CT_DEAD_STATE_REARM, /* 0x0001 */ + CT_DEAD_STATE_CAPTURE, /* 0x0002 */ + + /* Error conditions */ + CT_DEAD_SETUP, /* 0x0004 */ + CT_DEAD_H2G_WRITE, /* 0x0008 */ + CT_DEAD_H2G_HAS_ROOM, /* 0x0010 */ + CT_DEAD_G2H_READ, /* 0x0020 */ + CT_DEAD_G2H_RECV, /* 0x0040 */ + CT_DEAD_G2H_RELEASE, /* 0x0080 */ + CT_DEAD_DEADLOCK, /* 0x0100 */ + CT_DEAD_PROCESS_FAILED, /* 0x0200 */ + CT_DEAD_FAST_G2H, /* 0x0400 */ + CT_DEAD_PARSE_G2H_RESPONSE, /* 0x0800 */ + CT_DEAD_PARSE_G2H_UNKNOWN, /* 0x1000 */ + CT_DEAD_PARSE_G2H_ORIGIN, /* 0x2000 */ + CT_DEAD_PARSE_G2H_TYPE, /* 0x4000 */ +}; + +static void ct_dead_worker_func(struct work_struct *w); +static void ct_dead_capture(struct xe_guc_ct *ct, struct guc_ctb *ctb, u32 reason_code); + +#define CT_DEAD(ct, ctb, reason_code) ct_dead_capture((ct), (ctb), CT_DEAD_##reason_code) +#else +#define CT_DEAD(ct, ctb, reason) \ + do { \ + struct guc_ctb *_ctb = (ctb); \ + if (_ctb) \ + _ctb->info.broken = true; \ + } while (0) +#endif + +/* Used when a CT send wants to block and / or receive data */ +struct g2h_fence { + u32 *response_buffer; + u32 seqno; + u32 response_data; + u16 response_len; + u16 error; + u16 hint; + u16 reason; + bool retry; + bool fail; + bool done; +}; + +static void g2h_fence_init(struct g2h_fence *g2h_fence, u32 *response_buffer) +{ + g2h_fence->response_buffer = response_buffer; + g2h_fence->response_data = 0; + g2h_fence->response_len = 0; + g2h_fence->fail = false; + g2h_fence->retry = false; + g2h_fence->done = false; + g2h_fence->seqno = ~0x0; +} + +static bool g2h_fence_needs_alloc(struct g2h_fence *g2h_fence) +{ + return g2h_fence->seqno == ~0x0; +} + +static struct xe_guc * +ct_to_guc(struct xe_guc_ct *ct) +{ + return container_of(ct, struct xe_guc, ct); +} + +static struct xe_gt * +ct_to_gt(struct xe_guc_ct *ct) +{ + return container_of(ct, struct xe_gt, uc.guc.ct); +} + +static struct xe_device * +ct_to_xe(struct xe_guc_ct *ct) +{ + return gt_to_xe(ct_to_gt(ct)); +} + +/** + * DOC: GuC CTB Blob + * + * We allocate single blob to hold both CTB descriptors and buffers: + * + * +--------+-----------------------------------------------+------+ + * | offset | contents | size | + * +========+===============================================+======+ + * | 0x0000 | H2G CTB Descriptor (send) | | + * +--------+-----------------------------------------------+ 4K | + * | 0x0800 | G2H CTB Descriptor (g2h) | | + * +--------+-----------------------------------------------+------+ + * | 0x1000 | H2G CT Buffer (send) | n*4K | + * | | | | + * +--------+-----------------------------------------------+------+ + * | 0x1000 | G2H CT Buffer (g2h) | m*4K | + * | + n*4K | | | + * +--------+-----------------------------------------------+------+ + * + * Size of each ``CT Buffer`` must be multiple of 4K. + * We don't expect too many messages in flight at any time, unless we are + * using the GuC submission. In that case each request requires a minimum + * 2 dwords which gives us a maximum 256 queue'd requests. Hopefully this + * enough space to avoid backpressure on the driver. We increase the size + * of the receive buffer (relative to the send) to ensure a G2H response + * CTB has a landing spot. + * + * In addition to submissions, the G2H buffer needs to be able to hold + * enough space for recoverable page fault notifications. The number of + * page faults is interrupt driven and can be as much as the number of + * compute resources available. However, most of the actual work for these + * is in a separate page fault worker thread. Therefore we only need to + * make sure the queue has enough space to handle all of the submissions + * and responses and an extra buffer for incoming page faults. + */ + +#define CTB_DESC_SIZE ALIGN(sizeof(struct guc_ct_buffer_desc), SZ_2K) +#define CTB_H2G_BUFFER_SIZE (SZ_4K) +#define CTB_G2H_BUFFER_SIZE (SZ_128K) +#define G2H_ROOM_BUFFER_SIZE (CTB_G2H_BUFFER_SIZE / 2) + +/** + * xe_guc_ct_queue_proc_time_jiffies - Return maximum time to process a full + * CT command queue + * @ct: the &xe_guc_ct. Unused at this moment but will be used in the future. + * + * Observation is that a 4KiB buffer full of commands takes a little over a + * second to process. Use that to calculate maximum time to process a full CT + * command queue. + * + * Return: Maximum time to process a full CT queue in jiffies. + */ +long xe_guc_ct_queue_proc_time_jiffies(struct xe_guc_ct *ct) +{ + BUILD_BUG_ON(!IS_ALIGNED(CTB_H2G_BUFFER_SIZE, SZ_4)); + return (CTB_H2G_BUFFER_SIZE / SZ_4K) * HZ; +} + +static size_t guc_ct_size(void) +{ + return 2 * CTB_DESC_SIZE + CTB_H2G_BUFFER_SIZE + + CTB_G2H_BUFFER_SIZE; +} + +static void guc_ct_fini(struct drm_device *drm, void *arg) +{ + struct xe_guc_ct *ct = arg; + + destroy_workqueue(ct->g2h_wq); + xa_destroy(&ct->fence_lookup); +} + +static void receive_g2h(struct xe_guc_ct *ct); +static void g2h_worker_func(struct work_struct *w); +static void safe_mode_worker_func(struct work_struct *w); + +static void primelockdep(struct xe_guc_ct *ct) +{ + if (!IS_ENABLED(CONFIG_LOCKDEP)) + return; + + fs_reclaim_acquire(GFP_KERNEL); + might_lock(&ct->lock); + fs_reclaim_release(GFP_KERNEL); +} + +int xe_guc_ct_init(struct xe_guc_ct *ct) +{ + struct xe_device *xe = ct_to_xe(ct); + struct xe_gt *gt = ct_to_gt(ct); + struct xe_tile *tile = gt_to_tile(gt); + struct xe_bo *bo; + int err; + + xe_gt_assert(gt, !(guc_ct_size() % PAGE_SIZE)); + + ct->g2h_wq = alloc_ordered_workqueue("xe-g2h-wq", 0); + if (!ct->g2h_wq) + return -ENOMEM; + + spin_lock_init(&ct->fast_lock); + xa_init(&ct->fence_lookup); + INIT_WORK(&ct->g2h_worker, g2h_worker_func); + INIT_DELAYED_WORK(&ct->safe_mode_worker, safe_mode_worker_func); +#if IS_ENABLED(CONFIG_DRM_XE_DEBUG) + spin_lock_init(&ct->dead.lock); + INIT_WORK(&ct->dead.worker, ct_dead_worker_func); +#endif + init_waitqueue_head(&ct->wq); + init_waitqueue_head(&ct->g2h_fence_wq); + + err = drmm_mutex_init(&xe->drm, &ct->lock); + if (err) + return err; + + primelockdep(ct); + + bo = xe_managed_bo_create_pin_map(xe, tile, guc_ct_size(), + XE_BO_FLAG_SYSTEM | + XE_BO_FLAG_GGTT | + XE_BO_FLAG_GGTT_INVALIDATE); + if (IS_ERR(bo)) + return PTR_ERR(bo); + + ct->bo = bo; + + err = drmm_add_action_or_reset(&xe->drm, guc_ct_fini, ct); + if (err) + return err; + + xe_gt_assert(gt, ct->state == XE_GUC_CT_STATE_NOT_INITIALIZED); + ct->state = XE_GUC_CT_STATE_DISABLED; + return 0; +} +ALLOW_ERROR_INJECTION(xe_guc_ct_init, ERRNO); /* See xe_pci_probe() */ + +#define desc_read(xe_, guc_ctb__, field_) \ + xe_map_rd_field(xe_, &guc_ctb__->desc, 0, \ + struct guc_ct_buffer_desc, field_) + +#define desc_write(xe_, guc_ctb__, field_, val_) \ + xe_map_wr_field(xe_, &guc_ctb__->desc, 0, \ + struct guc_ct_buffer_desc, field_, val_) + +static void guc_ct_ctb_h2g_init(struct xe_device *xe, struct guc_ctb *h2g, + struct iosys_map *map) +{ + h2g->info.size = CTB_H2G_BUFFER_SIZE / sizeof(u32); + h2g->info.resv_space = 0; + h2g->info.tail = 0; + h2g->info.head = 0; + h2g->info.space = CIRC_SPACE(h2g->info.tail, h2g->info.head, + h2g->info.size) - + h2g->info.resv_space; + h2g->info.broken = false; + + h2g->desc = *map; + xe_map_memset(xe, &h2g->desc, 0, 0, sizeof(struct guc_ct_buffer_desc)); + + h2g->cmds = IOSYS_MAP_INIT_OFFSET(map, CTB_DESC_SIZE * 2); +} + +static void guc_ct_ctb_g2h_init(struct xe_device *xe, struct guc_ctb *g2h, + struct iosys_map *map) +{ + g2h->info.size = CTB_G2H_BUFFER_SIZE / sizeof(u32); + g2h->info.resv_space = G2H_ROOM_BUFFER_SIZE / sizeof(u32); + g2h->info.head = 0; + g2h->info.tail = 0; + g2h->info.space = CIRC_SPACE(g2h->info.tail, g2h->info.head, + g2h->info.size) - + g2h->info.resv_space; + g2h->info.broken = false; + + g2h->desc = IOSYS_MAP_INIT_OFFSET(map, CTB_DESC_SIZE); + xe_map_memset(xe, &g2h->desc, 0, 0, sizeof(struct guc_ct_buffer_desc)); + + g2h->cmds = IOSYS_MAP_INIT_OFFSET(map, CTB_DESC_SIZE * 2 + + CTB_H2G_BUFFER_SIZE); +} + +static int guc_ct_ctb_h2g_register(struct xe_guc_ct *ct) +{ + struct xe_guc *guc = ct_to_guc(ct); + u32 desc_addr, ctb_addr, size; + int err; + + desc_addr = xe_bo_ggtt_addr(ct->bo); + ctb_addr = xe_bo_ggtt_addr(ct->bo) + CTB_DESC_SIZE * 2; + size = ct->ctbs.h2g.info.size * sizeof(u32); + + err = xe_guc_self_cfg64(guc, + GUC_KLV_SELF_CFG_H2G_CTB_DESCRIPTOR_ADDR_KEY, + desc_addr); + if (err) + return err; + + err = xe_guc_self_cfg64(guc, + GUC_KLV_SELF_CFG_H2G_CTB_ADDR_KEY, + ctb_addr); + if (err) + return err; + + return xe_guc_self_cfg32(guc, + GUC_KLV_SELF_CFG_H2G_CTB_SIZE_KEY, + size); +} + +static int guc_ct_ctb_g2h_register(struct xe_guc_ct *ct) +{ + struct xe_guc *guc = ct_to_guc(ct); + u32 desc_addr, ctb_addr, size; + int err; + + desc_addr = xe_bo_ggtt_addr(ct->bo) + CTB_DESC_SIZE; + ctb_addr = xe_bo_ggtt_addr(ct->bo) + CTB_DESC_SIZE * 2 + + CTB_H2G_BUFFER_SIZE; + size = ct->ctbs.g2h.info.size * sizeof(u32); + + err = xe_guc_self_cfg64(guc, + GUC_KLV_SELF_CFG_G2H_CTB_DESCRIPTOR_ADDR_KEY, + desc_addr); + if (err) + return err; + + err = xe_guc_self_cfg64(guc, + GUC_KLV_SELF_CFG_G2H_CTB_ADDR_KEY, + ctb_addr); + if (err) + return err; + + return xe_guc_self_cfg32(guc, + GUC_KLV_SELF_CFG_G2H_CTB_SIZE_KEY, + size); +} + +static int guc_ct_control_toggle(struct xe_guc_ct *ct, bool enable) +{ + u32 request[HOST2GUC_CONTROL_CTB_REQUEST_MSG_LEN] = { + FIELD_PREP(GUC_HXG_MSG_0_ORIGIN, GUC_HXG_ORIGIN_HOST) | + FIELD_PREP(GUC_HXG_MSG_0_TYPE, GUC_HXG_TYPE_REQUEST) | + FIELD_PREP(GUC_HXG_REQUEST_MSG_0_ACTION, + GUC_ACTION_HOST2GUC_CONTROL_CTB), + FIELD_PREP(HOST2GUC_CONTROL_CTB_REQUEST_MSG_1_CONTROL, + enable ? GUC_CTB_CONTROL_ENABLE : + GUC_CTB_CONTROL_DISABLE), + }; + int ret = xe_guc_mmio_send(ct_to_guc(ct), request, ARRAY_SIZE(request)); + + return ret > 0 ? -EPROTO : ret; +} + +static void xe_guc_ct_set_state(struct xe_guc_ct *ct, + enum xe_guc_ct_state state) +{ + mutex_lock(&ct->lock); /* Serialise dequeue_one_g2h() */ + spin_lock_irq(&ct->fast_lock); /* Serialise CT fast-path */ + + xe_gt_assert(ct_to_gt(ct), ct->g2h_outstanding == 0 || + state == XE_GUC_CT_STATE_STOPPED); + + if (ct->g2h_outstanding) + xe_pm_runtime_put(ct_to_xe(ct)); + ct->g2h_outstanding = 0; + ct->state = state; + + spin_unlock_irq(&ct->fast_lock); + + /* + * Lockdep doesn't like this under the fast lock and he destroy only + * needs to be serialized with the send path which ct lock provides. + */ + xa_destroy(&ct->fence_lookup); + + mutex_unlock(&ct->lock); +} + +static bool ct_needs_safe_mode(struct xe_guc_ct *ct) +{ + return !pci_dev_msi_enabled(to_pci_dev(ct_to_xe(ct)->drm.dev)); +} + +static bool ct_restart_safe_mode_worker(struct xe_guc_ct *ct) +{ + if (!ct_needs_safe_mode(ct)) + return false; + + queue_delayed_work(ct->g2h_wq, &ct->safe_mode_worker, HZ / 10); + return true; +} + +static void safe_mode_worker_func(struct work_struct *w) +{ + struct xe_guc_ct *ct = container_of(w, struct xe_guc_ct, safe_mode_worker.work); + + receive_g2h(ct); + + if (!ct_restart_safe_mode_worker(ct)) + xe_gt_dbg(ct_to_gt(ct), "GuC CT safe-mode canceled\n"); +} + +static void ct_enter_safe_mode(struct xe_guc_ct *ct) +{ + if (ct_restart_safe_mode_worker(ct)) + xe_gt_dbg(ct_to_gt(ct), "GuC CT safe-mode enabled\n"); +} + +static void ct_exit_safe_mode(struct xe_guc_ct *ct) +{ + if (cancel_delayed_work_sync(&ct->safe_mode_worker)) + xe_gt_dbg(ct_to_gt(ct), "GuC CT safe-mode disabled\n"); +} + +int xe_guc_ct_enable(struct xe_guc_ct *ct) +{ + struct xe_device *xe = ct_to_xe(ct); + struct xe_gt *gt = ct_to_gt(ct); + int err; + + xe_gt_assert(gt, !xe_guc_ct_enabled(ct)); + + xe_map_memset(xe, &ct->bo->vmap, 0, 0, ct->bo->size); + guc_ct_ctb_h2g_init(xe, &ct->ctbs.h2g, &ct->bo->vmap); + guc_ct_ctb_g2h_init(xe, &ct->ctbs.g2h, &ct->bo->vmap); + + err = guc_ct_ctb_h2g_register(ct); + if (err) + goto err_out; + + err = guc_ct_ctb_g2h_register(ct); + if (err) + goto err_out; + + err = guc_ct_control_toggle(ct, true); + if (err) + goto err_out; + + xe_guc_ct_set_state(ct, XE_GUC_CT_STATE_ENABLED); + + smp_mb(); + wake_up_all(&ct->wq); + xe_gt_dbg(gt, "GuC CT communication channel enabled\n"); + + if (ct_needs_safe_mode(ct)) + ct_enter_safe_mode(ct); + +#if IS_ENABLED(CONFIG_DRM_XE_DEBUG) + /* + * The CT has now been reset so the dumper can be re-armed + * after any existing dead state has been dumped. + */ + spin_lock_irq(&ct->dead.lock); + if (ct->dead.reason) + ct->dead.reason |= (1 << CT_DEAD_STATE_REARM); + spin_unlock_irq(&ct->dead.lock); +#endif + + return 0; + +err_out: + xe_gt_err(gt, "Failed to enable GuC CT (%pe)\n", ERR_PTR(err)); + CT_DEAD(ct, NULL, SETUP); + + return err; +} + +static void stop_g2h_handler(struct xe_guc_ct *ct) +{ + cancel_work_sync(&ct->g2h_worker); +} + +/** + * xe_guc_ct_disable - Set GuC to disabled state + * @ct: the &xe_guc_ct + * + * Set GuC CT to disabled state and stop g2h handler. No outstanding g2h expected + * in this transition. + */ +void xe_guc_ct_disable(struct xe_guc_ct *ct) +{ + xe_guc_ct_set_state(ct, XE_GUC_CT_STATE_DISABLED); + ct_exit_safe_mode(ct); + stop_g2h_handler(ct); +} + +/** + * xe_guc_ct_stop - Set GuC to stopped state + * @ct: the &xe_guc_ct + * + * Set GuC CT to stopped state, stop g2h handler, and clear any outstanding g2h + */ +void xe_guc_ct_stop(struct xe_guc_ct *ct) +{ + xe_guc_ct_set_state(ct, XE_GUC_CT_STATE_STOPPED); + stop_g2h_handler(ct); +} + +static bool h2g_has_room(struct xe_guc_ct *ct, u32 cmd_len) +{ + struct guc_ctb *h2g = &ct->ctbs.h2g; + + lockdep_assert_held(&ct->lock); + + if (cmd_len > h2g->info.space) { + h2g->info.head = desc_read(ct_to_xe(ct), h2g, head); + + if (h2g->info.head > h2g->info.size) { + struct xe_device *xe = ct_to_xe(ct); + u32 desc_status = desc_read(xe, h2g, status); + + desc_write(xe, h2g, status, desc_status | GUC_CTB_STATUS_OVERFLOW); + + xe_gt_err(ct_to_gt(ct), "CT: invalid head offset %u >= %u)\n", + h2g->info.head, h2g->info.size); + CT_DEAD(ct, h2g, H2G_HAS_ROOM); + return false; + } + + h2g->info.space = CIRC_SPACE(h2g->info.tail, h2g->info.head, + h2g->info.size) - + h2g->info.resv_space; + if (cmd_len > h2g->info.space) + return false; + } + + return true; +} + +static bool g2h_has_room(struct xe_guc_ct *ct, u32 g2h_len) +{ + if (!g2h_len) + return true; + + lockdep_assert_held(&ct->fast_lock); + + return ct->ctbs.g2h.info.space > g2h_len; +} + +static int has_room(struct xe_guc_ct *ct, u32 cmd_len, u32 g2h_len) +{ + lockdep_assert_held(&ct->lock); + + if (!g2h_has_room(ct, g2h_len) || !h2g_has_room(ct, cmd_len)) + return -EBUSY; + + return 0; +} + +static void h2g_reserve_space(struct xe_guc_ct *ct, u32 cmd_len) +{ + lockdep_assert_held(&ct->lock); + ct->ctbs.h2g.info.space -= cmd_len; +} + +static void __g2h_reserve_space(struct xe_guc_ct *ct, u32 g2h_len, u32 num_g2h) +{ + xe_gt_assert(ct_to_gt(ct), g2h_len <= ct->ctbs.g2h.info.space); + xe_gt_assert(ct_to_gt(ct), (!g2h_len && !num_g2h) || + (g2h_len && num_g2h)); + + if (g2h_len) { + lockdep_assert_held(&ct->fast_lock); + + if (!ct->g2h_outstanding) + xe_pm_runtime_get_noresume(ct_to_xe(ct)); + + ct->ctbs.g2h.info.space -= g2h_len; + ct->g2h_outstanding += num_g2h; + } +} + +static void __g2h_release_space(struct xe_guc_ct *ct, u32 g2h_len) +{ + bool bad = false; + + lockdep_assert_held(&ct->fast_lock); + + bad = ct->ctbs.g2h.info.space + g2h_len > + ct->ctbs.g2h.info.size - ct->ctbs.g2h.info.resv_space; + bad |= !ct->g2h_outstanding; + + if (bad) { + xe_gt_err(ct_to_gt(ct), "Invalid G2H release: %d + %d vs %d - %d -> %d vs %d, outstanding = %d!\n", + ct->ctbs.g2h.info.space, g2h_len, + ct->ctbs.g2h.info.size, ct->ctbs.g2h.info.resv_space, + ct->ctbs.g2h.info.space + g2h_len, + ct->ctbs.g2h.info.size - ct->ctbs.g2h.info.resv_space, + ct->g2h_outstanding); + CT_DEAD(ct, &ct->ctbs.g2h, G2H_RELEASE); + return; + } + + ct->ctbs.g2h.info.space += g2h_len; + if (!--ct->g2h_outstanding) + xe_pm_runtime_put(ct_to_xe(ct)); +} + +static void g2h_release_space(struct xe_guc_ct *ct, u32 g2h_len) +{ + spin_lock_irq(&ct->fast_lock); + __g2h_release_space(ct, g2h_len); + spin_unlock_irq(&ct->fast_lock); +} + +#define H2G_CT_HEADERS (GUC_CTB_HDR_LEN + 1) /* one DW CTB header and one DW HxG header */ + +static int h2g_write(struct xe_guc_ct *ct, const u32 *action, u32 len, + u32 ct_fence_value, bool want_response) +{ + struct xe_device *xe = ct_to_xe(ct); + struct xe_gt *gt = ct_to_gt(ct); + struct guc_ctb *h2g = &ct->ctbs.h2g; + u32 cmd[H2G_CT_HEADERS]; + u32 tail = h2g->info.tail; + u32 full_len; + struct iosys_map map = IOSYS_MAP_INIT_OFFSET(&h2g->cmds, + tail * sizeof(u32)); + u32 desc_status; + + full_len = len + GUC_CTB_HDR_LEN; + + lockdep_assert_held(&ct->lock); + xe_gt_assert(gt, full_len <= GUC_CTB_MSG_MAX_LEN); + + desc_status = desc_read(xe, h2g, status); + if (desc_status) { + xe_gt_err(gt, "CT write: non-zero status: %u\n", desc_status); + goto corrupted; + } + + if (IS_ENABLED(CONFIG_DRM_XE_DEBUG)) { + u32 desc_tail = desc_read(xe, h2g, tail); + u32 desc_head = desc_read(xe, h2g, head); + + if (tail != desc_tail) { + desc_write(xe, h2g, status, desc_status | GUC_CTB_STATUS_MISMATCH); + xe_gt_err(gt, "CT write: tail was modified %u != %u\n", desc_tail, tail); + goto corrupted; + } + + if (tail > h2g->info.size) { + desc_write(xe, h2g, status, desc_status | GUC_CTB_STATUS_OVERFLOW); + xe_gt_err(gt, "CT write: tail out of range: %u vs %u\n", + tail, h2g->info.size); + goto corrupted; + } + + if (desc_head >= h2g->info.size) { + desc_write(xe, h2g, status, desc_status | GUC_CTB_STATUS_OVERFLOW); + xe_gt_err(gt, "CT write: invalid head offset %u >= %u)\n", + desc_head, h2g->info.size); + goto corrupted; + } + } + + /* Command will wrap, zero fill (NOPs), return and check credits again */ + if (tail + full_len > h2g->info.size) { + xe_map_memset(xe, &map, 0, 0, + (h2g->info.size - tail) * sizeof(u32)); + h2g_reserve_space(ct, (h2g->info.size - tail)); + h2g->info.tail = 0; + desc_write(xe, h2g, tail, h2g->info.tail); + + return -EAGAIN; + } + + /* + * dw0: CT header (including fence) + * dw1: HXG header (including action code) + * dw2+: action data + */ + cmd[0] = FIELD_PREP(GUC_CTB_MSG_0_FORMAT, GUC_CTB_FORMAT_HXG) | + FIELD_PREP(GUC_CTB_MSG_0_NUM_DWORDS, len) | + FIELD_PREP(GUC_CTB_MSG_0_FENCE, ct_fence_value); + if (want_response) { + cmd[1] = + FIELD_PREP(GUC_HXG_MSG_0_TYPE, GUC_HXG_TYPE_REQUEST) | + FIELD_PREP(GUC_HXG_EVENT_MSG_0_ACTION | + GUC_HXG_EVENT_MSG_0_DATA0, action[0]); + } else { + cmd[1] = + FIELD_PREP(GUC_HXG_MSG_0_TYPE, GUC_HXG_TYPE_FAST_REQUEST) | + FIELD_PREP(GUC_HXG_EVENT_MSG_0_ACTION | + GUC_HXG_EVENT_MSG_0_DATA0, action[0]); + } + + /* H2G header in cmd[1] replaces action[0] so: */ + --len; + ++action; + + /* Write H2G ensuring visable before descriptor update */ + xe_map_memcpy_to(xe, &map, 0, cmd, H2G_CT_HEADERS * sizeof(u32)); + xe_map_memcpy_to(xe, &map, H2G_CT_HEADERS * sizeof(u32), action, len * sizeof(u32)); + xe_device_wmb(xe); + + /* Update local copies */ + h2g->info.tail = (tail + full_len) % h2g->info.size; + h2g_reserve_space(ct, full_len); + + /* Update descriptor */ + desc_write(xe, h2g, tail, h2g->info.tail); + + trace_xe_guc_ctb_h2g(xe, gt->info.id, *(action - 1), full_len, + desc_read(xe, h2g, head), h2g->info.tail); + + return 0; + +corrupted: + CT_DEAD(ct, &ct->ctbs.h2g, H2G_WRITE); + return -EPIPE; +} + +/* + * The CT protocol accepts a 16 bits fence. This field is fully owned by the + * driver, the GuC will just copy it to the reply message. Since we need to + * be able to distinguish between replies to REQUEST and FAST_REQUEST messages, + * we use one bit of the seqno as an indicator for that and a rolling counter + * for the remaining 15 bits. + */ +#define CT_SEQNO_MASK GENMASK(14, 0) +#define CT_SEQNO_UNTRACKED BIT(15) +static u16 next_ct_seqno(struct xe_guc_ct *ct, bool is_g2h_fence) +{ + u32 seqno = ct->fence_seqno++ & CT_SEQNO_MASK; + + if (!is_g2h_fence) + seqno |= CT_SEQNO_UNTRACKED; + + return seqno; +} + +static int __guc_ct_send_locked(struct xe_guc_ct *ct, const u32 *action, + u32 len, u32 g2h_len, u32 num_g2h, + struct g2h_fence *g2h_fence) +{ + struct xe_gt *gt __maybe_unused = ct_to_gt(ct); + u16 seqno; + int ret; + + xe_gt_assert(gt, ct->state != XE_GUC_CT_STATE_NOT_INITIALIZED); + xe_gt_assert(gt, !g2h_len || !g2h_fence); + xe_gt_assert(gt, !num_g2h || !g2h_fence); + xe_gt_assert(gt, !g2h_len || num_g2h); + xe_gt_assert(gt, g2h_len || !num_g2h); + lockdep_assert_held(&ct->lock); + + if (unlikely(ct->ctbs.h2g.info.broken)) { + ret = -EPIPE; + goto out; + } + + if (ct->state == XE_GUC_CT_STATE_DISABLED) { + ret = -ENODEV; + goto out; + } + + if (ct->state == XE_GUC_CT_STATE_STOPPED) { + ret = -ECANCELED; + goto out; + } + + xe_gt_assert(gt, xe_guc_ct_enabled(ct)); + + if (g2h_fence) { + g2h_len = GUC_CTB_HXG_MSG_MAX_LEN; + num_g2h = 1; + + if (g2h_fence_needs_alloc(g2h_fence)) { + g2h_fence->seqno = next_ct_seqno(ct, true); + ret = xa_err(xa_store(&ct->fence_lookup, + g2h_fence->seqno, g2h_fence, + GFP_ATOMIC)); + if (ret) + goto out; + } + + seqno = g2h_fence->seqno; + } else { + seqno = next_ct_seqno(ct, false); + } + + if (g2h_len) + spin_lock_irq(&ct->fast_lock); +retry: + ret = has_room(ct, len + GUC_CTB_HDR_LEN, g2h_len); + if (unlikely(ret)) + goto out_unlock; + + ret = h2g_write(ct, action, len, seqno, !!g2h_fence); + if (unlikely(ret)) { + if (ret == -EAGAIN) + goto retry; + goto out_unlock; + } + + __g2h_reserve_space(ct, g2h_len, num_g2h); + xe_guc_notify(ct_to_guc(ct)); +out_unlock: + if (g2h_len) + spin_unlock_irq(&ct->fast_lock); +out: + return ret; +} + +static void kick_reset(struct xe_guc_ct *ct) +{ + xe_gt_reset_async(ct_to_gt(ct)); +} + +static int dequeue_one_g2h(struct xe_guc_ct *ct); + +static int guc_ct_send_locked(struct xe_guc_ct *ct, const u32 *action, u32 len, + u32 g2h_len, u32 num_g2h, + struct g2h_fence *g2h_fence) +{ + struct xe_device *xe = ct_to_xe(ct); + struct xe_gt *gt = ct_to_gt(ct); + unsigned int sleep_period_ms = 1; + int ret; + + xe_gt_assert(gt, !g2h_len || !g2h_fence); + lockdep_assert_held(&ct->lock); + xe_device_assert_mem_access(ct_to_xe(ct)); + +try_again: + ret = __guc_ct_send_locked(ct, action, len, g2h_len, num_g2h, + g2h_fence); + + /* + * We wait to try to restore credits for about 1 second before bailing. + * In the case of H2G credits we have no choice but just to wait for the + * GuC to consume H2Gs in the channel so we use a wait / sleep loop. In + * the case of G2H we process any G2H in the channel, hopefully freeing + * credits as we consume the G2H messages. + */ + if (unlikely(ret == -EBUSY && + !h2g_has_room(ct, len + GUC_CTB_HDR_LEN))) { + struct guc_ctb *h2g = &ct->ctbs.h2g; + + if (sleep_period_ms == 1024) + goto broken; + + trace_xe_guc_ct_h2g_flow_control(xe, h2g->info.head, h2g->info.tail, + h2g->info.size, + h2g->info.space, + len + GUC_CTB_HDR_LEN); + msleep(sleep_period_ms); + sleep_period_ms <<= 1; + + goto try_again; + } else if (unlikely(ret == -EBUSY)) { + struct xe_device *xe = ct_to_xe(ct); + struct guc_ctb *g2h = &ct->ctbs.g2h; + + trace_xe_guc_ct_g2h_flow_control(xe, g2h->info.head, + desc_read(xe, g2h, tail), + g2h->info.size, + g2h->info.space, + g2h_fence ? + GUC_CTB_HXG_MSG_MAX_LEN : + g2h_len); + +#define g2h_avail(ct) \ + (desc_read(ct_to_xe(ct), (&ct->ctbs.g2h), tail) != ct->ctbs.g2h.info.head) + if (!wait_event_timeout(ct->wq, !ct->g2h_outstanding || + g2h_avail(ct), HZ)) + goto broken; +#undef g2h_avail + + ret = dequeue_one_g2h(ct); + if (ret < 0) { + if (ret != -ECANCELED) + xe_gt_err(ct_to_gt(ct), "CTB receive failed (%pe)", + ERR_PTR(ret)); + goto broken; + } + + goto try_again; + } + + return ret; + +broken: + xe_gt_err(gt, "No forward process on H2G, reset required\n"); + CT_DEAD(ct, &ct->ctbs.h2g, DEADLOCK); + + return -EDEADLK; +} + +static int guc_ct_send(struct xe_guc_ct *ct, const u32 *action, u32 len, + u32 g2h_len, u32 num_g2h, struct g2h_fence *g2h_fence) +{ + int ret; + + xe_gt_assert(ct_to_gt(ct), !g2h_len || !g2h_fence); + + mutex_lock(&ct->lock); + ret = guc_ct_send_locked(ct, action, len, g2h_len, num_g2h, g2h_fence); + mutex_unlock(&ct->lock); + + return ret; +} + +int xe_guc_ct_send(struct xe_guc_ct *ct, const u32 *action, u32 len, + u32 g2h_len, u32 num_g2h) +{ + int ret; + + ret = guc_ct_send(ct, action, len, g2h_len, num_g2h, NULL); + if (ret == -EDEADLK) + kick_reset(ct); + + return ret; +} + +int xe_guc_ct_send_locked(struct xe_guc_ct *ct, const u32 *action, u32 len, + u32 g2h_len, u32 num_g2h) +{ + int ret; + + ret = guc_ct_send_locked(ct, action, len, g2h_len, num_g2h, NULL); + if (ret == -EDEADLK) + kick_reset(ct); + + return ret; +} + +int xe_guc_ct_send_g2h_handler(struct xe_guc_ct *ct, const u32 *action, u32 len) +{ + int ret; + + lockdep_assert_held(&ct->lock); + + ret = guc_ct_send_locked(ct, action, len, 0, 0, NULL); + if (ret == -EDEADLK) + kick_reset(ct); + + return ret; +} + +/* + * Check if a GT reset is in progress or will occur and if GT reset brought the + * CT back up. Randomly picking 5 seconds for an upper limit to do a GT a reset. + */ +static bool retry_failure(struct xe_guc_ct *ct, int ret) +{ + if (!(ret == -EDEADLK || ret == -EPIPE || ret == -ENODEV)) + return false; + +#define ct_alive(ct) \ + (xe_guc_ct_enabled(ct) && !ct->ctbs.h2g.info.broken && \ + !ct->ctbs.g2h.info.broken) + if (!wait_event_interruptible_timeout(ct->wq, ct_alive(ct), HZ * 5)) + return false; +#undef ct_alive + + return true; +} + +static int guc_ct_send_recv(struct xe_guc_ct *ct, const u32 *action, u32 len, + u32 *response_buffer, bool no_fail) +{ + struct xe_gt *gt = ct_to_gt(ct); + struct g2h_fence g2h_fence; + int ret = 0; + + /* + * We use a fence to implement blocking sends / receiving response data. + * The seqno of the fence is sent in the H2G, returned in the G2H, and + * an xarray is used as storage media with the seqno being to key. + * Fields in the fence hold success, failure, retry status and the + * response data. Safe to allocate on the stack as the xarray is the + * only reference and it cannot be present after this function exits. + */ +retry: + g2h_fence_init(&g2h_fence, response_buffer); +retry_same_fence: + ret = guc_ct_send(ct, action, len, 0, 0, &g2h_fence); + if (unlikely(ret == -ENOMEM)) { + /* Retry allocation /w GFP_KERNEL */ + ret = xa_err(xa_store(&ct->fence_lookup, g2h_fence.seqno, + &g2h_fence, GFP_KERNEL)); + if (ret) + return ret; + + goto retry_same_fence; + } else if (unlikely(ret)) { + if (ret == -EDEADLK) + kick_reset(ct); + + if (no_fail && retry_failure(ct, ret)) + goto retry_same_fence; + + if (!g2h_fence_needs_alloc(&g2h_fence)) + xa_erase(&ct->fence_lookup, g2h_fence.seqno); + + return ret; + } + + ret = wait_event_timeout(ct->g2h_fence_wq, g2h_fence.done, HZ); + + /* + * Occasionally it is seen that the G2H worker starts running after a delay of more than + * a second even after being queued and activated by the Linux workqueue subsystem. This + * leads to G2H timeout error. The root cause of issue lies with scheduling latency of + * Lunarlake Hybrid CPU. Issue dissappears if we disable Lunarlake atom cores from BIOS + * and this is beyond xe kmd. + * + * TODO: Drop this change once workqueue scheduling delay issue is fixed on LNL Hybrid CPU. + */ + if (!ret) { + flush_work(&ct->g2h_worker); + if (g2h_fence.done) { + xe_gt_warn(gt, "G2H fence %u, action %04x, done\n", + g2h_fence.seqno, action[0]); + ret = 1; + } + } + + /* + * Ensure we serialize with completion side to prevent UAF with fence going out of scope on + * the stack, since we have no clue if it will fire after the timeout before we can erase + * from the xa. Also we have some dependent loads and stores below for which we need the + * correct ordering, and we lack the needed barriers. + */ + mutex_lock(&ct->lock); + if (!ret) { + xe_gt_err(gt, "Timed out wait for G2H, fence %u, action %04x, done %s", + g2h_fence.seqno, action[0], str_yes_no(g2h_fence.done)); + xa_erase(&ct->fence_lookup, g2h_fence.seqno); + mutex_unlock(&ct->lock); + return -ETIME; + } + + if (g2h_fence.retry) { + xe_gt_dbg(gt, "H2G action %#x retrying: reason %#x\n", + action[0], g2h_fence.reason); + mutex_unlock(&ct->lock); + goto retry; + } + if (g2h_fence.fail) { + xe_gt_err(gt, "H2G request %#x failed: error %#x hint %#x\n", + action[0], g2h_fence.error, g2h_fence.hint); + ret = -EIO; + } + + if (ret > 0) + ret = response_buffer ? g2h_fence.response_len : g2h_fence.response_data; + + mutex_unlock(&ct->lock); + + return ret; +} + +/** + * xe_guc_ct_send_recv - Send and receive HXG to the GuC + * @ct: the &xe_guc_ct + * @action: the dword array with `HXG Request`_ message (can't be NULL) + * @len: length of the `HXG Request`_ message (in dwords, can't be 0) + * @response_buffer: placeholder for the `HXG Response`_ message (can be NULL) + * + * Send a `HXG Request`_ message to the GuC over CT communication channel and + * blocks until GuC replies with a `HXG Response`_ message. + * + * For non-blocking communication with GuC use xe_guc_ct_send(). + * + * Note: The size of &response_buffer must be at least GUC_CTB_MAX_DWORDS_. + * + * Return: response length (in dwords) if &response_buffer was not NULL, or + * DATA0 from `HXG Response`_ if &response_buffer was NULL, or + * a negative error code on failure. + */ +int xe_guc_ct_send_recv(struct xe_guc_ct *ct, const u32 *action, u32 len, + u32 *response_buffer) +{ + KUNIT_STATIC_STUB_REDIRECT(xe_guc_ct_send_recv, ct, action, len, response_buffer); + return guc_ct_send_recv(ct, action, len, response_buffer, false); +} + +int xe_guc_ct_send_recv_no_fail(struct xe_guc_ct *ct, const u32 *action, + u32 len, u32 *response_buffer) +{ + return guc_ct_send_recv(ct, action, len, response_buffer, true); +} + +static u32 *msg_to_hxg(u32 *msg) +{ + return msg + GUC_CTB_MSG_MIN_LEN; +} + +static u32 msg_len_to_hxg_len(u32 len) +{ + return len - GUC_CTB_MSG_MIN_LEN; +} + +static int parse_g2h_event(struct xe_guc_ct *ct, u32 *msg, u32 len) +{ + u32 *hxg = msg_to_hxg(msg); + u32 action = FIELD_GET(GUC_HXG_EVENT_MSG_0_ACTION, hxg[0]); + + lockdep_assert_held(&ct->lock); + + switch (action) { + case XE_GUC_ACTION_SCHED_CONTEXT_MODE_DONE: + case XE_GUC_ACTION_DEREGISTER_CONTEXT_DONE: + case XE_GUC_ACTION_SCHED_ENGINE_MODE_DONE: + case XE_GUC_ACTION_TLB_INVALIDATION_DONE: + g2h_release_space(ct, len); + } + + return 0; +} + +static int parse_g2h_response(struct xe_guc_ct *ct, u32 *msg, u32 len) +{ + struct xe_gt *gt = ct_to_gt(ct); + u32 *hxg = msg_to_hxg(msg); + u32 hxg_len = msg_len_to_hxg_len(len); + u32 fence = FIELD_GET(GUC_CTB_MSG_0_FENCE, msg[0]); + u32 type = FIELD_GET(GUC_HXG_MSG_0_TYPE, hxg[0]); + struct g2h_fence *g2h_fence; + + lockdep_assert_held(&ct->lock); + + /* + * Fences for FAST_REQUEST messages are not tracked in ct->fence_lookup. + * Those messages should never fail, so if we do get an error back it + * means we're likely doing an illegal operation and the GuC is + * rejecting it. We have no way to inform the code that submitted the + * H2G that the message was rejected, so we need to escalate the + * failure to trigger a reset. + */ + if (fence & CT_SEQNO_UNTRACKED) { + if (type == GUC_HXG_TYPE_RESPONSE_FAILURE) + xe_gt_err(gt, "FAST_REQ H2G fence 0x%x failed! e=0x%x, h=%u\n", + fence, + FIELD_GET(GUC_HXG_FAILURE_MSG_0_ERROR, hxg[0]), + FIELD_GET(GUC_HXG_FAILURE_MSG_0_HINT, hxg[0])); + else + xe_gt_err(gt, "unexpected response %u for FAST_REQ H2G fence 0x%x!\n", + type, fence); + CT_DEAD(ct, NULL, PARSE_G2H_RESPONSE); + + return -EPROTO; + } + + g2h_fence = xa_erase(&ct->fence_lookup, fence); + if (unlikely(!g2h_fence)) { + /* Don't tear down channel, as send could've timed out */ + /* CT_DEAD(ct, NULL, PARSE_G2H_UNKNOWN); */ + xe_gt_warn(gt, "G2H fence (%u) not found!\n", fence); + g2h_release_space(ct, GUC_CTB_HXG_MSG_MAX_LEN); + return 0; + } + + xe_gt_assert(gt, fence == g2h_fence->seqno); + + if (type == GUC_HXG_TYPE_RESPONSE_FAILURE) { + g2h_fence->fail = true; + g2h_fence->error = FIELD_GET(GUC_HXG_FAILURE_MSG_0_ERROR, hxg[0]); + g2h_fence->hint = FIELD_GET(GUC_HXG_FAILURE_MSG_0_HINT, hxg[0]); + } else if (type == GUC_HXG_TYPE_NO_RESPONSE_RETRY) { + g2h_fence->retry = true; + g2h_fence->reason = FIELD_GET(GUC_HXG_RETRY_MSG_0_REASON, hxg[0]); + } else if (g2h_fence->response_buffer) { + g2h_fence->response_len = hxg_len; + memcpy(g2h_fence->response_buffer, hxg, hxg_len * sizeof(u32)); + } else { + g2h_fence->response_data = FIELD_GET(GUC_HXG_RESPONSE_MSG_0_DATA0, hxg[0]); + } + + g2h_release_space(ct, GUC_CTB_HXG_MSG_MAX_LEN); + + g2h_fence->done = true; + smp_mb(); + + wake_up_all(&ct->g2h_fence_wq); + + return 0; +} + +static int parse_g2h_msg(struct xe_guc_ct *ct, u32 *msg, u32 len) +{ + struct xe_gt *gt = ct_to_gt(ct); + u32 *hxg = msg_to_hxg(msg); + u32 origin, type; + int ret; + + lockdep_assert_held(&ct->lock); + + origin = FIELD_GET(GUC_HXG_MSG_0_ORIGIN, hxg[0]); + if (unlikely(origin != GUC_HXG_ORIGIN_GUC)) { + xe_gt_err(gt, "G2H channel broken on read, origin=%u, reset required\n", + origin); + CT_DEAD(ct, &ct->ctbs.g2h, PARSE_G2H_ORIGIN); + + return -EPROTO; + } + + type = FIELD_GET(GUC_HXG_MSG_0_TYPE, hxg[0]); + switch (type) { + case GUC_HXG_TYPE_EVENT: + ret = parse_g2h_event(ct, msg, len); + break; + case GUC_HXG_TYPE_RESPONSE_SUCCESS: + case GUC_HXG_TYPE_RESPONSE_FAILURE: + case GUC_HXG_TYPE_NO_RESPONSE_RETRY: + ret = parse_g2h_response(ct, msg, len); + break; + default: + xe_gt_err(gt, "G2H channel broken on read, type=%u, reset required\n", + type); + CT_DEAD(ct, &ct->ctbs.g2h, PARSE_G2H_TYPE); + + ret = -EOPNOTSUPP; + } + + return ret; +} + +static int process_g2h_msg(struct xe_guc_ct *ct, u32 *msg, u32 len) +{ + struct xe_guc *guc = ct_to_guc(ct); + struct xe_gt *gt = ct_to_gt(ct); + u32 hxg_len = msg_len_to_hxg_len(len); + u32 *hxg = msg_to_hxg(msg); + u32 action, adj_len; + u32 *payload; + int ret = 0; + + if (FIELD_GET(GUC_HXG_MSG_0_TYPE, hxg[0]) != GUC_HXG_TYPE_EVENT) + return 0; + + action = FIELD_GET(GUC_HXG_EVENT_MSG_0_ACTION, hxg[0]); + payload = hxg + GUC_HXG_EVENT_MSG_MIN_LEN; + adj_len = hxg_len - GUC_HXG_EVENT_MSG_MIN_LEN; + + switch (action) { + case XE_GUC_ACTION_SCHED_CONTEXT_MODE_DONE: + ret = xe_guc_sched_done_handler(guc, payload, adj_len); + break; + case XE_GUC_ACTION_DEREGISTER_CONTEXT_DONE: + ret = xe_guc_deregister_done_handler(guc, payload, adj_len); + break; + case XE_GUC_ACTION_CONTEXT_RESET_NOTIFICATION: + ret = xe_guc_exec_queue_reset_handler(guc, payload, adj_len); + break; + case XE_GUC_ACTION_ENGINE_FAILURE_NOTIFICATION: + ret = xe_guc_exec_queue_reset_failure_handler(guc, payload, + adj_len); + break; + case XE_GUC_ACTION_SCHED_ENGINE_MODE_DONE: + /* Selftest only at the moment */ + break; + case XE_GUC_ACTION_STATE_CAPTURE_NOTIFICATION: + ret = xe_guc_error_capture_handler(guc, payload, adj_len); + break; + case XE_GUC_ACTION_NOTIFY_FLUSH_LOG_BUFFER_TO_FILE: + /* FIXME: Handle this */ + break; + case XE_GUC_ACTION_NOTIFY_MEMORY_CAT_ERROR: + ret = xe_guc_exec_queue_memory_cat_error_handler(guc, payload, + adj_len); + break; + case XE_GUC_ACTION_REPORT_PAGE_FAULT_REQ_DESC: + ret = xe_guc_pagefault_handler(guc, payload, adj_len); + break; + case XE_GUC_ACTION_TLB_INVALIDATION_DONE: + ret = xe_guc_tlb_invalidation_done_handler(guc, payload, + adj_len); + break; + case XE_GUC_ACTION_ACCESS_COUNTER_NOTIFY: + ret = xe_guc_access_counter_notify_handler(guc, payload, + adj_len); + break; + case XE_GUC_ACTION_GUC2PF_RELAY_FROM_VF: + ret = xe_guc_relay_process_guc2pf(&guc->relay, hxg, hxg_len); + break; + case XE_GUC_ACTION_GUC2VF_RELAY_FROM_PF: + ret = xe_guc_relay_process_guc2vf(&guc->relay, hxg, hxg_len); + break; + case GUC_ACTION_GUC2PF_VF_STATE_NOTIFY: + ret = xe_gt_sriov_pf_control_process_guc2pf(gt, hxg, hxg_len); + break; + case GUC_ACTION_GUC2PF_ADVERSE_EVENT: + ret = xe_gt_sriov_pf_monitor_process_guc2pf(gt, hxg, hxg_len); + break; + default: + xe_gt_err(gt, "unexpected G2H action 0x%04x\n", action); + } + + if (ret) { + xe_gt_err(gt, "G2H action 0x%04x failed (%pe)\n", + action, ERR_PTR(ret)); + CT_DEAD(ct, NULL, PROCESS_FAILED); + } + + return 0; +} + +static int g2h_read(struct xe_guc_ct *ct, u32 *msg, bool fast_path) +{ + struct xe_device *xe = ct_to_xe(ct); + struct xe_gt *gt = ct_to_gt(ct); + struct guc_ctb *g2h = &ct->ctbs.g2h; + u32 tail, head, len, desc_status; + s32 avail; + u32 action; + u32 *hxg; + + xe_gt_assert(gt, ct->state != XE_GUC_CT_STATE_NOT_INITIALIZED); + lockdep_assert_held(&ct->fast_lock); + + if (ct->state == XE_GUC_CT_STATE_DISABLED) + return -ENODEV; + + if (ct->state == XE_GUC_CT_STATE_STOPPED) + return -ECANCELED; + + if (g2h->info.broken) + return -EPIPE; + + xe_gt_assert(gt, xe_guc_ct_enabled(ct)); + + desc_status = desc_read(xe, g2h, status); + if (desc_status) { + if (desc_status & GUC_CTB_STATUS_DISABLED) { + /* + * Potentially valid if a CLIENT_RESET request resulted in + * contexts/engines being reset. But should never happen as + * no contexts should be active when CLIENT_RESET is sent. + */ + xe_gt_err(gt, "CT read: unexpected G2H after GuC has stopped!\n"); + desc_status &= ~GUC_CTB_STATUS_DISABLED; + } + + if (desc_status) { + xe_gt_err(gt, "CT read: non-zero status: %u\n", desc_status); + goto corrupted; + } + } + + if (IS_ENABLED(CONFIG_DRM_XE_DEBUG)) { + u32 desc_tail = desc_read(xe, g2h, tail); + /* + u32 desc_head = desc_read(xe, g2h, head); + + * info.head and desc_head are updated back-to-back at the end of + * this function and nowhere else. Hence, they cannot be different + * unless two g2h_read calls are running concurrently. Which is not + * possible because it is guarded by ct->fast_lock. And yet, some + * discrete platforms are reguarly hitting this error :(. + * + * desc_head rolling backwards shouldn't cause any noticeable + * problems - just a delay in GuC being allowed to proceed past that + * point in the queue. So for now, just disable the error until it + * can be root caused. + * + if (g2h->info.head != desc_head) { + desc_write(xe, g2h, status, desc_status | GUC_CTB_STATUS_MISMATCH); + xe_gt_err(gt, "CT read: head was modified %u != %u\n", + desc_head, g2h->info.head); + goto corrupted; + } + */ + + if (g2h->info.head > g2h->info.size) { + desc_write(xe, g2h, status, desc_status | GUC_CTB_STATUS_OVERFLOW); + xe_gt_err(gt, "CT read: head out of range: %u vs %u\n", + g2h->info.head, g2h->info.size); + goto corrupted; + } + + if (desc_tail >= g2h->info.size) { + desc_write(xe, g2h, status, desc_status | GUC_CTB_STATUS_OVERFLOW); + xe_gt_err(gt, "CT read: invalid tail offset %u >= %u)\n", + desc_tail, g2h->info.size); + goto corrupted; + } + } + + /* Calculate DW available to read */ + tail = desc_read(xe, g2h, tail); + avail = tail - g2h->info.head; + if (unlikely(avail == 0)) + return 0; + + if (avail < 0) + avail += g2h->info.size; + + /* Read header */ + xe_map_memcpy_from(xe, msg, &g2h->cmds, sizeof(u32) * g2h->info.head, + sizeof(u32)); + len = FIELD_GET(GUC_CTB_MSG_0_NUM_DWORDS, msg[0]) + GUC_CTB_MSG_MIN_LEN; + if (len > avail) { + xe_gt_err(gt, "G2H channel broken on read, avail=%d, len=%d, reset required\n", + avail, len); + goto corrupted; + } + + head = (g2h->info.head + 1) % g2h->info.size; + avail = len - 1; + + /* Read G2H message */ + if (avail + head > g2h->info.size) { + u32 avail_til_wrap = g2h->info.size - head; + + xe_map_memcpy_from(xe, msg + 1, + &g2h->cmds, sizeof(u32) * head, + avail_til_wrap * sizeof(u32)); + xe_map_memcpy_from(xe, msg + 1 + avail_til_wrap, + &g2h->cmds, 0, + (avail - avail_til_wrap) * sizeof(u32)); + } else { + xe_map_memcpy_from(xe, msg + 1, + &g2h->cmds, sizeof(u32) * head, + avail * sizeof(u32)); + } + + hxg = msg_to_hxg(msg); + action = FIELD_GET(GUC_HXG_EVENT_MSG_0_ACTION, hxg[0]); + + if (fast_path) { + if (FIELD_GET(GUC_HXG_MSG_0_TYPE, hxg[0]) != GUC_HXG_TYPE_EVENT) + return 0; + + switch (action) { + case XE_GUC_ACTION_REPORT_PAGE_FAULT_REQ_DESC: + case XE_GUC_ACTION_TLB_INVALIDATION_DONE: + break; /* Process these in fast-path */ + default: + return 0; + } + } + + /* Update local / descriptor header */ + g2h->info.head = (head + avail) % g2h->info.size; + desc_write(xe, g2h, head, g2h->info.head); + + trace_xe_guc_ctb_g2h(xe, ct_to_gt(ct)->info.id, + action, len, g2h->info.head, tail); + + return len; + +corrupted: + CT_DEAD(ct, &ct->ctbs.g2h, G2H_READ); + return -EPROTO; +} + +static void g2h_fast_path(struct xe_guc_ct *ct, u32 *msg, u32 len) +{ + struct xe_gt *gt = ct_to_gt(ct); + struct xe_guc *guc = ct_to_guc(ct); + u32 hxg_len = msg_len_to_hxg_len(len); + u32 *hxg = msg_to_hxg(msg); + u32 action = FIELD_GET(GUC_HXG_EVENT_MSG_0_ACTION, hxg[0]); + u32 *payload = hxg + GUC_HXG_MSG_MIN_LEN; + u32 adj_len = hxg_len - GUC_HXG_MSG_MIN_LEN; + int ret = 0; + + switch (action) { + case XE_GUC_ACTION_REPORT_PAGE_FAULT_REQ_DESC: + ret = xe_guc_pagefault_handler(guc, payload, adj_len); + break; + case XE_GUC_ACTION_TLB_INVALIDATION_DONE: + __g2h_release_space(ct, len); + ret = xe_guc_tlb_invalidation_done_handler(guc, payload, + adj_len); + break; + default: + xe_gt_warn(gt, "NOT_POSSIBLE"); + } + + if (ret) { + xe_gt_err(gt, "G2H action 0x%04x failed (%pe)\n", + action, ERR_PTR(ret)); + CT_DEAD(ct, NULL, FAST_G2H); + } +} + +/** + * xe_guc_ct_fast_path - process critical G2H in the IRQ handler + * @ct: GuC CT object + * + * Anything related to page faults is critical for performance, process these + * critical G2H in the IRQ. This is safe as these handlers either just wake up + * waiters or queue another worker. + */ +void xe_guc_ct_fast_path(struct xe_guc_ct *ct) +{ + struct xe_device *xe = ct_to_xe(ct); + bool ongoing; + int len; + + ongoing = xe_pm_runtime_get_if_active(ct_to_xe(ct)); + if (!ongoing && xe_pm_read_callback_task(ct_to_xe(ct)) == NULL) + return; + + spin_lock(&ct->fast_lock); + do { + len = g2h_read(ct, ct->fast_msg, true); + if (len > 0) + g2h_fast_path(ct, ct->fast_msg, len); + } while (len > 0); + spin_unlock(&ct->fast_lock); + + if (ongoing) + xe_pm_runtime_put(xe); +} + +/* Returns less than zero on error, 0 on done, 1 on more available */ +static int dequeue_one_g2h(struct xe_guc_ct *ct) +{ + int len; + int ret; + + lockdep_assert_held(&ct->lock); + + spin_lock_irq(&ct->fast_lock); + len = g2h_read(ct, ct->msg, false); + spin_unlock_irq(&ct->fast_lock); + if (len <= 0) + return len; + + ret = parse_g2h_msg(ct, ct->msg, len); + if (unlikely(ret < 0)) + return ret; + + ret = process_g2h_msg(ct, ct->msg, len); + if (unlikely(ret < 0)) + return ret; + + return 1; +} + +static void receive_g2h(struct xe_guc_ct *ct) +{ + bool ongoing; + int ret; + + /* + * Normal users must always hold mem_access.ref around CT calls. However + * during the runtime pm callbacks we rely on CT to talk to the GuC, but + * at this stage we can't rely on mem_access.ref and even the + * callback_task will be different than current. For such cases we just + * need to ensure we always process the responses from any blocking + * ct_send requests or where we otherwise expect some response when + * initiated from those callbacks (which will need to wait for the below + * dequeue_one_g2h()). The dequeue_one_g2h() will gracefully fail if + * the device has suspended to the point that the CT communication has + * been disabled. + * + * If we are inside the runtime pm callback, we can be the only task + * still issuing CT requests (since that requires having the + * mem_access.ref). It seems like it might in theory be possible to + * receive unsolicited events from the GuC just as we are + * suspending-resuming, but those will currently anyway be lost when + * eventually exiting from suspend, hence no need to wake up the device + * here. If we ever need something stronger than get_if_ongoing() then + * we need to be careful with blocking the pm callbacks from getting CT + * responses, if the worker here is blocked on those callbacks + * completing, creating a deadlock. + */ + ongoing = xe_pm_runtime_get_if_active(ct_to_xe(ct)); + if (!ongoing && xe_pm_read_callback_task(ct_to_xe(ct)) == NULL) + return; + + do { + mutex_lock(&ct->lock); + ret = dequeue_one_g2h(ct); + mutex_unlock(&ct->lock); + + if (unlikely(ret == -EPROTO || ret == -EOPNOTSUPP)) { + xe_gt_err(ct_to_gt(ct), "CT dequeue failed: %d", ret); + CT_DEAD(ct, NULL, G2H_RECV); + kick_reset(ct); + } + } while (ret == 1); + + if (ongoing) + xe_pm_runtime_put(ct_to_xe(ct)); +} + +static void g2h_worker_func(struct work_struct *w) +{ + struct xe_guc_ct *ct = container_of(w, struct xe_guc_ct, g2h_worker); + + receive_g2h(ct); +} + +struct xe_guc_ct_snapshot *xe_guc_ct_snapshot_alloc(struct xe_guc_ct *ct, bool atomic) +{ + struct xe_guc_ct_snapshot *snapshot; + + snapshot = kzalloc(sizeof(*snapshot), atomic ? GFP_ATOMIC : GFP_KERNEL); + if (!snapshot) + return NULL; + + if (ct->bo) { + snapshot->ctb_size = ct->bo->size; + snapshot->ctb = kmalloc(snapshot->ctb_size, atomic ? GFP_ATOMIC : GFP_KERNEL); + } + + return snapshot; +} + +static void guc_ctb_snapshot_capture(struct xe_device *xe, struct guc_ctb *ctb, + struct guc_ctb_snapshot *snapshot) +{ + xe_map_memcpy_from(xe, &snapshot->desc, &ctb->desc, 0, + sizeof(struct guc_ct_buffer_desc)); + memcpy(&snapshot->info, &ctb->info, sizeof(struct guc_ctb_info)); +} + +static void guc_ctb_snapshot_print(struct guc_ctb_snapshot *snapshot, + struct drm_printer *p) +{ + drm_printf(p, "\tsize: %d\n", snapshot->info.size); + drm_printf(p, "\tresv_space: %d\n", snapshot->info.resv_space); + drm_printf(p, "\thead: %d\n", snapshot->info.head); + drm_printf(p, "\ttail: %d\n", snapshot->info.tail); + drm_printf(p, "\tspace: %d\n", snapshot->info.space); + drm_printf(p, "\tbroken: %d\n", snapshot->info.broken); + drm_printf(p, "\thead (memory): %d\n", snapshot->desc.head); + drm_printf(p, "\ttail (memory): %d\n", snapshot->desc.tail); + drm_printf(p, "\tstatus (memory): 0x%x\n", snapshot->desc.status); +} + +/** + * xe_guc_ct_snapshot_capture - Take a quick snapshot of the CT state. + * @ct: GuC CT object. + * @atomic: Boolean to indicate if this is called from atomic context like + * reset or CTB handler or from some regular path like debugfs. + * + * This can be printed out in a later stage like during dev_coredump + * analysis. + * + * Returns: a GuC CT snapshot object that must be freed by the caller + * by using `xe_guc_ct_snapshot_free`. + */ +struct xe_guc_ct_snapshot *xe_guc_ct_snapshot_capture(struct xe_guc_ct *ct, + bool atomic) +{ + struct xe_device *xe = ct_to_xe(ct); + struct xe_guc_ct_snapshot *snapshot; + + snapshot = xe_guc_ct_snapshot_alloc(ct, atomic); + if (!snapshot) { + xe_gt_err(ct_to_gt(ct), "Skipping CTB snapshot entirely.\n"); + return NULL; + } + + if (xe_guc_ct_enabled(ct) || ct->state == XE_GUC_CT_STATE_STOPPED) { + snapshot->ct_enabled = true; + snapshot->g2h_outstanding = READ_ONCE(ct->g2h_outstanding); + guc_ctb_snapshot_capture(xe, &ct->ctbs.h2g, &snapshot->h2g); + guc_ctb_snapshot_capture(xe, &ct->ctbs.g2h, &snapshot->g2h); + } + + if (ct->bo && snapshot->ctb) + xe_map_memcpy_from(xe, snapshot->ctb, &ct->bo->vmap, 0, snapshot->ctb_size); + + return snapshot; +} + +/** + * xe_guc_ct_snapshot_print - Print out a given GuC CT snapshot. + * @snapshot: GuC CT snapshot object. + * @p: drm_printer where it will be printed out. + * + * This function prints out a given GuC CT snapshot object. + */ +void xe_guc_ct_snapshot_print(struct xe_guc_ct_snapshot *snapshot, + struct drm_printer *p) +{ + if (!snapshot) + return; + + if (snapshot->ct_enabled) { + drm_puts(p, "H2G CTB (all sizes in DW):\n"); + guc_ctb_snapshot_print(&snapshot->h2g, p); + + drm_puts(p, "G2H CTB (all sizes in DW):\n"); + guc_ctb_snapshot_print(&snapshot->g2h, p); + drm_printf(p, "\tg2h outstanding: %d\n", + snapshot->g2h_outstanding); + + if (snapshot->ctb) { + xe_print_blob_ascii85(p, "CTB data", snapshot->ctb, 0, snapshot->ctb_size); + } else { + drm_printf(p, "CTB snapshot missing!\n"); + return; + } + } else { + drm_puts(p, "CT disabled\n"); + } +} + +/** + * xe_guc_ct_snapshot_free - Free all allocated objects for a given snapshot. + * @snapshot: GuC CT snapshot object. + * + * This function free all the memory that needed to be allocated at capture + * time. + */ +void xe_guc_ct_snapshot_free(struct xe_guc_ct_snapshot *snapshot) +{ + if (!snapshot) + return; + + kfree(snapshot->ctb); + kfree(snapshot); +} + +/** + * xe_guc_ct_print - GuC CT Print. + * @ct: GuC CT. + * @p: drm_printer where it will be printed out. + * + * This function quickly capture a snapshot and immediately print it out. + */ +void xe_guc_ct_print(struct xe_guc_ct *ct, struct drm_printer *p) +{ + struct xe_guc_ct_snapshot *snapshot; + + snapshot = xe_guc_ct_snapshot_capture(ct, false); + xe_guc_ct_snapshot_print(snapshot, p); + xe_guc_ct_snapshot_free(snapshot); +} + +#if IS_ENABLED(CONFIG_DRM_XE_DEBUG) +static void ct_dead_capture(struct xe_guc_ct *ct, struct guc_ctb *ctb, u32 reason_code) +{ + struct xe_guc_log_snapshot *snapshot_log; + struct xe_guc_ct_snapshot *snapshot_ct; + struct xe_guc *guc = ct_to_guc(ct); + unsigned long flags; + bool have_capture; + + if (ctb) + ctb->info.broken = true; + + /* Ignore further errors after the first dump until a reset */ + if (ct->dead.reported) + return; + + spin_lock_irqsave(&ct->dead.lock, flags); + + /* And only capture one dump at a time */ + have_capture = ct->dead.reason & (1 << CT_DEAD_STATE_CAPTURE); + ct->dead.reason |= (1 << reason_code) | + (1 << CT_DEAD_STATE_CAPTURE); + + spin_unlock_irqrestore(&ct->dead.lock, flags); + + if (have_capture) + return; + + snapshot_log = xe_guc_log_snapshot_capture(&guc->log, true); + snapshot_ct = xe_guc_ct_snapshot_capture((ct), true); + + spin_lock_irqsave(&ct->dead.lock, flags); + + if (ct->dead.snapshot_log || ct->dead.snapshot_ct) { + xe_gt_err(ct_to_gt(ct), "Got unexpected dead CT capture!\n"); + xe_guc_log_snapshot_free(snapshot_log); + xe_guc_ct_snapshot_free(snapshot_ct); + } else { + ct->dead.snapshot_log = snapshot_log; + ct->dead.snapshot_ct = snapshot_ct; + } + + spin_unlock_irqrestore(&ct->dead.lock, flags); + + queue_work(system_unbound_wq, &(ct)->dead.worker); +} + +static void ct_dead_print(struct xe_dead_ct *dead) +{ + struct xe_guc_ct *ct = container_of(dead, struct xe_guc_ct, dead); + struct xe_device *xe = ct_to_xe(ct); + struct xe_gt *gt = ct_to_gt(ct); + static int g_count; + struct drm_printer ip = xe_gt_info_printer(gt); + struct drm_printer lp = drm_line_printer(&ip, "Capture", ++g_count); + + if (!dead->reason) { + xe_gt_err(gt, "CTB is dead for no reason!?\n"); + return; + } + + drm_printf(&lp, "CTB is dead - reason=0x%X\n", dead->reason); + + /* Can't generate a genuine core dump at this point, so just do the good bits */ + drm_puts(&lp, "**** Xe Device Coredump ****\n"); + xe_device_snapshot_print(xe, &lp); + + drm_printf(&lp, "**** GT #%d ****\n", gt->info.id); + drm_printf(&lp, "\tTile: %d\n", gt->tile->id); + + drm_puts(&lp, "**** GuC Log ****\n"); + xe_guc_log_snapshot_print(dead->snapshot_log, &lp); + + drm_puts(&lp, "**** GuC CT ****\n"); + xe_guc_ct_snapshot_print(dead->snapshot_ct, &lp); + + drm_puts(&lp, "Done.\n"); +} + +static void ct_dead_worker_func(struct work_struct *w) +{ + struct xe_guc_ct *ct = container_of(w, struct xe_guc_ct, dead.worker); + + if (!ct->dead.reported) { + ct->dead.reported = true; + ct_dead_print(&ct->dead); + } + + spin_lock_irq(&ct->dead.lock); + + xe_guc_log_snapshot_free(ct->dead.snapshot_log); + ct->dead.snapshot_log = NULL; + xe_guc_ct_snapshot_free(ct->dead.snapshot_ct); + ct->dead.snapshot_ct = NULL; + + if (ct->dead.reason & (1 << CT_DEAD_STATE_REARM)) { + /* A reset has occurred so re-arm the error reporting */ + ct->dead.reason = 0; + ct->dead.reported = false; + } + + spin_unlock_irq(&ct->dead.lock); +} +#endif diff --git a/rr-cache/0ace7964b1b2d66224889bcf0b6a7a221776d8c8/preimage b/rr-cache/0ace7964b1b2d66224889bcf0b6a7a221776d8c8/preimage new file mode 100644 index 000000000000..d3838661f4b9 --- /dev/null +++ b/rr-cache/0ace7964b1b2d66224889bcf0b6a7a221776d8c8/preimage @@ -0,0 +1,1866 @@ +// SPDX-License-Identifier: MIT +/* + * Copyright © 2022 Intel Corporation + */ + +#include "xe_guc_ct.h" + +#include <linux/bitfield.h> +#include <linux/circ_buf.h> +#include <linux/delay.h> +#include <linux/fault-inject.h> + +#include <kunit/static_stub.h> + +#include <drm/drm_managed.h> + +#include "abi/guc_actions_abi.h" +#include "abi/guc_actions_sriov_abi.h" +#include "abi/guc_klvs_abi.h" +#include "xe_bo.h" +#include "xe_devcoredump.h" +#include "xe_device.h" +#include "xe_gt.h" +#include "xe_gt_pagefault.h" +#include "xe_gt_printk.h" +#include "xe_gt_sriov_pf_control.h" +#include "xe_gt_sriov_pf_monitor.h" +#include "xe_gt_tlb_invalidation.h" +#include "xe_guc.h" +#include "xe_guc_log.h" +#include "xe_guc_relay.h" +#include "xe_guc_submit.h" +#include "xe_map.h" +#include "xe_pm.h" +#include "xe_trace_guc.h" + +#if IS_ENABLED(CONFIG_DRM_XE_DEBUG) +enum { + /* Internal states, not error conditions */ + CT_DEAD_STATE_REARM, /* 0x0001 */ + CT_DEAD_STATE_CAPTURE, /* 0x0002 */ + + /* Error conditions */ + CT_DEAD_SETUP, /* 0x0004 */ + CT_DEAD_H2G_WRITE, /* 0x0008 */ + CT_DEAD_H2G_HAS_ROOM, /* 0x0010 */ + CT_DEAD_G2H_READ, /* 0x0020 */ + CT_DEAD_G2H_RECV, /* 0x0040 */ + CT_DEAD_G2H_RELEASE, /* 0x0080 */ + CT_DEAD_DEADLOCK, /* 0x0100 */ + CT_DEAD_PROCESS_FAILED, /* 0x0200 */ + CT_DEAD_FAST_G2H, /* 0x0400 */ + CT_DEAD_PARSE_G2H_RESPONSE, /* 0x0800 */ + CT_DEAD_PARSE_G2H_UNKNOWN, /* 0x1000 */ + CT_DEAD_PARSE_G2H_ORIGIN, /* 0x2000 */ + CT_DEAD_PARSE_G2H_TYPE, /* 0x4000 */ +}; + +static void ct_dead_worker_func(struct work_struct *w); +static void ct_dead_capture(struct xe_guc_ct *ct, struct guc_ctb *ctb, u32 reason_code); + +#define CT_DEAD(ct, ctb, reason_code) ct_dead_capture((ct), (ctb), CT_DEAD_##reason_code) +#else +#define CT_DEAD(ct, ctb, reason) \ + do { \ + struct guc_ctb *_ctb = (ctb); \ + if (_ctb) \ + _ctb->info.broken = true; \ + } while (0) +#endif + +/* Used when a CT send wants to block and / or receive data */ +struct g2h_fence { + u32 *response_buffer; + u32 seqno; + u32 response_data; + u16 response_len; + u16 error; + u16 hint; + u16 reason; + bool retry; + bool fail; + bool done; +}; + +static void g2h_fence_init(struct g2h_fence *g2h_fence, u32 *response_buffer) +{ + g2h_fence->response_buffer = response_buffer; + g2h_fence->response_data = 0; + g2h_fence->response_len = 0; + g2h_fence->fail = false; + g2h_fence->retry = false; + g2h_fence->done = false; + g2h_fence->seqno = ~0x0; +} + +static bool g2h_fence_needs_alloc(struct g2h_fence *g2h_fence) +{ + return g2h_fence->seqno == ~0x0; +} + +static struct xe_guc * +ct_to_guc(struct xe_guc_ct *ct) +{ + return container_of(ct, struct xe_guc, ct); +} + +static struct xe_gt * +ct_to_gt(struct xe_guc_ct *ct) +{ + return container_of(ct, struct xe_gt, uc.guc.ct); +} + +static struct xe_device * +ct_to_xe(struct xe_guc_ct *ct) +{ + return gt_to_xe(ct_to_gt(ct)); +} + +/** + * DOC: GuC CTB Blob + * + * We allocate single blob to hold both CTB descriptors and buffers: + * + * +--------+-----------------------------------------------+------+ + * | offset | contents | size | + * +========+===============================================+======+ + * | 0x0000 | H2G CTB Descriptor (send) | | + * +--------+-----------------------------------------------+ 4K | + * | 0x0800 | G2H CTB Descriptor (g2h) | | + * +--------+-----------------------------------------------+------+ + * | 0x1000 | H2G CT Buffer (send) | n*4K | + * | | | | + * +--------+-----------------------------------------------+------+ + * | 0x1000 | G2H CT Buffer (g2h) | m*4K | + * | + n*4K | | | + * +--------+-----------------------------------------------+------+ + * + * Size of each ``CT Buffer`` must be multiple of 4K. + * We don't expect too many messages in flight at any time, unless we are + * using the GuC submission. In that case each request requires a minimum + * 2 dwords which gives us a maximum 256 queue'd requests. Hopefully this + * enough space to avoid backpressure on the driver. We increase the size + * of the receive buffer (relative to the send) to ensure a G2H response + * CTB has a landing spot. + * + * In addition to submissions, the G2H buffer needs to be able to hold + * enough space for recoverable page fault notifications. The number of + * page faults is interrupt driven and can be as much as the number of + * compute resources available. However, most of the actual work for these + * is in a separate page fault worker thread. Therefore we only need to + * make sure the queue has enough space to handle all of the submissions + * and responses and an extra buffer for incoming page faults. + */ + +#define CTB_DESC_SIZE ALIGN(sizeof(struct guc_ct_buffer_desc), SZ_2K) +#define CTB_H2G_BUFFER_SIZE (SZ_4K) +#define CTB_G2H_BUFFER_SIZE (SZ_128K) +#define G2H_ROOM_BUFFER_SIZE (CTB_G2H_BUFFER_SIZE / 2) + +/** + * xe_guc_ct_queue_proc_time_jiffies - Return maximum time to process a full + * CT command queue + * @ct: the &xe_guc_ct. Unused at this moment but will be used in the future. + * + * Observation is that a 4KiB buffer full of commands takes a little over a + * second to process. Use that to calculate maximum time to process a full CT + * command queue. + * + * Return: Maximum time to process a full CT queue in jiffies. + */ +long xe_guc_ct_queue_proc_time_jiffies(struct xe_guc_ct *ct) +{ + BUILD_BUG_ON(!IS_ALIGNED(CTB_H2G_BUFFER_SIZE, SZ_4)); + return (CTB_H2G_BUFFER_SIZE / SZ_4K) * HZ; +} + +static size_t guc_ct_size(void) +{ + return 2 * CTB_DESC_SIZE + CTB_H2G_BUFFER_SIZE + + CTB_G2H_BUFFER_SIZE; +} + +static void guc_ct_fini(struct drm_device *drm, void *arg) +{ + struct xe_guc_ct *ct = arg; + + destroy_workqueue(ct->g2h_wq); + xa_destroy(&ct->fence_lookup); +} + +static void receive_g2h(struct xe_guc_ct *ct); +static void g2h_worker_func(struct work_struct *w); +static void safe_mode_worker_func(struct work_struct *w); + +static void primelockdep(struct xe_guc_ct *ct) +{ + if (!IS_ENABLED(CONFIG_LOCKDEP)) + return; + + fs_reclaim_acquire(GFP_KERNEL); + might_lock(&ct->lock); + fs_reclaim_release(GFP_KERNEL); +} + +int xe_guc_ct_init(struct xe_guc_ct *ct) +{ + struct xe_device *xe = ct_to_xe(ct); + struct xe_gt *gt = ct_to_gt(ct); + struct xe_tile *tile = gt_to_tile(gt); + struct xe_bo *bo; + int err; + + xe_gt_assert(gt, !(guc_ct_size() % PAGE_SIZE)); + + ct->g2h_wq = alloc_ordered_workqueue("xe-g2h-wq", 0); + if (!ct->g2h_wq) + return -ENOMEM; + + spin_lock_init(&ct->fast_lock); + xa_init(&ct->fence_lookup); + INIT_WORK(&ct->g2h_worker, g2h_worker_func); + INIT_DELAYED_WORK(&ct->safe_mode_worker, safe_mode_worker_func); +#if IS_ENABLED(CONFIG_DRM_XE_DEBUG) + spin_lock_init(&ct->dead.lock); + INIT_WORK(&ct->dead.worker, ct_dead_worker_func); +#endif + init_waitqueue_head(&ct->wq); + init_waitqueue_head(&ct->g2h_fence_wq); + + err = drmm_mutex_init(&xe->drm, &ct->lock); + if (err) + return err; + + primelockdep(ct); + + bo = xe_managed_bo_create_pin_map(xe, tile, guc_ct_size(), + XE_BO_FLAG_SYSTEM | + XE_BO_FLAG_GGTT | + XE_BO_FLAG_GGTT_INVALIDATE); + if (IS_ERR(bo)) + return PTR_ERR(bo); + + ct->bo = bo; + + err = drmm_add_action_or_reset(&xe->drm, guc_ct_fini, ct); + if (err) + return err; + + xe_gt_assert(gt, ct->state == XE_GUC_CT_STATE_NOT_INITIALIZED); + ct->state = XE_GUC_CT_STATE_DISABLED; + return 0; +} +ALLOW_ERROR_INJECTION(xe_guc_ct_init, ERRNO); /* See xe_pci_probe() */ + +#define desc_read(xe_, guc_ctb__, field_) \ + xe_map_rd_field(xe_, &guc_ctb__->desc, 0, \ + struct guc_ct_buffer_desc, field_) + +#define desc_write(xe_, guc_ctb__, field_, val_) \ + xe_map_wr_field(xe_, &guc_ctb__->desc, 0, \ + struct guc_ct_buffer_desc, field_, val_) + +static void guc_ct_ctb_h2g_init(struct xe_device *xe, struct guc_ctb *h2g, + struct iosys_map *map) +{ + h2g->info.size = CTB_H2G_BUFFER_SIZE / sizeof(u32); + h2g->info.resv_space = 0; + h2g->info.tail = 0; + h2g->info.head = 0; + h2g->info.space = CIRC_SPACE(h2g->info.tail, h2g->info.head, + h2g->info.size) - + h2g->info.resv_space; + h2g->info.broken = false; + + h2g->desc = *map; + xe_map_memset(xe, &h2g->desc, 0, 0, sizeof(struct guc_ct_buffer_desc)); + + h2g->cmds = IOSYS_MAP_INIT_OFFSET(map, CTB_DESC_SIZE * 2); +} + +static void guc_ct_ctb_g2h_init(struct xe_device *xe, struct guc_ctb *g2h, + struct iosys_map *map) +{ + g2h->info.size = CTB_G2H_BUFFER_SIZE / sizeof(u32); + g2h->info.resv_space = G2H_ROOM_BUFFER_SIZE / sizeof(u32); + g2h->info.head = 0; + g2h->info.tail = 0; + g2h->info.space = CIRC_SPACE(g2h->info.tail, g2h->info.head, + g2h->info.size) - + g2h->info.resv_space; + g2h->info.broken = false; + + g2h->desc = IOSYS_MAP_INIT_OFFSET(map, CTB_DESC_SIZE); + xe_map_memset(xe, &g2h->desc, 0, 0, sizeof(struct guc_ct_buffer_desc)); + + g2h->cmds = IOSYS_MAP_INIT_OFFSET(map, CTB_DESC_SIZE * 2 + + CTB_H2G_BUFFER_SIZE); +} + +static int guc_ct_ctb_h2g_register(struct xe_guc_ct *ct) +{ + struct xe_guc *guc = ct_to_guc(ct); + u32 desc_addr, ctb_addr, size; + int err; + + desc_addr = xe_bo_ggtt_addr(ct->bo); + ctb_addr = xe_bo_ggtt_addr(ct->bo) + CTB_DESC_SIZE * 2; + size = ct->ctbs.h2g.info.size * sizeof(u32); + + err = xe_guc_self_cfg64(guc, + GUC_KLV_SELF_CFG_H2G_CTB_DESCRIPTOR_ADDR_KEY, + desc_addr); + if (err) + return err; + + err = xe_guc_self_cfg64(guc, + GUC_KLV_SELF_CFG_H2G_CTB_ADDR_KEY, + ctb_addr); + if (err) + return err; + + return xe_guc_self_cfg32(guc, + GUC_KLV_SELF_CFG_H2G_CTB_SIZE_KEY, + size); +} + +static int guc_ct_ctb_g2h_register(struct xe_guc_ct *ct) +{ + struct xe_guc *guc = ct_to_guc(ct); + u32 desc_addr, ctb_addr, size; + int err; + + desc_addr = xe_bo_ggtt_addr(ct->bo) + CTB_DESC_SIZE; + ctb_addr = xe_bo_ggtt_addr(ct->bo) + CTB_DESC_SIZE * 2 + + CTB_H2G_BUFFER_SIZE; + size = ct->ctbs.g2h.info.size * sizeof(u32); + + err = xe_guc_self_cfg64(guc, + GUC_KLV_SELF_CFG_G2H_CTB_DESCRIPTOR_ADDR_KEY, + desc_addr); + if (err) + return err; + + err = xe_guc_self_cfg64(guc, + GUC_KLV_SELF_CFG_G2H_CTB_ADDR_KEY, + ctb_addr); + if (err) + return err; + + return xe_guc_self_cfg32(guc, + GUC_KLV_SELF_CFG_G2H_CTB_SIZE_KEY, + size); +} + +static int guc_ct_control_toggle(struct xe_guc_ct *ct, bool enable) +{ + u32 request[HOST2GUC_CONTROL_CTB_REQUEST_MSG_LEN] = { + FIELD_PREP(GUC_HXG_MSG_0_ORIGIN, GUC_HXG_ORIGIN_HOST) | + FIELD_PREP(GUC_HXG_MSG_0_TYPE, GUC_HXG_TYPE_REQUEST) | + FIELD_PREP(GUC_HXG_REQUEST_MSG_0_ACTION, + GUC_ACTION_HOST2GUC_CONTROL_CTB), + FIELD_PREP(HOST2GUC_CONTROL_CTB_REQUEST_MSG_1_CONTROL, + enable ? GUC_CTB_CONTROL_ENABLE : + GUC_CTB_CONTROL_DISABLE), + }; + int ret = xe_guc_mmio_send(ct_to_guc(ct), request, ARRAY_SIZE(request)); + + return ret > 0 ? -EPROTO : ret; +} + +static void xe_guc_ct_set_state(struct xe_guc_ct *ct, + enum xe_guc_ct_state state) +{ + mutex_lock(&ct->lock); /* Serialise dequeue_one_g2h() */ + spin_lock_irq(&ct->fast_lock); /* Serialise CT fast-path */ + + xe_gt_assert(ct_to_gt(ct), ct->g2h_outstanding == 0 || + state == XE_GUC_CT_STATE_STOPPED); + + if (ct->g2h_outstanding) + xe_pm_runtime_put(ct_to_xe(ct)); + ct->g2h_outstanding = 0; + ct->state = state; + + spin_unlock_irq(&ct->fast_lock); + + /* + * Lockdep doesn't like this under the fast lock and he destroy only + * needs to be serialized with the send path which ct lock provides. + */ + xa_destroy(&ct->fence_lookup); + + mutex_unlock(&ct->lock); +} + +static bool ct_needs_safe_mode(struct xe_guc_ct *ct) +{ + return !pci_dev_msi_enabled(to_pci_dev(ct_to_xe(ct)->drm.dev)); +} + +static bool ct_restart_safe_mode_worker(struct xe_guc_ct *ct) +{ + if (!ct_needs_safe_mode(ct)) + return false; + + queue_delayed_work(ct->g2h_wq, &ct->safe_mode_worker, HZ / 10); + return true; +} + +static void safe_mode_worker_func(struct work_struct *w) +{ + struct xe_guc_ct *ct = container_of(w, struct xe_guc_ct, safe_mode_worker.work); + + receive_g2h(ct); + + if (!ct_restart_safe_mode_worker(ct)) + xe_gt_dbg(ct_to_gt(ct), "GuC CT safe-mode canceled\n"); +} + +static void ct_enter_safe_mode(struct xe_guc_ct *ct) +{ + if (ct_restart_safe_mode_worker(ct)) + xe_gt_dbg(ct_to_gt(ct), "GuC CT safe-mode enabled\n"); +} + +static void ct_exit_safe_mode(struct xe_guc_ct *ct) +{ + if (cancel_delayed_work_sync(&ct->safe_mode_worker)) + xe_gt_dbg(ct_to_gt(ct), "GuC CT safe-mode disabled\n"); +} + +int xe_guc_ct_enable(struct xe_guc_ct *ct) +{ + struct xe_device *xe = ct_to_xe(ct); + struct xe_gt *gt = ct_to_gt(ct); + int err; + + xe_gt_assert(gt, !xe_guc_ct_enabled(ct)); + + xe_map_memset(xe, &ct->bo->vmap, 0, 0, ct->bo->size); + guc_ct_ctb_h2g_init(xe, &ct->ctbs.h2g, &ct->bo->vmap); + guc_ct_ctb_g2h_init(xe, &ct->ctbs.g2h, &ct->bo->vmap); + + err = guc_ct_ctb_h2g_register(ct); + if (err) + goto err_out; + + err = guc_ct_ctb_g2h_register(ct); + if (err) + goto err_out; + + err = guc_ct_control_toggle(ct, true); + if (err) + goto err_out; + + xe_guc_ct_set_state(ct, XE_GUC_CT_STATE_ENABLED); + + smp_mb(); + wake_up_all(&ct->wq); + xe_gt_dbg(gt, "GuC CT communication channel enabled\n"); + + if (ct_needs_safe_mode(ct)) + ct_enter_safe_mode(ct); + +#if IS_ENABLED(CONFIG_DRM_XE_DEBUG) + /* + * The CT has now been reset so the dumper can be re-armed + * after any existing dead state has been dumped. + */ + spin_lock_irq(&ct->dead.lock); + if (ct->dead.reason) + ct->dead.reason |= (1 << CT_DEAD_STATE_REARM); + spin_unlock_irq(&ct->dead.lock); +#endif + + return 0; + +err_out: + xe_gt_err(gt, "Failed to enable GuC CT (%pe)\n", ERR_PTR(err)); + CT_DEAD(ct, NULL, SETUP); + + return err; +} + +static void stop_g2h_handler(struct xe_guc_ct *ct) +{ + cancel_work_sync(&ct->g2h_worker); +} + +/** + * xe_guc_ct_disable - Set GuC to disabled state + * @ct: the &xe_guc_ct + * + * Set GuC CT to disabled state and stop g2h handler. No outstanding g2h expected + * in this transition. + */ +void xe_guc_ct_disable(struct xe_guc_ct *ct) +{ + xe_guc_ct_set_state(ct, XE_GUC_CT_STATE_DISABLED); + ct_exit_safe_mode(ct); + stop_g2h_handler(ct); +} + +/** + * xe_guc_ct_stop - Set GuC to stopped state + * @ct: the &xe_guc_ct + * + * Set GuC CT to stopped state, stop g2h handler, and clear any outstanding g2h + */ +void xe_guc_ct_stop(struct xe_guc_ct *ct) +{ + xe_guc_ct_set_state(ct, XE_GUC_CT_STATE_STOPPED); + stop_g2h_handler(ct); +} + +static bool h2g_has_room(struct xe_guc_ct *ct, u32 cmd_len) +{ + struct guc_ctb *h2g = &ct->ctbs.h2g; + + lockdep_assert_held(&ct->lock); + + if (cmd_len > h2g->info.space) { + h2g->info.head = desc_read(ct_to_xe(ct), h2g, head); + + if (h2g->info.head > h2g->info.size) { + struct xe_device *xe = ct_to_xe(ct); + u32 desc_status = desc_read(xe, h2g, status); + + desc_write(xe, h2g, status, desc_status | GUC_CTB_STATUS_OVERFLOW); + + xe_gt_err(ct_to_gt(ct), "CT: invalid head offset %u >= %u)\n", + h2g->info.head, h2g->info.size); + CT_DEAD(ct, h2g, H2G_HAS_ROOM); + return false; + } + + h2g->info.space = CIRC_SPACE(h2g->info.tail, h2g->info.head, + h2g->info.size) - + h2g->info.resv_space; + if (cmd_len > h2g->info.space) + return false; + } + + return true; +} + +static bool g2h_has_room(struct xe_guc_ct *ct, u32 g2h_len) +{ + if (!g2h_len) + return true; + + lockdep_assert_held(&ct->fast_lock); + + return ct->ctbs.g2h.info.space > g2h_len; +} + +static int has_room(struct xe_guc_ct *ct, u32 cmd_len, u32 g2h_len) +{ + lockdep_assert_held(&ct->lock); + + if (!g2h_has_room(ct, g2h_len) || !h2g_has_room(ct, cmd_len)) + return -EBUSY; + + return 0; +} + +static void h2g_reserve_space(struct xe_guc_ct *ct, u32 cmd_len) +{ + lockdep_assert_held(&ct->lock); + ct->ctbs.h2g.info.space -= cmd_len; +} + +static void __g2h_reserve_space(struct xe_guc_ct *ct, u32 g2h_len, u32 num_g2h) +{ + xe_gt_assert(ct_to_gt(ct), g2h_len <= ct->ctbs.g2h.info.space); + xe_gt_assert(ct_to_gt(ct), (!g2h_len && !num_g2h) || + (g2h_len && num_g2h)); + + if (g2h_len) { + lockdep_assert_held(&ct->fast_lock); + + if (!ct->g2h_outstanding) + xe_pm_runtime_get_noresume(ct_to_xe(ct)); + + ct->ctbs.g2h.info.space -= g2h_len; + ct->g2h_outstanding += num_g2h; + } +} + +static void __g2h_release_space(struct xe_guc_ct *ct, u32 g2h_len) +{ + bool bad = false; + + lockdep_assert_held(&ct->fast_lock); + + bad = ct->ctbs.g2h.info.space + g2h_len > + ct->ctbs.g2h.info.size - ct->ctbs.g2h.info.resv_space; + bad |= !ct->g2h_outstanding; + + if (bad) { + xe_gt_err(ct_to_gt(ct), "Invalid G2H release: %d + %d vs %d - %d -> %d vs %d, outstanding = %d!\n", + ct->ctbs.g2h.info.space, g2h_len, + ct->ctbs.g2h.info.size, ct->ctbs.g2h.info.resv_space, + ct->ctbs.g2h.info.space + g2h_len, + ct->ctbs.g2h.info.size - ct->ctbs.g2h.info.resv_space, + ct->g2h_outstanding); + CT_DEAD(ct, &ct->ctbs.g2h, G2H_RELEASE); + return; + } + + ct->ctbs.g2h.info.space += g2h_len; + if (!--ct->g2h_outstanding) + xe_pm_runtime_put(ct_to_xe(ct)); +} + +static void g2h_release_space(struct xe_guc_ct *ct, u32 g2h_len) +{ + spin_lock_irq(&ct->fast_lock); + __g2h_release_space(ct, g2h_len); + spin_unlock_irq(&ct->fast_lock); +} + +#define H2G_CT_HEADERS (GUC_CTB_HDR_LEN + 1) /* one DW CTB header and one DW HxG header */ + +static int h2g_write(struct xe_guc_ct *ct, const u32 *action, u32 len, + u32 ct_fence_value, bool want_response) +{ + struct xe_device *xe = ct_to_xe(ct); + struct xe_gt *gt = ct_to_gt(ct); + struct guc_ctb *h2g = &ct->ctbs.h2g; + u32 cmd[H2G_CT_HEADERS]; + u32 tail = h2g->info.tail; + u32 full_len; + struct iosys_map map = IOSYS_MAP_INIT_OFFSET(&h2g->cmds, + tail * sizeof(u32)); + u32 desc_status; + + full_len = len + GUC_CTB_HDR_LEN; + + lockdep_assert_held(&ct->lock); + xe_gt_assert(gt, full_len <= GUC_CTB_MSG_MAX_LEN); + + desc_status = desc_read(xe, h2g, status); + if (desc_status) { + xe_gt_err(gt, "CT write: non-zero status: %u\n", desc_status); + goto corrupted; + } + + if (IS_ENABLED(CONFIG_DRM_XE_DEBUG)) { + u32 desc_tail = desc_read(xe, h2g, tail); + u32 desc_head = desc_read(xe, h2g, head); + + if (tail != desc_tail) { + desc_write(xe, h2g, status, desc_status | GUC_CTB_STATUS_MISMATCH); + xe_gt_err(gt, "CT write: tail was modified %u != %u\n", desc_tail, tail); + goto corrupted; + } + + if (tail > h2g->info.size) { + desc_write(xe, h2g, status, desc_status | GUC_CTB_STATUS_OVERFLOW); + xe_gt_err(gt, "CT write: tail out of range: %u vs %u\n", + tail, h2g->info.size); + goto corrupted; + } + + if (desc_head >= h2g->info.size) { + desc_write(xe, h2g, status, desc_status | GUC_CTB_STATUS_OVERFLOW); + xe_gt_err(gt, "CT write: invalid head offset %u >= %u)\n", + desc_head, h2g->info.size); + goto corrupted; + } + } + + /* Command will wrap, zero fill (NOPs), return and check credits again */ + if (tail + full_len > h2g->info.size) { + xe_map_memset(xe, &map, 0, 0, + (h2g->info.size - tail) * sizeof(u32)); + h2g_reserve_space(ct, (h2g->info.size - tail)); + h2g->info.tail = 0; + desc_write(xe, h2g, tail, h2g->info.tail); + + return -EAGAIN; + } + + /* + * dw0: CT header (including fence) + * dw1: HXG header (including action code) + * dw2+: action data + */ + cmd[0] = FIELD_PREP(GUC_CTB_MSG_0_FORMAT, GUC_CTB_FORMAT_HXG) | + FIELD_PREP(GUC_CTB_MSG_0_NUM_DWORDS, len) | + FIELD_PREP(GUC_CTB_MSG_0_FENCE, ct_fence_value); + if (want_response) { + cmd[1] = + FIELD_PREP(GUC_HXG_MSG_0_TYPE, GUC_HXG_TYPE_REQUEST) | + FIELD_PREP(GUC_HXG_EVENT_MSG_0_ACTION | + GUC_HXG_EVENT_MSG_0_DATA0, action[0]); + } else { + cmd[1] = + FIELD_PREP(GUC_HXG_MSG_0_TYPE, GUC_HXG_TYPE_FAST_REQUEST) | + FIELD_PREP(GUC_HXG_EVENT_MSG_0_ACTION | + GUC_HXG_EVENT_MSG_0_DATA0, action[0]); + } + + /* H2G header in cmd[1] replaces action[0] so: */ + --len; + ++action; + + /* Write H2G ensuring visable before descriptor update */ + xe_map_memcpy_to(xe, &map, 0, cmd, H2G_CT_HEADERS * sizeof(u32)); + xe_map_memcpy_to(xe, &map, H2G_CT_HEADERS * sizeof(u32), action, len * sizeof(u32)); + xe_device_wmb(xe); + + /* Update local copies */ + h2g->info.tail = (tail + full_len) % h2g->info.size; + h2g_reserve_space(ct, full_len); + + /* Update descriptor */ + desc_write(xe, h2g, tail, h2g->info.tail); + + trace_xe_guc_ctb_h2g(xe, gt->info.id, *(action - 1), full_len, + desc_read(xe, h2g, head), h2g->info.tail); + + return 0; + +corrupted: + CT_DEAD(ct, &ct->ctbs.h2g, H2G_WRITE); + return -EPIPE; +} + +/* + * The CT protocol accepts a 16 bits fence. This field is fully owned by the + * driver, the GuC will just copy it to the reply message. Since we need to + * be able to distinguish between replies to REQUEST and FAST_REQUEST messages, + * we use one bit of the seqno as an indicator for that and a rolling counter + * for the remaining 15 bits. + */ +#define CT_SEQNO_MASK GENMASK(14, 0) +#define CT_SEQNO_UNTRACKED BIT(15) +static u16 next_ct_seqno(struct xe_guc_ct *ct, bool is_g2h_fence) +{ + u32 seqno = ct->fence_seqno++ & CT_SEQNO_MASK; + + if (!is_g2h_fence) + seqno |= CT_SEQNO_UNTRACKED; + + return seqno; +} + +static int __guc_ct_send_locked(struct xe_guc_ct *ct, const u32 *action, + u32 len, u32 g2h_len, u32 num_g2h, + struct g2h_fence *g2h_fence) +{ + struct xe_gt *gt __maybe_unused = ct_to_gt(ct); + u16 seqno; + int ret; + + xe_gt_assert(gt, ct->state != XE_GUC_CT_STATE_NOT_INITIALIZED); + xe_gt_assert(gt, !g2h_len || !g2h_fence); + xe_gt_assert(gt, !num_g2h || !g2h_fence); + xe_gt_assert(gt, !g2h_len || num_g2h); + xe_gt_assert(gt, g2h_len || !num_g2h); + lockdep_assert_held(&ct->lock); + + if (unlikely(ct->ctbs.h2g.info.broken)) { + ret = -EPIPE; + goto out; + } + + if (ct->state == XE_GUC_CT_STATE_DISABLED) { + ret = -ENODEV; + goto out; + } + + if (ct->state == XE_GUC_CT_STATE_STOPPED) { + ret = -ECANCELED; + goto out; + } + + xe_gt_assert(gt, xe_guc_ct_enabled(ct)); + + if (g2h_fence) { + g2h_len = GUC_CTB_HXG_MSG_MAX_LEN; + num_g2h = 1; + + if (g2h_fence_needs_alloc(g2h_fence)) { + g2h_fence->seqno = next_ct_seqno(ct, true); + ret = xa_err(xa_store(&ct->fence_lookup, + g2h_fence->seqno, g2h_fence, + GFP_ATOMIC)); + if (ret) + goto out; + } + + seqno = g2h_fence->seqno; + } else { + seqno = next_ct_seqno(ct, false); + } + + if (g2h_len) + spin_lock_irq(&ct->fast_lock); +retry: + ret = has_room(ct, len + GUC_CTB_HDR_LEN, g2h_len); + if (unlikely(ret)) + goto out_unlock; + + ret = h2g_write(ct, action, len, seqno, !!g2h_fence); + if (unlikely(ret)) { + if (ret == -EAGAIN) + goto retry; + goto out_unlock; + } + + __g2h_reserve_space(ct, g2h_len, num_g2h); + xe_guc_notify(ct_to_guc(ct)); +out_unlock: + if (g2h_len) + spin_unlock_irq(&ct->fast_lock); +out: + return ret; +} + +static void kick_reset(struct xe_guc_ct *ct) +{ + xe_gt_reset_async(ct_to_gt(ct)); +} + +static int dequeue_one_g2h(struct xe_guc_ct *ct); + +static int guc_ct_send_locked(struct xe_guc_ct *ct, const u32 *action, u32 len, + u32 g2h_len, u32 num_g2h, + struct g2h_fence *g2h_fence) +{ + struct xe_device *xe = ct_to_xe(ct); + struct xe_gt *gt = ct_to_gt(ct); + unsigned int sleep_period_ms = 1; + int ret; + + xe_gt_assert(gt, !g2h_len || !g2h_fence); + lockdep_assert_held(&ct->lock); + xe_device_assert_mem_access(ct_to_xe(ct)); + +try_again: + ret = __guc_ct_send_locked(ct, action, len, g2h_len, num_g2h, + g2h_fence); + + /* + * We wait to try to restore credits for about 1 second before bailing. + * In the case of H2G credits we have no choice but just to wait for the + * GuC to consume H2Gs in the channel so we use a wait / sleep loop. In + * the case of G2H we process any G2H in the channel, hopefully freeing + * credits as we consume the G2H messages. + */ + if (unlikely(ret == -EBUSY && + !h2g_has_room(ct, len + GUC_CTB_HDR_LEN))) { + struct guc_ctb *h2g = &ct->ctbs.h2g; + + if (sleep_period_ms == 1024) + goto broken; + + trace_xe_guc_ct_h2g_flow_control(xe, h2g->info.head, h2g->info.tail, + h2g->info.size, + h2g->info.space, + len + GUC_CTB_HDR_LEN); + msleep(sleep_period_ms); + sleep_period_ms <<= 1; + + goto try_again; + } else if (unlikely(ret == -EBUSY)) { + struct xe_device *xe = ct_to_xe(ct); + struct guc_ctb *g2h = &ct->ctbs.g2h; + + trace_xe_guc_ct_g2h_flow_control(xe, g2h->info.head, + desc_read(xe, g2h, tail), + g2h->info.size, + g2h->info.space, + g2h_fence ? + GUC_CTB_HXG_MSG_MAX_LEN : + g2h_len); + +#define g2h_avail(ct) \ + (desc_read(ct_to_xe(ct), (&ct->ctbs.g2h), tail) != ct->ctbs.g2h.info.head) + if (!wait_event_timeout(ct->wq, !ct->g2h_outstanding || + g2h_avail(ct), HZ)) + goto broken; +#undef g2h_avail + + ret = dequeue_one_g2h(ct); + if (ret < 0) { + if (ret != -ECANCELED) + xe_gt_err(ct_to_gt(ct), "CTB receive failed (%pe)", + ERR_PTR(ret)); + goto broken; + } + + goto try_again; + } + + return ret; + +broken: + xe_gt_err(gt, "No forward process on H2G, reset required\n"); + CT_DEAD(ct, &ct->ctbs.h2g, DEADLOCK); + + return -EDEADLK; +} + +static int guc_ct_send(struct xe_guc_ct *ct, const u32 *action, u32 len, + u32 g2h_len, u32 num_g2h, struct g2h_fence *g2h_fence) +{ + int ret; + + xe_gt_assert(ct_to_gt(ct), !g2h_len || !g2h_fence); + + mutex_lock(&ct->lock); + ret = guc_ct_send_locked(ct, action, len, g2h_len, num_g2h, g2h_fence); + mutex_unlock(&ct->lock); + + return ret; +} + +int xe_guc_ct_send(struct xe_guc_ct *ct, const u32 *action, u32 len, + u32 g2h_len, u32 num_g2h) +{ + int ret; + + ret = guc_ct_send(ct, action, len, g2h_len, num_g2h, NULL); + if (ret == -EDEADLK) + kick_reset(ct); + + return ret; +} + +int xe_guc_ct_send_locked(struct xe_guc_ct *ct, const u32 *action, u32 len, + u32 g2h_len, u32 num_g2h) +{ + int ret; + + ret = guc_ct_send_locked(ct, action, len, g2h_len, num_g2h, NULL); + if (ret == -EDEADLK) + kick_reset(ct); + + return ret; +} + +int xe_guc_ct_send_g2h_handler(struct xe_guc_ct *ct, const u32 *action, u32 len) +{ + int ret; + + lockdep_assert_held(&ct->lock); + + ret = guc_ct_send_locked(ct, action, len, 0, 0, NULL); + if (ret == -EDEADLK) + kick_reset(ct); + + return ret; +} + +/* + * Check if a GT reset is in progress or will occur and if GT reset brought the + * CT back up. Randomly picking 5 seconds for an upper limit to do a GT a reset. + */ +static bool retry_failure(struct xe_guc_ct *ct, int ret) +{ + if (!(ret == -EDEADLK || ret == -EPIPE || ret == -ENODEV)) + return false; + +#define ct_alive(ct) \ + (xe_guc_ct_enabled(ct) && !ct->ctbs.h2g.info.broken && \ + !ct->ctbs.g2h.info.broken) + if (!wait_event_interruptible_timeout(ct->wq, ct_alive(ct), HZ * 5)) + return false; +#undef ct_alive + + return true; +} + +static int guc_ct_send_recv(struct xe_guc_ct *ct, const u32 *action, u32 len, + u32 *response_buffer, bool no_fail) +{ + struct xe_gt *gt = ct_to_gt(ct); + struct g2h_fence g2h_fence; + int ret = 0; + + /* + * We use a fence to implement blocking sends / receiving response data. + * The seqno of the fence is sent in the H2G, returned in the G2H, and + * an xarray is used as storage media with the seqno being to key. + * Fields in the fence hold success, failure, retry status and the + * response data. Safe to allocate on the stack as the xarray is the + * only reference and it cannot be present after this function exits. + */ +retry: + g2h_fence_init(&g2h_fence, response_buffer); +retry_same_fence: + ret = guc_ct_send(ct, action, len, 0, 0, &g2h_fence); + if (unlikely(ret == -ENOMEM)) { + /* Retry allocation /w GFP_KERNEL */ + ret = xa_err(xa_store(&ct->fence_lookup, g2h_fence.seqno, + &g2h_fence, GFP_KERNEL)); + if (ret) + return ret; + + goto retry_same_fence; + } else if (unlikely(ret)) { + if (ret == -EDEADLK) + kick_reset(ct); + + if (no_fail && retry_failure(ct, ret)) + goto retry_same_fence; + + if (!g2h_fence_needs_alloc(&g2h_fence)) + xa_erase(&ct->fence_lookup, g2h_fence.seqno); + + return ret; + } + + ret = wait_event_timeout(ct->g2h_fence_wq, g2h_fence.done, HZ); + + /* +<<<<<<< + * Ensure we serialize with completion side to prevent UAF with fence going out of scope on + * the stack, since we have no clue if it will fire after the timeout before we can erase + * from the xa. Also we have some dependent loads and stores below for which we need the + * correct ordering, and we lack the needed barriers. + */ + mutex_lock(&ct->lock); + if (!ret) { + xe_gt_err(gt, "Timed out wait for G2H, fence %u, action %04x, done %s", + g2h_fence.seqno, action[0], str_yes_no(g2h_fence.done)); + xa_erase(&ct->fence_lookup, g2h_fence.seqno); +======= + * Occasionally it is seen that the G2H worker starts running after a delay of more than + * a second even after being queued and activated by the Linux workqueue subsystem. This + * leads to G2H timeout error. The root cause of issue lies with scheduling latency of + * Lunarlake Hybrid CPU. Issue dissappears if we disable Lunarlake atom cores from BIOS + * and this is beyond xe kmd. + * + * TODO: Drop this change once workqueue scheduling delay issue is fixed on LNL Hybrid CPU. + */ + if (!ret) { + flush_work(&ct->g2h_worker); + if (g2h_fence.done) { + xe_gt_warn(gt, "G2H fence %u, action %04x, done\n", + g2h_fence.seqno, action[0]); + ret = 1; + } + } + + /* + * Ensure we serialize with completion side to prevent UAF with fence going out of scope on + * the stack, since we have no clue if it will fire after the timeout before we can erase + * from the xa. Also we have some dependent loads and stores below for which we need the + * correct ordering, and we lack the needed barriers. + */ + mutex_lock(&ct->lock); + if (!ret) { + xe_gt_err(gt, "Timed out wait for G2H, fence %u, action %04x, done %s", + g2h_fence.seqno, action[0], str_yes_no(g2h_fence.done)); + xa_erase_irq(&ct->fence_lookup, g2h_fence.seqno); +>>>>>>> + mutex_unlock(&ct->lock); + return -ETIME; + } + + if (g2h_fence.retry) { + xe_gt_dbg(gt, "H2G action %#x retrying: reason %#x\n", + action[0], g2h_fence.reason); + mutex_unlock(&ct->lock); + goto retry; + } + if (g2h_fence.fail) { + xe_gt_err(gt, "H2G request %#x failed: error %#x hint %#x\n", + action[0], g2h_fence.error, g2h_fence.hint); + ret = -EIO; + } + + if (ret > 0) + ret = response_buffer ? g2h_fence.response_len : g2h_fence.response_data; + + mutex_unlock(&ct->lock); + + return ret; +} + +/** + * xe_guc_ct_send_recv - Send and receive HXG to the GuC + * @ct: the &xe_guc_ct + * @action: the dword array with `HXG Request`_ message (can't be NULL) + * @len: length of the `HXG Request`_ message (in dwords, can't be 0) + * @response_buffer: placeholder for the `HXG Response`_ message (can be NULL) + * + * Send a `HXG Request`_ message to the GuC over CT communication channel and + * blocks until GuC replies with a `HXG Response`_ message. + * + * For non-blocking communication with GuC use xe_guc_ct_send(). + * + * Note: The size of &response_buffer must be at least GUC_CTB_MAX_DWORDS_. + * + * Return: response length (in dwords) if &response_buffer was not NULL, or + * DATA0 from `HXG Response`_ if &response_buffer was NULL, or + * a negative error code on failure. + */ +int xe_guc_ct_send_recv(struct xe_guc_ct *ct, const u32 *action, u32 len, + u32 *response_buffer) +{ + KUNIT_STATIC_STUB_REDIRECT(xe_guc_ct_send_recv, ct, action, len, response_buffer); + return guc_ct_send_recv(ct, action, len, response_buffer, false); +} + +int xe_guc_ct_send_recv_no_fail(struct xe_guc_ct *ct, const u32 *action, + u32 len, u32 *response_buffer) +{ + return guc_ct_send_recv(ct, action, len, response_buffer, true); +} + +static u32 *msg_to_hxg(u32 *msg) +{ + return msg + GUC_CTB_MSG_MIN_LEN; +} + +static u32 msg_len_to_hxg_len(u32 len) +{ + return len - GUC_CTB_MSG_MIN_LEN; +} + +static int parse_g2h_event(struct xe_guc_ct *ct, u32 *msg, u32 len) +{ + u32 *hxg = msg_to_hxg(msg); + u32 action = FIELD_GET(GUC_HXG_EVENT_MSG_0_ACTION, hxg[0]); + + lockdep_assert_held(&ct->lock); + + switch (action) { + case XE_GUC_ACTION_SCHED_CONTEXT_MODE_DONE: + case XE_GUC_ACTION_DEREGISTER_CONTEXT_DONE: + case XE_GUC_ACTION_SCHED_ENGINE_MODE_DONE: + case XE_GUC_ACTION_TLB_INVALIDATION_DONE: + g2h_release_space(ct, len); + } + + return 0; +} + +static int parse_g2h_response(struct xe_guc_ct *ct, u32 *msg, u32 len) +{ + struct xe_gt *gt = ct_to_gt(ct); + u32 *hxg = msg_to_hxg(msg); + u32 hxg_len = msg_len_to_hxg_len(len); + u32 fence = FIELD_GET(GUC_CTB_MSG_0_FENCE, msg[0]); + u32 type = FIELD_GET(GUC_HXG_MSG_0_TYPE, hxg[0]); + struct g2h_fence *g2h_fence; + + lockdep_assert_held(&ct->lock); + + /* + * Fences for FAST_REQUEST messages are not tracked in ct->fence_lookup. + * Those messages should never fail, so if we do get an error back it + * means we're likely doing an illegal operation and the GuC is + * rejecting it. We have no way to inform the code that submitted the + * H2G that the message was rejected, so we need to escalate the + * failure to trigger a reset. + */ + if (fence & CT_SEQNO_UNTRACKED) { + if (type == GUC_HXG_TYPE_RESPONSE_FAILURE) + xe_gt_err(gt, "FAST_REQ H2G fence 0x%x failed! e=0x%x, h=%u\n", + fence, + FIELD_GET(GUC_HXG_FAILURE_MSG_0_ERROR, hxg[0]), + FIELD_GET(GUC_HXG_FAILURE_MSG_0_HINT, hxg[0])); + else + xe_gt_err(gt, "unexpected response %u for FAST_REQ H2G fence 0x%x!\n", + type, fence); + CT_DEAD(ct, NULL, PARSE_G2H_RESPONSE); + + return -EPROTO; + } + + g2h_fence = xa_erase(&ct->fence_lookup, fence); + if (unlikely(!g2h_fence)) { + /* Don't tear down channel, as send could've timed out */ + /* CT_DEAD(ct, NULL, PARSE_G2H_UNKNOWN); */ + xe_gt_warn(gt, "G2H fence (%u) not found!\n", fence); + g2h_release_space(ct, GUC_CTB_HXG_MSG_MAX_LEN); + return 0; + } + + xe_gt_assert(gt, fence == g2h_fence->seqno); + + if (type == GUC_HXG_TYPE_RESPONSE_FAILURE) { + g2h_fence->fail = true; + g2h_fence->error = FIELD_GET(GUC_HXG_FAILURE_MSG_0_ERROR, hxg[0]); + g2h_fence->hint = FIELD_GET(GUC_HXG_FAILURE_MSG_0_HINT, hxg[0]); + } else if (type == GUC_HXG_TYPE_NO_RESPONSE_RETRY) { + g2h_fence->retry = true; + g2h_fence->reason = FIELD_GET(GUC_HXG_RETRY_MSG_0_REASON, hxg[0]); + } else if (g2h_fence->response_buffer) { + g2h_fence->response_len = hxg_len; + memcpy(g2h_fence->response_buffer, hxg, hxg_len * sizeof(u32)); + } else { + g2h_fence->response_data = FIELD_GET(GUC_HXG_RESPONSE_MSG_0_DATA0, hxg[0]); + } + + g2h_release_space(ct, GUC_CTB_HXG_MSG_MAX_LEN); + + g2h_fence->done = true; + smp_mb(); + + wake_up_all(&ct->g2h_fence_wq); + + return 0; +} + +static int parse_g2h_msg(struct xe_guc_ct *ct, u32 *msg, u32 len) +{ + struct xe_gt *gt = ct_to_gt(ct); + u32 *hxg = msg_to_hxg(msg); + u32 origin, type; + int ret; + + lockdep_assert_held(&ct->lock); + + origin = FIELD_GET(GUC_HXG_MSG_0_ORIGIN, hxg[0]); + if (unlikely(origin != GUC_HXG_ORIGIN_GUC)) { + xe_gt_err(gt, "G2H channel broken on read, origin=%u, reset required\n", + origin); + CT_DEAD(ct, &ct->ctbs.g2h, PARSE_G2H_ORIGIN); + + return -EPROTO; + } + + type = FIELD_GET(GUC_HXG_MSG_0_TYPE, hxg[0]); + switch (type) { + case GUC_HXG_TYPE_EVENT: + ret = parse_g2h_event(ct, msg, len); + break; + case GUC_HXG_TYPE_RESPONSE_SUCCESS: + case GUC_HXG_TYPE_RESPONSE_FAILURE: + case GUC_HXG_TYPE_NO_RESPONSE_RETRY: + ret = parse_g2h_response(ct, msg, len); + break; + default: + xe_gt_err(gt, "G2H channel broken on read, type=%u, reset required\n", + type); + CT_DEAD(ct, &ct->ctbs.g2h, PARSE_G2H_TYPE); + + ret = -EOPNOTSUPP; + } + + return ret; +} + +static int process_g2h_msg(struct xe_guc_ct *ct, u32 *msg, u32 len) +{ + struct xe_guc *guc = ct_to_guc(ct); + struct xe_gt *gt = ct_to_gt(ct); + u32 hxg_len = msg_len_to_hxg_len(len); + u32 *hxg = msg_to_hxg(msg); + u32 action, adj_len; + u32 *payload; + int ret = 0; + + if (FIELD_GET(GUC_HXG_MSG_0_TYPE, hxg[0]) != GUC_HXG_TYPE_EVENT) + return 0; + + action = FIELD_GET(GUC_HXG_EVENT_MSG_0_ACTION, hxg[0]); + payload = hxg + GUC_HXG_EVENT_MSG_MIN_LEN; + adj_len = hxg_len - GUC_HXG_EVENT_MSG_MIN_LEN; + + switch (action) { + case XE_GUC_ACTION_SCHED_CONTEXT_MODE_DONE: + ret = xe_guc_sched_done_handler(guc, payload, adj_len); + break; + case XE_GUC_ACTION_DEREGISTER_CONTEXT_DONE: + ret = xe_guc_deregister_done_handler(guc, payload, adj_len); + break; + case XE_GUC_ACTION_CONTEXT_RESET_NOTIFICATION: + ret = xe_guc_exec_queue_reset_handler(guc, payload, adj_len); + break; + case XE_GUC_ACTION_ENGINE_FAILURE_NOTIFICATION: + ret = xe_guc_exec_queue_reset_failure_handler(guc, payload, + adj_len); + break; + case XE_GUC_ACTION_SCHED_ENGINE_MODE_DONE: + /* Selftest only at the moment */ + break; + case XE_GUC_ACTION_STATE_CAPTURE_NOTIFICATION: + ret = xe_guc_error_capture_handler(guc, payload, adj_len); + break; + case XE_GUC_ACTION_NOTIFY_FLUSH_LOG_BUFFER_TO_FILE: + /* FIXME: Handle this */ + break; + case XE_GUC_ACTION_NOTIFY_MEMORY_CAT_ERROR: + ret = xe_guc_exec_queue_memory_cat_error_handler(guc, payload, + adj_len); + break; + case XE_GUC_ACTION_REPORT_PAGE_FAULT_REQ_DESC: + ret = xe_guc_pagefault_handler(guc, payload, adj_len); + break; + case XE_GUC_ACTION_TLB_INVALIDATION_DONE: + ret = xe_guc_tlb_invalidation_done_handler(guc, payload, + adj_len); + break; + case XE_GUC_ACTION_ACCESS_COUNTER_NOTIFY: + ret = xe_guc_access_counter_notify_handler(guc, payload, + adj_len); + break; + case XE_GUC_ACTION_GUC2PF_RELAY_FROM_VF: + ret = xe_guc_relay_process_guc2pf(&guc->relay, hxg, hxg_len); + break; + case XE_GUC_ACTION_GUC2VF_RELAY_FROM_PF: + ret = xe_guc_relay_process_guc2vf(&guc->relay, hxg, hxg_len); + break; + case GUC_ACTION_GUC2PF_VF_STATE_NOTIFY: + ret = xe_gt_sriov_pf_control_process_guc2pf(gt, hxg, hxg_len); + break; + case GUC_ACTION_GUC2PF_ADVERSE_EVENT: + ret = xe_gt_sriov_pf_monitor_process_guc2pf(gt, hxg, hxg_len); + break; + default: + xe_gt_err(gt, "unexpected G2H action 0x%04x\n", action); + } + + if (ret) { + xe_gt_err(gt, "G2H action 0x%04x failed (%pe)\n", + action, ERR_PTR(ret)); + CT_DEAD(ct, NULL, PROCESS_FAILED); + } + + return 0; +} + +static int g2h_read(struct xe_guc_ct *ct, u32 *msg, bool fast_path) +{ + struct xe_device *xe = ct_to_xe(ct); + struct xe_gt *gt = ct_to_gt(ct); + struct guc_ctb *g2h = &ct->ctbs.g2h; + u32 tail, head, len, desc_status; + s32 avail; + u32 action; + u32 *hxg; + + xe_gt_assert(gt, ct->state != XE_GUC_CT_STATE_NOT_INITIALIZED); + lockdep_assert_held(&ct->fast_lock); + + if (ct->state == XE_GUC_CT_STATE_DISABLED) + return -ENODEV; + + if (ct->state == XE_GUC_CT_STATE_STOPPED) + return -ECANCELED; + + if (g2h->info.broken) + return -EPIPE; + + xe_gt_assert(gt, xe_guc_ct_enabled(ct)); + + desc_status = desc_read(xe, g2h, status); + if (desc_status) { + if (desc_status & GUC_CTB_STATUS_DISABLED) { + /* + * Potentially valid if a CLIENT_RESET request resulted in + * contexts/engines being reset. But should never happen as + * no contexts should be active when CLIENT_RESET is sent. + */ + xe_gt_err(gt, "CT read: unexpected G2H after GuC has stopped!\n"); + desc_status &= ~GUC_CTB_STATUS_DISABLED; + } + + if (desc_status) { + xe_gt_err(gt, "CT read: non-zero status: %u\n", desc_status); + goto corrupted; + } + } + + if (IS_ENABLED(CONFIG_DRM_XE_DEBUG)) { + u32 desc_tail = desc_read(xe, g2h, tail); + /* + u32 desc_head = desc_read(xe, g2h, head); + + * info.head and desc_head are updated back-to-back at the end of + * this function and nowhere else. Hence, they cannot be different + * unless two g2h_read calls are running concurrently. Which is not + * possible because it is guarded by ct->fast_lock. And yet, some + * discrete platforms are reguarly hitting this error :(. + * + * desc_head rolling backwards shouldn't cause any noticeable + * problems - just a delay in GuC being allowed to proceed past that + * point in the queue. So for now, just disable the error until it + * can be root caused. + * + if (g2h->info.head != desc_head) { + desc_write(xe, g2h, status, desc_status | GUC_CTB_STATUS_MISMATCH); + xe_gt_err(gt, "CT read: head was modified %u != %u\n", + desc_head, g2h->info.head); + goto corrupted; + } + */ + + if (g2h->info.head > g2h->info.size) { + desc_write(xe, g2h, status, desc_status | GUC_CTB_STATUS_OVERFLOW); + xe_gt_err(gt, "CT read: head out of range: %u vs %u\n", + g2h->info.head, g2h->info.size); + goto corrupted; + } + + if (desc_tail >= g2h->info.size) { + desc_write(xe, g2h, status, desc_status | GUC_CTB_STATUS_OVERFLOW); + xe_gt_err(gt, "CT read: invalid tail offset %u >= %u)\n", + desc_tail, g2h->info.size); + goto corrupted; + } + } + + /* Calculate DW available to read */ + tail = desc_read(xe, g2h, tail); + avail = tail - g2h->info.head; + if (unlikely(avail == 0)) + return 0; + + if (avail < 0) + avail += g2h->info.size; + + /* Read header */ + xe_map_memcpy_from(xe, msg, &g2h->cmds, sizeof(u32) * g2h->info.head, + sizeof(u32)); + len = FIELD_GET(GUC_CTB_MSG_0_NUM_DWORDS, msg[0]) + GUC_CTB_MSG_MIN_LEN; + if (len > avail) { + xe_gt_err(gt, "G2H channel broken on read, avail=%d, len=%d, reset required\n", + avail, len); + goto corrupted; + } + + head = (g2h->info.head + 1) % g2h->info.size; + avail = len - 1; + + /* Read G2H message */ + if (avail + head > g2h->info.size) { + u32 avail_til_wrap = g2h->info.size - head; + + xe_map_memcpy_from(xe, msg + 1, + &g2h->cmds, sizeof(u32) * head, + avail_til_wrap * sizeof(u32)); + xe_map_memcpy_from(xe, msg + 1 + avail_til_wrap, + &g2h->cmds, 0, + (avail - avail_til_wrap) * sizeof(u32)); + } else { + xe_map_memcpy_from(xe, msg + 1, + &g2h->cmds, sizeof(u32) * head, + avail * sizeof(u32)); + } + + hxg = msg_to_hxg(msg); + action = FIELD_GET(GUC_HXG_EVENT_MSG_0_ACTION, hxg[0]); + + if (fast_path) { + if (FIELD_GET(GUC_HXG_MSG_0_TYPE, hxg[0]) != GUC_HXG_TYPE_EVENT) + return 0; + + switch (action) { + case XE_GUC_ACTION_REPORT_PAGE_FAULT_REQ_DESC: + case XE_GUC_ACTION_TLB_INVALIDATION_DONE: + break; /* Process these in fast-path */ + default: + return 0; + } + } + + /* Update local / descriptor header */ + g2h->info.head = (head + avail) % g2h->info.size; + desc_write(xe, g2h, head, g2h->info.head); + + trace_xe_guc_ctb_g2h(xe, ct_to_gt(ct)->info.id, + action, len, g2h->info.head, tail); + + return len; + +corrupted: + CT_DEAD(ct, &ct->ctbs.g2h, G2H_READ); + return -EPROTO; +} + +static void g2h_fast_path(struct xe_guc_ct *ct, u32 *msg, u32 len) +{ + struct xe_gt *gt = ct_to_gt(ct); + struct xe_guc *guc = ct_to_guc(ct); + u32 hxg_len = msg_len_to_hxg_len(len); + u32 *hxg = msg_to_hxg(msg); + u32 action = FIELD_GET(GUC_HXG_EVENT_MSG_0_ACTION, hxg[0]); + u32 *payload = hxg + GUC_HXG_MSG_MIN_LEN; + u32 adj_len = hxg_len - GUC_HXG_MSG_MIN_LEN; + int ret = 0; + + switch (action) { + case XE_GUC_ACTION_REPORT_PAGE_FAULT_REQ_DESC: + ret = xe_guc_pagefault_handler(guc, payload, adj_len); + break; + case XE_GUC_ACTION_TLB_INVALIDATION_DONE: + __g2h_release_space(ct, len); + ret = xe_guc_tlb_invalidation_done_handler(guc, payload, + adj_len); + break; + default: + xe_gt_warn(gt, "NOT_POSSIBLE"); + } + + if (ret) { + xe_gt_err(gt, "G2H action 0x%04x failed (%pe)\n", + action, ERR_PTR(ret)); + CT_DEAD(ct, NULL, FAST_G2H); + } +} + +/** + * xe_guc_ct_fast_path - process critical G2H in the IRQ handler + * @ct: GuC CT object + * + * Anything related to page faults is critical for performance, process these + * critical G2H in the IRQ. This is safe as these handlers either just wake up + * waiters or queue another worker. + */ +void xe_guc_ct_fast_path(struct xe_guc_ct *ct) +{ + struct xe_device *xe = ct_to_xe(ct); + bool ongoing; + int len; + + ongoing = xe_pm_runtime_get_if_active(ct_to_xe(ct)); + if (!ongoing && xe_pm_read_callback_task(ct_to_xe(ct)) == NULL) + return; + + spin_lock(&ct->fast_lock); + do { + len = g2h_read(ct, ct->fast_msg, true); + if (len > 0) + g2h_fast_path(ct, ct->fast_msg, len); + } while (len > 0); + spin_unlock(&ct->fast_lock); + + if (ongoing) + xe_pm_runtime_put(xe); +} + +/* Returns less than zero on error, 0 on done, 1 on more available */ +static int dequeue_one_g2h(struct xe_guc_ct *ct) +{ + int len; + int ret; + + lockdep_assert_held(&ct->lock); + + spin_lock_irq(&ct->fast_lock); + len = g2h_read(ct, ct->msg, false); + spin_unlock_irq(&ct->fast_lock); + if (len <= 0) + return len; + + ret = parse_g2h_msg(ct, ct->msg, len); + if (unlikely(ret < 0)) + return ret; + + ret = process_g2h_msg(ct, ct->msg, len); + if (unlikely(ret < 0)) + return ret; + + return 1; +} + +static void receive_g2h(struct xe_guc_ct *ct) +{ + bool ongoing; + int ret; + + /* + * Normal users must always hold mem_access.ref around CT calls. However + * during the runtime pm callbacks we rely on CT to talk to the GuC, but + * at this stage we can't rely on mem_access.ref and even the + * callback_task will be different than current. For such cases we just + * need to ensure we always process the responses from any blocking + * ct_send requests or where we otherwise expect some response when + * initiated from those callbacks (which will need to wait for the below + * dequeue_one_g2h()). The dequeue_one_g2h() will gracefully fail if + * the device has suspended to the point that the CT communication has + * been disabled. + * + * If we are inside the runtime pm callback, we can be the only task + * still issuing CT requests (since that requires having the + * mem_access.ref). It seems like it might in theory be possible to + * receive unsolicited events from the GuC just as we are + * suspending-resuming, but those will currently anyway be lost when + * eventually exiting from suspend, hence no need to wake up the device + * here. If we ever need something stronger than get_if_ongoing() then + * we need to be careful with blocking the pm callbacks from getting CT + * responses, if the worker here is blocked on those callbacks + * completing, creating a deadlock. + */ + ongoing = xe_pm_runtime_get_if_active(ct_to_xe(ct)); + if (!ongoing && xe_pm_read_callback_task(ct_to_xe(ct)) == NULL) + return; + + do { + mutex_lock(&ct->lock); + ret = dequeue_one_g2h(ct); + mutex_unlock(&ct->lock); + + if (unlikely(ret == -EPROTO || ret == -EOPNOTSUPP)) { + xe_gt_err(ct_to_gt(ct), "CT dequeue failed: %d", ret); + CT_DEAD(ct, NULL, G2H_RECV); + kick_reset(ct); + } + } while (ret == 1); + + if (ongoing) + xe_pm_runtime_put(ct_to_xe(ct)); +} + +static void g2h_worker_func(struct work_struct *w) +{ + struct xe_guc_ct *ct = container_of(w, struct xe_guc_ct, g2h_worker); + + receive_g2h(ct); +} + +struct xe_guc_ct_snapshot *xe_guc_ct_snapshot_alloc(struct xe_guc_ct *ct, bool atomic) +{ + struct xe_guc_ct_snapshot *snapshot; + + snapshot = kzalloc(sizeof(*snapshot), atomic ? GFP_ATOMIC : GFP_KERNEL); + if (!snapshot) + return NULL; + + if (ct->bo) { + snapshot->ctb_size = ct->bo->size; + snapshot->ctb = kmalloc(snapshot->ctb_size, atomic ? GFP_ATOMIC : GFP_KERNEL); + } + + return snapshot; +} + +static void guc_ctb_snapshot_capture(struct xe_device *xe, struct guc_ctb *ctb, + struct guc_ctb_snapshot *snapshot) +{ + xe_map_memcpy_from(xe, &snapshot->desc, &ctb->desc, 0, + sizeof(struct guc_ct_buffer_desc)); + memcpy(&snapshot->info, &ctb->info, sizeof(struct guc_ctb_info)); +} + +static void guc_ctb_snapshot_print(struct guc_ctb_snapshot *snapshot, + struct drm_printer *p) +{ + drm_printf(p, "\tsize: %d\n", snapshot->info.size); + drm_printf(p, "\tresv_space: %d\n", snapshot->info.resv_space); + drm_printf(p, "\thead: %d\n", snapshot->info.head); + drm_printf(p, "\ttail: %d\n", snapshot->info.tail); + drm_printf(p, "\tspace: %d\n", snapshot->info.space); + drm_printf(p, "\tbroken: %d\n", snapshot->info.broken); + drm_printf(p, "\thead (memory): %d\n", snapshot->desc.head); + drm_printf(p, "\ttail (memory): %d\n", snapshot->desc.tail); + drm_printf(p, "\tstatus (memory): 0x%x\n", snapshot->desc.status); +} + +/** + * xe_guc_ct_snapshot_capture - Take a quick snapshot of the CT state. + * @ct: GuC CT object. + * @atomic: Boolean to indicate if this is called from atomic context like + * reset or CTB handler or from some regular path like debugfs. + * + * This can be printed out in a later stage like during dev_coredump + * analysis. + * + * Returns: a GuC CT snapshot object that must be freed by the caller + * by using `xe_guc_ct_snapshot_free`. + */ +struct xe_guc_ct_snapshot *xe_guc_ct_snapshot_capture(struct xe_guc_ct *ct, + bool atomic) +{ + struct xe_device *xe = ct_to_xe(ct); + struct xe_guc_ct_snapshot *snapshot; + + snapshot = xe_guc_ct_snapshot_alloc(ct, atomic); + if (!snapshot) { + xe_gt_err(ct_to_gt(ct), "Skipping CTB snapshot entirely.\n"); + return NULL; + } + + if (xe_guc_ct_enabled(ct) || ct->state == XE_GUC_CT_STATE_STOPPED) { + snapshot->ct_enabled = true; + snapshot->g2h_outstanding = READ_ONCE(ct->g2h_outstanding); + guc_ctb_snapshot_capture(xe, &ct->ctbs.h2g, &snapshot->h2g); + guc_ctb_snapshot_capture(xe, &ct->ctbs.g2h, &snapshot->g2h); + } + + if (ct->bo && snapshot->ctb) + xe_map_memcpy_from(xe, snapshot->ctb, &ct->bo->vmap, 0, snapshot->ctb_size); + + return snapshot; +} + +/** + * xe_guc_ct_snapshot_print - Print out a given GuC CT snapshot. + * @snapshot: GuC CT snapshot object. + * @p: drm_printer where it will be printed out. + * + * This function prints out a given GuC CT snapshot object. + */ +void xe_guc_ct_snapshot_print(struct xe_guc_ct_snapshot *snapshot, + struct drm_printer *p) +{ + if (!snapshot) + return; + + if (snapshot->ct_enabled) { + drm_puts(p, "H2G CTB (all sizes in DW):\n"); + guc_ctb_snapshot_print(&snapshot->h2g, p); + + drm_puts(p, "G2H CTB (all sizes in DW):\n"); + guc_ctb_snapshot_print(&snapshot->g2h, p); + drm_printf(p, "\tg2h outstanding: %d\n", + snapshot->g2h_outstanding); + + if (snapshot->ctb) { + xe_print_blob_ascii85(p, "CTB data", snapshot->ctb, 0, snapshot->ctb_size); + } else { + drm_printf(p, "CTB snapshot missing!\n"); + return; + } + } else { + drm_puts(p, "CT disabled\n"); + } +} + +/** + * xe_guc_ct_snapshot_free - Free all allocated objects for a given snapshot. + * @snapshot: GuC CT snapshot object. + * + * This function free all the memory that needed to be allocated at capture + * time. + */ +void xe_guc_ct_snapshot_free(struct xe_guc_ct_snapshot *snapshot) +{ + if (!snapshot) + return; + + kfree(snapshot->ctb); + kfree(snapshot); +} + +/** + * xe_guc_ct_print - GuC CT Print. + * @ct: GuC CT. + * @p: drm_printer where it will be printed out. + * + * This function quickly capture a snapshot and immediately print it out. + */ +void xe_guc_ct_print(struct xe_guc_ct *ct, struct drm_printer *p) +{ + struct xe_guc_ct_snapshot *snapshot; + + snapshot = xe_guc_ct_snapshot_capture(ct, false); + xe_guc_ct_snapshot_print(snapshot, p); + xe_guc_ct_snapshot_free(snapshot); +} + +#if IS_ENABLED(CONFIG_DRM_XE_DEBUG) +static void ct_dead_capture(struct xe_guc_ct *ct, struct guc_ctb *ctb, u32 reason_code) +{ + struct xe_guc_log_snapshot *snapshot_log; + struct xe_guc_ct_snapshot *snapshot_ct; + struct xe_guc *guc = ct_to_guc(ct); + unsigned long flags; + bool have_capture; + + if (ctb) + ctb->info.broken = true; + + /* Ignore further errors after the first dump until a reset */ + if (ct->dead.reported) + return; + + spin_lock_irqsave(&ct->dead.lock, flags); + + /* And only capture one dump at a time */ + have_capture = ct->dead.reason & (1 << CT_DEAD_STATE_CAPTURE); + ct->dead.reason |= (1 << reason_code) | + (1 << CT_DEAD_STATE_CAPTURE); + + spin_unlock_irqrestore(&ct->dead.lock, flags); + + if (have_capture) + return; + + snapshot_log = xe_guc_log_snapshot_capture(&guc->log, true); + snapshot_ct = xe_guc_ct_snapshot_capture((ct), true); + + spin_lock_irqsave(&ct->dead.lock, flags); + + if (ct->dead.snapshot_log || ct->dead.snapshot_ct) { + xe_gt_err(ct_to_gt(ct), "Got unexpected dead CT capture!\n"); + xe_guc_log_snapshot_free(snapshot_log); + xe_guc_ct_snapshot_free(snapshot_ct); + } else { + ct->dead.snapshot_log = snapshot_log; + ct->dead.snapshot_ct = snapshot_ct; + } + + spin_unlock_irqrestore(&ct->dead.lock, flags); + + queue_work(system_unbound_wq, &(ct)->dead.worker); +} + +static void ct_dead_print(struct xe_dead_ct *dead) +{ + struct xe_guc_ct *ct = container_of(dead, struct xe_guc_ct, dead); + struct xe_device *xe = ct_to_xe(ct); + struct xe_gt *gt = ct_to_gt(ct); + static int g_count; + struct drm_printer ip = xe_gt_info_printer(gt); + struct drm_printer lp = drm_line_printer(&ip, "Capture", ++g_count); + + if (!dead->reason) { + xe_gt_err(gt, "CTB is dead for no reason!?\n"); + return; + } + + drm_printf(&lp, "CTB is dead - reason=0x%X\n", dead->reason); + + /* Can't generate a genuine core dump at this point, so just do the good bits */ + drm_puts(&lp, "**** Xe Device Coredump ****\n"); + xe_device_snapshot_print(xe, &lp); + + drm_printf(&lp, "**** GT #%d ****\n", gt->info.id); + drm_printf(&lp, "\tTile: %d\n", gt->tile->id); + + drm_puts(&lp, "**** GuC Log ****\n"); + xe_guc_log_snapshot_print(dead->snapshot_log, &lp); + + drm_puts(&lp, "**** GuC CT ****\n"); + xe_guc_ct_snapshot_print(dead->snapshot_ct, &lp); + + drm_puts(&lp, "Done.\n"); +} + +static void ct_dead_worker_func(struct work_struct *w) +{ + struct xe_guc_ct *ct = container_of(w, struct xe_guc_ct, dead.worker); + + if (!ct->dead.reported) { + ct->dead.reported = true; + ct_dead_print(&ct->dead); + } + + spin_lock_irq(&ct->dead.lock); + + xe_guc_log_snapshot_free(ct->dead.snapshot_log); + ct->dead.snapshot_log = NULL; + xe_guc_ct_snapshot_free(ct->dead.snapshot_ct); + ct->dead.snapshot_ct = NULL; + + if (ct->dead.reason & (1 << CT_DEAD_STATE_REARM)) { + /* A reset has occurred so re-arm the error reporting */ + ct->dead.reason = 0; + ct->dead.reported = false; + } + + spin_unlock_irq(&ct->dead.lock); +} +#endif diff --git a/rr-cache/0ace7964b1b2d66224889bcf0b6a7a221776d8c8/preimage.1 b/rr-cache/0ace7964b1b2d66224889bcf0b6a7a221776d8c8/preimage.1 new file mode 100644 index 000000000000..d3838661f4b9 --- /dev/null +++ b/rr-cache/0ace7964b1b2d66224889bcf0b6a7a221776d8c8/preimage.1 @@ -0,0 +1,1866 @@ +// SPDX-License-Identifier: MIT +/* + * Copyright © 2022 Intel Corporation + */ + +#include "xe_guc_ct.h" + +#include <linux/bitfield.h> +#include <linux/circ_buf.h> +#include <linux/delay.h> +#include <linux/fault-inject.h> + +#include <kunit/static_stub.h> + +#include <drm/drm_managed.h> + +#include "abi/guc_actions_abi.h" +#include "abi/guc_actions_sriov_abi.h" +#include "abi/guc_klvs_abi.h" +#include "xe_bo.h" +#include "xe_devcoredump.h" +#include "xe_device.h" +#include "xe_gt.h" +#include "xe_gt_pagefault.h" +#include "xe_gt_printk.h" +#include "xe_gt_sriov_pf_control.h" +#include "xe_gt_sriov_pf_monitor.h" +#include "xe_gt_tlb_invalidation.h" +#include "xe_guc.h" +#include "xe_guc_log.h" +#include "xe_guc_relay.h" +#include "xe_guc_submit.h" +#include "xe_map.h" +#include "xe_pm.h" +#include "xe_trace_guc.h" + +#if IS_ENABLED(CONFIG_DRM_XE_DEBUG) +enum { + /* Internal states, not error conditions */ + CT_DEAD_STATE_REARM, /* 0x0001 */ + CT_DEAD_STATE_CAPTURE, /* 0x0002 */ + + /* Error conditions */ + CT_DEAD_SETUP, /* 0x0004 */ + CT_DEAD_H2G_WRITE, /* 0x0008 */ + CT_DEAD_H2G_HAS_ROOM, /* 0x0010 */ + CT_DEAD_G2H_READ, /* 0x0020 */ + CT_DEAD_G2H_RECV, /* 0x0040 */ + CT_DEAD_G2H_RELEASE, /* 0x0080 */ + CT_DEAD_DEADLOCK, /* 0x0100 */ + CT_DEAD_PROCESS_FAILED, /* 0x0200 */ + CT_DEAD_FAST_G2H, /* 0x0400 */ + CT_DEAD_PARSE_G2H_RESPONSE, /* 0x0800 */ + CT_DEAD_PARSE_G2H_UNKNOWN, /* 0x1000 */ + CT_DEAD_PARSE_G2H_ORIGIN, /* 0x2000 */ + CT_DEAD_PARSE_G2H_TYPE, /* 0x4000 */ +}; + +static void ct_dead_worker_func(struct work_struct *w); +static void ct_dead_capture(struct xe_guc_ct *ct, struct guc_ctb *ctb, u32 reason_code); + +#define CT_DEAD(ct, ctb, reason_code) ct_dead_capture((ct), (ctb), CT_DEAD_##reason_code) +#else +#define CT_DEAD(ct, ctb, reason) \ + do { \ + struct guc_ctb *_ctb = (ctb); \ + if (_ctb) \ + _ctb->info.broken = true; \ + } while (0) +#endif + +/* Used when a CT send wants to block and / or receive data */ +struct g2h_fence { + u32 *response_buffer; + u32 seqno; + u32 response_data; + u16 response_len; + u16 error; + u16 hint; + u16 reason; + bool retry; + bool fail; + bool done; +}; + +static void g2h_fence_init(struct g2h_fence *g2h_fence, u32 *response_buffer) +{ + g2h_fence->response_buffer = response_buffer; + g2h_fence->response_data = 0; + g2h_fence->response_len = 0; + g2h_fence->fail = false; + g2h_fence->retry = false; + g2h_fence->done = false; + g2h_fence->seqno = ~0x0; +} + +static bool g2h_fence_needs_alloc(struct g2h_fence *g2h_fence) +{ + return g2h_fence->seqno == ~0x0; +} + +static struct xe_guc * +ct_to_guc(struct xe_guc_ct *ct) +{ + return container_of(ct, struct xe_guc, ct); +} + +static struct xe_gt * +ct_to_gt(struct xe_guc_ct *ct) +{ + return container_of(ct, struct xe_gt, uc.guc.ct); +} + +static struct xe_device * +ct_to_xe(struct xe_guc_ct *ct) +{ + return gt_to_xe(ct_to_gt(ct)); +} + +/** + * DOC: GuC CTB Blob + * + * We allocate single blob to hold both CTB descriptors and buffers: + * + * +--------+-----------------------------------------------+------+ + * | offset | contents | size | + * +========+===============================================+======+ + * | 0x0000 | H2G CTB Descriptor (send) | | + * +--------+-----------------------------------------------+ 4K | + * | 0x0800 | G2H CTB Descriptor (g2h) | | + * +--------+-----------------------------------------------+------+ + * | 0x1000 | H2G CT Buffer (send) | n*4K | + * | | | | + * +--------+-----------------------------------------------+------+ + * | 0x1000 | G2H CT Buffer (g2h) | m*4K | + * | + n*4K | | | + * +--------+-----------------------------------------------+------+ + * + * Size of each ``CT Buffer`` must be multiple of 4K. + * We don't expect too many messages in flight at any time, unless we are + * using the GuC submission. In that case each request requires a minimum + * 2 dwords which gives us a maximum 256 queue'd requests. Hopefully this + * enough space to avoid backpressure on the driver. We increase the size + * of the receive buffer (relative to the send) to ensure a G2H response + * CTB has a landing spot. + * + * In addition to submissions, the G2H buffer needs to be able to hold + * enough space for recoverable page fault notifications. The number of + * page faults is interrupt driven and can be as much as the number of + * compute resources available. However, most of the actual work for these + * is in a separate page fault worker thread. Therefore we only need to + * make sure the queue has enough space to handle all of the submissions + * and responses and an extra buffer for incoming page faults. + */ + +#define CTB_DESC_SIZE ALIGN(sizeof(struct guc_ct_buffer_desc), SZ_2K) +#define CTB_H2G_BUFFER_SIZE (SZ_4K) +#define CTB_G2H_BUFFER_SIZE (SZ_128K) +#define G2H_ROOM_BUFFER_SIZE (CTB_G2H_BUFFER_SIZE / 2) + +/** + * xe_guc_ct_queue_proc_time_jiffies - Return maximum time to process a full + * CT command queue + * @ct: the &xe_guc_ct. Unused at this moment but will be used in the future. + * + * Observation is that a 4KiB buffer full of commands takes a little over a + * second to process. Use that to calculate maximum time to process a full CT + * command queue. + * + * Return: Maximum time to process a full CT queue in jiffies. + */ +long xe_guc_ct_queue_proc_time_jiffies(struct xe_guc_ct *ct) +{ + BUILD_BUG_ON(!IS_ALIGNED(CTB_H2G_BUFFER_SIZE, SZ_4)); + return (CTB_H2G_BUFFER_SIZE / SZ_4K) * HZ; +} + +static size_t guc_ct_size(void) +{ + return 2 * CTB_DESC_SIZE + CTB_H2G_BUFFER_SIZE + + CTB_G2H_BUFFER_SIZE; +} + +static void guc_ct_fini(struct drm_device *drm, void *arg) +{ + struct xe_guc_ct *ct = arg; + + destroy_workqueue(ct->g2h_wq); + xa_destroy(&ct->fence_lookup); +} + +static void receive_g2h(struct xe_guc_ct *ct); +static void g2h_worker_func(struct work_struct *w); +static void safe_mode_worker_func(struct work_struct *w); + +static void primelockdep(struct xe_guc_ct *ct) +{ + if (!IS_ENABLED(CONFIG_LOCKDEP)) + return; + + fs_reclaim_acquire(GFP_KERNEL); + might_lock(&ct->lock); + fs_reclaim_release(GFP_KERNEL); +} + +int xe_guc_ct_init(struct xe_guc_ct *ct) +{ + struct xe_device *xe = ct_to_xe(ct); + struct xe_gt *gt = ct_to_gt(ct); + struct xe_tile *tile = gt_to_tile(gt); + struct xe_bo *bo; + int err; + + xe_gt_assert(gt, !(guc_ct_size() % PAGE_SIZE)); + + ct->g2h_wq = alloc_ordered_workqueue("xe-g2h-wq", 0); + if (!ct->g2h_wq) + return -ENOMEM; + + spin_lock_init(&ct->fast_lock); + xa_init(&ct->fence_lookup); + INIT_WORK(&ct->g2h_worker, g2h_worker_func); + INIT_DELAYED_WORK(&ct->safe_mode_worker, safe_mode_worker_func); +#if IS_ENABLED(CONFIG_DRM_XE_DEBUG) + spin_lock_init(&ct->dead.lock); + INIT_WORK(&ct->dead.worker, ct_dead_worker_func); +#endif + init_waitqueue_head(&ct->wq); + init_waitqueue_head(&ct->g2h_fence_wq); + + err = drmm_mutex_init(&xe->drm, &ct->lock); + if (err) + return err; + + primelockdep(ct); + + bo = xe_managed_bo_create_pin_map(xe, tile, guc_ct_size(), + XE_BO_FLAG_SYSTEM | + XE_BO_FLAG_GGTT | + XE_BO_FLAG_GGTT_INVALIDATE); + if (IS_ERR(bo)) + return PTR_ERR(bo); + + ct->bo = bo; + + err = drmm_add_action_or_reset(&xe->drm, guc_ct_fini, ct); + if (err) + return err; + + xe_gt_assert(gt, ct->state == XE_GUC_CT_STATE_NOT_INITIALIZED); + ct->state = XE_GUC_CT_STATE_DISABLED; + return 0; +} +ALLOW_ERROR_INJECTION(xe_guc_ct_init, ERRNO); /* See xe_pci_probe() */ + +#define desc_read(xe_, guc_ctb__, field_) \ + xe_map_rd_field(xe_, &guc_ctb__->desc, 0, \ + struct guc_ct_buffer_desc, field_) + +#define desc_write(xe_, guc_ctb__, field_, val_) \ + xe_map_wr_field(xe_, &guc_ctb__->desc, 0, \ + struct guc_ct_buffer_desc, field_, val_) + +static void guc_ct_ctb_h2g_init(struct xe_device *xe, struct guc_ctb *h2g, + struct iosys_map *map) +{ + h2g->info.size = CTB_H2G_BUFFER_SIZE / sizeof(u32); + h2g->info.resv_space = 0; + h2g->info.tail = 0; + h2g->info.head = 0; + h2g->info.space = CIRC_SPACE(h2g->info.tail, h2g->info.head, + h2g->info.size) - + h2g->info.resv_space; + h2g->info.broken = false; + + h2g->desc = *map; + xe_map_memset(xe, &h2g->desc, 0, 0, sizeof(struct guc_ct_buffer_desc)); + + h2g->cmds = IOSYS_MAP_INIT_OFFSET(map, CTB_DESC_SIZE * 2); +} + +static void guc_ct_ctb_g2h_init(struct xe_device *xe, struct guc_ctb *g2h, + struct iosys_map *map) +{ + g2h->info.size = CTB_G2H_BUFFER_SIZE / sizeof(u32); + g2h->info.resv_space = G2H_ROOM_BUFFER_SIZE / sizeof(u32); + g2h->info.head = 0; + g2h->info.tail = 0; + g2h->info.space = CIRC_SPACE(g2h->info.tail, g2h->info.head, + g2h->info.size) - + g2h->info.resv_space; + g2h->info.broken = false; + + g2h->desc = IOSYS_MAP_INIT_OFFSET(map, CTB_DESC_SIZE); + xe_map_memset(xe, &g2h->desc, 0, 0, sizeof(struct guc_ct_buffer_desc)); + + g2h->cmds = IOSYS_MAP_INIT_OFFSET(map, CTB_DESC_SIZE * 2 + + CTB_H2G_BUFFER_SIZE); +} + +static int guc_ct_ctb_h2g_register(struct xe_guc_ct *ct) +{ + struct xe_guc *guc = ct_to_guc(ct); + u32 desc_addr, ctb_addr, size; + int err; + + desc_addr = xe_bo_ggtt_addr(ct->bo); + ctb_addr = xe_bo_ggtt_addr(ct->bo) + CTB_DESC_SIZE * 2; + size = ct->ctbs.h2g.info.size * sizeof(u32); + + err = xe_guc_self_cfg64(guc, + GUC_KLV_SELF_CFG_H2G_CTB_DESCRIPTOR_ADDR_KEY, + desc_addr); + if (err) + return err; + + err = xe_guc_self_cfg64(guc, + GUC_KLV_SELF_CFG_H2G_CTB_ADDR_KEY, + ctb_addr); + if (err) + return err; + + return xe_guc_self_cfg32(guc, + GUC_KLV_SELF_CFG_H2G_CTB_SIZE_KEY, + size); +} + +static int guc_ct_ctb_g2h_register(struct xe_guc_ct *ct) +{ + struct xe_guc *guc = ct_to_guc(ct); + u32 desc_addr, ctb_addr, size; + int err; + + desc_addr = xe_bo_ggtt_addr(ct->bo) + CTB_DESC_SIZE; + ctb_addr = xe_bo_ggtt_addr(ct->bo) + CTB_DESC_SIZE * 2 + + CTB_H2G_BUFFER_SIZE; + size = ct->ctbs.g2h.info.size * sizeof(u32); + + err = xe_guc_self_cfg64(guc, + GUC_KLV_SELF_CFG_G2H_CTB_DESCRIPTOR_ADDR_KEY, + desc_addr); + if (err) + return err; + + err = xe_guc_self_cfg64(guc, + GUC_KLV_SELF_CFG_G2H_CTB_ADDR_KEY, + ctb_addr); + if (err) + return err; + + return xe_guc_self_cfg32(guc, + GUC_KLV_SELF_CFG_G2H_CTB_SIZE_KEY, + size); +} + +static int guc_ct_control_toggle(struct xe_guc_ct *ct, bool enable) +{ + u32 request[HOST2GUC_CONTROL_CTB_REQUEST_MSG_LEN] = { + FIELD_PREP(GUC_HXG_MSG_0_ORIGIN, GUC_HXG_ORIGIN_HOST) | + FIELD_PREP(GUC_HXG_MSG_0_TYPE, GUC_HXG_TYPE_REQUEST) | + FIELD_PREP(GUC_HXG_REQUEST_MSG_0_ACTION, + GUC_ACTION_HOST2GUC_CONTROL_CTB), + FIELD_PREP(HOST2GUC_CONTROL_CTB_REQUEST_MSG_1_CONTROL, + enable ? GUC_CTB_CONTROL_ENABLE : + GUC_CTB_CONTROL_DISABLE), + }; + int ret = xe_guc_mmio_send(ct_to_guc(ct), request, ARRAY_SIZE(request)); + + return ret > 0 ? -EPROTO : ret; +} + +static void xe_guc_ct_set_state(struct xe_guc_ct *ct, + enum xe_guc_ct_state state) +{ + mutex_lock(&ct->lock); /* Serialise dequeue_one_g2h() */ + spin_lock_irq(&ct->fast_lock); /* Serialise CT fast-path */ + + xe_gt_assert(ct_to_gt(ct), ct->g2h_outstanding == 0 || + state == XE_GUC_CT_STATE_STOPPED); + + if (ct->g2h_outstanding) + xe_pm_runtime_put(ct_to_xe(ct)); + ct->g2h_outstanding = 0; + ct->state = state; + + spin_unlock_irq(&ct->fast_lock); + + /* + * Lockdep doesn't like this under the fast lock and he destroy only + * needs to be serialized with the send path which ct lock provides. + */ + xa_destroy(&ct->fence_lookup); + + mutex_unlock(&ct->lock); +} + +static bool ct_needs_safe_mode(struct xe_guc_ct *ct) +{ + return !pci_dev_msi_enabled(to_pci_dev(ct_to_xe(ct)->drm.dev)); +} + +static bool ct_restart_safe_mode_worker(struct xe_guc_ct *ct) +{ + if (!ct_needs_safe_mode(ct)) + return false; + + queue_delayed_work(ct->g2h_wq, &ct->safe_mode_worker, HZ / 10); + return true; +} + +static void safe_mode_worker_func(struct work_struct *w) +{ + struct xe_guc_ct *ct = container_of(w, struct xe_guc_ct, safe_mode_worker.work); + + receive_g2h(ct); + + if (!ct_restart_safe_mode_worker(ct)) + xe_gt_dbg(ct_to_gt(ct), "GuC CT safe-mode canceled\n"); +} + +static void ct_enter_safe_mode(struct xe_guc_ct *ct) +{ + if (ct_restart_safe_mode_worker(ct)) + xe_gt_dbg(ct_to_gt(ct), "GuC CT safe-mode enabled\n"); +} + +static void ct_exit_safe_mode(struct xe_guc_ct *ct) +{ + if (cancel_delayed_work_sync(&ct->safe_mode_worker)) + xe_gt_dbg(ct_to_gt(ct), "GuC CT safe-mode disabled\n"); +} + +int xe_guc_ct_enable(struct xe_guc_ct *ct) +{ + struct xe_device *xe = ct_to_xe(ct); + struct xe_gt *gt = ct_to_gt(ct); + int err; + + xe_gt_assert(gt, !xe_guc_ct_enabled(ct)); + + xe_map_memset(xe, &ct->bo->vmap, 0, 0, ct->bo->size); + guc_ct_ctb_h2g_init(xe, &ct->ctbs.h2g, &ct->bo->vmap); + guc_ct_ctb_g2h_init(xe, &ct->ctbs.g2h, &ct->bo->vmap); + + err = guc_ct_ctb_h2g_register(ct); + if (err) + goto err_out; + + err = guc_ct_ctb_g2h_register(ct); + if (err) + goto err_out; + + err = guc_ct_control_toggle(ct, true); + if (err) + goto err_out; + + xe_guc_ct_set_state(ct, XE_GUC_CT_STATE_ENABLED); + + smp_mb(); + wake_up_all(&ct->wq); + xe_gt_dbg(gt, "GuC CT communication channel enabled\n"); + + if (ct_needs_safe_mode(ct)) + ct_enter_safe_mode(ct); + +#if IS_ENABLED(CONFIG_DRM_XE_DEBUG) + /* + * The CT has now been reset so the dumper can be re-armed + * after any existing dead state has been dumped. + */ + spin_lock_irq(&ct->dead.lock); + if (ct->dead.reason) + ct->dead.reason |= (1 << CT_DEAD_STATE_REARM); + spin_unlock_irq(&ct->dead.lock); +#endif + + return 0; + +err_out: + xe_gt_err(gt, "Failed to enable GuC CT (%pe)\n", ERR_PTR(err)); + CT_DEAD(ct, NULL, SETUP); + + return err; +} + +static void stop_g2h_handler(struct xe_guc_ct *ct) +{ + cancel_work_sync(&ct->g2h_worker); +} + +/** + * xe_guc_ct_disable - Set GuC to disabled state + * @ct: the &xe_guc_ct + * + * Set GuC CT to disabled state and stop g2h handler. No outstanding g2h expected + * in this transition. + */ +void xe_guc_ct_disable(struct xe_guc_ct *ct) +{ + xe_guc_ct_set_state(ct, XE_GUC_CT_STATE_DISABLED); + ct_exit_safe_mode(ct); + stop_g2h_handler(ct); +} + +/** + * xe_guc_ct_stop - Set GuC to stopped state + * @ct: the &xe_guc_ct + * + * Set GuC CT to stopped state, stop g2h handler, and clear any outstanding g2h + */ +void xe_guc_ct_stop(struct xe_guc_ct *ct) +{ + xe_guc_ct_set_state(ct, XE_GUC_CT_STATE_STOPPED); + stop_g2h_handler(ct); +} + +static bool h2g_has_room(struct xe_guc_ct *ct, u32 cmd_len) +{ + struct guc_ctb *h2g = &ct->ctbs.h2g; + + lockdep_assert_held(&ct->lock); + + if (cmd_len > h2g->info.space) { + h2g->info.head = desc_read(ct_to_xe(ct), h2g, head); + + if (h2g->info.head > h2g->info.size) { + struct xe_device *xe = ct_to_xe(ct); + u32 desc_status = desc_read(xe, h2g, status); + + desc_write(xe, h2g, status, desc_status | GUC_CTB_STATUS_OVERFLOW); + + xe_gt_err(ct_to_gt(ct), "CT: invalid head offset %u >= %u)\n", + h2g->info.head, h2g->info.size); + CT_DEAD(ct, h2g, H2G_HAS_ROOM); + return false; + } + + h2g->info.space = CIRC_SPACE(h2g->info.tail, h2g->info.head, + h2g->info.size) - + h2g->info.resv_space; + if (cmd_len > h2g->info.space) + return false; + } + + return true; +} + +static bool g2h_has_room(struct xe_guc_ct *ct, u32 g2h_len) +{ + if (!g2h_len) + return true; + + lockdep_assert_held(&ct->fast_lock); + + return ct->ctbs.g2h.info.space > g2h_len; +} + +static int has_room(struct xe_guc_ct *ct, u32 cmd_len, u32 g2h_len) +{ + lockdep_assert_held(&ct->lock); + + if (!g2h_has_room(ct, g2h_len) || !h2g_has_room(ct, cmd_len)) + return -EBUSY; + + return 0; +} + +static void h2g_reserve_space(struct xe_guc_ct *ct, u32 cmd_len) +{ + lockdep_assert_held(&ct->lock); + ct->ctbs.h2g.info.space -= cmd_len; +} + +static void __g2h_reserve_space(struct xe_guc_ct *ct, u32 g2h_len, u32 num_g2h) +{ + xe_gt_assert(ct_to_gt(ct), g2h_len <= ct->ctbs.g2h.info.space); + xe_gt_assert(ct_to_gt(ct), (!g2h_len && !num_g2h) || + (g2h_len && num_g2h)); + + if (g2h_len) { + lockdep_assert_held(&ct->fast_lock); + + if (!ct->g2h_outstanding) + xe_pm_runtime_get_noresume(ct_to_xe(ct)); + + ct->ctbs.g2h.info.space -= g2h_len; + ct->g2h_outstanding += num_g2h; + } +} + +static void __g2h_release_space(struct xe_guc_ct *ct, u32 g2h_len) +{ + bool bad = false; + + lockdep_assert_held(&ct->fast_lock); + + bad = ct->ctbs.g2h.info.space + g2h_len > + ct->ctbs.g2h.info.size - ct->ctbs.g2h.info.resv_space; + bad |= !ct->g2h_outstanding; + + if (bad) { + xe_gt_err(ct_to_gt(ct), "Invalid G2H release: %d + %d vs %d - %d -> %d vs %d, outstanding = %d!\n", + ct->ctbs.g2h.info.space, g2h_len, + ct->ctbs.g2h.info.size, ct->ctbs.g2h.info.resv_space, + ct->ctbs.g2h.info.space + g2h_len, + ct->ctbs.g2h.info.size - ct->ctbs.g2h.info.resv_space, + ct->g2h_outstanding); + CT_DEAD(ct, &ct->ctbs.g2h, G2H_RELEASE); + return; + } + + ct->ctbs.g2h.info.space += g2h_len; + if (!--ct->g2h_outstanding) + xe_pm_runtime_put(ct_to_xe(ct)); +} + +static void g2h_release_space(struct xe_guc_ct *ct, u32 g2h_len) +{ + spin_lock_irq(&ct->fast_lock); + __g2h_release_space(ct, g2h_len); + spin_unlock_irq(&ct->fast_lock); +} + +#define H2G_CT_HEADERS (GUC_CTB_HDR_LEN + 1) /* one DW CTB header and one DW HxG header */ + +static int h2g_write(struct xe_guc_ct *ct, const u32 *action, u32 len, + u32 ct_fence_value, bool want_response) +{ + struct xe_device *xe = ct_to_xe(ct); + struct xe_gt *gt = ct_to_gt(ct); + struct guc_ctb *h2g = &ct->ctbs.h2g; + u32 cmd[H2G_CT_HEADERS]; + u32 tail = h2g->info.tail; + u32 full_len; + struct iosys_map map = IOSYS_MAP_INIT_OFFSET(&h2g->cmds, + tail * sizeof(u32)); + u32 desc_status; + + full_len = len + GUC_CTB_HDR_LEN; + + lockdep_assert_held(&ct->lock); + xe_gt_assert(gt, full_len <= GUC_CTB_MSG_MAX_LEN); + + desc_status = desc_read(xe, h2g, status); + if (desc_status) { + xe_gt_err(gt, "CT write: non-zero status: %u\n", desc_status); + goto corrupted; + } + + if (IS_ENABLED(CONFIG_DRM_XE_DEBUG)) { + u32 desc_tail = desc_read(xe, h2g, tail); + u32 desc_head = desc_read(xe, h2g, head); + + if (tail != desc_tail) { + desc_write(xe, h2g, status, desc_status | GUC_CTB_STATUS_MISMATCH); + xe_gt_err(gt, "CT write: tail was modified %u != %u\n", desc_tail, tail); + goto corrupted; + } + + if (tail > h2g->info.size) { + desc_write(xe, h2g, status, desc_status | GUC_CTB_STATUS_OVERFLOW); + xe_gt_err(gt, "CT write: tail out of range: %u vs %u\n", + tail, h2g->info.size); + goto corrupted; + } + + if (desc_head >= h2g->info.size) { + desc_write(xe, h2g, status, desc_status | GUC_CTB_STATUS_OVERFLOW); + xe_gt_err(gt, "CT write: invalid head offset %u >= %u)\n", + desc_head, h2g->info.size); + goto corrupted; + } + } + + /* Command will wrap, zero fill (NOPs), return and check credits again */ + if (tail + full_len > h2g->info.size) { + xe_map_memset(xe, &map, 0, 0, + (h2g->info.size - tail) * sizeof(u32)); + h2g_reserve_space(ct, (h2g->info.size - tail)); + h2g->info.tail = 0; + desc_write(xe, h2g, tail, h2g->info.tail); + + return -EAGAIN; + } + + /* + * dw0: CT header (including fence) + * dw1: HXG header (including action code) + * dw2+: action data + */ + cmd[0] = FIELD_PREP(GUC_CTB_MSG_0_FORMAT, GUC_CTB_FORMAT_HXG) | + FIELD_PREP(GUC_CTB_MSG_0_NUM_DWORDS, len) | + FIELD_PREP(GUC_CTB_MSG_0_FENCE, ct_fence_value); + if (want_response) { + cmd[1] = + FIELD_PREP(GUC_HXG_MSG_0_TYPE, GUC_HXG_TYPE_REQUEST) | + FIELD_PREP(GUC_HXG_EVENT_MSG_0_ACTION | + GUC_HXG_EVENT_MSG_0_DATA0, action[0]); + } else { + cmd[1] = + FIELD_PREP(GUC_HXG_MSG_0_TYPE, GUC_HXG_TYPE_FAST_REQUEST) | + FIELD_PREP(GUC_HXG_EVENT_MSG_0_ACTION | + GUC_HXG_EVENT_MSG_0_DATA0, action[0]); + } + + /* H2G header in cmd[1] replaces action[0] so: */ + --len; + ++action; + + /* Write H2G ensuring visable before descriptor update */ + xe_map_memcpy_to(xe, &map, 0, cmd, H2G_CT_HEADERS * sizeof(u32)); + xe_map_memcpy_to(xe, &map, H2G_CT_HEADERS * sizeof(u32), action, len * sizeof(u32)); + xe_device_wmb(xe); + + /* Update local copies */ + h2g->info.tail = (tail + full_len) % h2g->info.size; + h2g_reserve_space(ct, full_len); + + /* Update descriptor */ + desc_write(xe, h2g, tail, h2g->info.tail); + + trace_xe_guc_ctb_h2g(xe, gt->info.id, *(action - 1), full_len, + desc_read(xe, h2g, head), h2g->info.tail); + + return 0; + +corrupted: + CT_DEAD(ct, &ct->ctbs.h2g, H2G_WRITE); + return -EPIPE; +} + +/* + * The CT protocol accepts a 16 bits fence. This field is fully owned by the + * driver, the GuC will just copy it to the reply message. Since we need to + * be able to distinguish between replies to REQUEST and FAST_REQUEST messages, + * we use one bit of the seqno as an indicator for that and a rolling counter + * for the remaining 15 bits. + */ +#define CT_SEQNO_MASK GENMASK(14, 0) +#define CT_SEQNO_UNTRACKED BIT(15) +static u16 next_ct_seqno(struct xe_guc_ct *ct, bool is_g2h_fence) +{ + u32 seqno = ct->fence_seqno++ & CT_SEQNO_MASK; + + if (!is_g2h_fence) + seqno |= CT_SEQNO_UNTRACKED; + + return seqno; +} + +static int __guc_ct_send_locked(struct xe_guc_ct *ct, const u32 *action, + u32 len, u32 g2h_len, u32 num_g2h, + struct g2h_fence *g2h_fence) +{ + struct xe_gt *gt __maybe_unused = ct_to_gt(ct); + u16 seqno; + int ret; + + xe_gt_assert(gt, ct->state != XE_GUC_CT_STATE_NOT_INITIALIZED); + xe_gt_assert(gt, !g2h_len || !g2h_fence); + xe_gt_assert(gt, !num_g2h || !g2h_fence); + xe_gt_assert(gt, !g2h_len || num_g2h); + xe_gt_assert(gt, g2h_len || !num_g2h); + lockdep_assert_held(&ct->lock); + + if (unlikely(ct->ctbs.h2g.info.broken)) { + ret = -EPIPE; + goto out; + } + + if (ct->state == XE_GUC_CT_STATE_DISABLED) { + ret = -ENODEV; + goto out; + } + + if (ct->state == XE_GUC_CT_STATE_STOPPED) { + ret = -ECANCELED; + goto out; + } + + xe_gt_assert(gt, xe_guc_ct_enabled(ct)); + + if (g2h_fence) { + g2h_len = GUC_CTB_HXG_MSG_MAX_LEN; + num_g2h = 1; + + if (g2h_fence_needs_alloc(g2h_fence)) { + g2h_fence->seqno = next_ct_seqno(ct, true); + ret = xa_err(xa_store(&ct->fence_lookup, + g2h_fence->seqno, g2h_fence, + GFP_ATOMIC)); + if (ret) + goto out; + } + + seqno = g2h_fence->seqno; + } else { + seqno = next_ct_seqno(ct, false); + } + + if (g2h_len) + spin_lock_irq(&ct->fast_lock); +retry: + ret = has_room(ct, len + GUC_CTB_HDR_LEN, g2h_len); + if (unlikely(ret)) + goto out_unlock; + + ret = h2g_write(ct, action, len, seqno, !!g2h_fence); + if (unlikely(ret)) { + if (ret == -EAGAIN) + goto retry; + goto out_unlock; + } + + __g2h_reserve_space(ct, g2h_len, num_g2h); + xe_guc_notify(ct_to_guc(ct)); +out_unlock: + if (g2h_len) + spin_unlock_irq(&ct->fast_lock); +out: + return ret; +} + +static void kick_reset(struct xe_guc_ct *ct) +{ + xe_gt_reset_async(ct_to_gt(ct)); +} + +static int dequeue_one_g2h(struct xe_guc_ct *ct); + +static int guc_ct_send_locked(struct xe_guc_ct *ct, const u32 *action, u32 len, + u32 g2h_len, u32 num_g2h, + struct g2h_fence *g2h_fence) +{ + struct xe_device *xe = ct_to_xe(ct); + struct xe_gt *gt = ct_to_gt(ct); + unsigned int sleep_period_ms = 1; + int ret; + + xe_gt_assert(gt, !g2h_len || !g2h_fence); + lockdep_assert_held(&ct->lock); + xe_device_assert_mem_access(ct_to_xe(ct)); + +try_again: + ret = __guc_ct_send_locked(ct, action, len, g2h_len, num_g2h, + g2h_fence); + + /* + * We wait to try to restore credits for about 1 second before bailing. + * In the case of H2G credits we have no choice but just to wait for the + * GuC to consume H2Gs in the channel so we use a wait / sleep loop. In + * the case of G2H we process any G2H in the channel, hopefully freeing + * credits as we consume the G2H messages. + */ + if (unlikely(ret == -EBUSY && + !h2g_has_room(ct, len + GUC_CTB_HDR_LEN))) { + struct guc_ctb *h2g = &ct->ctbs.h2g; + + if (sleep_period_ms == 1024) + goto broken; + + trace_xe_guc_ct_h2g_flow_control(xe, h2g->info.head, h2g->info.tail, + h2g->info.size, + h2g->info.space, + len + GUC_CTB_HDR_LEN); + msleep(sleep_period_ms); + sleep_period_ms <<= 1; + + goto try_again; + } else if (unlikely(ret == -EBUSY)) { + struct xe_device *xe = ct_to_xe(ct); + struct guc_ctb *g2h = &ct->ctbs.g2h; + + trace_xe_guc_ct_g2h_flow_control(xe, g2h->info.head, + desc_read(xe, g2h, tail), + g2h->info.size, + g2h->info.space, + g2h_fence ? + GUC_CTB_HXG_MSG_MAX_LEN : + g2h_len); + +#define g2h_avail(ct) \ + (desc_read(ct_to_xe(ct), (&ct->ctbs.g2h), tail) != ct->ctbs.g2h.info.head) + if (!wait_event_timeout(ct->wq, !ct->g2h_outstanding || + g2h_avail(ct), HZ)) + goto broken; +#undef g2h_avail + + ret = dequeue_one_g2h(ct); + if (ret < 0) { + if (ret != -ECANCELED) + xe_gt_err(ct_to_gt(ct), "CTB receive failed (%pe)", + ERR_PTR(ret)); + goto broken; + } + + goto try_again; + } + + return ret; + +broken: + xe_gt_err(gt, "No forward process on H2G, reset required\n"); + CT_DEAD(ct, &ct->ctbs.h2g, DEADLOCK); + + return -EDEADLK; +} + +static int guc_ct_send(struct xe_guc_ct *ct, const u32 *action, u32 len, + u32 g2h_len, u32 num_g2h, struct g2h_fence *g2h_fence) +{ + int ret; + + xe_gt_assert(ct_to_gt(ct), !g2h_len || !g2h_fence); + + mutex_lock(&ct->lock); + ret = guc_ct_send_locked(ct, action, len, g2h_len, num_g2h, g2h_fence); + mutex_unlock(&ct->lock); + + return ret; +} + +int xe_guc_ct_send(struct xe_guc_ct *ct, const u32 *action, u32 len, + u32 g2h_len, u32 num_g2h) +{ + int ret; + + ret = guc_ct_send(ct, action, len, g2h_len, num_g2h, NULL); + if (ret == -EDEADLK) + kick_reset(ct); + + return ret; +} + +int xe_guc_ct_send_locked(struct xe_guc_ct *ct, const u32 *action, u32 len, + u32 g2h_len, u32 num_g2h) +{ + int ret; + + ret = guc_ct_send_locked(ct, action, len, g2h_len, num_g2h, NULL); + if (ret == -EDEADLK) + kick_reset(ct); + + return ret; +} + +int xe_guc_ct_send_g2h_handler(struct xe_guc_ct *ct, const u32 *action, u32 len) +{ + int ret; + + lockdep_assert_held(&ct->lock); + + ret = guc_ct_send_locked(ct, action, len, 0, 0, NULL); + if (ret == -EDEADLK) + kick_reset(ct); + + return ret; +} + +/* + * Check if a GT reset is in progress or will occur and if GT reset brought the + * CT back up. Randomly picking 5 seconds for an upper limit to do a GT a reset. + */ +static bool retry_failure(struct xe_guc_ct *ct, int ret) +{ + if (!(ret == -EDEADLK || ret == -EPIPE || ret == -ENODEV)) + return false; + +#define ct_alive(ct) \ + (xe_guc_ct_enabled(ct) && !ct->ctbs.h2g.info.broken && \ + !ct->ctbs.g2h.info.broken) + if (!wait_event_interruptible_timeout(ct->wq, ct_alive(ct), HZ * 5)) + return false; +#undef ct_alive + + return true; +} + +static int guc_ct_send_recv(struct xe_guc_ct *ct, const u32 *action, u32 len, + u32 *response_buffer, bool no_fail) +{ + struct xe_gt *gt = ct_to_gt(ct); + struct g2h_fence g2h_fence; + int ret = 0; + + /* + * We use a fence to implement blocking sends / receiving response data. + * The seqno of the fence is sent in the H2G, returned in the G2H, and + * an xarray is used as storage media with the seqno being to key. + * Fields in the fence hold success, failure, retry status and the + * response data. Safe to allocate on the stack as the xarray is the + * only reference and it cannot be present after this function exits. + */ +retry: + g2h_fence_init(&g2h_fence, response_buffer); +retry_same_fence: + ret = guc_ct_send(ct, action, len, 0, 0, &g2h_fence); + if (unlikely(ret == -ENOMEM)) { + /* Retry allocation /w GFP_KERNEL */ + ret = xa_err(xa_store(&ct->fence_lookup, g2h_fence.seqno, + &g2h_fence, GFP_KERNEL)); + if (ret) + return ret; + + goto retry_same_fence; + } else if (unlikely(ret)) { + if (ret == -EDEADLK) + kick_reset(ct); + + if (no_fail && retry_failure(ct, ret)) + goto retry_same_fence; + + if (!g2h_fence_needs_alloc(&g2h_fence)) + xa_erase(&ct->fence_lookup, g2h_fence.seqno); + + return ret; + } + + ret = wait_event_timeout(ct->g2h_fence_wq, g2h_fence.done, HZ); + + /* +<<<<<<< + * Ensure we serialize with completion side to prevent UAF with fence going out of scope on + * the stack, since we have no clue if it will fire after the timeout before we can erase + * from the xa. Also we have some dependent loads and stores below for which we need the + * correct ordering, and we lack the needed barriers. + */ + mutex_lock(&ct->lock); + if (!ret) { + xe_gt_err(gt, "Timed out wait for G2H, fence %u, action %04x, done %s", + g2h_fence.seqno, action[0], str_yes_no(g2h_fence.done)); + xa_erase(&ct->fence_lookup, g2h_fence.seqno); +======= + * Occasionally it is seen that the G2H worker starts running after a delay of more than + * a second even after being queued and activated by the Linux workqueue subsystem. This + * leads to G2H timeout error. The root cause of issue lies with scheduling latency of + * Lunarlake Hybrid CPU. Issue dissappears if we disable Lunarlake atom cores from BIOS + * and this is beyond xe kmd. + * + * TODO: Drop this change once workqueue scheduling delay issue is fixed on LNL Hybrid CPU. + */ + if (!ret) { + flush_work(&ct->g2h_worker); + if (g2h_fence.done) { + xe_gt_warn(gt, "G2H fence %u, action %04x, done\n", + g2h_fence.seqno, action[0]); + ret = 1; + } + } + + /* + * Ensure we serialize with completion side to prevent UAF with fence going out of scope on + * the stack, since we have no clue if it will fire after the timeout before we can erase + * from the xa. Also we have some dependent loads and stores below for which we need the + * correct ordering, and we lack the needed barriers. + */ + mutex_lock(&ct->lock); + if (!ret) { + xe_gt_err(gt, "Timed out wait for G2H, fence %u, action %04x, done %s", + g2h_fence.seqno, action[0], str_yes_no(g2h_fence.done)); + xa_erase_irq(&ct->fence_lookup, g2h_fence.seqno); +>>>>>>> + mutex_unlock(&ct->lock); + return -ETIME; + } + + if (g2h_fence.retry) { + xe_gt_dbg(gt, "H2G action %#x retrying: reason %#x\n", + action[0], g2h_fence.reason); + mutex_unlock(&ct->lock); + goto retry; + } + if (g2h_fence.fail) { + xe_gt_err(gt, "H2G request %#x failed: error %#x hint %#x\n", + action[0], g2h_fence.error, g2h_fence.hint); + ret = -EIO; + } + + if (ret > 0) + ret = response_buffer ? g2h_fence.response_len : g2h_fence.response_data; + + mutex_unlock(&ct->lock); + + return ret; +} + +/** + * xe_guc_ct_send_recv - Send and receive HXG to the GuC + * @ct: the &xe_guc_ct + * @action: the dword array with `HXG Request`_ message (can't be NULL) + * @len: length of the `HXG Request`_ message (in dwords, can't be 0) + * @response_buffer: placeholder for the `HXG Response`_ message (can be NULL) + * + * Send a `HXG Request`_ message to the GuC over CT communication channel and + * blocks until GuC replies with a `HXG Response`_ message. + * + * For non-blocking communication with GuC use xe_guc_ct_send(). + * + * Note: The size of &response_buffer must be at least GUC_CTB_MAX_DWORDS_. + * + * Return: response length (in dwords) if &response_buffer was not NULL, or + * DATA0 from `HXG Response`_ if &response_buffer was NULL, or + * a negative error code on failure. + */ +int xe_guc_ct_send_recv(struct xe_guc_ct *ct, const u32 *action, u32 len, + u32 *response_buffer) +{ + KUNIT_STATIC_STUB_REDIRECT(xe_guc_ct_send_recv, ct, action, len, response_buffer); + return guc_ct_send_recv(ct, action, len, response_buffer, false); +} + +int xe_guc_ct_send_recv_no_fail(struct xe_guc_ct *ct, const u32 *action, + u32 len, u32 *response_buffer) +{ + return guc_ct_send_recv(ct, action, len, response_buffer, true); +} + +static u32 *msg_to_hxg(u32 *msg) +{ + return msg + GUC_CTB_MSG_MIN_LEN; +} + +static u32 msg_len_to_hxg_len(u32 len) +{ + return len - GUC_CTB_MSG_MIN_LEN; +} + +static int parse_g2h_event(struct xe_guc_ct *ct, u32 *msg, u32 len) +{ + u32 *hxg = msg_to_hxg(msg); + u32 action = FIELD_GET(GUC_HXG_EVENT_MSG_0_ACTION, hxg[0]); + + lockdep_assert_held(&ct->lock); + + switch (action) { + case XE_GUC_ACTION_SCHED_CONTEXT_MODE_DONE: + case XE_GUC_ACTION_DEREGISTER_CONTEXT_DONE: + case XE_GUC_ACTION_SCHED_ENGINE_MODE_DONE: + case XE_GUC_ACTION_TLB_INVALIDATION_DONE: + g2h_release_space(ct, len); + } + + return 0; +} + +static int parse_g2h_response(struct xe_guc_ct *ct, u32 *msg, u32 len) +{ + struct xe_gt *gt = ct_to_gt(ct); + u32 *hxg = msg_to_hxg(msg); + u32 hxg_len = msg_len_to_hxg_len(len); + u32 fence = FIELD_GET(GUC_CTB_MSG_0_FENCE, msg[0]); + u32 type = FIELD_GET(GUC_HXG_MSG_0_TYPE, hxg[0]); + struct g2h_fence *g2h_fence; + + lockdep_assert_held(&ct->lock); + + /* + * Fences for FAST_REQUEST messages are not tracked in ct->fence_lookup. + * Those messages should never fail, so if we do get an error back it + * means we're likely doing an illegal operation and the GuC is + * rejecting it. We have no way to inform the code that submitted the + * H2G that the message was rejected, so we need to escalate the + * failure to trigger a reset. + */ + if (fence & CT_SEQNO_UNTRACKED) { + if (type == GUC_HXG_TYPE_RESPONSE_FAILURE) + xe_gt_err(gt, "FAST_REQ H2G fence 0x%x failed! e=0x%x, h=%u\n", + fence, + FIELD_GET(GUC_HXG_FAILURE_MSG_0_ERROR, hxg[0]), + FIELD_GET(GUC_HXG_FAILURE_MSG_0_HINT, hxg[0])); + else + xe_gt_err(gt, "unexpected response %u for FAST_REQ H2G fence 0x%x!\n", + type, fence); + CT_DEAD(ct, NULL, PARSE_G2H_RESPONSE); + + return -EPROTO; + } + + g2h_fence = xa_erase(&ct->fence_lookup, fence); + if (unlikely(!g2h_fence)) { + /* Don't tear down channel, as send could've timed out */ + /* CT_DEAD(ct, NULL, PARSE_G2H_UNKNOWN); */ + xe_gt_warn(gt, "G2H fence (%u) not found!\n", fence); + g2h_release_space(ct, GUC_CTB_HXG_MSG_MAX_LEN); + return 0; + } + + xe_gt_assert(gt, fence == g2h_fence->seqno); + + if (type == GUC_HXG_TYPE_RESPONSE_FAILURE) { + g2h_fence->fail = true; + g2h_fence->error = FIELD_GET(GUC_HXG_FAILURE_MSG_0_ERROR, hxg[0]); + g2h_fence->hint = FIELD_GET(GUC_HXG_FAILURE_MSG_0_HINT, hxg[0]); + } else if (type == GUC_HXG_TYPE_NO_RESPONSE_RETRY) { + g2h_fence->retry = true; + g2h_fence->reason = FIELD_GET(GUC_HXG_RETRY_MSG_0_REASON, hxg[0]); + } else if (g2h_fence->response_buffer) { + g2h_fence->response_len = hxg_len; + memcpy(g2h_fence->response_buffer, hxg, hxg_len * sizeof(u32)); + } else { + g2h_fence->response_data = FIELD_GET(GUC_HXG_RESPONSE_MSG_0_DATA0, hxg[0]); + } + + g2h_release_space(ct, GUC_CTB_HXG_MSG_MAX_LEN); + + g2h_fence->done = true; + smp_mb(); + + wake_up_all(&ct->g2h_fence_wq); + + return 0; +} + +static int parse_g2h_msg(struct xe_guc_ct *ct, u32 *msg, u32 len) +{ + struct xe_gt *gt = ct_to_gt(ct); + u32 *hxg = msg_to_hxg(msg); + u32 origin, type; + int ret; + + lockdep_assert_held(&ct->lock); + + origin = FIELD_GET(GUC_HXG_MSG_0_ORIGIN, hxg[0]); + if (unlikely(origin != GUC_HXG_ORIGIN_GUC)) { + xe_gt_err(gt, "G2H channel broken on read, origin=%u, reset required\n", + origin); + CT_DEAD(ct, &ct->ctbs.g2h, PARSE_G2H_ORIGIN); + + return -EPROTO; + } + + type = FIELD_GET(GUC_HXG_MSG_0_TYPE, hxg[0]); + switch (type) { + case GUC_HXG_TYPE_EVENT: + ret = parse_g2h_event(ct, msg, len); + break; + case GUC_HXG_TYPE_RESPONSE_SUCCESS: + case GUC_HXG_TYPE_RESPONSE_FAILURE: + case GUC_HXG_TYPE_NO_RESPONSE_RETRY: + ret = parse_g2h_response(ct, msg, len); + break; + default: + xe_gt_err(gt, "G2H channel broken on read, type=%u, reset required\n", + type); + CT_DEAD(ct, &ct->ctbs.g2h, PARSE_G2H_TYPE); + + ret = -EOPNOTSUPP; + } + + return ret; +} + +static int process_g2h_msg(struct xe_guc_ct *ct, u32 *msg, u32 len) +{ + struct xe_guc *guc = ct_to_guc(ct); + struct xe_gt *gt = ct_to_gt(ct); + u32 hxg_len = msg_len_to_hxg_len(len); + u32 *hxg = msg_to_hxg(msg); + u32 action, adj_len; + u32 *payload; + int ret = 0; + + if (FIELD_GET(GUC_HXG_MSG_0_TYPE, hxg[0]) != GUC_HXG_TYPE_EVENT) + return 0; + + action = FIELD_GET(GUC_HXG_EVENT_MSG_0_ACTION, hxg[0]); + payload = hxg + GUC_HXG_EVENT_MSG_MIN_LEN; + adj_len = hxg_len - GUC_HXG_EVENT_MSG_MIN_LEN; + + switch (action) { + case XE_GUC_ACTION_SCHED_CONTEXT_MODE_DONE: + ret = xe_guc_sched_done_handler(guc, payload, adj_len); + break; + case XE_GUC_ACTION_DEREGISTER_CONTEXT_DONE: + ret = xe_guc_deregister_done_handler(guc, payload, adj_len); + break; + case XE_GUC_ACTION_CONTEXT_RESET_NOTIFICATION: + ret = xe_guc_exec_queue_reset_handler(guc, payload, adj_len); + break; + case XE_GUC_ACTION_ENGINE_FAILURE_NOTIFICATION: + ret = xe_guc_exec_queue_reset_failure_handler(guc, payload, + adj_len); + break; + case XE_GUC_ACTION_SCHED_ENGINE_MODE_DONE: + /* Selftest only at the moment */ + break; + case XE_GUC_ACTION_STATE_CAPTURE_NOTIFICATION: + ret = xe_guc_error_capture_handler(guc, payload, adj_len); + break; + case XE_GUC_ACTION_NOTIFY_FLUSH_LOG_BUFFER_TO_FILE: + /* FIXME: Handle this */ + break; + case XE_GUC_ACTION_NOTIFY_MEMORY_CAT_ERROR: + ret = xe_guc_exec_queue_memory_cat_error_handler(guc, payload, + adj_len); + break; + case XE_GUC_ACTION_REPORT_PAGE_FAULT_REQ_DESC: + ret = xe_guc_pagefault_handler(guc, payload, adj_len); + break; + case XE_GUC_ACTION_TLB_INVALIDATION_DONE: + ret = xe_guc_tlb_invalidation_done_handler(guc, payload, + adj_len); + break; + case XE_GUC_ACTION_ACCESS_COUNTER_NOTIFY: + ret = xe_guc_access_counter_notify_handler(guc, payload, + adj_len); + break; + case XE_GUC_ACTION_GUC2PF_RELAY_FROM_VF: + ret = xe_guc_relay_process_guc2pf(&guc->relay, hxg, hxg_len); + break; + case XE_GUC_ACTION_GUC2VF_RELAY_FROM_PF: + ret = xe_guc_relay_process_guc2vf(&guc->relay, hxg, hxg_len); + break; + case GUC_ACTION_GUC2PF_VF_STATE_NOTIFY: + ret = xe_gt_sriov_pf_control_process_guc2pf(gt, hxg, hxg_len); + break; + case GUC_ACTION_GUC2PF_ADVERSE_EVENT: + ret = xe_gt_sriov_pf_monitor_process_guc2pf(gt, hxg, hxg_len); + break; + default: + xe_gt_err(gt, "unexpected G2H action 0x%04x\n", action); + } + + if (ret) { + xe_gt_err(gt, "G2H action 0x%04x failed (%pe)\n", + action, ERR_PTR(ret)); + CT_DEAD(ct, NULL, PROCESS_FAILED); + } + + return 0; +} + +static int g2h_read(struct xe_guc_ct *ct, u32 *msg, bool fast_path) +{ + struct xe_device *xe = ct_to_xe(ct); + struct xe_gt *gt = ct_to_gt(ct); + struct guc_ctb *g2h = &ct->ctbs.g2h; + u32 tail, head, len, desc_status; + s32 avail; + u32 action; + u32 *hxg; + + xe_gt_assert(gt, ct->state != XE_GUC_CT_STATE_NOT_INITIALIZED); + lockdep_assert_held(&ct->fast_lock); + + if (ct->state == XE_GUC_CT_STATE_DISABLED) + return -ENODEV; + + if (ct->state == XE_GUC_CT_STATE_STOPPED) + return -ECANCELED; + + if (g2h->info.broken) + return -EPIPE; + + xe_gt_assert(gt, xe_guc_ct_enabled(ct)); + + desc_status = desc_read(xe, g2h, status); + if (desc_status) { + if (desc_status & GUC_CTB_STATUS_DISABLED) { + /* + * Potentially valid if a CLIENT_RESET request resulted in + * contexts/engines being reset. But should never happen as + * no contexts should be active when CLIENT_RESET is sent. + */ + xe_gt_err(gt, "CT read: unexpected G2H after GuC has stopped!\n"); + desc_status &= ~GUC_CTB_STATUS_DISABLED; + } + + if (desc_status) { + xe_gt_err(gt, "CT read: non-zero status: %u\n", desc_status); + goto corrupted; + } + } + + if (IS_ENABLED(CONFIG_DRM_XE_DEBUG)) { + u32 desc_tail = desc_read(xe, g2h, tail); + /* + u32 desc_head = desc_read(xe, g2h, head); + + * info.head and desc_head are updated back-to-back at the end of + * this function and nowhere else. Hence, they cannot be different + * unless two g2h_read calls are running concurrently. Which is not + * possible because it is guarded by ct->fast_lock. And yet, some + * discrete platforms are reguarly hitting this error :(. + * + * desc_head rolling backwards shouldn't cause any noticeable + * problems - just a delay in GuC being allowed to proceed past that + * point in the queue. So for now, just disable the error until it + * can be root caused. + * + if (g2h->info.head != desc_head) { + desc_write(xe, g2h, status, desc_status | GUC_CTB_STATUS_MISMATCH); + xe_gt_err(gt, "CT read: head was modified %u != %u\n", + desc_head, g2h->info.head); + goto corrupted; + } + */ + + if (g2h->info.head > g2h->info.size) { + desc_write(xe, g2h, status, desc_status | GUC_CTB_STATUS_OVERFLOW); + xe_gt_err(gt, "CT read: head out of range: %u vs %u\n", + g2h->info.head, g2h->info.size); + goto corrupted; + } + + if (desc_tail >= g2h->info.size) { + desc_write(xe, g2h, status, desc_status | GUC_CTB_STATUS_OVERFLOW); + xe_gt_err(gt, "CT read: invalid tail offset %u >= %u)\n", + desc_tail, g2h->info.size); + goto corrupted; + } + } + + /* Calculate DW available to read */ + tail = desc_read(xe, g2h, tail); + avail = tail - g2h->info.head; + if (unlikely(avail == 0)) + return 0; + + if (avail < 0) + avail += g2h->info.size; + + /* Read header */ + xe_map_memcpy_from(xe, msg, &g2h->cmds, sizeof(u32) * g2h->info.head, + sizeof(u32)); + len = FIELD_GET(GUC_CTB_MSG_0_NUM_DWORDS, msg[0]) + GUC_CTB_MSG_MIN_LEN; + if (len > avail) { + xe_gt_err(gt, "G2H channel broken on read, avail=%d, len=%d, reset required\n", + avail, len); + goto corrupted; + } + + head = (g2h->info.head + 1) % g2h->info.size; + avail = len - 1; + + /* Read G2H message */ + if (avail + head > g2h->info.size) { + u32 avail_til_wrap = g2h->info.size - head; + + xe_map_memcpy_from(xe, msg + 1, + &g2h->cmds, sizeof(u32) * head, + avail_til_wrap * sizeof(u32)); + xe_map_memcpy_from(xe, msg + 1 + avail_til_wrap, + &g2h->cmds, 0, + (avail - avail_til_wrap) * sizeof(u32)); + } else { + xe_map_memcpy_from(xe, msg + 1, + &g2h->cmds, sizeof(u32) * head, + avail * sizeof(u32)); + } + + hxg = msg_to_hxg(msg); + action = FIELD_GET(GUC_HXG_EVENT_MSG_0_ACTION, hxg[0]); + + if (fast_path) { + if (FIELD_GET(GUC_HXG_MSG_0_TYPE, hxg[0]) != GUC_HXG_TYPE_EVENT) + return 0; + + switch (action) { + case XE_GUC_ACTION_REPORT_PAGE_FAULT_REQ_DESC: + case XE_GUC_ACTION_TLB_INVALIDATION_DONE: + break; /* Process these in fast-path */ + default: + return 0; + } + } + + /* Update local / descriptor header */ + g2h->info.head = (head + avail) % g2h->info.size; + desc_write(xe, g2h, head, g2h->info.head); + + trace_xe_guc_ctb_g2h(xe, ct_to_gt(ct)->info.id, + action, len, g2h->info.head, tail); + + return len; + +corrupted: + CT_DEAD(ct, &ct->ctbs.g2h, G2H_READ); + return -EPROTO; +} + +static void g2h_fast_path(struct xe_guc_ct *ct, u32 *msg, u32 len) +{ + struct xe_gt *gt = ct_to_gt(ct); + struct xe_guc *guc = ct_to_guc(ct); + u32 hxg_len = msg_len_to_hxg_len(len); + u32 *hxg = msg_to_hxg(msg); + u32 action = FIELD_GET(GUC_HXG_EVENT_MSG_0_ACTION, hxg[0]); + u32 *payload = hxg + GUC_HXG_MSG_MIN_LEN; + u32 adj_len = hxg_len - GUC_HXG_MSG_MIN_LEN; + int ret = 0; + + switch (action) { + case XE_GUC_ACTION_REPORT_PAGE_FAULT_REQ_DESC: + ret = xe_guc_pagefault_handler(guc, payload, adj_len); + break; + case XE_GUC_ACTION_TLB_INVALIDATION_DONE: + __g2h_release_space(ct, len); + ret = xe_guc_tlb_invalidation_done_handler(guc, payload, + adj_len); + break; + default: + xe_gt_warn(gt, "NOT_POSSIBLE"); + } + + if (ret) { + xe_gt_err(gt, "G2H action 0x%04x failed (%pe)\n", + action, ERR_PTR(ret)); + CT_DEAD(ct, NULL, FAST_G2H); + } +} + +/** + * xe_guc_ct_fast_path - process critical G2H in the IRQ handler + * @ct: GuC CT object + * + * Anything related to page faults is critical for performance, process these + * critical G2H in the IRQ. This is safe as these handlers either just wake up + * waiters or queue another worker. + */ +void xe_guc_ct_fast_path(struct xe_guc_ct *ct) +{ + struct xe_device *xe = ct_to_xe(ct); + bool ongoing; + int len; + + ongoing = xe_pm_runtime_get_if_active(ct_to_xe(ct)); + if (!ongoing && xe_pm_read_callback_task(ct_to_xe(ct)) == NULL) + return; + + spin_lock(&ct->fast_lock); + do { + len = g2h_read(ct, ct->fast_msg, true); + if (len > 0) + g2h_fast_path(ct, ct->fast_msg, len); + } while (len > 0); + spin_unlock(&ct->fast_lock); + + if (ongoing) + xe_pm_runtime_put(xe); +} + +/* Returns less than zero on error, 0 on done, 1 on more available */ +static int dequeue_one_g2h(struct xe_guc_ct *ct) +{ + int len; + int ret; + + lockdep_assert_held(&ct->lock); + + spin_lock_irq(&ct->fast_lock); + len = g2h_read(ct, ct->msg, false); + spin_unlock_irq(&ct->fast_lock); + if (len <= 0) + return len; + + ret = parse_g2h_msg(ct, ct->msg, len); + if (unlikely(ret < 0)) + return ret; + + ret = process_g2h_msg(ct, ct->msg, len); + if (unlikely(ret < 0)) + return ret; + + return 1; +} + +static void receive_g2h(struct xe_guc_ct *ct) +{ + bool ongoing; + int ret; + + /* + * Normal users must always hold mem_access.ref around CT calls. However + * during the runtime pm callbacks we rely on CT to talk to the GuC, but + * at this stage we can't rely on mem_access.ref and even the + * callback_task will be different than current. For such cases we just + * need to ensure we always process the responses from any blocking + * ct_send requests or where we otherwise expect some response when + * initiated from those callbacks (which will need to wait for the below + * dequeue_one_g2h()). The dequeue_one_g2h() will gracefully fail if + * the device has suspended to the point that the CT communication has + * been disabled. + * + * If we are inside the runtime pm callback, we can be the only task + * still issuing CT requests (since that requires having the + * mem_access.ref). It seems like it might in theory be possible to + * receive unsolicited events from the GuC just as we are + * suspending-resuming, but those will currently anyway be lost when + * eventually exiting from suspend, hence no need to wake up the device + * here. If we ever need something stronger than get_if_ongoing() then + * we need to be careful with blocking the pm callbacks from getting CT + * responses, if the worker here is blocked on those callbacks + * completing, creating a deadlock. + */ + ongoing = xe_pm_runtime_get_if_active(ct_to_xe(ct)); + if (!ongoing && xe_pm_read_callback_task(ct_to_xe(ct)) == NULL) + return; + + do { + mutex_lock(&ct->lock); + ret = dequeue_one_g2h(ct); + mutex_unlock(&ct->lock); + + if (unlikely(ret == -EPROTO || ret == -EOPNOTSUPP)) { + xe_gt_err(ct_to_gt(ct), "CT dequeue failed: %d", ret); + CT_DEAD(ct, NULL, G2H_RECV); + kick_reset(ct); + } + } while (ret == 1); + + if (ongoing) + xe_pm_runtime_put(ct_to_xe(ct)); +} + +static void g2h_worker_func(struct work_struct *w) +{ + struct xe_guc_ct *ct = container_of(w, struct xe_guc_ct, g2h_worker); + + receive_g2h(ct); +} + +struct xe_guc_ct_snapshot *xe_guc_ct_snapshot_alloc(struct xe_guc_ct *ct, bool atomic) +{ + struct xe_guc_ct_snapshot *snapshot; + + snapshot = kzalloc(sizeof(*snapshot), atomic ? GFP_ATOMIC : GFP_KERNEL); + if (!snapshot) + return NULL; + + if (ct->bo) { + snapshot->ctb_size = ct->bo->size; + snapshot->ctb = kmalloc(snapshot->ctb_size, atomic ? GFP_ATOMIC : GFP_KERNEL); + } + + return snapshot; +} + +static void guc_ctb_snapshot_capture(struct xe_device *xe, struct guc_ctb *ctb, + struct guc_ctb_snapshot *snapshot) +{ + xe_map_memcpy_from(xe, &snapshot->desc, &ctb->desc, 0, + sizeof(struct guc_ct_buffer_desc)); + memcpy(&snapshot->info, &ctb->info, sizeof(struct guc_ctb_info)); +} + +static void guc_ctb_snapshot_print(struct guc_ctb_snapshot *snapshot, + struct drm_printer *p) +{ + drm_printf(p, "\tsize: %d\n", snapshot->info.size); + drm_printf(p, "\tresv_space: %d\n", snapshot->info.resv_space); + drm_printf(p, "\thead: %d\n", snapshot->info.head); + drm_printf(p, "\ttail: %d\n", snapshot->info.tail); + drm_printf(p, "\tspace: %d\n", snapshot->info.space); + drm_printf(p, "\tbroken: %d\n", snapshot->info.broken); + drm_printf(p, "\thead (memory): %d\n", snapshot->desc.head); + drm_printf(p, "\ttail (memory): %d\n", snapshot->desc.tail); + drm_printf(p, "\tstatus (memory): 0x%x\n", snapshot->desc.status); +} + +/** + * xe_guc_ct_snapshot_capture - Take a quick snapshot of the CT state. + * @ct: GuC CT object. + * @atomic: Boolean to indicate if this is called from atomic context like + * reset or CTB handler or from some regular path like debugfs. + * + * This can be printed out in a later stage like during dev_coredump + * analysis. + * + * Returns: a GuC CT snapshot object that must be freed by the caller + * by using `xe_guc_ct_snapshot_free`. + */ +struct xe_guc_ct_snapshot *xe_guc_ct_snapshot_capture(struct xe_guc_ct *ct, + bool atomic) +{ + struct xe_device *xe = ct_to_xe(ct); + struct xe_guc_ct_snapshot *snapshot; + + snapshot = xe_guc_ct_snapshot_alloc(ct, atomic); + if (!snapshot) { + xe_gt_err(ct_to_gt(ct), "Skipping CTB snapshot entirely.\n"); + return NULL; + } + + if (xe_guc_ct_enabled(ct) || ct->state == XE_GUC_CT_STATE_STOPPED) { + snapshot->ct_enabled = true; + snapshot->g2h_outstanding = READ_ONCE(ct->g2h_outstanding); + guc_ctb_snapshot_capture(xe, &ct->ctbs.h2g, &snapshot->h2g); + guc_ctb_snapshot_capture(xe, &ct->ctbs.g2h, &snapshot->g2h); + } + + if (ct->bo && snapshot->ctb) + xe_map_memcpy_from(xe, snapshot->ctb, &ct->bo->vmap, 0, snapshot->ctb_size); + + return snapshot; +} + +/** + * xe_guc_ct_snapshot_print - Print out a given GuC CT snapshot. + * @snapshot: GuC CT snapshot object. + * @p: drm_printer where it will be printed out. + * + * This function prints out a given GuC CT snapshot object. + */ +void xe_guc_ct_snapshot_print(struct xe_guc_ct_snapshot *snapshot, + struct drm_printer *p) +{ + if (!snapshot) + return; + + if (snapshot->ct_enabled) { + drm_puts(p, "H2G CTB (all sizes in DW):\n"); + guc_ctb_snapshot_print(&snapshot->h2g, p); + + drm_puts(p, "G2H CTB (all sizes in DW):\n"); + guc_ctb_snapshot_print(&snapshot->g2h, p); + drm_printf(p, "\tg2h outstanding: %d\n", + snapshot->g2h_outstanding); + + if (snapshot->ctb) { + xe_print_blob_ascii85(p, "CTB data", snapshot->ctb, 0, snapshot->ctb_size); + } else { + drm_printf(p, "CTB snapshot missing!\n"); + return; + } + } else { + drm_puts(p, "CT disabled\n"); + } +} + +/** + * xe_guc_ct_snapshot_free - Free all allocated objects for a given snapshot. + * @snapshot: GuC CT snapshot object. + * + * This function free all the memory that needed to be allocated at capture + * time. + */ +void xe_guc_ct_snapshot_free(struct xe_guc_ct_snapshot *snapshot) +{ + if (!snapshot) + return; + + kfree(snapshot->ctb); + kfree(snapshot); +} + +/** + * xe_guc_ct_print - GuC CT Print. + * @ct: GuC CT. + * @p: drm_printer where it will be printed out. + * + * This function quickly capture a snapshot and immediately print it out. + */ +void xe_guc_ct_print(struct xe_guc_ct *ct, struct drm_printer *p) +{ + struct xe_guc_ct_snapshot *snapshot; + + snapshot = xe_guc_ct_snapshot_capture(ct, false); + xe_guc_ct_snapshot_print(snapshot, p); + xe_guc_ct_snapshot_free(snapshot); +} + +#if IS_ENABLED(CONFIG_DRM_XE_DEBUG) +static void ct_dead_capture(struct xe_guc_ct *ct, struct guc_ctb *ctb, u32 reason_code) +{ + struct xe_guc_log_snapshot *snapshot_log; + struct xe_guc_ct_snapshot *snapshot_ct; + struct xe_guc *guc = ct_to_guc(ct); + unsigned long flags; + bool have_capture; + + if (ctb) + ctb->info.broken = true; + + /* Ignore further errors after the first dump until a reset */ + if (ct->dead.reported) + return; + + spin_lock_irqsave(&ct->dead.lock, flags); + + /* And only capture one dump at a time */ + have_capture = ct->dead.reason & (1 << CT_DEAD_STATE_CAPTURE); + ct->dead.reason |= (1 << reason_code) | + (1 << CT_DEAD_STATE_CAPTURE); + + spin_unlock_irqrestore(&ct->dead.lock, flags); + + if (have_capture) + return; + + snapshot_log = xe_guc_log_snapshot_capture(&guc->log, true); + snapshot_ct = xe_guc_ct_snapshot_capture((ct), true); + + spin_lock_irqsave(&ct->dead.lock, flags); + + if (ct->dead.snapshot_log || ct->dead.snapshot_ct) { + xe_gt_err(ct_to_gt(ct), "Got unexpected dead CT capture!\n"); + xe_guc_log_snapshot_free(snapshot_log); + xe_guc_ct_snapshot_free(snapshot_ct); + } else { + ct->dead.snapshot_log = snapshot_log; + ct->dead.snapshot_ct = snapshot_ct; + } + + spin_unlock_irqrestore(&ct->dead.lock, flags); + + queue_work(system_unbound_wq, &(ct)->dead.worker); +} + +static void ct_dead_print(struct xe_dead_ct *dead) +{ + struct xe_guc_ct *ct = container_of(dead, struct xe_guc_ct, dead); + struct xe_device *xe = ct_to_xe(ct); + struct xe_gt *gt = ct_to_gt(ct); + static int g_count; + struct drm_printer ip = xe_gt_info_printer(gt); + struct drm_printer lp = drm_line_printer(&ip, "Capture", ++g_count); + + if (!dead->reason) { + xe_gt_err(gt, "CTB is dead for no reason!?\n"); + return; + } + + drm_printf(&lp, "CTB is dead - reason=0x%X\n", dead->reason); + + /* Can't generate a genuine core dump at this point, so just do the good bits */ + drm_puts(&lp, "**** Xe Device Coredump ****\n"); + xe_device_snapshot_print(xe, &lp); + + drm_printf(&lp, "**** GT #%d ****\n", gt->info.id); + drm_printf(&lp, "\tTile: %d\n", gt->tile->id); + + drm_puts(&lp, "**** GuC Log ****\n"); + xe_guc_log_snapshot_print(dead->snapshot_log, &lp); + + drm_puts(&lp, "**** GuC CT ****\n"); + xe_guc_ct_snapshot_print(dead->snapshot_ct, &lp); + + drm_puts(&lp, "Done.\n"); +} + +static void ct_dead_worker_func(struct work_struct *w) +{ + struct xe_guc_ct *ct = container_of(w, struct xe_guc_ct, dead.worker); + + if (!ct->dead.reported) { + ct->dead.reported = true; + ct_dead_print(&ct->dead); + } + + spin_lock_irq(&ct->dead.lock); + + xe_guc_log_snapshot_free(ct->dead.snapshot_log); + ct->dead.snapshot_log = NULL; + xe_guc_ct_snapshot_free(ct->dead.snapshot_ct); + ct->dead.snapshot_ct = NULL; + + if (ct->dead.reason & (1 << CT_DEAD_STATE_REARM)) { + /* A reset has occurred so re-arm the error reporting */ + ct->dead.reason = 0; + ct->dead.reported = false; + } + + spin_unlock_irq(&ct->dead.lock); +} +#endif diff --git a/rr-cache/0ace7964b1b2d66224889bcf0b6a7a221776d8c8/preimage.2 b/rr-cache/0ace7964b1b2d66224889bcf0b6a7a221776d8c8/preimage.2 new file mode 100644 index 000000000000..d3838661f4b9 --- /dev/null +++ b/rr-cache/0ace7964b1b2d66224889bcf0b6a7a221776d8c8/preimage.2 @@ -0,0 +1,1866 @@ +// SPDX-License-Identifier: MIT +/* + * Copyright © 2022 Intel Corporation + */ + +#include "xe_guc_ct.h" + +#include <linux/bitfield.h> +#include <linux/circ_buf.h> +#include <linux/delay.h> +#include <linux/fault-inject.h> + +#include <kunit/static_stub.h> + +#include <drm/drm_managed.h> + +#include "abi/guc_actions_abi.h" +#include "abi/guc_actions_sriov_abi.h" +#include "abi/guc_klvs_abi.h" +#include "xe_bo.h" +#include "xe_devcoredump.h" +#include "xe_device.h" +#include "xe_gt.h" +#include "xe_gt_pagefault.h" +#include "xe_gt_printk.h" +#include "xe_gt_sriov_pf_control.h" +#include "xe_gt_sriov_pf_monitor.h" +#include "xe_gt_tlb_invalidation.h" +#include "xe_guc.h" +#include "xe_guc_log.h" +#include "xe_guc_relay.h" +#include "xe_guc_submit.h" +#include "xe_map.h" +#include "xe_pm.h" +#include "xe_trace_guc.h" + +#if IS_ENABLED(CONFIG_DRM_XE_DEBUG) +enum { + /* Internal states, not error conditions */ + CT_DEAD_STATE_REARM, /* 0x0001 */ + CT_DEAD_STATE_CAPTURE, /* 0x0002 */ + + /* Error conditions */ + CT_DEAD_SETUP, /* 0x0004 */ + CT_DEAD_H2G_WRITE, /* 0x0008 */ + CT_DEAD_H2G_HAS_ROOM, /* 0x0010 */ + CT_DEAD_G2H_READ, /* 0x0020 */ + CT_DEAD_G2H_RECV, /* 0x0040 */ + CT_DEAD_G2H_RELEASE, /* 0x0080 */ + CT_DEAD_DEADLOCK, /* 0x0100 */ + CT_DEAD_PROCESS_FAILED, /* 0x0200 */ + CT_DEAD_FAST_G2H, /* 0x0400 */ + CT_DEAD_PARSE_G2H_RESPONSE, /* 0x0800 */ + CT_DEAD_PARSE_G2H_UNKNOWN, /* 0x1000 */ + CT_DEAD_PARSE_G2H_ORIGIN, /* 0x2000 */ + CT_DEAD_PARSE_G2H_TYPE, /* 0x4000 */ +}; + +static void ct_dead_worker_func(struct work_struct *w); +static void ct_dead_capture(struct xe_guc_ct *ct, struct guc_ctb *ctb, u32 reason_code); + +#define CT_DEAD(ct, ctb, reason_code) ct_dead_capture((ct), (ctb), CT_DEAD_##reason_code) +#else +#define CT_DEAD(ct, ctb, reason) \ + do { \ + struct guc_ctb *_ctb = (ctb); \ + if (_ctb) \ + _ctb->info.broken = true; \ + } while (0) +#endif + +/* Used when a CT send wants to block and / or receive data */ +struct g2h_fence { + u32 *response_buffer; + u32 seqno; + u32 response_data; + u16 response_len; + u16 error; + u16 hint; + u16 reason; + bool retry; + bool fail; + bool done; +}; + +static void g2h_fence_init(struct g2h_fence *g2h_fence, u32 *response_buffer) +{ + g2h_fence->response_buffer = response_buffer; + g2h_fence->response_data = 0; + g2h_fence->response_len = 0; + g2h_fence->fail = false; + g2h_fence->retry = false; + g2h_fence->done = false; + g2h_fence->seqno = ~0x0; +} + +static bool g2h_fence_needs_alloc(struct g2h_fence *g2h_fence) +{ + return g2h_fence->seqno == ~0x0; +} + +static struct xe_guc * +ct_to_guc(struct xe_guc_ct *ct) +{ + return container_of(ct, struct xe_guc, ct); +} + +static struct xe_gt * +ct_to_gt(struct xe_guc_ct *ct) +{ + return container_of(ct, struct xe_gt, uc.guc.ct); +} + +static struct xe_device * +ct_to_xe(struct xe_guc_ct *ct) +{ + return gt_to_xe(ct_to_gt(ct)); +} + +/** + * DOC: GuC CTB Blob + * + * We allocate single blob to hold both CTB descriptors and buffers: + * + * +--------+-----------------------------------------------+------+ + * | offset | contents | size | + * +========+===============================================+======+ + * | 0x0000 | H2G CTB Descriptor (send) | | + * +--------+-----------------------------------------------+ 4K | + * | 0x0800 | G2H CTB Descriptor (g2h) | | + * +--------+-----------------------------------------------+------+ + * | 0x1000 | H2G CT Buffer (send) | n*4K | + * | | | | + * +--------+-----------------------------------------------+------+ + * | 0x1000 | G2H CT Buffer (g2h) | m*4K | + * | + n*4K | | | + * +--------+-----------------------------------------------+------+ + * + * Size of each ``CT Buffer`` must be multiple of 4K. + * We don't expect too many messages in flight at any time, unless we are + * using the GuC submission. In that case each request requires a minimum + * 2 dwords which gives us a maximum 256 queue'd requests. Hopefully this + * enough space to avoid backpressure on the driver. We increase the size + * of the receive buffer (relative to the send) to ensure a G2H response + * CTB has a landing spot. + * + * In addition to submissions, the G2H buffer needs to be able to hold + * enough space for recoverable page fault notifications. The number of + * page faults is interrupt driven and can be as much as the number of + * compute resources available. However, most of the actual work for these + * is in a separate page fault worker thread. Therefore we only need to + * make sure the queue has enough space to handle all of the submissions + * and responses and an extra buffer for incoming page faults. + */ + +#define CTB_DESC_SIZE ALIGN(sizeof(struct guc_ct_buffer_desc), SZ_2K) +#define CTB_H2G_BUFFER_SIZE (SZ_4K) +#define CTB_G2H_BUFFER_SIZE (SZ_128K) +#define G2H_ROOM_BUFFER_SIZE (CTB_G2H_BUFFER_SIZE / 2) + +/** + * xe_guc_ct_queue_proc_time_jiffies - Return maximum time to process a full + * CT command queue + * @ct: the &xe_guc_ct. Unused at this moment but will be used in the future. + * + * Observation is that a 4KiB buffer full of commands takes a little over a + * second to process. Use that to calculate maximum time to process a full CT + * command queue. + * + * Return: Maximum time to process a full CT queue in jiffies. + */ +long xe_guc_ct_queue_proc_time_jiffies(struct xe_guc_ct *ct) +{ + BUILD_BUG_ON(!IS_ALIGNED(CTB_H2G_BUFFER_SIZE, SZ_4)); + return (CTB_H2G_BUFFER_SIZE / SZ_4K) * HZ; +} + +static size_t guc_ct_size(void) +{ + return 2 * CTB_DESC_SIZE + CTB_H2G_BUFFER_SIZE + + CTB_G2H_BUFFER_SIZE; +} + +static void guc_ct_fini(struct drm_device *drm, void *arg) +{ + struct xe_guc_ct *ct = arg; + + destroy_workqueue(ct->g2h_wq); + xa_destroy(&ct->fence_lookup); +} + +static void receive_g2h(struct xe_guc_ct *ct); +static void g2h_worker_func(struct work_struct *w); +static void safe_mode_worker_func(struct work_struct *w); + +static void primelockdep(struct xe_guc_ct *ct) +{ + if (!IS_ENABLED(CONFIG_LOCKDEP)) + return; + + fs_reclaim_acquire(GFP_KERNEL); + might_lock(&ct->lock); + fs_reclaim_release(GFP_KERNEL); +} + +int xe_guc_ct_init(struct xe_guc_ct *ct) +{ + struct xe_device *xe = ct_to_xe(ct); + struct xe_gt *gt = ct_to_gt(ct); + struct xe_tile *tile = gt_to_tile(gt); + struct xe_bo *bo; + int err; + + xe_gt_assert(gt, !(guc_ct_size() % PAGE_SIZE)); + + ct->g2h_wq = alloc_ordered_workqueue("xe-g2h-wq", 0); + if (!ct->g2h_wq) + return -ENOMEM; + + spin_lock_init(&ct->fast_lock); + xa_init(&ct->fence_lookup); + INIT_WORK(&ct->g2h_worker, g2h_worker_func); + INIT_DELAYED_WORK(&ct->safe_mode_worker, safe_mode_worker_func); +#if IS_ENABLED(CONFIG_DRM_XE_DEBUG) + spin_lock_init(&ct->dead.lock); + INIT_WORK(&ct->dead.worker, ct_dead_worker_func); +#endif + init_waitqueue_head(&ct->wq); + init_waitqueue_head(&ct->g2h_fence_wq); + + err = drmm_mutex_init(&xe->drm, &ct->lock); + if (err) + return err; + + primelockdep(ct); + + bo = xe_managed_bo_create_pin_map(xe, tile, guc_ct_size(), + XE_BO_FLAG_SYSTEM | + XE_BO_FLAG_GGTT | + XE_BO_FLAG_GGTT_INVALIDATE); + if (IS_ERR(bo)) + return PTR_ERR(bo); + + ct->bo = bo; + + err = drmm_add_action_or_reset(&xe->drm, guc_ct_fini, ct); + if (err) + return err; + + xe_gt_assert(gt, ct->state == XE_GUC_CT_STATE_NOT_INITIALIZED); + ct->state = XE_GUC_CT_STATE_DISABLED; + return 0; +} +ALLOW_ERROR_INJECTION(xe_guc_ct_init, ERRNO); /* See xe_pci_probe() */ + +#define desc_read(xe_, guc_ctb__, field_) \ + xe_map_rd_field(xe_, &guc_ctb__->desc, 0, \ + struct guc_ct_buffer_desc, field_) + +#define desc_write(xe_, guc_ctb__, field_, val_) \ + xe_map_wr_field(xe_, &guc_ctb__->desc, 0, \ + struct guc_ct_buffer_desc, field_, val_) + +static void guc_ct_ctb_h2g_init(struct xe_device *xe, struct guc_ctb *h2g, + struct iosys_map *map) +{ + h2g->info.size = CTB_H2G_BUFFER_SIZE / sizeof(u32); + h2g->info.resv_space = 0; + h2g->info.tail = 0; + h2g->info.head = 0; + h2g->info.space = CIRC_SPACE(h2g->info.tail, h2g->info.head, + h2g->info.size) - + h2g->info.resv_space; + h2g->info.broken = false; + + h2g->desc = *map; + xe_map_memset(xe, &h2g->desc, 0, 0, sizeof(struct guc_ct_buffer_desc)); + + h2g->cmds = IOSYS_MAP_INIT_OFFSET(map, CTB_DESC_SIZE * 2); +} + +static void guc_ct_ctb_g2h_init(struct xe_device *xe, struct guc_ctb *g2h, + struct iosys_map *map) +{ + g2h->info.size = CTB_G2H_BUFFER_SIZE / sizeof(u32); + g2h->info.resv_space = G2H_ROOM_BUFFER_SIZE / sizeof(u32); + g2h->info.head = 0; + g2h->info.tail = 0; + g2h->info.space = CIRC_SPACE(g2h->info.tail, g2h->info.head, + g2h->info.size) - + g2h->info.resv_space; + g2h->info.broken = false; + + g2h->desc = IOSYS_MAP_INIT_OFFSET(map, CTB_DESC_SIZE); + xe_map_memset(xe, &g2h->desc, 0, 0, sizeof(struct guc_ct_buffer_desc)); + + g2h->cmds = IOSYS_MAP_INIT_OFFSET(map, CTB_DESC_SIZE * 2 + + CTB_H2G_BUFFER_SIZE); +} + +static int guc_ct_ctb_h2g_register(struct xe_guc_ct *ct) +{ + struct xe_guc *guc = ct_to_guc(ct); + u32 desc_addr, ctb_addr, size; + int err; + + desc_addr = xe_bo_ggtt_addr(ct->bo); + ctb_addr = xe_bo_ggtt_addr(ct->bo) + CTB_DESC_SIZE * 2; + size = ct->ctbs.h2g.info.size * sizeof(u32); + + err = xe_guc_self_cfg64(guc, + GUC_KLV_SELF_CFG_H2G_CTB_DESCRIPTOR_ADDR_KEY, + desc_addr); + if (err) + return err; + + err = xe_guc_self_cfg64(guc, + GUC_KLV_SELF_CFG_H2G_CTB_ADDR_KEY, + ctb_addr); + if (err) + return err; + + return xe_guc_self_cfg32(guc, + GUC_KLV_SELF_CFG_H2G_CTB_SIZE_KEY, + size); +} + +static int guc_ct_ctb_g2h_register(struct xe_guc_ct *ct) +{ + struct xe_guc *guc = ct_to_guc(ct); + u32 desc_addr, ctb_addr, size; + int err; + + desc_addr = xe_bo_ggtt_addr(ct->bo) + CTB_DESC_SIZE; + ctb_addr = xe_bo_ggtt_addr(ct->bo) + CTB_DESC_SIZE * 2 + + CTB_H2G_BUFFER_SIZE; + size = ct->ctbs.g2h.info.size * sizeof(u32); + + err = xe_guc_self_cfg64(guc, + GUC_KLV_SELF_CFG_G2H_CTB_DESCRIPTOR_ADDR_KEY, + desc_addr); + if (err) + return err; + + err = xe_guc_self_cfg64(guc, + GUC_KLV_SELF_CFG_G2H_CTB_ADDR_KEY, + ctb_addr); + if (err) + return err; + + return xe_guc_self_cfg32(guc, + GUC_KLV_SELF_CFG_G2H_CTB_SIZE_KEY, + size); +} + +static int guc_ct_control_toggle(struct xe_guc_ct *ct, bool enable) +{ + u32 request[HOST2GUC_CONTROL_CTB_REQUEST_MSG_LEN] = { + FIELD_PREP(GUC_HXG_MSG_0_ORIGIN, GUC_HXG_ORIGIN_HOST) | + FIELD_PREP(GUC_HXG_MSG_0_TYPE, GUC_HXG_TYPE_REQUEST) | + FIELD_PREP(GUC_HXG_REQUEST_MSG_0_ACTION, + GUC_ACTION_HOST2GUC_CONTROL_CTB), + FIELD_PREP(HOST2GUC_CONTROL_CTB_REQUEST_MSG_1_CONTROL, + enable ? GUC_CTB_CONTROL_ENABLE : + GUC_CTB_CONTROL_DISABLE), + }; + int ret = xe_guc_mmio_send(ct_to_guc(ct), request, ARRAY_SIZE(request)); + + return ret > 0 ? -EPROTO : ret; +} + +static void xe_guc_ct_set_state(struct xe_guc_ct *ct, + enum xe_guc_ct_state state) +{ + mutex_lock(&ct->lock); /* Serialise dequeue_one_g2h() */ + spin_lock_irq(&ct->fast_lock); /* Serialise CT fast-path */ + + xe_gt_assert(ct_to_gt(ct), ct->g2h_outstanding == 0 || + state == XE_GUC_CT_STATE_STOPPED); + + if (ct->g2h_outstanding) + xe_pm_runtime_put(ct_to_xe(ct)); + ct->g2h_outstanding = 0; + ct->state = state; + + spin_unlock_irq(&ct->fast_lock); + + /* + * Lockdep doesn't like this under the fast lock and he destroy only + * needs to be serialized with the send path which ct lock provides. + */ + xa_destroy(&ct->fence_lookup); + + mutex_unlock(&ct->lock); +} + +static bool ct_needs_safe_mode(struct xe_guc_ct *ct) +{ + return !pci_dev_msi_enabled(to_pci_dev(ct_to_xe(ct)->drm.dev)); +} + +static bool ct_restart_safe_mode_worker(struct xe_guc_ct *ct) +{ + if (!ct_needs_safe_mode(ct)) + return false; + + queue_delayed_work(ct->g2h_wq, &ct->safe_mode_worker, HZ / 10); + return true; +} + +static void safe_mode_worker_func(struct work_struct *w) +{ + struct xe_guc_ct *ct = container_of(w, struct xe_guc_ct, safe_mode_worker.work); + + receive_g2h(ct); + + if (!ct_restart_safe_mode_worker(ct)) + xe_gt_dbg(ct_to_gt(ct), "GuC CT safe-mode canceled\n"); +} + +static void ct_enter_safe_mode(struct xe_guc_ct *ct) +{ + if (ct_restart_safe_mode_worker(ct)) + xe_gt_dbg(ct_to_gt(ct), "GuC CT safe-mode enabled\n"); +} + +static void ct_exit_safe_mode(struct xe_guc_ct *ct) +{ + if (cancel_delayed_work_sync(&ct->safe_mode_worker)) + xe_gt_dbg(ct_to_gt(ct), "GuC CT safe-mode disabled\n"); +} + +int xe_guc_ct_enable(struct xe_guc_ct *ct) +{ + struct xe_device *xe = ct_to_xe(ct); + struct xe_gt *gt = ct_to_gt(ct); + int err; + + xe_gt_assert(gt, !xe_guc_ct_enabled(ct)); + + xe_map_memset(xe, &ct->bo->vmap, 0, 0, ct->bo->size); + guc_ct_ctb_h2g_init(xe, &ct->ctbs.h2g, &ct->bo->vmap); + guc_ct_ctb_g2h_init(xe, &ct->ctbs.g2h, &ct->bo->vmap); + + err = guc_ct_ctb_h2g_register(ct); + if (err) + goto err_out; + + err = guc_ct_ctb_g2h_register(ct); + if (err) + goto err_out; + + err = guc_ct_control_toggle(ct, true); + if (err) + goto err_out; + + xe_guc_ct_set_state(ct, XE_GUC_CT_STATE_ENABLED); + + smp_mb(); + wake_up_all(&ct->wq); + xe_gt_dbg(gt, "GuC CT communication channel enabled\n"); + + if (ct_needs_safe_mode(ct)) + ct_enter_safe_mode(ct); + +#if IS_ENABLED(CONFIG_DRM_XE_DEBUG) + /* + * The CT has now been reset so the dumper can be re-armed + * after any existing dead state has been dumped. + */ + spin_lock_irq(&ct->dead.lock); + if (ct->dead.reason) + ct->dead.reason |= (1 << CT_DEAD_STATE_REARM); + spin_unlock_irq(&ct->dead.lock); +#endif + + return 0; + +err_out: + xe_gt_err(gt, "Failed to enable GuC CT (%pe)\n", ERR_PTR(err)); + CT_DEAD(ct, NULL, SETUP); + + return err; +} + +static void stop_g2h_handler(struct xe_guc_ct *ct) +{ + cancel_work_sync(&ct->g2h_worker); +} + +/** + * xe_guc_ct_disable - Set GuC to disabled state + * @ct: the &xe_guc_ct + * + * Set GuC CT to disabled state and stop g2h handler. No outstanding g2h expected + * in this transition. + */ +void xe_guc_ct_disable(struct xe_guc_ct *ct) +{ + xe_guc_ct_set_state(ct, XE_GUC_CT_STATE_DISABLED); + ct_exit_safe_mode(ct); + stop_g2h_handler(ct); +} + +/** + * xe_guc_ct_stop - Set GuC to stopped state + * @ct: the &xe_guc_ct + * + * Set GuC CT to stopped state, stop g2h handler, and clear any outstanding g2h + */ +void xe_guc_ct_stop(struct xe_guc_ct *ct) +{ + xe_guc_ct_set_state(ct, XE_GUC_CT_STATE_STOPPED); + stop_g2h_handler(ct); +} + +static bool h2g_has_room(struct xe_guc_ct *ct, u32 cmd_len) +{ + struct guc_ctb *h2g = &ct->ctbs.h2g; + + lockdep_assert_held(&ct->lock); + + if (cmd_len > h2g->info.space) { + h2g->info.head = desc_read(ct_to_xe(ct), h2g, head); + + if (h2g->info.head > h2g->info.size) { + struct xe_device *xe = ct_to_xe(ct); + u32 desc_status = desc_read(xe, h2g, status); + + desc_write(xe, h2g, status, desc_status | GUC_CTB_STATUS_OVERFLOW); + + xe_gt_err(ct_to_gt(ct), "CT: invalid head offset %u >= %u)\n", + h2g->info.head, h2g->info.size); + CT_DEAD(ct, h2g, H2G_HAS_ROOM); + return false; + } + + h2g->info.space = CIRC_SPACE(h2g->info.tail, h2g->info.head, + h2g->info.size) - + h2g->info.resv_space; + if (cmd_len > h2g->info.space) + return false; + } + + return true; +} + +static bool g2h_has_room(struct xe_guc_ct *ct, u32 g2h_len) +{ + if (!g2h_len) + return true; + + lockdep_assert_held(&ct->fast_lock); + + return ct->ctbs.g2h.info.space > g2h_len; +} + +static int has_room(struct xe_guc_ct *ct, u32 cmd_len, u32 g2h_len) +{ + lockdep_assert_held(&ct->lock); + + if (!g2h_has_room(ct, g2h_len) || !h2g_has_room(ct, cmd_len)) + return -EBUSY; + + return 0; +} + +static void h2g_reserve_space(struct xe_guc_ct *ct, u32 cmd_len) +{ + lockdep_assert_held(&ct->lock); + ct->ctbs.h2g.info.space -= cmd_len; +} + +static void __g2h_reserve_space(struct xe_guc_ct *ct, u32 g2h_len, u32 num_g2h) +{ + xe_gt_assert(ct_to_gt(ct), g2h_len <= ct->ctbs.g2h.info.space); + xe_gt_assert(ct_to_gt(ct), (!g2h_len && !num_g2h) || + (g2h_len && num_g2h)); + + if (g2h_len) { + lockdep_assert_held(&ct->fast_lock); + + if (!ct->g2h_outstanding) + xe_pm_runtime_get_noresume(ct_to_xe(ct)); + + ct->ctbs.g2h.info.space -= g2h_len; + ct->g2h_outstanding += num_g2h; + } +} + +static void __g2h_release_space(struct xe_guc_ct *ct, u32 g2h_len) +{ + bool bad = false; + + lockdep_assert_held(&ct->fast_lock); + + bad = ct->ctbs.g2h.info.space + g2h_len > + ct->ctbs.g2h.info.size - ct->ctbs.g2h.info.resv_space; + bad |= !ct->g2h_outstanding; + + if (bad) { + xe_gt_err(ct_to_gt(ct), "Invalid G2H release: %d + %d vs %d - %d -> %d vs %d, outstanding = %d!\n", + ct->ctbs.g2h.info.space, g2h_len, + ct->ctbs.g2h.info.size, ct->ctbs.g2h.info.resv_space, + ct->ctbs.g2h.info.space + g2h_len, + ct->ctbs.g2h.info.size - ct->ctbs.g2h.info.resv_space, + ct->g2h_outstanding); + CT_DEAD(ct, &ct->ctbs.g2h, G2H_RELEASE); + return; + } + + ct->ctbs.g2h.info.space += g2h_len; + if (!--ct->g2h_outstanding) + xe_pm_runtime_put(ct_to_xe(ct)); +} + +static void g2h_release_space(struct xe_guc_ct *ct, u32 g2h_len) +{ + spin_lock_irq(&ct->fast_lock); + __g2h_release_space(ct, g2h_len); + spin_unlock_irq(&ct->fast_lock); +} + +#define H2G_CT_HEADERS (GUC_CTB_HDR_LEN + 1) /* one DW CTB header and one DW HxG header */ + +static int h2g_write(struct xe_guc_ct *ct, const u32 *action, u32 len, + u32 ct_fence_value, bool want_response) +{ + struct xe_device *xe = ct_to_xe(ct); + struct xe_gt *gt = ct_to_gt(ct); + struct guc_ctb *h2g = &ct->ctbs.h2g; + u32 cmd[H2G_CT_HEADERS]; + u32 tail = h2g->info.tail; + u32 full_len; + struct iosys_map map = IOSYS_MAP_INIT_OFFSET(&h2g->cmds, + tail * sizeof(u32)); + u32 desc_status; + + full_len = len + GUC_CTB_HDR_LEN; + + lockdep_assert_held(&ct->lock); + xe_gt_assert(gt, full_len <= GUC_CTB_MSG_MAX_LEN); + + desc_status = desc_read(xe, h2g, status); + if (desc_status) { + xe_gt_err(gt, "CT write: non-zero status: %u\n", desc_status); + goto corrupted; + } + + if (IS_ENABLED(CONFIG_DRM_XE_DEBUG)) { + u32 desc_tail = desc_read(xe, h2g, tail); + u32 desc_head = desc_read(xe, h2g, head); + + if (tail != desc_tail) { + desc_write(xe, h2g, status, desc_status | GUC_CTB_STATUS_MISMATCH); + xe_gt_err(gt, "CT write: tail was modified %u != %u\n", desc_tail, tail); + goto corrupted; + } + + if (tail > h2g->info.size) { + desc_write(xe, h2g, status, desc_status | GUC_CTB_STATUS_OVERFLOW); + xe_gt_err(gt, "CT write: tail out of range: %u vs %u\n", + tail, h2g->info.size); + goto corrupted; + } + + if (desc_head >= h2g->info.size) { + desc_write(xe, h2g, status, desc_status | GUC_CTB_STATUS_OVERFLOW); + xe_gt_err(gt, "CT write: invalid head offset %u >= %u)\n", + desc_head, h2g->info.size); + goto corrupted; + } + } + + /* Command will wrap, zero fill (NOPs), return and check credits again */ + if (tail + full_len > h2g->info.size) { + xe_map_memset(xe, &map, 0, 0, + (h2g->info.size - tail) * sizeof(u32)); + h2g_reserve_space(ct, (h2g->info.size - tail)); + h2g->info.tail = 0; + desc_write(xe, h2g, tail, h2g->info.tail); + + return -EAGAIN; + } + + /* + * dw0: CT header (including fence) + * dw1: HXG header (including action code) + * dw2+: action data + */ + cmd[0] = FIELD_PREP(GUC_CTB_MSG_0_FORMAT, GUC_CTB_FORMAT_HXG) | + FIELD_PREP(GUC_CTB_MSG_0_NUM_DWORDS, len) | + FIELD_PREP(GUC_CTB_MSG_0_FENCE, ct_fence_value); + if (want_response) { + cmd[1] = + FIELD_PREP(GUC_HXG_MSG_0_TYPE, GUC_HXG_TYPE_REQUEST) | + FIELD_PREP(GUC_HXG_EVENT_MSG_0_ACTION | + GUC_HXG_EVENT_MSG_0_DATA0, action[0]); + } else { + cmd[1] = + FIELD_PREP(GUC_HXG_MSG_0_TYPE, GUC_HXG_TYPE_FAST_REQUEST) | + FIELD_PREP(GUC_HXG_EVENT_MSG_0_ACTION | + GUC_HXG_EVENT_MSG_0_DATA0, action[0]); + } + + /* H2G header in cmd[1] replaces action[0] so: */ + --len; + ++action; + + /* Write H2G ensuring visable before descriptor update */ + xe_map_memcpy_to(xe, &map, 0, cmd, H2G_CT_HEADERS * sizeof(u32)); + xe_map_memcpy_to(xe, &map, H2G_CT_HEADERS * sizeof(u32), action, len * sizeof(u32)); + xe_device_wmb(xe); + + /* Update local copies */ + h2g->info.tail = (tail + full_len) % h2g->info.size; + h2g_reserve_space(ct, full_len); + + /* Update descriptor */ + desc_write(xe, h2g, tail, h2g->info.tail); + + trace_xe_guc_ctb_h2g(xe, gt->info.id, *(action - 1), full_len, + desc_read(xe, h2g, head), h2g->info.tail); + + return 0; + +corrupted: + CT_DEAD(ct, &ct->ctbs.h2g, H2G_WRITE); + return -EPIPE; +} + +/* + * The CT protocol accepts a 16 bits fence. This field is fully owned by the + * driver, the GuC will just copy it to the reply message. Since we need to + * be able to distinguish between replies to REQUEST and FAST_REQUEST messages, + * we use one bit of the seqno as an indicator for that and a rolling counter + * for the remaining 15 bits. + */ +#define CT_SEQNO_MASK GENMASK(14, 0) +#define CT_SEQNO_UNTRACKED BIT(15) +static u16 next_ct_seqno(struct xe_guc_ct *ct, bool is_g2h_fence) +{ + u32 seqno = ct->fence_seqno++ & CT_SEQNO_MASK; + + if (!is_g2h_fence) + seqno |= CT_SEQNO_UNTRACKED; + + return seqno; +} + +static int __guc_ct_send_locked(struct xe_guc_ct *ct, const u32 *action, + u32 len, u32 g2h_len, u32 num_g2h, + struct g2h_fence *g2h_fence) +{ + struct xe_gt *gt __maybe_unused = ct_to_gt(ct); + u16 seqno; + int ret; + + xe_gt_assert(gt, ct->state != XE_GUC_CT_STATE_NOT_INITIALIZED); + xe_gt_assert(gt, !g2h_len || !g2h_fence); + xe_gt_assert(gt, !num_g2h || !g2h_fence); + xe_gt_assert(gt, !g2h_len || num_g2h); + xe_gt_assert(gt, g2h_len || !num_g2h); + lockdep_assert_held(&ct->lock); + + if (unlikely(ct->ctbs.h2g.info.broken)) { + ret = -EPIPE; + goto out; + } + + if (ct->state == XE_GUC_CT_STATE_DISABLED) { + ret = -ENODEV; + goto out; + } + + if (ct->state == XE_GUC_CT_STATE_STOPPED) { + ret = -ECANCELED; + goto out; + } + + xe_gt_assert(gt, xe_guc_ct_enabled(ct)); + + if (g2h_fence) { + g2h_len = GUC_CTB_HXG_MSG_MAX_LEN; + num_g2h = 1; + + if (g2h_fence_needs_alloc(g2h_fence)) { + g2h_fence->seqno = next_ct_seqno(ct, true); + ret = xa_err(xa_store(&ct->fence_lookup, + g2h_fence->seqno, g2h_fence, + GFP_ATOMIC)); + if (ret) + goto out; + } + + seqno = g2h_fence->seqno; + } else { + seqno = next_ct_seqno(ct, false); + } + + if (g2h_len) + spin_lock_irq(&ct->fast_lock); +retry: + ret = has_room(ct, len + GUC_CTB_HDR_LEN, g2h_len); + if (unlikely(ret)) + goto out_unlock; + + ret = h2g_write(ct, action, len, seqno, !!g2h_fence); + if (unlikely(ret)) { + if (ret == -EAGAIN) + goto retry; + goto out_unlock; + } + + __g2h_reserve_space(ct, g2h_len, num_g2h); + xe_guc_notify(ct_to_guc(ct)); +out_unlock: + if (g2h_len) + spin_unlock_irq(&ct->fast_lock); +out: + return ret; +} + +static void kick_reset(struct xe_guc_ct *ct) +{ + xe_gt_reset_async(ct_to_gt(ct)); +} + +static int dequeue_one_g2h(struct xe_guc_ct *ct); + +static int guc_ct_send_locked(struct xe_guc_ct *ct, const u32 *action, u32 len, + u32 g2h_len, u32 num_g2h, + struct g2h_fence *g2h_fence) +{ + struct xe_device *xe = ct_to_xe(ct); + struct xe_gt *gt = ct_to_gt(ct); + unsigned int sleep_period_ms = 1; + int ret; + + xe_gt_assert(gt, !g2h_len || !g2h_fence); + lockdep_assert_held(&ct->lock); + xe_device_assert_mem_access(ct_to_xe(ct)); + +try_again: + ret = __guc_ct_send_locked(ct, action, len, g2h_len, num_g2h, + g2h_fence); + + /* + * We wait to try to restore credits for about 1 second before bailing. + * In the case of H2G credits we have no choice but just to wait for the + * GuC to consume H2Gs in the channel so we use a wait / sleep loop. In + * the case of G2H we process any G2H in the channel, hopefully freeing + * credits as we consume the G2H messages. + */ + if (unlikely(ret == -EBUSY && + !h2g_has_room(ct, len + GUC_CTB_HDR_LEN))) { + struct guc_ctb *h2g = &ct->ctbs.h2g; + + if (sleep_period_ms == 1024) + goto broken; + + trace_xe_guc_ct_h2g_flow_control(xe, h2g->info.head, h2g->info.tail, + h2g->info.size, + h2g->info.space, + len + GUC_CTB_HDR_LEN); + msleep(sleep_period_ms); + sleep_period_ms <<= 1; + + goto try_again; + } else if (unlikely(ret == -EBUSY)) { + struct xe_device *xe = ct_to_xe(ct); + struct guc_ctb *g2h = &ct->ctbs.g2h; + + trace_xe_guc_ct_g2h_flow_control(xe, g2h->info.head, + desc_read(xe, g2h, tail), + g2h->info.size, + g2h->info.space, + g2h_fence ? + GUC_CTB_HXG_MSG_MAX_LEN : + g2h_len); + +#define g2h_avail(ct) \ + (desc_read(ct_to_xe(ct), (&ct->ctbs.g2h), tail) != ct->ctbs.g2h.info.head) + if (!wait_event_timeout(ct->wq, !ct->g2h_outstanding || + g2h_avail(ct), HZ)) + goto broken; +#undef g2h_avail + + ret = dequeue_one_g2h(ct); + if (ret < 0) { + if (ret != -ECANCELED) + xe_gt_err(ct_to_gt(ct), "CTB receive failed (%pe)", + ERR_PTR(ret)); + goto broken; + } + + goto try_again; + } + + return ret; + +broken: + xe_gt_err(gt, "No forward process on H2G, reset required\n"); + CT_DEAD(ct, &ct->ctbs.h2g, DEADLOCK); + + return -EDEADLK; +} + +static int guc_ct_send(struct xe_guc_ct *ct, const u32 *action, u32 len, + u32 g2h_len, u32 num_g2h, struct g2h_fence *g2h_fence) +{ + int ret; + + xe_gt_assert(ct_to_gt(ct), !g2h_len || !g2h_fence); + + mutex_lock(&ct->lock); + ret = guc_ct_send_locked(ct, action, len, g2h_len, num_g2h, g2h_fence); + mutex_unlock(&ct->lock); + + return ret; +} + +int xe_guc_ct_send(struct xe_guc_ct *ct, const u32 *action, u32 len, + u32 g2h_len, u32 num_g2h) +{ + int ret; + + ret = guc_ct_send(ct, action, len, g2h_len, num_g2h, NULL); + if (ret == -EDEADLK) + kick_reset(ct); + + return ret; +} + +int xe_guc_ct_send_locked(struct xe_guc_ct *ct, const u32 *action, u32 len, + u32 g2h_len, u32 num_g2h) +{ + int ret; + + ret = guc_ct_send_locked(ct, action, len, g2h_len, num_g2h, NULL); + if (ret == -EDEADLK) + kick_reset(ct); + + return ret; +} + +int xe_guc_ct_send_g2h_handler(struct xe_guc_ct *ct, const u32 *action, u32 len) +{ + int ret; + + lockdep_assert_held(&ct->lock); + + ret = guc_ct_send_locked(ct, action, len, 0, 0, NULL); + if (ret == -EDEADLK) + kick_reset(ct); + + return ret; +} + +/* + * Check if a GT reset is in progress or will occur and if GT reset brought the + * CT back up. Randomly picking 5 seconds for an upper limit to do a GT a reset. + */ +static bool retry_failure(struct xe_guc_ct *ct, int ret) +{ + if (!(ret == -EDEADLK || ret == -EPIPE || ret == -ENODEV)) + return false; + +#define ct_alive(ct) \ + (xe_guc_ct_enabled(ct) && !ct->ctbs.h2g.info.broken && \ + !ct->ctbs.g2h.info.broken) + if (!wait_event_interruptible_timeout(ct->wq, ct_alive(ct), HZ * 5)) + return false; +#undef ct_alive + + return true; +} + +static int guc_ct_send_recv(struct xe_guc_ct *ct, const u32 *action, u32 len, + u32 *response_buffer, bool no_fail) +{ + struct xe_gt *gt = ct_to_gt(ct); + struct g2h_fence g2h_fence; + int ret = 0; + + /* + * We use a fence to implement blocking sends / receiving response data. + * The seqno of the fence is sent in the H2G, returned in the G2H, and + * an xarray is used as storage media with the seqno being to key. + * Fields in the fence hold success, failure, retry status and the + * response data. Safe to allocate on the stack as the xarray is the + * only reference and it cannot be present after this function exits. + */ +retry: + g2h_fence_init(&g2h_fence, response_buffer); +retry_same_fence: + ret = guc_ct_send(ct, action, len, 0, 0, &g2h_fence); + if (unlikely(ret == -ENOMEM)) { + /* Retry allocation /w GFP_KERNEL */ + ret = xa_err(xa_store(&ct->fence_lookup, g2h_fence.seqno, + &g2h_fence, GFP_KERNEL)); + if (ret) + return ret; + + goto retry_same_fence; + } else if (unlikely(ret)) { + if (ret == -EDEADLK) + kick_reset(ct); + + if (no_fail && retry_failure(ct, ret)) + goto retry_same_fence; + + if (!g2h_fence_needs_alloc(&g2h_fence)) + xa_erase(&ct->fence_lookup, g2h_fence.seqno); + + return ret; + } + + ret = wait_event_timeout(ct->g2h_fence_wq, g2h_fence.done, HZ); + + /* +<<<<<<< + * Ensure we serialize with completion side to prevent UAF with fence going out of scope on + * the stack, since we have no clue if it will fire after the timeout before we can erase + * from the xa. Also we have some dependent loads and stores below for which we need the + * correct ordering, and we lack the needed barriers. + */ + mutex_lock(&ct->lock); + if (!ret) { + xe_gt_err(gt, "Timed out wait for G2H, fence %u, action %04x, done %s", + g2h_fence.seqno, action[0], str_yes_no(g2h_fence.done)); + xa_erase(&ct->fence_lookup, g2h_fence.seqno); +======= + * Occasionally it is seen that the G2H worker starts running after a delay of more than + * a second even after being queued and activated by the Linux workqueue subsystem. This + * leads to G2H timeout error. The root cause of issue lies with scheduling latency of + * Lunarlake Hybrid CPU. Issue dissappears if we disable Lunarlake atom cores from BIOS + * and this is beyond xe kmd. + * + * TODO: Drop this change once workqueue scheduling delay issue is fixed on LNL Hybrid CPU. + */ + if (!ret) { + flush_work(&ct->g2h_worker); + if (g2h_fence.done) { + xe_gt_warn(gt, "G2H fence %u, action %04x, done\n", + g2h_fence.seqno, action[0]); + ret = 1; + } + } + + /* + * Ensure we serialize with completion side to prevent UAF with fence going out of scope on + * the stack, since we have no clue if it will fire after the timeout before we can erase + * from the xa. Also we have some dependent loads and stores below for which we need the + * correct ordering, and we lack the needed barriers. + */ + mutex_lock(&ct->lock); + if (!ret) { + xe_gt_err(gt, "Timed out wait for G2H, fence %u, action %04x, done %s", + g2h_fence.seqno, action[0], str_yes_no(g2h_fence.done)); + xa_erase_irq(&ct->fence_lookup, g2h_fence.seqno); +>>>>>>> + mutex_unlock(&ct->lock); + return -ETIME; + } + + if (g2h_fence.retry) { + xe_gt_dbg(gt, "H2G action %#x retrying: reason %#x\n", + action[0], g2h_fence.reason); + mutex_unlock(&ct->lock); + goto retry; + } + if (g2h_fence.fail) { + xe_gt_err(gt, "H2G request %#x failed: error %#x hint %#x\n", + action[0], g2h_fence.error, g2h_fence.hint); + ret = -EIO; + } + + if (ret > 0) + ret = response_buffer ? g2h_fence.response_len : g2h_fence.response_data; + + mutex_unlock(&ct->lock); + + return ret; +} + +/** + * xe_guc_ct_send_recv - Send and receive HXG to the GuC + * @ct: the &xe_guc_ct + * @action: the dword array with `HXG Request`_ message (can't be NULL) + * @len: length of the `HXG Request`_ message (in dwords, can't be 0) + * @response_buffer: placeholder for the `HXG Response`_ message (can be NULL) + * + * Send a `HXG Request`_ message to the GuC over CT communication channel and + * blocks until GuC replies with a `HXG Response`_ message. + * + * For non-blocking communication with GuC use xe_guc_ct_send(). + * + * Note: The size of &response_buffer must be at least GUC_CTB_MAX_DWORDS_. + * + * Return: response length (in dwords) if &response_buffer was not NULL, or + * DATA0 from `HXG Response`_ if &response_buffer was NULL, or + * a negative error code on failure. + */ +int xe_guc_ct_send_recv(struct xe_guc_ct *ct, const u32 *action, u32 len, + u32 *response_buffer) +{ + KUNIT_STATIC_STUB_REDIRECT(xe_guc_ct_send_recv, ct, action, len, response_buffer); + return guc_ct_send_recv(ct, action, len, response_buffer, false); +} + +int xe_guc_ct_send_recv_no_fail(struct xe_guc_ct *ct, const u32 *action, + u32 len, u32 *response_buffer) +{ + return guc_ct_send_recv(ct, action, len, response_buffer, true); +} + +static u32 *msg_to_hxg(u32 *msg) +{ + return msg + GUC_CTB_MSG_MIN_LEN; +} + +static u32 msg_len_to_hxg_len(u32 len) +{ + return len - GUC_CTB_MSG_MIN_LEN; +} + +static int parse_g2h_event(struct xe_guc_ct *ct, u32 *msg, u32 len) +{ + u32 *hxg = msg_to_hxg(msg); + u32 action = FIELD_GET(GUC_HXG_EVENT_MSG_0_ACTION, hxg[0]); + + lockdep_assert_held(&ct->lock); + + switch (action) { + case XE_GUC_ACTION_SCHED_CONTEXT_MODE_DONE: + case XE_GUC_ACTION_DEREGISTER_CONTEXT_DONE: + case XE_GUC_ACTION_SCHED_ENGINE_MODE_DONE: + case XE_GUC_ACTION_TLB_INVALIDATION_DONE: + g2h_release_space(ct, len); + } + + return 0; +} + +static int parse_g2h_response(struct xe_guc_ct *ct, u32 *msg, u32 len) +{ + struct xe_gt *gt = ct_to_gt(ct); + u32 *hxg = msg_to_hxg(msg); + u32 hxg_len = msg_len_to_hxg_len(len); + u32 fence = FIELD_GET(GUC_CTB_MSG_0_FENCE, msg[0]); + u32 type = FIELD_GET(GUC_HXG_MSG_0_TYPE, hxg[0]); + struct g2h_fence *g2h_fence; + + lockdep_assert_held(&ct->lock); + + /* + * Fences for FAST_REQUEST messages are not tracked in ct->fence_lookup. + * Those messages should never fail, so if we do get an error back it + * means we're likely doing an illegal operation and the GuC is + * rejecting it. We have no way to inform the code that submitted the + * H2G that the message was rejected, so we need to escalate the + * failure to trigger a reset. + */ + if (fence & CT_SEQNO_UNTRACKED) { + if (type == GUC_HXG_TYPE_RESPONSE_FAILURE) + xe_gt_err(gt, "FAST_REQ H2G fence 0x%x failed! e=0x%x, h=%u\n", + fence, + FIELD_GET(GUC_HXG_FAILURE_MSG_0_ERROR, hxg[0]), + FIELD_GET(GUC_HXG_FAILURE_MSG_0_HINT, hxg[0])); + else + xe_gt_err(gt, "unexpected response %u for FAST_REQ H2G fence 0x%x!\n", + type, fence); + CT_DEAD(ct, NULL, PARSE_G2H_RESPONSE); + + return -EPROTO; + } + + g2h_fence = xa_erase(&ct->fence_lookup, fence); + if (unlikely(!g2h_fence)) { + /* Don't tear down channel, as send could've timed out */ + /* CT_DEAD(ct, NULL, PARSE_G2H_UNKNOWN); */ + xe_gt_warn(gt, "G2H fence (%u) not found!\n", fence); + g2h_release_space(ct, GUC_CTB_HXG_MSG_MAX_LEN); + return 0; + } + + xe_gt_assert(gt, fence == g2h_fence->seqno); + + if (type == GUC_HXG_TYPE_RESPONSE_FAILURE) { + g2h_fence->fail = true; + g2h_fence->error = FIELD_GET(GUC_HXG_FAILURE_MSG_0_ERROR, hxg[0]); + g2h_fence->hint = FIELD_GET(GUC_HXG_FAILURE_MSG_0_HINT, hxg[0]); + } else if (type == GUC_HXG_TYPE_NO_RESPONSE_RETRY) { + g2h_fence->retry = true; + g2h_fence->reason = FIELD_GET(GUC_HXG_RETRY_MSG_0_REASON, hxg[0]); + } else if (g2h_fence->response_buffer) { + g2h_fence->response_len = hxg_len; + memcpy(g2h_fence->response_buffer, hxg, hxg_len * sizeof(u32)); + } else { + g2h_fence->response_data = FIELD_GET(GUC_HXG_RESPONSE_MSG_0_DATA0, hxg[0]); + } + + g2h_release_space(ct, GUC_CTB_HXG_MSG_MAX_LEN); + + g2h_fence->done = true; + smp_mb(); + + wake_up_all(&ct->g2h_fence_wq); + + return 0; +} + +static int parse_g2h_msg(struct xe_guc_ct *ct, u32 *msg, u32 len) +{ + struct xe_gt *gt = ct_to_gt(ct); + u32 *hxg = msg_to_hxg(msg); + u32 origin, type; + int ret; + + lockdep_assert_held(&ct->lock); + + origin = FIELD_GET(GUC_HXG_MSG_0_ORIGIN, hxg[0]); + if (unlikely(origin != GUC_HXG_ORIGIN_GUC)) { + xe_gt_err(gt, "G2H channel broken on read, origin=%u, reset required\n", + origin); + CT_DEAD(ct, &ct->ctbs.g2h, PARSE_G2H_ORIGIN); + + return -EPROTO; + } + + type = FIELD_GET(GUC_HXG_MSG_0_TYPE, hxg[0]); + switch (type) { + case GUC_HXG_TYPE_EVENT: + ret = parse_g2h_event(ct, msg, len); + break; + case GUC_HXG_TYPE_RESPONSE_SUCCESS: + case GUC_HXG_TYPE_RESPONSE_FAILURE: + case GUC_HXG_TYPE_NO_RESPONSE_RETRY: + ret = parse_g2h_response(ct, msg, len); + break; + default: + xe_gt_err(gt, "G2H channel broken on read, type=%u, reset required\n", + type); + CT_DEAD(ct, &ct->ctbs.g2h, PARSE_G2H_TYPE); + + ret = -EOPNOTSUPP; + } + + return ret; +} + +static int process_g2h_msg(struct xe_guc_ct *ct, u32 *msg, u32 len) +{ + struct xe_guc *guc = ct_to_guc(ct); + struct xe_gt *gt = ct_to_gt(ct); + u32 hxg_len = msg_len_to_hxg_len(len); + u32 *hxg = msg_to_hxg(msg); + u32 action, adj_len; + u32 *payload; + int ret = 0; + + if (FIELD_GET(GUC_HXG_MSG_0_TYPE, hxg[0]) != GUC_HXG_TYPE_EVENT) + return 0; + + action = FIELD_GET(GUC_HXG_EVENT_MSG_0_ACTION, hxg[0]); + payload = hxg + GUC_HXG_EVENT_MSG_MIN_LEN; + adj_len = hxg_len - GUC_HXG_EVENT_MSG_MIN_LEN; + + switch (action) { + case XE_GUC_ACTION_SCHED_CONTEXT_MODE_DONE: + ret = xe_guc_sched_done_handler(guc, payload, adj_len); + break; + case XE_GUC_ACTION_DEREGISTER_CONTEXT_DONE: + ret = xe_guc_deregister_done_handler(guc, payload, adj_len); + break; + case XE_GUC_ACTION_CONTEXT_RESET_NOTIFICATION: + ret = xe_guc_exec_queue_reset_handler(guc, payload, adj_len); + break; + case XE_GUC_ACTION_ENGINE_FAILURE_NOTIFICATION: + ret = xe_guc_exec_queue_reset_failure_handler(guc, payload, + adj_len); + break; + case XE_GUC_ACTION_SCHED_ENGINE_MODE_DONE: + /* Selftest only at the moment */ + break; + case XE_GUC_ACTION_STATE_CAPTURE_NOTIFICATION: + ret = xe_guc_error_capture_handler(guc, payload, adj_len); + break; + case XE_GUC_ACTION_NOTIFY_FLUSH_LOG_BUFFER_TO_FILE: + /* FIXME: Handle this */ + break; + case XE_GUC_ACTION_NOTIFY_MEMORY_CAT_ERROR: + ret = xe_guc_exec_queue_memory_cat_error_handler(guc, payload, + adj_len); + break; + case XE_GUC_ACTION_REPORT_PAGE_FAULT_REQ_DESC: + ret = xe_guc_pagefault_handler(guc, payload, adj_len); + break; + case XE_GUC_ACTION_TLB_INVALIDATION_DONE: + ret = xe_guc_tlb_invalidation_done_handler(guc, payload, + adj_len); + break; + case XE_GUC_ACTION_ACCESS_COUNTER_NOTIFY: + ret = xe_guc_access_counter_notify_handler(guc, payload, + adj_len); + break; + case XE_GUC_ACTION_GUC2PF_RELAY_FROM_VF: + ret = xe_guc_relay_process_guc2pf(&guc->relay, hxg, hxg_len); + break; + case XE_GUC_ACTION_GUC2VF_RELAY_FROM_PF: + ret = xe_guc_relay_process_guc2vf(&guc->relay, hxg, hxg_len); + break; + case GUC_ACTION_GUC2PF_VF_STATE_NOTIFY: + ret = xe_gt_sriov_pf_control_process_guc2pf(gt, hxg, hxg_len); + break; + case GUC_ACTION_GUC2PF_ADVERSE_EVENT: + ret = xe_gt_sriov_pf_monitor_process_guc2pf(gt, hxg, hxg_len); + break; + default: + xe_gt_err(gt, "unexpected G2H action 0x%04x\n", action); + } + + if (ret) { + xe_gt_err(gt, "G2H action 0x%04x failed (%pe)\n", + action, ERR_PTR(ret)); + CT_DEAD(ct, NULL, PROCESS_FAILED); + } + + return 0; +} + +static int g2h_read(struct xe_guc_ct *ct, u32 *msg, bool fast_path) +{ + struct xe_device *xe = ct_to_xe(ct); + struct xe_gt *gt = ct_to_gt(ct); + struct guc_ctb *g2h = &ct->ctbs.g2h; + u32 tail, head, len, desc_status; + s32 avail; + u32 action; + u32 *hxg; + + xe_gt_assert(gt, ct->state != XE_GUC_CT_STATE_NOT_INITIALIZED); + lockdep_assert_held(&ct->fast_lock); + + if (ct->state == XE_GUC_CT_STATE_DISABLED) + return -ENODEV; + + if (ct->state == XE_GUC_CT_STATE_STOPPED) + return -ECANCELED; + + if (g2h->info.broken) + return -EPIPE; + + xe_gt_assert(gt, xe_guc_ct_enabled(ct)); + + desc_status = desc_read(xe, g2h, status); + if (desc_status) { + if (desc_status & GUC_CTB_STATUS_DISABLED) { + /* + * Potentially valid if a CLIENT_RESET request resulted in + * contexts/engines being reset. But should never happen as + * no contexts should be active when CLIENT_RESET is sent. + */ + xe_gt_err(gt, "CT read: unexpected G2H after GuC has stopped!\n"); + desc_status &= ~GUC_CTB_STATUS_DISABLED; + } + + if (desc_status) { + xe_gt_err(gt, "CT read: non-zero status: %u\n", desc_status); + goto corrupted; + } + } + + if (IS_ENABLED(CONFIG_DRM_XE_DEBUG)) { + u32 desc_tail = desc_read(xe, g2h, tail); + /* + u32 desc_head = desc_read(xe, g2h, head); + + * info.head and desc_head are updated back-to-back at the end of + * this function and nowhere else. Hence, they cannot be different + * unless two g2h_read calls are running concurrently. Which is not + * possible because it is guarded by ct->fast_lock. And yet, some + * discrete platforms are reguarly hitting this error :(. + * + * desc_head rolling backwards shouldn't cause any noticeable + * problems - just a delay in GuC being allowed to proceed past that + * point in the queue. So for now, just disable the error until it + * can be root caused. + * + if (g2h->info.head != desc_head) { + desc_write(xe, g2h, status, desc_status | GUC_CTB_STATUS_MISMATCH); + xe_gt_err(gt, "CT read: head was modified %u != %u\n", + desc_head, g2h->info.head); + goto corrupted; + } + */ + + if (g2h->info.head > g2h->info.size) { + desc_write(xe, g2h, status, desc_status | GUC_CTB_STATUS_OVERFLOW); + xe_gt_err(gt, "CT read: head out of range: %u vs %u\n", + g2h->info.head, g2h->info.size); + goto corrupted; + } + + if (desc_tail >= g2h->info.size) { + desc_write(xe, g2h, status, desc_status | GUC_CTB_STATUS_OVERFLOW); + xe_gt_err(gt, "CT read: invalid tail offset %u >= %u)\n", + desc_tail, g2h->info.size); + goto corrupted; + } + } + + /* Calculate DW available to read */ + tail = desc_read(xe, g2h, tail); + avail = tail - g2h->info.head; + if (unlikely(avail == 0)) + return 0; + + if (avail < 0) + avail += g2h->info.size; + + /* Read header */ + xe_map_memcpy_from(xe, msg, &g2h->cmds, sizeof(u32) * g2h->info.head, + sizeof(u32)); + len = FIELD_GET(GUC_CTB_MSG_0_NUM_DWORDS, msg[0]) + GUC_CTB_MSG_MIN_LEN; + if (len > avail) { + xe_gt_err(gt, "G2H channel broken on read, avail=%d, len=%d, reset required\n", + avail, len); + goto corrupted; + } + + head = (g2h->info.head + 1) % g2h->info.size; + avail = len - 1; + + /* Read G2H message */ + if (avail + head > g2h->info.size) { + u32 avail_til_wrap = g2h->info.size - head; + + xe_map_memcpy_from(xe, msg + 1, + &g2h->cmds, sizeof(u32) * head, + avail_til_wrap * sizeof(u32)); + xe_map_memcpy_from(xe, msg + 1 + avail_til_wrap, + &g2h->cmds, 0, + (avail - avail_til_wrap) * sizeof(u32)); + } else { + xe_map_memcpy_from(xe, msg + 1, + &g2h->cmds, sizeof(u32) * head, + avail * sizeof(u32)); + } + + hxg = msg_to_hxg(msg); + action = FIELD_GET(GUC_HXG_EVENT_MSG_0_ACTION, hxg[0]); + + if (fast_path) { + if (FIELD_GET(GUC_HXG_MSG_0_TYPE, hxg[0]) != GUC_HXG_TYPE_EVENT) + return 0; + + switch (action) { + case XE_GUC_ACTION_REPORT_PAGE_FAULT_REQ_DESC: + case XE_GUC_ACTION_TLB_INVALIDATION_DONE: + break; /* Process these in fast-path */ + default: + return 0; + } + } + + /* Update local / descriptor header */ + g2h->info.head = (head + avail) % g2h->info.size; + desc_write(xe, g2h, head, g2h->info.head); + + trace_xe_guc_ctb_g2h(xe, ct_to_gt(ct)->info.id, + action, len, g2h->info.head, tail); + + return len; + +corrupted: + CT_DEAD(ct, &ct->ctbs.g2h, G2H_READ); + return -EPROTO; +} + +static void g2h_fast_path(struct xe_guc_ct *ct, u32 *msg, u32 len) +{ + struct xe_gt *gt = ct_to_gt(ct); + struct xe_guc *guc = ct_to_guc(ct); + u32 hxg_len = msg_len_to_hxg_len(len); + u32 *hxg = msg_to_hxg(msg); + u32 action = FIELD_GET(GUC_HXG_EVENT_MSG_0_ACTION, hxg[0]); + u32 *payload = hxg + GUC_HXG_MSG_MIN_LEN; + u32 adj_len = hxg_len - GUC_HXG_MSG_MIN_LEN; + int ret = 0; + + switch (action) { + case XE_GUC_ACTION_REPORT_PAGE_FAULT_REQ_DESC: + ret = xe_guc_pagefault_handler(guc, payload, adj_len); + break; + case XE_GUC_ACTION_TLB_INVALIDATION_DONE: + __g2h_release_space(ct, len); + ret = xe_guc_tlb_invalidation_done_handler(guc, payload, + adj_len); + break; + default: + xe_gt_warn(gt, "NOT_POSSIBLE"); + } + + if (ret) { + xe_gt_err(gt, "G2H action 0x%04x failed (%pe)\n", + action, ERR_PTR(ret)); + CT_DEAD(ct, NULL, FAST_G2H); + } +} + +/** + * xe_guc_ct_fast_path - process critical G2H in the IRQ handler + * @ct: GuC CT object + * + * Anything related to page faults is critical for performance, process these + * critical G2H in the IRQ. This is safe as these handlers either just wake up + * waiters or queue another worker. + */ +void xe_guc_ct_fast_path(struct xe_guc_ct *ct) +{ + struct xe_device *xe = ct_to_xe(ct); + bool ongoing; + int len; + + ongoing = xe_pm_runtime_get_if_active(ct_to_xe(ct)); + if (!ongoing && xe_pm_read_callback_task(ct_to_xe(ct)) == NULL) + return; + + spin_lock(&ct->fast_lock); + do { + len = g2h_read(ct, ct->fast_msg, true); + if (len > 0) + g2h_fast_path(ct, ct->fast_msg, len); + } while (len > 0); + spin_unlock(&ct->fast_lock); + + if (ongoing) + xe_pm_runtime_put(xe); +} + +/* Returns less than zero on error, 0 on done, 1 on more available */ +static int dequeue_one_g2h(struct xe_guc_ct *ct) +{ + int len; + int ret; + + lockdep_assert_held(&ct->lock); + + spin_lock_irq(&ct->fast_lock); + len = g2h_read(ct, ct->msg, false); + spin_unlock_irq(&ct->fast_lock); + if (len <= 0) + return len; + + ret = parse_g2h_msg(ct, ct->msg, len); + if (unlikely(ret < 0)) + return ret; + + ret = process_g2h_msg(ct, ct->msg, len); + if (unlikely(ret < 0)) + return ret; + + return 1; +} + +static void receive_g2h(struct xe_guc_ct *ct) +{ + bool ongoing; + int ret; + + /* + * Normal users must always hold mem_access.ref around CT calls. However + * during the runtime pm callbacks we rely on CT to talk to the GuC, but + * at this stage we can't rely on mem_access.ref and even the + * callback_task will be different than current. For such cases we just + * need to ensure we always process the responses from any blocking + * ct_send requests or where we otherwise expect some response when + * initiated from those callbacks (which will need to wait for the below + * dequeue_one_g2h()). The dequeue_one_g2h() will gracefully fail if + * the device has suspended to the point that the CT communication has + * been disabled. + * + * If we are inside the runtime pm callback, we can be the only task + * still issuing CT requests (since that requires having the + * mem_access.ref). It seems like it might in theory be possible to + * receive unsolicited events from the GuC just as we are + * suspending-resuming, but those will currently anyway be lost when + * eventually exiting from suspend, hence no need to wake up the device + * here. If we ever need something stronger than get_if_ongoing() then + * we need to be careful with blocking the pm callbacks from getting CT + * responses, if the worker here is blocked on those callbacks + * completing, creating a deadlock. + */ + ongoing = xe_pm_runtime_get_if_active(ct_to_xe(ct)); + if (!ongoing && xe_pm_read_callback_task(ct_to_xe(ct)) == NULL) + return; + + do { + mutex_lock(&ct->lock); + ret = dequeue_one_g2h(ct); + mutex_unlock(&ct->lock); + + if (unlikely(ret == -EPROTO || ret == -EOPNOTSUPP)) { + xe_gt_err(ct_to_gt(ct), "CT dequeue failed: %d", ret); + CT_DEAD(ct, NULL, G2H_RECV); + kick_reset(ct); + } + } while (ret == 1); + + if (ongoing) + xe_pm_runtime_put(ct_to_xe(ct)); +} + +static void g2h_worker_func(struct work_struct *w) +{ + struct xe_guc_ct *ct = container_of(w, struct xe_guc_ct, g2h_worker); + + receive_g2h(ct); +} + +struct xe_guc_ct_snapshot *xe_guc_ct_snapshot_alloc(struct xe_guc_ct *ct, bool atomic) +{ + struct xe_guc_ct_snapshot *snapshot; + + snapshot = kzalloc(sizeof(*snapshot), atomic ? GFP_ATOMIC : GFP_KERNEL); + if (!snapshot) + return NULL; + + if (ct->bo) { + snapshot->ctb_size = ct->bo->size; + snapshot->ctb = kmalloc(snapshot->ctb_size, atomic ? GFP_ATOMIC : GFP_KERNEL); + } + + return snapshot; +} + +static void guc_ctb_snapshot_capture(struct xe_device *xe, struct guc_ctb *ctb, + struct guc_ctb_snapshot *snapshot) +{ + xe_map_memcpy_from(xe, &snapshot->desc, &ctb->desc, 0, + sizeof(struct guc_ct_buffer_desc)); + memcpy(&snapshot->info, &ctb->info, sizeof(struct guc_ctb_info)); +} + +static void guc_ctb_snapshot_print(struct guc_ctb_snapshot *snapshot, + struct drm_printer *p) +{ + drm_printf(p, "\tsize: %d\n", snapshot->info.size); + drm_printf(p, "\tresv_space: %d\n", snapshot->info.resv_space); + drm_printf(p, "\thead: %d\n", snapshot->info.head); + drm_printf(p, "\ttail: %d\n", snapshot->info.tail); + drm_printf(p, "\tspace: %d\n", snapshot->info.space); + drm_printf(p, "\tbroken: %d\n", snapshot->info.broken); + drm_printf(p, "\thead (memory): %d\n", snapshot->desc.head); + drm_printf(p, "\ttail (memory): %d\n", snapshot->desc.tail); + drm_printf(p, "\tstatus (memory): 0x%x\n", snapshot->desc.status); +} + +/** + * xe_guc_ct_snapshot_capture - Take a quick snapshot of the CT state. + * @ct: GuC CT object. + * @atomic: Boolean to indicate if this is called from atomic context like + * reset or CTB handler or from some regular path like debugfs. + * + * This can be printed out in a later stage like during dev_coredump + * analysis. + * + * Returns: a GuC CT snapshot object that must be freed by the caller + * by using `xe_guc_ct_snapshot_free`. + */ +struct xe_guc_ct_snapshot *xe_guc_ct_snapshot_capture(struct xe_guc_ct *ct, + bool atomic) +{ + struct xe_device *xe = ct_to_xe(ct); + struct xe_guc_ct_snapshot *snapshot; + + snapshot = xe_guc_ct_snapshot_alloc(ct, atomic); + if (!snapshot) { + xe_gt_err(ct_to_gt(ct), "Skipping CTB snapshot entirely.\n"); + return NULL; + } + + if (xe_guc_ct_enabled(ct) || ct->state == XE_GUC_CT_STATE_STOPPED) { + snapshot->ct_enabled = true; + snapshot->g2h_outstanding = READ_ONCE(ct->g2h_outstanding); + guc_ctb_snapshot_capture(xe, &ct->ctbs.h2g, &snapshot->h2g); + guc_ctb_snapshot_capture(xe, &ct->ctbs.g2h, &snapshot->g2h); + } + + if (ct->bo && snapshot->ctb) + xe_map_memcpy_from(xe, snapshot->ctb, &ct->bo->vmap, 0, snapshot->ctb_size); + + return snapshot; +} + +/** + * xe_guc_ct_snapshot_print - Print out a given GuC CT snapshot. + * @snapshot: GuC CT snapshot object. + * @p: drm_printer where it will be printed out. + * + * This function prints out a given GuC CT snapshot object. + */ +void xe_guc_ct_snapshot_print(struct xe_guc_ct_snapshot *snapshot, + struct drm_printer *p) +{ + if (!snapshot) + return; + + if (snapshot->ct_enabled) { + drm_puts(p, "H2G CTB (all sizes in DW):\n"); + guc_ctb_snapshot_print(&snapshot->h2g, p); + + drm_puts(p, "G2H CTB (all sizes in DW):\n"); + guc_ctb_snapshot_print(&snapshot->g2h, p); + drm_printf(p, "\tg2h outstanding: %d\n", + snapshot->g2h_outstanding); + + if (snapshot->ctb) { + xe_print_blob_ascii85(p, "CTB data", snapshot->ctb, 0, snapshot->ctb_size); + } else { + drm_printf(p, "CTB snapshot missing!\n"); + return; + } + } else { + drm_puts(p, "CT disabled\n"); + } +} + +/** + * xe_guc_ct_snapshot_free - Free all allocated objects for a given snapshot. + * @snapshot: GuC CT snapshot object. + * + * This function free all the memory that needed to be allocated at capture + * time. + */ +void xe_guc_ct_snapshot_free(struct xe_guc_ct_snapshot *snapshot) +{ + if (!snapshot) + return; + + kfree(snapshot->ctb); + kfree(snapshot); +} + +/** + * xe_guc_ct_print - GuC CT Print. + * @ct: GuC CT. + * @p: drm_printer where it will be printed out. + * + * This function quickly capture a snapshot and immediately print it out. + */ +void xe_guc_ct_print(struct xe_guc_ct *ct, struct drm_printer *p) +{ + struct xe_guc_ct_snapshot *snapshot; + + snapshot = xe_guc_ct_snapshot_capture(ct, false); + xe_guc_ct_snapshot_print(snapshot, p); + xe_guc_ct_snapshot_free(snapshot); +} + +#if IS_ENABLED(CONFIG_DRM_XE_DEBUG) +static void ct_dead_capture(struct xe_guc_ct *ct, struct guc_ctb *ctb, u32 reason_code) +{ + struct xe_guc_log_snapshot *snapshot_log; + struct xe_guc_ct_snapshot *snapshot_ct; + struct xe_guc *guc = ct_to_guc(ct); + unsigned long flags; + bool have_capture; + + if (ctb) + ctb->info.broken = true; + + /* Ignore further errors after the first dump until a reset */ + if (ct->dead.reported) + return; + + spin_lock_irqsave(&ct->dead.lock, flags); + + /* And only capture one dump at a time */ + have_capture = ct->dead.reason & (1 << CT_DEAD_STATE_CAPTURE); + ct->dead.reason |= (1 << reason_code) | + (1 << CT_DEAD_STATE_CAPTURE); + + spin_unlock_irqrestore(&ct->dead.lock, flags); + + if (have_capture) + return; + + snapshot_log = xe_guc_log_snapshot_capture(&guc->log, true); + snapshot_ct = xe_guc_ct_snapshot_capture((ct), true); + + spin_lock_irqsave(&ct->dead.lock, flags); + + if (ct->dead.snapshot_log || ct->dead.snapshot_ct) { + xe_gt_err(ct_to_gt(ct), "Got unexpected dead CT capture!\n"); + xe_guc_log_snapshot_free(snapshot_log); + xe_guc_ct_snapshot_free(snapshot_ct); + } else { + ct->dead.snapshot_log = snapshot_log; + ct->dead.snapshot_ct = snapshot_ct; + } + + spin_unlock_irqrestore(&ct->dead.lock, flags); + + queue_work(system_unbound_wq, &(ct)->dead.worker); +} + +static void ct_dead_print(struct xe_dead_ct *dead) +{ + struct xe_guc_ct *ct = container_of(dead, struct xe_guc_ct, dead); + struct xe_device *xe = ct_to_xe(ct); + struct xe_gt *gt = ct_to_gt(ct); + static int g_count; + struct drm_printer ip = xe_gt_info_printer(gt); + struct drm_printer lp = drm_line_printer(&ip, "Capture", ++g_count); + + if (!dead->reason) { + xe_gt_err(gt, "CTB is dead for no reason!?\n"); + return; + } + + drm_printf(&lp, "CTB is dead - reason=0x%X\n", dead->reason); + + /* Can't generate a genuine core dump at this point, so just do the good bits */ + drm_puts(&lp, "**** Xe Device Coredump ****\n"); + xe_device_snapshot_print(xe, &lp); + + drm_printf(&lp, "**** GT #%d ****\n", gt->info.id); + drm_printf(&lp, "\tTile: %d\n", gt->tile->id); + + drm_puts(&lp, "**** GuC Log ****\n"); + xe_guc_log_snapshot_print(dead->snapshot_log, &lp); + + drm_puts(&lp, "**** GuC CT ****\n"); + xe_guc_ct_snapshot_print(dead->snapshot_ct, &lp); + + drm_puts(&lp, "Done.\n"); +} + +static void ct_dead_worker_func(struct work_struct *w) +{ + struct xe_guc_ct *ct = container_of(w, struct xe_guc_ct, dead.worker); + + if (!ct->dead.reported) { + ct->dead.reported = true; + ct_dead_print(&ct->dead); + } + + spin_lock_irq(&ct->dead.lock); + + xe_guc_log_snapshot_free(ct->dead.snapshot_log); + ct->dead.snapshot_log = NULL; + xe_guc_ct_snapshot_free(ct->dead.snapshot_ct); + ct->dead.snapshot_ct = NULL; + + if (ct->dead.reason & (1 << CT_DEAD_STATE_REARM)) { + /* A reset has occurred so re-arm the error reporting */ + ct->dead.reason = 0; + ct->dead.reported = false; + } + + spin_unlock_irq(&ct->dead.lock); +} +#endif diff --git a/rr-cache/3202f565d085f3a7e6151c8b138d91393b3520cd/postimage.2 b/rr-cache/3202f565d085f3a7e6151c8b138d91393b3520cd/postimage.2 new file mode 100644 index 000000000000..f6c87d14f78c --- /dev/null +++ b/rr-cache/3202f565d085f3a7e6151c8b138d91393b3520cd/postimage.2 @@ -0,0 +1,1037 @@ +// SPDX-License-Identifier: MIT +/* + * Copyright © 2021 Intel Corporation + */ + +#include "xe_device.h" + +#include <linux/aperture.h> +#include <linux/delay.h> +#include <linux/fault-inject.h> +#include <linux/units.h> + +#include <drm/drm_atomic_helper.h> +#include <drm/drm_client.h> +#include <drm/drm_gem_ttm_helper.h> +#include <drm/drm_ioctl.h> +#include <drm/drm_managed.h> +#include <drm/drm_print.h> +#include <uapi/drm/xe_drm.h> + +#include "display/xe_display.h" +#include "instructions/xe_gpu_commands.h" +#include "regs/xe_gt_regs.h" +#include "regs/xe_regs.h" +#include "xe_bo.h" +#include "xe_debugfs.h" +#include "xe_devcoredump.h" +#include "xe_dma_buf.h" +#include "xe_drm_client.h" +#include "xe_drv.h" +#include "xe_exec.h" +#include "xe_exec_queue.h" +#include "xe_force_wake.h" +#include "xe_ggtt.h" +#include "xe_gsc_proxy.h" +#include "xe_gt.h" +#include "xe_gt_mcr.h" +#include "xe_gt_printk.h" +#include "xe_gt_sriov_vf.h" +#include "xe_guc.h" +#include "xe_hw_engine_group.h" +#include "xe_hwmon.h" +#include "xe_irq.h" +#include "xe_memirq.h" +#include "xe_mmio.h" +#include "xe_module.h" +#include "xe_observation.h" +#include "xe_pat.h" +#include "xe_pcode.h" +#include "xe_pm.h" +#include "xe_query.h" +#include "xe_sriov.h" +#include "xe_tile.h" +#include "xe_ttm_stolen_mgr.h" +#include "xe_ttm_sys_mgr.h" +#include "xe_vm.h" +#include "xe_vram.h" +#include "xe_wait_user_fence.h" +#include "xe_wa.h" + +#include <generated/xe_wa_oob.h> + +static int xe_file_open(struct drm_device *dev, struct drm_file *file) +{ + struct xe_device *xe = to_xe_device(dev); + struct xe_drm_client *client; + struct xe_file *xef; + int ret = -ENOMEM; + struct task_struct *task = NULL; + + xef = kzalloc(sizeof(*xef), GFP_KERNEL); + if (!xef) + return ret; + + client = xe_drm_client_alloc(); + if (!client) { + kfree(xef); + return ret; + } + + xef->drm = file; + xef->client = client; + xef->xe = xe; + + mutex_init(&xef->vm.lock); + xa_init_flags(&xef->vm.xa, XA_FLAGS_ALLOC1); + + mutex_init(&xef->exec_queue.lock); + xa_init_flags(&xef->exec_queue.xa, XA_FLAGS_ALLOC1); + + spin_lock(&xe->clients.lock); + xe->clients.count++; + spin_unlock(&xe->clients.lock); + + file->driver_priv = xef; + kref_init(&xef->refcount); + + task = get_pid_task(rcu_access_pointer(file->pid), PIDTYPE_PID); + if (task) { + xef->process_name = kstrdup(task->comm, GFP_KERNEL); + xef->pid = task->pid; + put_task_struct(task); + } + + return 0; +} + +static void xe_file_destroy(struct kref *ref) +{ + struct xe_file *xef = container_of(ref, struct xe_file, refcount); + struct xe_device *xe = xef->xe; + + xa_destroy(&xef->exec_queue.xa); + mutex_destroy(&xef->exec_queue.lock); + xa_destroy(&xef->vm.xa); + mutex_destroy(&xef->vm.lock); + + spin_lock(&xe->clients.lock); + xe->clients.count--; + spin_unlock(&xe->clients.lock); + + xe_drm_client_put(xef->client); + kfree(xef->process_name); + kfree(xef); +} + +/** + * xe_file_get() - Take a reference to the xe file object + * @xef: Pointer to the xe file + * + * Anyone with a pointer to xef must take a reference to the xe file + * object using this call. + * + * Return: xe file pointer + */ +struct xe_file *xe_file_get(struct xe_file *xef) +{ + kref_get(&xef->refcount); + return xef; +} + +/** + * xe_file_put() - Drop a reference to the xe file object + * @xef: Pointer to the xe file + * + * Used to drop reference to the xef object + */ +void xe_file_put(struct xe_file *xef) +{ + kref_put(&xef->refcount, xe_file_destroy); +} + +static void xe_file_close(struct drm_device *dev, struct drm_file *file) +{ + struct xe_device *xe = to_xe_device(dev); + struct xe_file *xef = file->driver_priv; + struct xe_vm *vm; + struct xe_exec_queue *q; + unsigned long idx; + + xe_pm_runtime_get(xe); + + /* + * No need for exec_queue.lock here as there is no contention for it + * when FD is closing as IOCTLs presumably can't be modifying the + * xarray. Taking exec_queue.lock here causes undue dependency on + * vm->lock taken during xe_exec_queue_kill(). + */ + xa_for_each(&xef->exec_queue.xa, idx, q) { + if (q->vm && q->hwe->hw_engine_group) + xe_hw_engine_group_del_exec_queue(q->hwe->hw_engine_group, q); + xe_exec_queue_kill(q); + xe_exec_queue_put(q); + } + xa_for_each(&xef->vm.xa, idx, vm) + xe_vm_close_and_put(vm); + + xe_file_put(xef); + + xe_pm_runtime_put(xe); +} + +static const struct drm_ioctl_desc xe_ioctls[] = { + DRM_IOCTL_DEF_DRV(XE_DEVICE_QUERY, xe_query_ioctl, DRM_RENDER_ALLOW), + DRM_IOCTL_DEF_DRV(XE_GEM_CREATE, xe_gem_create_ioctl, DRM_RENDER_ALLOW), + DRM_IOCTL_DEF_DRV(XE_GEM_MMAP_OFFSET, xe_gem_mmap_offset_ioctl, + DRM_RENDER_ALLOW), + DRM_IOCTL_DEF_DRV(XE_VM_CREATE, xe_vm_create_ioctl, DRM_RENDER_ALLOW), + DRM_IOCTL_DEF_DRV(XE_VM_DESTROY, xe_vm_destroy_ioctl, DRM_RENDER_ALLOW), + DRM_IOCTL_DEF_DRV(XE_VM_BIND, xe_vm_bind_ioctl, DRM_RENDER_ALLOW), + DRM_IOCTL_DEF_DRV(XE_EXEC, xe_exec_ioctl, DRM_RENDER_ALLOW), + DRM_IOCTL_DEF_DRV(XE_EXEC_QUEUE_CREATE, xe_exec_queue_create_ioctl, + DRM_RENDER_ALLOW), + DRM_IOCTL_DEF_DRV(XE_EXEC_QUEUE_DESTROY, xe_exec_queue_destroy_ioctl, + DRM_RENDER_ALLOW), + DRM_IOCTL_DEF_DRV(XE_EXEC_QUEUE_GET_PROPERTY, xe_exec_queue_get_property_ioctl, + DRM_RENDER_ALLOW), + DRM_IOCTL_DEF_DRV(XE_WAIT_USER_FENCE, xe_wait_user_fence_ioctl, + DRM_RENDER_ALLOW), + DRM_IOCTL_DEF_DRV(XE_OBSERVATION, xe_observation_ioctl, DRM_RENDER_ALLOW), +}; + +static long xe_drm_ioctl(struct file *file, unsigned int cmd, unsigned long arg) +{ + struct drm_file *file_priv = file->private_data; + struct xe_device *xe = to_xe_device(file_priv->minor->dev); + long ret; + + if (xe_device_wedged(xe)) + return -ECANCELED; + + ret = xe_pm_runtime_get_ioctl(xe); + if (ret >= 0) + ret = drm_ioctl(file, cmd, arg); + xe_pm_runtime_put(xe); + + return ret; +} + +#ifdef CONFIG_COMPAT +static long xe_drm_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg) +{ + struct drm_file *file_priv = file->private_data; + struct xe_device *xe = to_xe_device(file_priv->minor->dev); + long ret; + + if (xe_device_wedged(xe)) + return -ECANCELED; + + ret = xe_pm_runtime_get_ioctl(xe); + if (ret >= 0) + ret = drm_compat_ioctl(file, cmd, arg); + xe_pm_runtime_put(xe); + + return ret; +} +#else +/* similarly to drm_compat_ioctl, let's it be assigned to .compat_ioct unconditionally */ +#define xe_drm_compat_ioctl NULL +#endif + +static const struct file_operations xe_driver_fops = { + .owner = THIS_MODULE, + .open = drm_open, + .release = drm_release_noglobal, + .unlocked_ioctl = xe_drm_ioctl, + .mmap = drm_gem_mmap, + .poll = drm_poll, + .read = drm_read, + .compat_ioctl = xe_drm_compat_ioctl, + .llseek = noop_llseek, +#ifdef CONFIG_PROC_FS + .show_fdinfo = drm_show_fdinfo, +#endif + .fop_flags = FOP_UNSIGNED_OFFSET, +}; + +static struct drm_driver driver = { + /* Don't use MTRRs here; the Xserver or userspace app should + * deal with them for Intel hardware. + */ + .driver_features = + DRIVER_GEM | + DRIVER_RENDER | DRIVER_SYNCOBJ | + DRIVER_SYNCOBJ_TIMELINE | DRIVER_GEM_GPUVA, + .open = xe_file_open, + .postclose = xe_file_close, + + .gem_prime_import = xe_gem_prime_import, + + .dumb_create = xe_bo_dumb_create, + .dumb_map_offset = drm_gem_ttm_dumb_map_offset, +#ifdef CONFIG_PROC_FS + .show_fdinfo = xe_drm_client_fdinfo, +#endif + .ioctls = xe_ioctls, + .num_ioctls = ARRAY_SIZE(xe_ioctls), + .fops = &xe_driver_fops, + .name = DRIVER_NAME, + .desc = DRIVER_DESC, + .date = DRIVER_DATE, + .major = DRIVER_MAJOR, + .minor = DRIVER_MINOR, + .patchlevel = DRIVER_PATCHLEVEL, +}; + +static void xe_device_destroy(struct drm_device *dev, void *dummy) +{ + struct xe_device *xe = to_xe_device(dev); + + if (xe->preempt_fence_wq) + destroy_workqueue(xe->preempt_fence_wq); + + if (xe->ordered_wq) + destroy_workqueue(xe->ordered_wq); + + if (xe->unordered_wq) + destroy_workqueue(xe->unordered_wq); + + if (xe->destroy_wq) + destroy_workqueue(xe->destroy_wq); + + ttm_device_fini(&xe->ttm); +} + +struct xe_device *xe_device_create(struct pci_dev *pdev, + const struct pci_device_id *ent) +{ + struct xe_device *xe; + int err; + + xe_display_driver_set_hooks(&driver); + + err = aperture_remove_conflicting_pci_devices(pdev, driver.name); + if (err) + return ERR_PTR(err); + + xe = devm_drm_dev_alloc(&pdev->dev, &driver, struct xe_device, drm); + if (IS_ERR(xe)) + return xe; + + err = ttm_device_init(&xe->ttm, &xe_ttm_funcs, xe->drm.dev, + xe->drm.anon_inode->i_mapping, + xe->drm.vma_offset_manager, false, false); + if (WARN_ON(err)) + goto err; + + err = drmm_add_action_or_reset(&xe->drm, xe_device_destroy, NULL); + if (err) + goto err; + + xe->info.devid = pdev->device; + xe->info.revid = pdev->revision; + xe->info.force_execlist = xe_modparam.force_execlist; + + spin_lock_init(&xe->irq.lock); + spin_lock_init(&xe->clients.lock); + + init_waitqueue_head(&xe->ufence_wq); + + init_rwsem(&xe->usm.lock); + + xa_init_flags(&xe->usm.asid_to_vm, XA_FLAGS_ALLOC); + + if (IS_ENABLED(CONFIG_DRM_XE_DEBUG)) { + /* Trigger a large asid and an early asid wrap. */ + u32 asid; + + BUILD_BUG_ON(XE_MAX_ASID < 2); + err = xa_alloc_cyclic(&xe->usm.asid_to_vm, &asid, NULL, + XA_LIMIT(XE_MAX_ASID - 2, XE_MAX_ASID - 1), + &xe->usm.next_asid, GFP_KERNEL); + drm_WARN_ON(&xe->drm, err); + if (err >= 0) + xa_erase(&xe->usm.asid_to_vm, asid); + } + + spin_lock_init(&xe->pinned.lock); + INIT_LIST_HEAD(&xe->pinned.kernel_bo_present); + INIT_LIST_HEAD(&xe->pinned.external_vram); + INIT_LIST_HEAD(&xe->pinned.evicted); + + xe->preempt_fence_wq = alloc_ordered_workqueue("xe-preempt-fence-wq", 0); + xe->ordered_wq = alloc_ordered_workqueue("xe-ordered-wq", 0); + xe->unordered_wq = alloc_workqueue("xe-unordered-wq", 0, 0); + xe->destroy_wq = alloc_workqueue("xe-destroy-wq", 0, 0); + if (!xe->ordered_wq || !xe->unordered_wq || + !xe->preempt_fence_wq || !xe->destroy_wq) { + /* + * Cleanup done in xe_device_destroy via + * drmm_add_action_or_reset register above + */ + drm_err(&xe->drm, "Failed to allocate xe workqueues\n"); + err = -ENOMEM; + goto err; + } + + err = xe_display_create(xe); + if (WARN_ON(err)) + goto err; + + return xe; + +err: + return ERR_PTR(err); +} +ALLOW_ERROR_INJECTION(xe_device_create, ERRNO); /* See xe_pci_probe() */ + +static bool xe_driver_flr_disabled(struct xe_device *xe) +{ + return xe_mmio_read32(xe_root_tile_mmio(xe), GU_CNTL_PROTECTED) & DRIVERINT_FLR_DIS; +} + +/* + * The driver-initiated FLR is the highest level of reset that we can trigger + * from within the driver. It is different from the PCI FLR in that it doesn't + * fully reset the SGUnit and doesn't modify the PCI config space and therefore + * it doesn't require a re-enumeration of the PCI BARs. However, the + * driver-initiated FLR does still cause a reset of both GT and display and a + * memory wipe of local and stolen memory, so recovery would require a full HW + * re-init and saving/restoring (or re-populating) the wiped memory. Since we + * perform the FLR as the very last action before releasing access to the HW + * during the driver release flow, we don't attempt recovery at all, because + * if/when a new instance of i915 is bound to the device it will do a full + * re-init anyway. + */ +static void __xe_driver_flr(struct xe_device *xe) +{ + const unsigned int flr_timeout = 3 * MICRO; /* specs recommend a 3s wait */ + struct xe_mmio *mmio = xe_root_tile_mmio(xe); + int ret; + + drm_dbg(&xe->drm, "Triggering Driver-FLR\n"); + + /* + * Make sure any pending FLR requests have cleared by waiting for the + * FLR trigger bit to go to zero. Also clear GU_DEBUG's DRIVERFLR_STATUS + * to make sure it's not still set from a prior attempt (it's a write to + * clear bit). + * Note that we should never be in a situation where a previous attempt + * is still pending (unless the HW is totally dead), but better to be + * safe in case something unexpected happens + */ + ret = xe_mmio_wait32(mmio, GU_CNTL, DRIVERFLR, 0, flr_timeout, NULL, false); + if (ret) { + drm_err(&xe->drm, "Driver-FLR-prepare wait for ready failed! %d\n", ret); + return; + } + xe_mmio_write32(mmio, GU_DEBUG, DRIVERFLR_STATUS); + + /* Trigger the actual Driver-FLR */ + xe_mmio_rmw32(mmio, GU_CNTL, 0, DRIVERFLR); + + /* Wait for hardware teardown to complete */ + ret = xe_mmio_wait32(mmio, GU_CNTL, DRIVERFLR, 0, flr_timeout, NULL, false); + if (ret) { + drm_err(&xe->drm, "Driver-FLR-teardown wait completion failed! %d\n", ret); + return; + } + + /* Wait for hardware/firmware re-init to complete */ + ret = xe_mmio_wait32(mmio, GU_DEBUG, DRIVERFLR_STATUS, DRIVERFLR_STATUS, + flr_timeout, NULL, false); + if (ret) { + drm_err(&xe->drm, "Driver-FLR-reinit wait completion failed! %d\n", ret); + return; + } + + /* Clear sticky completion status */ + xe_mmio_write32(mmio, GU_DEBUG, DRIVERFLR_STATUS); +} + +static void xe_driver_flr(struct xe_device *xe) +{ + if (xe_driver_flr_disabled(xe)) { + drm_info_once(&xe->drm, "BIOS Disabled Driver-FLR\n"); + return; + } + + __xe_driver_flr(xe); +} + +static void xe_driver_flr_fini(void *arg) +{ + struct xe_device *xe = arg; + + if (xe->needs_flr_on_fini) + xe_driver_flr(xe); +} + +static void xe_device_sanitize(void *arg) +{ + struct xe_device *xe = arg; + struct xe_gt *gt; + u8 id; + + for_each_gt(gt, xe, id) + xe_gt_sanitize(gt); +} + +static int xe_set_dma_info(struct xe_device *xe) +{ + unsigned int mask_size = xe->info.dma_mask_size; + int err; + + dma_set_max_seg_size(xe->drm.dev, xe_sg_segment_size(xe->drm.dev)); + + err = dma_set_mask(xe->drm.dev, DMA_BIT_MASK(mask_size)); + if (err) + goto mask_err; + + err = dma_set_coherent_mask(xe->drm.dev, DMA_BIT_MASK(mask_size)); + if (err) + goto mask_err; + + return 0; + +mask_err: + drm_err(&xe->drm, "Can't set DMA mask/consistent mask (%d)\n", err); + return err; +} + +static bool verify_lmem_ready(struct xe_device *xe) +{ + u32 val = xe_mmio_read32(xe_root_tile_mmio(xe), GU_CNTL) & LMEM_INIT; + + return !!val; +} + +static int wait_for_lmem_ready(struct xe_device *xe) +{ + unsigned long timeout, start; + + if (!IS_DGFX(xe)) + return 0; + + if (IS_SRIOV_VF(xe)) + return 0; + + if (verify_lmem_ready(xe)) + return 0; + + drm_dbg(&xe->drm, "Waiting for lmem initialization\n"); + + start = jiffies; + timeout = start + msecs_to_jiffies(60 * 1000); /* 60 sec! */ + + do { + if (signal_pending(current)) + return -EINTR; + + /* + * The boot firmware initializes local memory and + * assesses its health. If memory training fails, + * the punit will have been instructed to keep the GT powered + * down.we won't be able to communicate with it + * + * If the status check is done before punit updates the register, + * it can lead to the system being unusable. + * use a timeout and defer the probe to prevent this. + */ + if (time_after(jiffies, timeout)) { + drm_dbg(&xe->drm, "lmem not initialized by firmware\n"); + return -EPROBE_DEFER; + } + + msleep(20); + + } while (!verify_lmem_ready(xe)); + + drm_dbg(&xe->drm, "lmem ready after %ums", + jiffies_to_msecs(jiffies - start)); + + return 0; +} +ALLOW_ERROR_INJECTION(wait_for_lmem_ready, ERRNO); /* See xe_pci_probe() */ + +static void update_device_info(struct xe_device *xe) +{ + /* disable features that are not available/applicable to VFs */ + if (IS_SRIOV_VF(xe)) { + xe->info.probe_display = 0; + xe->info.has_heci_gscfi = 0; + xe->info.skip_guc_pc = 1; + xe->info.skip_pcode = 1; + } +} + +/** + * xe_device_probe_early: Device early probe + * @xe: xe device instance + * + * Initialize MMIO resources that don't require any + * knowledge about tile count. Also initialize pcode and + * check vram initialization on root tile. + * + * Return: 0 on success, error code on failure + */ +int xe_device_probe_early(struct xe_device *xe) +{ + int err; + + err = xe_mmio_init(xe); + if (err) + return err; + + xe_sriov_probe_early(xe); + + update_device_info(xe); + + err = xe_pcode_probe_early(xe); + if (err) + return err; + + err = wait_for_lmem_ready(xe); + if (err) + return err; + + xe->wedged.mode = xe_modparam.wedged_mode; + + return 0; +} + +static int probe_has_flat_ccs(struct xe_device *xe) +{ + struct xe_gt *gt; + u32 reg; + int err; + + /* Always enabled/disabled, no runtime check to do */ + if (GRAPHICS_VER(xe) < 20 || !xe->info.has_flat_ccs) + return 0; + + gt = xe_root_mmio_gt(xe); + + err = xe_force_wake_get(gt_to_fw(gt), XE_FW_GT); + if (err) + return err; + + reg = xe_gt_mcr_unicast_read_any(gt, XE2_FLAT_CCS_BASE_RANGE_LOWER); + xe->info.has_flat_ccs = (reg & XE2_FLAT_CCS_ENABLE); + + if (!xe->info.has_flat_ccs) + drm_dbg(&xe->drm, + "Flat CCS has been disabled in bios, May lead to performance impact"); + + return xe_force_wake_put(gt_to_fw(gt), XE_FW_GT); +} + +int xe_device_probe(struct xe_device *xe) +{ + struct xe_tile *tile; + struct xe_gt *gt; + int err; + u8 last_gt; + u8 id; + + xe_pat_init_early(xe); + + err = xe_sriov_init(xe); + if (err) + return err; + + xe->info.mem_region_mask = 1; + err = xe_display_init_nommio(xe); + if (err) + return err; + + err = xe_set_dma_info(xe); + if (err) + return err; + + err = xe_mmio_probe_tiles(xe); + if (err) + return err; + + xe_ttm_sys_mgr_init(xe); + + for_each_gt(gt, xe, id) { + err = xe_gt_init_early(gt); + if (err) + return err; + + /* + * Only after this point can GT-specific MMIO operations + * (including things like communication with the GuC) + * be performed. + */ + xe_gt_mmio_init(gt); + } + + for_each_tile(tile, xe, id) { + if (IS_SRIOV_VF(xe)) { + xe_guc_comm_init_early(&tile->primary_gt->uc.guc); + err = xe_gt_sriov_vf_bootstrap(tile->primary_gt); + if (err) + return err; + err = xe_gt_sriov_vf_query_config(tile->primary_gt); + if (err) + return err; + } + err = xe_ggtt_init_early(tile->mem.ggtt); + if (err) + return err; + err = xe_memirq_init(&tile->memirq); + if (err) + return err; + } + + for_each_gt(gt, xe, id) { + err = xe_gt_init_hwconfig(gt); + if (err) + return err; + } + + err = xe_devcoredump_init(xe); + if (err) + return err; + err = devm_add_action_or_reset(xe->drm.dev, xe_driver_flr_fini, xe); + if (err) + return err; + + err = xe_display_init_noirq(xe); + if (err) + return err; + + err = xe_irq_install(xe); + if (err) + goto err; + + err = probe_has_flat_ccs(xe); + if (err) + goto err; + + err = xe_vram_probe(xe); + if (err) + goto err; + + for_each_tile(tile, xe, id) { + err = xe_tile_init_noalloc(tile); + if (err) + goto err; + } + + /* Allocate and map stolen after potential VRAM resize */ + xe_ttm_stolen_mgr_init(xe); + + /* + * Now that GT is initialized (TTM in particular), + * we can try to init display, and inherit the initial fb. + * This is the reason the first allocation needs to be done + * inside display. + */ + err = xe_display_init_noaccel(xe); + if (err) + goto err; + + for_each_gt(gt, xe, id) { + last_gt = id; + + err = xe_gt_init(gt); + if (err) + goto err_fini_gt; + } + + xe_heci_gsc_init(xe); + + err = xe_oa_init(xe); + if (err) + goto err_fini_gt; + + err = xe_display_init(xe); + if (err) + goto err_fini_oa; + + err = drm_dev_register(&xe->drm, 0); + if (err) + goto err_fini_display; + + xe_display_register(xe); + + xe_oa_register(xe); + + xe_debugfs_register(xe); + + xe_hwmon_register(xe); + + for_each_gt(gt, xe, id) + xe_gt_sanitize_freq(gt); + + return devm_add_action_or_reset(xe->drm.dev, xe_device_sanitize, xe); + +err_fini_display: + xe_display_driver_remove(xe); + +err_fini_oa: + xe_oa_fini(xe); + +err_fini_gt: + for_each_gt(gt, xe, id) { + if (id < last_gt) + xe_gt_remove(gt); + else + break; + } + +err: + xe_display_fini(xe); + return err; +} + +static void xe_device_remove_display(struct xe_device *xe) +{ + xe_display_unregister(xe); + + drm_dev_unplug(&xe->drm); + xe_display_driver_remove(xe); +} + +void xe_device_remove(struct xe_device *xe) +{ + struct xe_gt *gt; + u8 id; + + xe_oa_unregister(xe); + + xe_device_remove_display(xe); + + xe_display_fini(xe); + + xe_oa_fini(xe); + + xe_heci_gsc_fini(xe); + + for_each_gt(gt, xe, id) + xe_gt_remove(gt); +} + +void xe_device_shutdown(struct xe_device *xe) +{ + struct xe_gt *gt; + u8 id; + + drm_dbg(&xe->drm, "Shutting down device\n"); + + if (xe_driver_flr_disabled(xe)) { + xe_display_pm_shutdown(xe); + + xe_irq_suspend(xe); + + for_each_gt(gt, xe, id) + xe_gt_shutdown(gt); + + xe_display_pm_shutdown_late(xe); + } else { + /* BOOM! */ + __xe_driver_flr(xe); + } +} + +/** + * xe_device_wmb() - Device specific write memory barrier + * @xe: the &xe_device + * + * While wmb() is sufficient for a barrier if we use system memory, on discrete + * platforms with device memory we additionally need to issue a register write. + * Since it doesn't matter which register we write to, use the read-only VF_CAP + * register that is also marked as accessible by the VFs. + */ +void xe_device_wmb(struct xe_device *xe) +{ + wmb(); + if (IS_DGFX(xe)) + xe_mmio_write32(xe_root_tile_mmio(xe), VF_CAP_REG, 0); +} + +/** + * xe_device_td_flush() - Flush transient L3 cache entries + * @xe: The device + * + * Display engine has direct access to memory and is never coherent with L3/L4 + * caches (or CPU caches), however KMD is responsible for specifically flushing + * transient L3 GPU cache entries prior to the flip sequence to ensure scanout + * can happen from such a surface without seeing corruption. + * + * Display surfaces can be tagged as transient by mapping it using one of the + * various L3:XD PAT index modes on Xe2. + * + * Note: On non-discrete xe2 platforms, like LNL, the entire L3 cache is flushed + * at the end of each submission via PIPE_CONTROL for compute/render, since SA + * Media is not coherent with L3 and we want to support render-vs-media + * usescases. For other engines like copy/blt the HW internally forces uncached + * behaviour, hence why we can skip the TDF on such platforms. + */ +void xe_device_td_flush(struct xe_device *xe) +{ + struct xe_gt *gt; + u8 id; + + if (!IS_DGFX(xe) || GRAPHICS_VER(xe) < 20) + return; + + if (XE_WA(xe_root_mmio_gt(xe), 16023588340)) { + xe_device_l2_flush(xe); + return; + } + + for_each_gt(gt, xe, id) { + if (xe_gt_is_media_type(gt)) + continue; + + if (xe_force_wake_get(gt_to_fw(gt), XE_FW_GT)) + return; + + xe_mmio_write32(>->mmio, XE2_TDF_CTRL, TRANSIENT_FLUSH_REQUEST); + /* + * FIXME: We can likely do better here with our choice of + * timeout. Currently we just assume the worst case, i.e. 150us, + * which is believed to be sufficient to cover the worst case + * scenario on current platforms if all cache entries are + * transient and need to be flushed.. + */ + if (xe_mmio_wait32(>->mmio, XE2_TDF_CTRL, TRANSIENT_FLUSH_REQUEST, 0, + 150, NULL, false)) + xe_gt_err_once(gt, "TD flush timeout\n"); + + xe_force_wake_put(gt_to_fw(gt), XE_FW_GT); + } +} + +void xe_device_l2_flush(struct xe_device *xe) +{ + struct xe_gt *gt; + int err; + + gt = xe_root_mmio_gt(xe); + + if (!XE_WA(gt, 16023588340)) + return; + + err = xe_force_wake_get(gt_to_fw(gt), XE_FW_GT); + if (err) + return; + + spin_lock(>->global_invl_lock); + xe_mmio_write32(>->mmio, XE2_GLOBAL_INVAL, 0x1); + + if (xe_mmio_wait32(>->mmio, XE2_GLOBAL_INVAL, 0x1, 0x0, 500, NULL, true)) + xe_gt_err_once(gt, "Global invalidation timeout\n"); + spin_unlock(>->global_invl_lock); + + xe_force_wake_put(gt_to_fw(gt), XE_FW_GT); +} + +u32 xe_device_ccs_bytes(struct xe_device *xe, u64 size) +{ + return xe_device_has_flat_ccs(xe) ? + DIV_ROUND_UP_ULL(size, NUM_BYTES_PER_CCS_BYTE(xe)) : 0; +} + +/** + * xe_device_assert_mem_access - Inspect the current runtime_pm state. + * @xe: xe device instance + * + * To be used before any kind of memory access. It will splat a debug warning + * if the device is currently sleeping. But it doesn't guarantee in any way + * that the device is going to remain awake. Xe PM runtime get and put + * functions might be added to the outer bound of the memory access, while + * this check is intended for inner usage to splat some warning if the worst + * case has just happened. + */ +void xe_device_assert_mem_access(struct xe_device *xe) +{ + xe_assert(xe, !xe_pm_runtime_suspended(xe)); +} + +void xe_device_snapshot_print(struct xe_device *xe, struct drm_printer *p) +{ + struct xe_gt *gt; + u8 id; + + drm_printf(p, "PCI ID: 0x%04x\n", xe->info.devid); + drm_printf(p, "PCI revision: 0x%02x\n", xe->info.revid); + + for_each_gt(gt, xe, id) { + drm_printf(p, "GT id: %u\n", id); + drm_printf(p, "\tTile: %u\n", gt->tile->id); + drm_printf(p, "\tType: %s\n", + gt->info.type == XE_GT_TYPE_MAIN ? "main" : "media"); + drm_printf(p, "\tIP ver: %u.%u.%u\n", + REG_FIELD_GET(GMD_ID_ARCH_MASK, gt->info.gmdid), + REG_FIELD_GET(GMD_ID_RELEASE_MASK, gt->info.gmdid), + REG_FIELD_GET(GMD_ID_REVID, gt->info.gmdid)); + drm_printf(p, "\tCS reference clock: %u\n", gt->info.reference_clock); + } +} + +u64 xe_device_canonicalize_addr(struct xe_device *xe, u64 address) +{ + return sign_extend64(address, xe->info.va_bits - 1); +} + +u64 xe_device_uncanonicalize_addr(struct xe_device *xe, u64 address) +{ + return address & GENMASK_ULL(xe->info.va_bits - 1, 0); +} + +static void xe_device_wedged_fini(struct drm_device *drm, void *arg) +{ + struct xe_device *xe = arg; + + xe_pm_runtime_put(xe); +} + +/** + * xe_device_declare_wedged - Declare device wedged + * @xe: xe device instance + * + * This is a final state that can only be cleared with a mudule + * re-probe (unbind + bind). + * In this state every IOCTL will be blocked so the GT cannot be used. + * In general it will be called upon any critical error such as gt reset + * failure or guc loading failure. + * If xe.wedged module parameter is set to 2, this function will be called + * on every single execution timeout (a.k.a. GPU hang) right after devcoredump + * snapshot capture. In this mode, GT reset won't be attempted so the state of + * the issue is preserved for further debugging. + */ +void xe_device_declare_wedged(struct xe_device *xe) +{ + struct xe_gt *gt; + u8 id; + + if (xe->wedged.mode == 0) { + drm_dbg(&xe->drm, "Wedged mode is forcibly disabled\n"); + return; + } + + xe_pm_runtime_get_noresume(xe); + + if (drmm_add_action_or_reset(&xe->drm, xe_device_wedged_fini, xe)) { + drm_err(&xe->drm, "Failed to register xe_device_wedged_fini clean-up. Although device is wedged.\n"); + return; + } + + if (!atomic_xchg(&xe->wedged.flag, 1)) { + xe->needs_flr_on_fini = true; + drm_err(&xe->drm, + "CRITICAL: Xe has declared device %s as wedged.\n" + "IOCTLs and executions are blocked. Only a rebind may clear the failure\n" + "Please file a _new_ bug report at https://gitlab.freedesktop.org/drm/xe/kernel/issues/new\n", + dev_name(xe->drm.dev)); + } + + for_each_gt(gt, xe, id) + xe_gt_declare_wedged(gt); +} diff --git a/rr-cache/3202f565d085f3a7e6151c8b138d91393b3520cd/preimage b/rr-cache/3202f565d085f3a7e6151c8b138d91393b3520cd/preimage new file mode 100644 index 000000000000..daa2b53c6258 --- /dev/null +++ b/rr-cache/3202f565d085f3a7e6151c8b138d91393b3520cd/preimage @@ -0,0 +1,1041 @@ +// SPDX-License-Identifier: MIT +/* + * Copyright © 2021 Intel Corporation + */ + +#include "xe_device.h" + +#include <linux/aperture.h> +#include <linux/delay.h> +#include <linux/fault-inject.h> +#include <linux/units.h> + +#include <drm/drm_atomic_helper.h> +#include <drm/drm_client.h> +#include <drm/drm_gem_ttm_helper.h> +#include <drm/drm_ioctl.h> +#include <drm/drm_managed.h> +#include <drm/drm_print.h> +#include <uapi/drm/xe_drm.h> + +#include "display/xe_display.h" +#include "instructions/xe_gpu_commands.h" +#include "regs/xe_gt_regs.h" +#include "regs/xe_regs.h" +#include "xe_bo.h" +#include "xe_debugfs.h" +#include "xe_devcoredump.h" +#include "xe_dma_buf.h" +#include "xe_drm_client.h" +#include "xe_drv.h" +#include "xe_exec.h" +#include "xe_exec_queue.h" +#include "xe_force_wake.h" +#include "xe_ggtt.h" +#include "xe_gsc_proxy.h" +#include "xe_gt.h" +#include "xe_gt_mcr.h" +#include "xe_gt_printk.h" +#include "xe_gt_sriov_vf.h" +#include "xe_guc.h" +#include "xe_hw_engine_group.h" +#include "xe_hwmon.h" +#include "xe_irq.h" +#include "xe_memirq.h" +#include "xe_mmio.h" +#include "xe_module.h" +#include "xe_observation.h" +#include "xe_pat.h" +#include "xe_pcode.h" +#include "xe_pm.h" +#include "xe_query.h" +#include "xe_sriov.h" +#include "xe_tile.h" +#include "xe_ttm_stolen_mgr.h" +#include "xe_ttm_sys_mgr.h" +#include "xe_vm.h" +#include "xe_vram.h" +#include "xe_wait_user_fence.h" +#include "xe_wa.h" + +#include <generated/xe_wa_oob.h> + +static int xe_file_open(struct drm_device *dev, struct drm_file *file) +{ + struct xe_device *xe = to_xe_device(dev); + struct xe_drm_client *client; + struct xe_file *xef; + int ret = -ENOMEM; + struct task_struct *task = NULL; + + xef = kzalloc(sizeof(*xef), GFP_KERNEL); + if (!xef) + return ret; + + client = xe_drm_client_alloc(); + if (!client) { + kfree(xef); + return ret; + } + + xef->drm = file; + xef->client = client; + xef->xe = xe; + + mutex_init(&xef->vm.lock); + xa_init_flags(&xef->vm.xa, XA_FLAGS_ALLOC1); + + mutex_init(&xef->exec_queue.lock); + xa_init_flags(&xef->exec_queue.xa, XA_FLAGS_ALLOC1); + + spin_lock(&xe->clients.lock); + xe->clients.count++; + spin_unlock(&xe->clients.lock); + + file->driver_priv = xef; + kref_init(&xef->refcount); + + task = get_pid_task(rcu_access_pointer(file->pid), PIDTYPE_PID); + if (task) { + xef->process_name = kstrdup(task->comm, GFP_KERNEL); + xef->pid = task->pid; + put_task_struct(task); + } + + return 0; +} + +static void xe_file_destroy(struct kref *ref) +{ + struct xe_file *xef = container_of(ref, struct xe_file, refcount); + struct xe_device *xe = xef->xe; + + xa_destroy(&xef->exec_queue.xa); + mutex_destroy(&xef->exec_queue.lock); + xa_destroy(&xef->vm.xa); + mutex_destroy(&xef->vm.lock); + + spin_lock(&xe->clients.lock); + xe->clients.count--; + spin_unlock(&xe->clients.lock); + + xe_drm_client_put(xef->client); + kfree(xef->process_name); + kfree(xef); +} + +/** + * xe_file_get() - Take a reference to the xe file object + * @xef: Pointer to the xe file + * + * Anyone with a pointer to xef must take a reference to the xe file + * object using this call. + * + * Return: xe file pointer + */ +struct xe_file *xe_file_get(struct xe_file *xef) +{ + kref_get(&xef->refcount); + return xef; +} + +/** + * xe_file_put() - Drop a reference to the xe file object + * @xef: Pointer to the xe file + * + * Used to drop reference to the xef object + */ +void xe_file_put(struct xe_file *xef) +{ + kref_put(&xef->refcount, xe_file_destroy); +} + +static void xe_file_close(struct drm_device *dev, struct drm_file *file) +{ + struct xe_device *xe = to_xe_device(dev); + struct xe_file *xef = file->driver_priv; + struct xe_vm *vm; + struct xe_exec_queue *q; + unsigned long idx; + + xe_pm_runtime_get(xe); + + /* + * No need for exec_queue.lock here as there is no contention for it + * when FD is closing as IOCTLs presumably can't be modifying the + * xarray. Taking exec_queue.lock here causes undue dependency on + * vm->lock taken during xe_exec_queue_kill(). + */ + xa_for_each(&xef->exec_queue.xa, idx, q) { + if (q->vm && q->hwe->hw_engine_group) + xe_hw_engine_group_del_exec_queue(q->hwe->hw_engine_group, q); + xe_exec_queue_kill(q); + xe_exec_queue_put(q); + } + xa_for_each(&xef->vm.xa, idx, vm) + xe_vm_close_and_put(vm); + + xe_file_put(xef); + + xe_pm_runtime_put(xe); +} + +static const struct drm_ioctl_desc xe_ioctls[] = { + DRM_IOCTL_DEF_DRV(XE_DEVICE_QUERY, xe_query_ioctl, DRM_RENDER_ALLOW), + DRM_IOCTL_DEF_DRV(XE_GEM_CREATE, xe_gem_create_ioctl, DRM_RENDER_ALLOW), + DRM_IOCTL_DEF_DRV(XE_GEM_MMAP_OFFSET, xe_gem_mmap_offset_ioctl, + DRM_RENDER_ALLOW), + DRM_IOCTL_DEF_DRV(XE_VM_CREATE, xe_vm_create_ioctl, DRM_RENDER_ALLOW), + DRM_IOCTL_DEF_DRV(XE_VM_DESTROY, xe_vm_destroy_ioctl, DRM_RENDER_ALLOW), + DRM_IOCTL_DEF_DRV(XE_VM_BIND, xe_vm_bind_ioctl, DRM_RENDER_ALLOW), + DRM_IOCTL_DEF_DRV(XE_EXEC, xe_exec_ioctl, DRM_RENDER_ALLOW), + DRM_IOCTL_DEF_DRV(XE_EXEC_QUEUE_CREATE, xe_exec_queue_create_ioctl, + DRM_RENDER_ALLOW), + DRM_IOCTL_DEF_DRV(XE_EXEC_QUEUE_DESTROY, xe_exec_queue_destroy_ioctl, + DRM_RENDER_ALLOW), + DRM_IOCTL_DEF_DRV(XE_EXEC_QUEUE_GET_PROPERTY, xe_exec_queue_get_property_ioctl, + DRM_RENDER_ALLOW), + DRM_IOCTL_DEF_DRV(XE_WAIT_USER_FENCE, xe_wait_user_fence_ioctl, + DRM_RENDER_ALLOW), + DRM_IOCTL_DEF_DRV(XE_OBSERVATION, xe_observation_ioctl, DRM_RENDER_ALLOW), +}; + +static long xe_drm_ioctl(struct file *file, unsigned int cmd, unsigned long arg) +{ + struct drm_file *file_priv = file->private_data; + struct xe_device *xe = to_xe_device(file_priv->minor->dev); + long ret; + + if (xe_device_wedged(xe)) + return -ECANCELED; + + ret = xe_pm_runtime_get_ioctl(xe); + if (ret >= 0) + ret = drm_ioctl(file, cmd, arg); + xe_pm_runtime_put(xe); + + return ret; +} + +#ifdef CONFIG_COMPAT +static long xe_drm_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg) +{ + struct drm_file *file_priv = file->private_data; + struct xe_device *xe = to_xe_device(file_priv->minor->dev); + long ret; + + if (xe_device_wedged(xe)) + return -ECANCELED; + + ret = xe_pm_runtime_get_ioctl(xe); + if (ret >= 0) + ret = drm_compat_ioctl(file, cmd, arg); + xe_pm_runtime_put(xe); + + return ret; +} +#else +/* similarly to drm_compat_ioctl, let's it be assigned to .compat_ioct unconditionally */ +#define xe_drm_compat_ioctl NULL +#endif + +static const struct file_operations xe_driver_fops = { + .owner = THIS_MODULE, + .open = drm_open, + .release = drm_release_noglobal, + .unlocked_ioctl = xe_drm_ioctl, + .mmap = drm_gem_mmap, + .poll = drm_poll, + .read = drm_read, + .compat_ioctl = xe_drm_compat_ioctl, + .llseek = noop_llseek, +#ifdef CONFIG_PROC_FS + .show_fdinfo = drm_show_fdinfo, +#endif + .fop_flags = FOP_UNSIGNED_OFFSET, +}; + +static struct drm_driver driver = { + /* Don't use MTRRs here; the Xserver or userspace app should + * deal with them for Intel hardware. + */ + .driver_features = + DRIVER_GEM | + DRIVER_RENDER | DRIVER_SYNCOBJ | + DRIVER_SYNCOBJ_TIMELINE | DRIVER_GEM_GPUVA, + .open = xe_file_open, + .postclose = xe_file_close, + + .gem_prime_import = xe_gem_prime_import, + + .dumb_create = xe_bo_dumb_create, + .dumb_map_offset = drm_gem_ttm_dumb_map_offset, +#ifdef CONFIG_PROC_FS + .show_fdinfo = xe_drm_client_fdinfo, +#endif + .ioctls = xe_ioctls, + .num_ioctls = ARRAY_SIZE(xe_ioctls), + .fops = &xe_driver_fops, + .name = DRIVER_NAME, + .desc = DRIVER_DESC, + .date = DRIVER_DATE, + .major = DRIVER_MAJOR, + .minor = DRIVER_MINOR, + .patchlevel = DRIVER_PATCHLEVEL, +}; + +static void xe_device_destroy(struct drm_device *dev, void *dummy) +{ + struct xe_device *xe = to_xe_device(dev); + + if (xe->preempt_fence_wq) + destroy_workqueue(xe->preempt_fence_wq); + + if (xe->ordered_wq) + destroy_workqueue(xe->ordered_wq); + + if (xe->unordered_wq) + destroy_workqueue(xe->unordered_wq); + + if (xe->destroy_wq) + destroy_workqueue(xe->destroy_wq); + + ttm_device_fini(&xe->ttm); +} + +struct xe_device *xe_device_create(struct pci_dev *pdev, + const struct pci_device_id *ent) +{ + struct xe_device *xe; + int err; + + xe_display_driver_set_hooks(&driver); + + err = aperture_remove_conflicting_pci_devices(pdev, driver.name); + if (err) + return ERR_PTR(err); + + xe = devm_drm_dev_alloc(&pdev->dev, &driver, struct xe_device, drm); + if (IS_ERR(xe)) + return xe; + + err = ttm_device_init(&xe->ttm, &xe_ttm_funcs, xe->drm.dev, + xe->drm.anon_inode->i_mapping, + xe->drm.vma_offset_manager, false, false); + if (WARN_ON(err)) + goto err; + + err = drmm_add_action_or_reset(&xe->drm, xe_device_destroy, NULL); + if (err) + goto err; + + xe->info.devid = pdev->device; + xe->info.revid = pdev->revision; + xe->info.force_execlist = xe_modparam.force_execlist; + + spin_lock_init(&xe->irq.lock); + spin_lock_init(&xe->clients.lock); + + init_waitqueue_head(&xe->ufence_wq); + + init_rwsem(&xe->usm.lock); + + xa_init_flags(&xe->usm.asid_to_vm, XA_FLAGS_ALLOC); + + if (IS_ENABLED(CONFIG_DRM_XE_DEBUG)) { + /* Trigger a large asid and an early asid wrap. */ + u32 asid; + + BUILD_BUG_ON(XE_MAX_ASID < 2); + err = xa_alloc_cyclic(&xe->usm.asid_to_vm, &asid, NULL, + XA_LIMIT(XE_MAX_ASID - 2, XE_MAX_ASID - 1), + &xe->usm.next_asid, GFP_KERNEL); + drm_WARN_ON(&xe->drm, err); + if (err >= 0) + xa_erase(&xe->usm.asid_to_vm, asid); + } + + spin_lock_init(&xe->pinned.lock); + INIT_LIST_HEAD(&xe->pinned.kernel_bo_present); + INIT_LIST_HEAD(&xe->pinned.external_vram); + INIT_LIST_HEAD(&xe->pinned.evicted); + + xe->preempt_fence_wq = alloc_ordered_workqueue("xe-preempt-fence-wq", 0); + xe->ordered_wq = alloc_ordered_workqueue("xe-ordered-wq", 0); + xe->unordered_wq = alloc_workqueue("xe-unordered-wq", 0, 0); + xe->destroy_wq = alloc_workqueue("xe-destroy-wq", 0, 0); + if (!xe->ordered_wq || !xe->unordered_wq || + !xe->preempt_fence_wq || !xe->destroy_wq) { + /* + * Cleanup done in xe_device_destroy via + * drmm_add_action_or_reset register above + */ + drm_err(&xe->drm, "Failed to allocate xe workqueues\n"); + err = -ENOMEM; + goto err; + } + + err = xe_display_create(xe); + if (WARN_ON(err)) + goto err; + + return xe; + +err: + return ERR_PTR(err); +} +ALLOW_ERROR_INJECTION(xe_device_create, ERRNO); /* See xe_pci_probe() */ + +static bool xe_driver_flr_disabled(struct xe_device *xe) +{ + return xe_mmio_read32(xe_root_tile_mmio(xe), GU_CNTL_PROTECTED) & DRIVERINT_FLR_DIS; +} + +/* + * The driver-initiated FLR is the highest level of reset that we can trigger + * from within the driver. It is different from the PCI FLR in that it doesn't + * fully reset the SGUnit and doesn't modify the PCI config space and therefore + * it doesn't require a re-enumeration of the PCI BARs. However, the + * driver-initiated FLR does still cause a reset of both GT and display and a + * memory wipe of local and stolen memory, so recovery would require a full HW + * re-init and saving/restoring (or re-populating) the wiped memory. Since we + * perform the FLR as the very last action before releasing access to the HW + * during the driver release flow, we don't attempt recovery at all, because + * if/when a new instance of i915 is bound to the device it will do a full + * re-init anyway. + */ +static void __xe_driver_flr(struct xe_device *xe) +{ + const unsigned int flr_timeout = 3 * MICRO; /* specs recommend a 3s wait */ + struct xe_mmio *mmio = xe_root_tile_mmio(xe); + int ret; + + drm_dbg(&xe->drm, "Triggering Driver-FLR\n"); + + /* + * Make sure any pending FLR requests have cleared by waiting for the + * FLR trigger bit to go to zero. Also clear GU_DEBUG's DRIVERFLR_STATUS + * to make sure it's not still set from a prior attempt (it's a write to + * clear bit). + * Note that we should never be in a situation where a previous attempt + * is still pending (unless the HW is totally dead), but better to be + * safe in case something unexpected happens + */ + ret = xe_mmio_wait32(mmio, GU_CNTL, DRIVERFLR, 0, flr_timeout, NULL, false); + if (ret) { + drm_err(&xe->drm, "Driver-FLR-prepare wait for ready failed! %d\n", ret); + return; + } + xe_mmio_write32(mmio, GU_DEBUG, DRIVERFLR_STATUS); + + /* Trigger the actual Driver-FLR */ + xe_mmio_rmw32(mmio, GU_CNTL, 0, DRIVERFLR); + + /* Wait for hardware teardown to complete */ + ret = xe_mmio_wait32(mmio, GU_CNTL, DRIVERFLR, 0, flr_timeout, NULL, false); + if (ret) { + drm_err(&xe->drm, "Driver-FLR-teardown wait completion failed! %d\n", ret); + return; + } + + /* Wait for hardware/firmware re-init to complete */ + ret = xe_mmio_wait32(mmio, GU_DEBUG, DRIVERFLR_STATUS, DRIVERFLR_STATUS, + flr_timeout, NULL, false); + if (ret) { + drm_err(&xe->drm, "Driver-FLR-reinit wait completion failed! %d\n", ret); + return; + } + + /* Clear sticky completion status */ + xe_mmio_write32(mmio, GU_DEBUG, DRIVERFLR_STATUS); +} + +static void xe_driver_flr(struct xe_device *xe) +{ + if (xe_driver_flr_disabled(xe)) { + drm_info_once(&xe->drm, "BIOS Disabled Driver-FLR\n"); + return; + } + + __xe_driver_flr(xe); +} + +static void xe_driver_flr_fini(void *arg) +{ + struct xe_device *xe = arg; + + if (xe->needs_flr_on_fini) + xe_driver_flr(xe); +} + +static void xe_device_sanitize(void *arg) +{ + struct xe_device *xe = arg; + struct xe_gt *gt; + u8 id; + + for_each_gt(gt, xe, id) + xe_gt_sanitize(gt); +} + +static int xe_set_dma_info(struct xe_device *xe) +{ + unsigned int mask_size = xe->info.dma_mask_size; + int err; + + dma_set_max_seg_size(xe->drm.dev, xe_sg_segment_size(xe->drm.dev)); + + err = dma_set_mask(xe->drm.dev, DMA_BIT_MASK(mask_size)); + if (err) + goto mask_err; + + err = dma_set_coherent_mask(xe->drm.dev, DMA_BIT_MASK(mask_size)); + if (err) + goto mask_err; + + return 0; + +mask_err: + drm_err(&xe->drm, "Can't set DMA mask/consistent mask (%d)\n", err); + return err; +} + +static bool verify_lmem_ready(struct xe_device *xe) +{ + u32 val = xe_mmio_read32(xe_root_tile_mmio(xe), GU_CNTL) & LMEM_INIT; + + return !!val; +} + +static int wait_for_lmem_ready(struct xe_device *xe) +{ + unsigned long timeout, start; + + if (!IS_DGFX(xe)) + return 0; + + if (IS_SRIOV_VF(xe)) + return 0; + + if (verify_lmem_ready(xe)) + return 0; + + drm_dbg(&xe->drm, "Waiting for lmem initialization\n"); + + start = jiffies; + timeout = start + msecs_to_jiffies(60 * 1000); /* 60 sec! */ + + do { + if (signal_pending(current)) + return -EINTR; + + /* + * The boot firmware initializes local memory and + * assesses its health. If memory training fails, + * the punit will have been instructed to keep the GT powered + * down.we won't be able to communicate with it + * + * If the status check is done before punit updates the register, + * it can lead to the system being unusable. + * use a timeout and defer the probe to prevent this. + */ + if (time_after(jiffies, timeout)) { + drm_dbg(&xe->drm, "lmem not initialized by firmware\n"); + return -EPROBE_DEFER; + } + + msleep(20); + + } while (!verify_lmem_ready(xe)); + + drm_dbg(&xe->drm, "lmem ready after %ums", + jiffies_to_msecs(jiffies - start)); + + return 0; +} +ALLOW_ERROR_INJECTION(wait_for_lmem_ready, ERRNO); /* See xe_pci_probe() */ + +static void update_device_info(struct xe_device *xe) +{ + /* disable features that are not available/applicable to VFs */ + if (IS_SRIOV_VF(xe)) { + xe->info.probe_display = 0; + xe->info.has_heci_gscfi = 0; + xe->info.skip_guc_pc = 1; + xe->info.skip_pcode = 1; + } +} + +/** + * xe_device_probe_early: Device early probe + * @xe: xe device instance + * + * Initialize MMIO resources that don't require any + * knowledge about tile count. Also initialize pcode and + * check vram initialization on root tile. + * + * Return: 0 on success, error code on failure + */ +int xe_device_probe_early(struct xe_device *xe) +{ + int err; + + err = xe_mmio_init(xe); + if (err) + return err; + + xe_sriov_probe_early(xe); + + update_device_info(xe); + + err = xe_pcode_probe_early(xe); + if (err) + return err; + + err = wait_for_lmem_ready(xe); + if (err) + return err; + + xe->wedged.mode = xe_modparam.wedged_mode; + + return 0; +} + +static int probe_has_flat_ccs(struct xe_device *xe) +{ + struct xe_gt *gt; + u32 reg; + int err; + + /* Always enabled/disabled, no runtime check to do */ + if (GRAPHICS_VER(xe) < 20 || !xe->info.has_flat_ccs) + return 0; + + gt = xe_root_mmio_gt(xe); + + err = xe_force_wake_get(gt_to_fw(gt), XE_FW_GT); + if (err) + return err; + + reg = xe_gt_mcr_unicast_read_any(gt, XE2_FLAT_CCS_BASE_RANGE_LOWER); + xe->info.has_flat_ccs = (reg & XE2_FLAT_CCS_ENABLE); + + if (!xe->info.has_flat_ccs) + drm_dbg(&xe->drm, + "Flat CCS has been disabled in bios, May lead to performance impact"); + + return xe_force_wake_put(gt_to_fw(gt), XE_FW_GT); +} + +int xe_device_probe(struct xe_device *xe) +{ + struct xe_tile *tile; + struct xe_gt *gt; + int err; + u8 last_gt; + u8 id; + + xe_pat_init_early(xe); + + err = xe_sriov_init(xe); + if (err) + return err; + + xe->info.mem_region_mask = 1; + err = xe_display_init_nommio(xe); + if (err) + return err; + + err = xe_set_dma_info(xe); + if (err) + return err; + + err = xe_mmio_probe_tiles(xe); + if (err) + return err; + + xe_ttm_sys_mgr_init(xe); + + for_each_gt(gt, xe, id) { + err = xe_gt_init_early(gt); + if (err) + return err; + + /* + * Only after this point can GT-specific MMIO operations + * (including things like communication with the GuC) + * be performed. + */ + xe_gt_mmio_init(gt); + } + + for_each_tile(tile, xe, id) { + if (IS_SRIOV_VF(xe)) { + xe_guc_comm_init_early(&tile->primary_gt->uc.guc); + err = xe_gt_sriov_vf_bootstrap(tile->primary_gt); + if (err) + return err; + err = xe_gt_sriov_vf_query_config(tile->primary_gt); + if (err) + return err; + } + err = xe_ggtt_init_early(tile->mem.ggtt); + if (err) + return err; + err = xe_memirq_init(&tile->memirq); + if (err) + return err; + } + + for_each_gt(gt, xe, id) { + err = xe_gt_init_hwconfig(gt); + if (err) + return err; + } + + err = xe_devcoredump_init(xe); + if (err) + return err; + err = devm_add_action_or_reset(xe->drm.dev, xe_driver_flr_fini, xe); + if (err) + return err; + + err = xe_display_init_noirq(xe); + if (err) + return err; + + err = xe_irq_install(xe); + if (err) + goto err; + + err = probe_has_flat_ccs(xe); + if (err) + goto err; + + err = xe_vram_probe(xe); + if (err) + goto err; + + for_each_tile(tile, xe, id) { + err = xe_tile_init_noalloc(tile); + if (err) + goto err; + } + + /* Allocate and map stolen after potential VRAM resize */ + xe_ttm_stolen_mgr_init(xe); + + /* + * Now that GT is initialized (TTM in particular), + * we can try to init display, and inherit the initial fb. + * This is the reason the first allocation needs to be done + * inside display. + */ + err = xe_display_init_noaccel(xe); + if (err) + goto err; + + for_each_gt(gt, xe, id) { + last_gt = id; + + err = xe_gt_init(gt); + if (err) + goto err_fini_gt; + } + + xe_heci_gsc_init(xe); + + err = xe_oa_init(xe); + if (err) + goto err_fini_gt; + + err = xe_display_init(xe); + if (err) + goto err_fini_oa; + + err = drm_dev_register(&xe->drm, 0); + if (err) + goto err_fini_display; + + xe_display_register(xe); + + xe_oa_register(xe); + + xe_debugfs_register(xe); + + xe_hwmon_register(xe); + + for_each_gt(gt, xe, id) + xe_gt_sanitize_freq(gt); + + return devm_add_action_or_reset(xe->drm.dev, xe_device_sanitize, xe); + +err_fini_display: + xe_display_driver_remove(xe); + +err_fini_oa: + xe_oa_fini(xe); + +err_fini_gt: + for_each_gt(gt, xe, id) { + if (id < last_gt) + xe_gt_remove(gt); + else + break; + } + +err: + xe_display_fini(xe); + return err; +} + +static void xe_device_remove_display(struct xe_device *xe) +{ + xe_display_unregister(xe); + + drm_dev_unplug(&xe->drm); + xe_display_driver_remove(xe); +} + +void xe_device_remove(struct xe_device *xe) +{ + struct xe_gt *gt; + u8 id; + + xe_oa_unregister(xe); + + xe_device_remove_display(xe); + + xe_display_fini(xe); + + xe_oa_fini(xe); + + xe_heci_gsc_fini(xe); + + for_each_gt(gt, xe, id) + xe_gt_remove(gt); +} + +void xe_device_shutdown(struct xe_device *xe) +{ + struct xe_gt *gt; + u8 id; + + drm_dbg(&xe->drm, "Shutting down device\n"); + + if (xe_driver_flr_disabled(xe)) { + xe_display_pm_shutdown(xe); + + xe_irq_suspend(xe); + + for_each_gt(gt, xe, id) + xe_gt_shutdown(gt); + + xe_display_pm_shutdown_late(xe); + } else { + /* BOOM! */ + __xe_driver_flr(xe); + } +} + +/** + * xe_device_wmb() - Device specific write memory barrier + * @xe: the &xe_device + * + * While wmb() is sufficient for a barrier if we use system memory, on discrete + * platforms with device memory we additionally need to issue a register write. + * Since it doesn't matter which register we write to, use the read-only VF_CAP + * register that is also marked as accessible by the VFs. + */ +void xe_device_wmb(struct xe_device *xe) +{ + wmb(); + if (IS_DGFX(xe)) + xe_mmio_write32(xe_root_tile_mmio(xe), VF_CAP_REG, 0); +} + +/** + * xe_device_td_flush() - Flush transient L3 cache entries + * @xe: The device + * + * Display engine has direct access to memory and is never coherent with L3/L4 + * caches (or CPU caches), however KMD is responsible for specifically flushing + * transient L3 GPU cache entries prior to the flip sequence to ensure scanout + * can happen from such a surface without seeing corruption. + * + * Display surfaces can be tagged as transient by mapping it using one of the + * various L3:XD PAT index modes on Xe2. + * + * Note: On non-discrete xe2 platforms, like LNL, the entire L3 cache is flushed + * at the end of each submission via PIPE_CONTROL for compute/render, since SA + * Media is not coherent with L3 and we want to support render-vs-media + * usescases. For other engines like copy/blt the HW internally forces uncached + * behaviour, hence why we can skip the TDF on such platforms. + */ +void xe_device_td_flush(struct xe_device *xe) +{ + struct xe_gt *gt; + u8 id; + + if (!IS_DGFX(xe) || GRAPHICS_VER(xe) < 20) + return; + + if (XE_WA(xe_root_mmio_gt(xe), 16023588340)) { + xe_device_l2_flush(xe); + return; + } + + for_each_gt(gt, xe, id) { + if (xe_gt_is_media_type(gt)) + continue; + + if (xe_force_wake_get(gt_to_fw(gt), XE_FW_GT)) + return; + + xe_mmio_write32(>->mmio, XE2_TDF_CTRL, TRANSIENT_FLUSH_REQUEST); + /* + * FIXME: We can likely do better here with our choice of + * timeout. Currently we just assume the worst case, i.e. 150us, + * which is believed to be sufficient to cover the worst case + * scenario on current platforms if all cache entries are + * transient and need to be flushed.. + */ + if (xe_mmio_wait32(>->mmio, XE2_TDF_CTRL, TRANSIENT_FLUSH_REQUEST, 0, + 150, NULL, false)) + xe_gt_err_once(gt, "TD flush timeout\n"); + + xe_force_wake_put(gt_to_fw(gt), XE_FW_GT); + } +} + +void xe_device_l2_flush(struct xe_device *xe) +{ + struct xe_gt *gt; + int err; + + gt = xe_root_mmio_gt(xe); + + if (!XE_WA(gt, 16023588340)) + return; + + err = xe_force_wake_get(gt_to_fw(gt), XE_FW_GT); + if (err) + return; + + spin_lock(>->global_invl_lock); + xe_mmio_write32(>->mmio, XE2_GLOBAL_INVAL, 0x1); + +<<<<<<< + if (xe_mmio_wait32(>->mmio, XE2_GLOBAL_INVAL, 0x1, 0x0, 500, NULL, true)) +======= + if (xe_mmio_wait32(gt, XE2_GLOBAL_INVAL, 0x1, 0x0, 500, NULL, true)) +>>>>>>> + xe_gt_err_once(gt, "Global invalidation timeout\n"); + spin_unlock(>->global_invl_lock); + + xe_force_wake_put(gt_to_fw(gt), XE_FW_GT); +} + +u32 xe_device_ccs_bytes(struct xe_device *xe, u64 size) +{ + return xe_device_has_flat_ccs(xe) ? + DIV_ROUND_UP_ULL(size, NUM_BYTES_PER_CCS_BYTE(xe)) : 0; +} + +/** + * xe_device_assert_mem_access - Inspect the current runtime_pm state. + * @xe: xe device instance + * + * To be used before any kind of memory access. It will splat a debug warning + * if the device is currently sleeping. But it doesn't guarantee in any way + * that the device is going to remain awake. Xe PM runtime get and put + * functions might be added to the outer bound of the memory access, while + * this check is intended for inner usage to splat some warning if the worst + * case has just happened. + */ +void xe_device_assert_mem_access(struct xe_device *xe) +{ + xe_assert(xe, !xe_pm_runtime_suspended(xe)); +} + +void xe_device_snapshot_print(struct xe_device *xe, struct drm_printer *p) +{ + struct xe_gt *gt; + u8 id; + + drm_printf(p, "PCI ID: 0x%04x\n", xe->info.devid); + drm_printf(p, "PCI revision: 0x%02x\n", xe->info.revid); + + for_each_gt(gt, xe, id) { + drm_printf(p, "GT id: %u\n", id); + drm_printf(p, "\tTile: %u\n", gt->tile->id); + drm_printf(p, "\tType: %s\n", + gt->info.type == XE_GT_TYPE_MAIN ? "main" : "media"); + drm_printf(p, "\tIP ver: %u.%u.%u\n", + REG_FIELD_GET(GMD_ID_ARCH_MASK, gt->info.gmdid), + REG_FIELD_GET(GMD_ID_RELEASE_MASK, gt->info.gmdid), + REG_FIELD_GET(GMD_ID_REVID, gt->info.gmdid)); + drm_printf(p, "\tCS reference clock: %u\n", gt->info.reference_clock); + } +} + +u64 xe_device_canonicalize_addr(struct xe_device *xe, u64 address) +{ + return sign_extend64(address, xe->info.va_bits - 1); +} + +u64 xe_device_uncanonicalize_addr(struct xe_device *xe, u64 address) +{ + return address & GENMASK_ULL(xe->info.va_bits - 1, 0); +} + +static void xe_device_wedged_fini(struct drm_device *drm, void *arg) +{ + struct xe_device *xe = arg; + + xe_pm_runtime_put(xe); +} + +/** + * xe_device_declare_wedged - Declare device wedged + * @xe: xe device instance + * + * This is a final state that can only be cleared with a mudule + * re-probe (unbind + bind). + * In this state every IOCTL will be blocked so the GT cannot be used. + * In general it will be called upon any critical error such as gt reset + * failure or guc loading failure. + * If xe.wedged module parameter is set to 2, this function will be called + * on every single execution timeout (a.k.a. GPU hang) right after devcoredump + * snapshot capture. In this mode, GT reset won't be attempted so the state of + * the issue is preserved for further debugging. + */ +void xe_device_declare_wedged(struct xe_device *xe) +{ + struct xe_gt *gt; + u8 id; + + if (xe->wedged.mode == 0) { + drm_dbg(&xe->drm, "Wedged mode is forcibly disabled\n"); + return; + } + + xe_pm_runtime_get_noresume(xe); + + if (drmm_add_action_or_reset(&xe->drm, xe_device_wedged_fini, xe)) { + drm_err(&xe->drm, "Failed to register xe_device_wedged_fini clean-up. Although device is wedged.\n"); + return; + } + + if (!atomic_xchg(&xe->wedged.flag, 1)) { + xe->needs_flr_on_fini = true; + drm_err(&xe->drm, + "CRITICAL: Xe has declared device %s as wedged.\n" + "IOCTLs and executions are blocked. Only a rebind may clear the failure\n" + "Please file a _new_ bug report at https://gitlab.freedesktop.org/drm/xe/kernel/issues/new\n", + dev_name(xe->drm.dev)); + } + + for_each_gt(gt, xe, id) + xe_gt_declare_wedged(gt); +} diff --git a/rr-cache/3202f565d085f3a7e6151c8b138d91393b3520cd/preimage.1 b/rr-cache/3202f565d085f3a7e6151c8b138d91393b3520cd/preimage.1 new file mode 100644 index 000000000000..daa2b53c6258 --- /dev/null +++ b/rr-cache/3202f565d085f3a7e6151c8b138d91393b3520cd/preimage.1 @@ -0,0 +1,1041 @@ +// SPDX-License-Identifier: MIT +/* + * Copyright © 2021 Intel Corporation + */ + +#include "xe_device.h" + +#include <linux/aperture.h> +#include <linux/delay.h> +#include <linux/fault-inject.h> +#include <linux/units.h> + +#include <drm/drm_atomic_helper.h> +#include <drm/drm_client.h> +#include <drm/drm_gem_ttm_helper.h> +#include <drm/drm_ioctl.h> +#include <drm/drm_managed.h> +#include <drm/drm_print.h> +#include <uapi/drm/xe_drm.h> + +#include "display/xe_display.h" +#include "instructions/xe_gpu_commands.h" +#include "regs/xe_gt_regs.h" +#include "regs/xe_regs.h" +#include "xe_bo.h" +#include "xe_debugfs.h" +#include "xe_devcoredump.h" +#include "xe_dma_buf.h" +#include "xe_drm_client.h" +#include "xe_drv.h" +#include "xe_exec.h" +#include "xe_exec_queue.h" +#include "xe_force_wake.h" +#include "xe_ggtt.h" +#include "xe_gsc_proxy.h" +#include "xe_gt.h" +#include "xe_gt_mcr.h" +#include "xe_gt_printk.h" +#include "xe_gt_sriov_vf.h" +#include "xe_guc.h" +#include "xe_hw_engine_group.h" +#include "xe_hwmon.h" +#include "xe_irq.h" +#include "xe_memirq.h" +#include "xe_mmio.h" +#include "xe_module.h" +#include "xe_observation.h" +#include "xe_pat.h" +#include "xe_pcode.h" +#include "xe_pm.h" +#include "xe_query.h" +#include "xe_sriov.h" +#include "xe_tile.h" +#include "xe_ttm_stolen_mgr.h" +#include "xe_ttm_sys_mgr.h" +#include "xe_vm.h" +#include "xe_vram.h" +#include "xe_wait_user_fence.h" +#include "xe_wa.h" + +#include <generated/xe_wa_oob.h> + +static int xe_file_open(struct drm_device *dev, struct drm_file *file) +{ + struct xe_device *xe = to_xe_device(dev); + struct xe_drm_client *client; + struct xe_file *xef; + int ret = -ENOMEM; + struct task_struct *task = NULL; + + xef = kzalloc(sizeof(*xef), GFP_KERNEL); + if (!xef) + return ret; + + client = xe_drm_client_alloc(); + if (!client) { + kfree(xef); + return ret; + } + + xef->drm = file; + xef->client = client; + xef->xe = xe; + + mutex_init(&xef->vm.lock); + xa_init_flags(&xef->vm.xa, XA_FLAGS_ALLOC1); + + mutex_init(&xef->exec_queue.lock); + xa_init_flags(&xef->exec_queue.xa, XA_FLAGS_ALLOC1); + + spin_lock(&xe->clients.lock); + xe->clients.count++; + spin_unlock(&xe->clients.lock); + + file->driver_priv = xef; + kref_init(&xef->refcount); + + task = get_pid_task(rcu_access_pointer(file->pid), PIDTYPE_PID); + if (task) { + xef->process_name = kstrdup(task->comm, GFP_KERNEL); + xef->pid = task->pid; + put_task_struct(task); + } + + return 0; +} + +static void xe_file_destroy(struct kref *ref) +{ + struct xe_file *xef = container_of(ref, struct xe_file, refcount); + struct xe_device *xe = xef->xe; + + xa_destroy(&xef->exec_queue.xa); + mutex_destroy(&xef->exec_queue.lock); + xa_destroy(&xef->vm.xa); + mutex_destroy(&xef->vm.lock); + + spin_lock(&xe->clients.lock); + xe->clients.count--; + spin_unlock(&xe->clients.lock); + + xe_drm_client_put(xef->client); + kfree(xef->process_name); + kfree(xef); +} + +/** + * xe_file_get() - Take a reference to the xe file object + * @xef: Pointer to the xe file + * + * Anyone with a pointer to xef must take a reference to the xe file + * object using this call. + * + * Return: xe file pointer + */ +struct xe_file *xe_file_get(struct xe_file *xef) +{ + kref_get(&xef->refcount); + return xef; +} + +/** + * xe_file_put() - Drop a reference to the xe file object + * @xef: Pointer to the xe file + * + * Used to drop reference to the xef object + */ +void xe_file_put(struct xe_file *xef) +{ + kref_put(&xef->refcount, xe_file_destroy); +} + +static void xe_file_close(struct drm_device *dev, struct drm_file *file) +{ + struct xe_device *xe = to_xe_device(dev); + struct xe_file *xef = file->driver_priv; + struct xe_vm *vm; + struct xe_exec_queue *q; + unsigned long idx; + + xe_pm_runtime_get(xe); + + /* + * No need for exec_queue.lock here as there is no contention for it + * when FD is closing as IOCTLs presumably can't be modifying the + * xarray. Taking exec_queue.lock here causes undue dependency on + * vm->lock taken during xe_exec_queue_kill(). + */ + xa_for_each(&xef->exec_queue.xa, idx, q) { + if (q->vm && q->hwe->hw_engine_group) + xe_hw_engine_group_del_exec_queue(q->hwe->hw_engine_group, q); + xe_exec_queue_kill(q); + xe_exec_queue_put(q); + } + xa_for_each(&xef->vm.xa, idx, vm) + xe_vm_close_and_put(vm); + + xe_file_put(xef); + + xe_pm_runtime_put(xe); +} + +static const struct drm_ioctl_desc xe_ioctls[] = { + DRM_IOCTL_DEF_DRV(XE_DEVICE_QUERY, xe_query_ioctl, DRM_RENDER_ALLOW), + DRM_IOCTL_DEF_DRV(XE_GEM_CREATE, xe_gem_create_ioctl, DRM_RENDER_ALLOW), + DRM_IOCTL_DEF_DRV(XE_GEM_MMAP_OFFSET, xe_gem_mmap_offset_ioctl, + DRM_RENDER_ALLOW), + DRM_IOCTL_DEF_DRV(XE_VM_CREATE, xe_vm_create_ioctl, DRM_RENDER_ALLOW), + DRM_IOCTL_DEF_DRV(XE_VM_DESTROY, xe_vm_destroy_ioctl, DRM_RENDER_ALLOW), + DRM_IOCTL_DEF_DRV(XE_VM_BIND, xe_vm_bind_ioctl, DRM_RENDER_ALLOW), + DRM_IOCTL_DEF_DRV(XE_EXEC, xe_exec_ioctl, DRM_RENDER_ALLOW), + DRM_IOCTL_DEF_DRV(XE_EXEC_QUEUE_CREATE, xe_exec_queue_create_ioctl, + DRM_RENDER_ALLOW), + DRM_IOCTL_DEF_DRV(XE_EXEC_QUEUE_DESTROY, xe_exec_queue_destroy_ioctl, + DRM_RENDER_ALLOW), + DRM_IOCTL_DEF_DRV(XE_EXEC_QUEUE_GET_PROPERTY, xe_exec_queue_get_property_ioctl, + DRM_RENDER_ALLOW), + DRM_IOCTL_DEF_DRV(XE_WAIT_USER_FENCE, xe_wait_user_fence_ioctl, + DRM_RENDER_ALLOW), + DRM_IOCTL_DEF_DRV(XE_OBSERVATION, xe_observation_ioctl, DRM_RENDER_ALLOW), +}; + +static long xe_drm_ioctl(struct file *file, unsigned int cmd, unsigned long arg) +{ + struct drm_file *file_priv = file->private_data; + struct xe_device *xe = to_xe_device(file_priv->minor->dev); + long ret; + + if (xe_device_wedged(xe)) + return -ECANCELED; + + ret = xe_pm_runtime_get_ioctl(xe); + if (ret >= 0) + ret = drm_ioctl(file, cmd, arg); + xe_pm_runtime_put(xe); + + return ret; +} + +#ifdef CONFIG_COMPAT +static long xe_drm_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg) +{ + struct drm_file *file_priv = file->private_data; + struct xe_device *xe = to_xe_device(file_priv->minor->dev); + long ret; + + if (xe_device_wedged(xe)) + return -ECANCELED; + + ret = xe_pm_runtime_get_ioctl(xe); + if (ret >= 0) + ret = drm_compat_ioctl(file, cmd, arg); + xe_pm_runtime_put(xe); + + return ret; +} +#else +/* similarly to drm_compat_ioctl, let's it be assigned to .compat_ioct unconditionally */ +#define xe_drm_compat_ioctl NULL +#endif + +static const struct file_operations xe_driver_fops = { + .owner = THIS_MODULE, + .open = drm_open, + .release = drm_release_noglobal, + .unlocked_ioctl = xe_drm_ioctl, + .mmap = drm_gem_mmap, + .poll = drm_poll, + .read = drm_read, + .compat_ioctl = xe_drm_compat_ioctl, + .llseek = noop_llseek, +#ifdef CONFIG_PROC_FS + .show_fdinfo = drm_show_fdinfo, +#endif + .fop_flags = FOP_UNSIGNED_OFFSET, +}; + +static struct drm_driver driver = { + /* Don't use MTRRs here; the Xserver or userspace app should + * deal with them for Intel hardware. + */ + .driver_features = + DRIVER_GEM | + DRIVER_RENDER | DRIVER_SYNCOBJ | + DRIVER_SYNCOBJ_TIMELINE | DRIVER_GEM_GPUVA, + .open = xe_file_open, + .postclose = xe_file_close, + + .gem_prime_import = xe_gem_prime_import, + + .dumb_create = xe_bo_dumb_create, + .dumb_map_offset = drm_gem_ttm_dumb_map_offset, +#ifdef CONFIG_PROC_FS + .show_fdinfo = xe_drm_client_fdinfo, +#endif + .ioctls = xe_ioctls, + .num_ioctls = ARRAY_SIZE(xe_ioctls), + .fops = &xe_driver_fops, + .name = DRIVER_NAME, + .desc = DRIVER_DESC, + .date = DRIVER_DATE, + .major = DRIVER_MAJOR, + .minor = DRIVER_MINOR, + .patchlevel = DRIVER_PATCHLEVEL, +}; + +static void xe_device_destroy(struct drm_device *dev, void *dummy) +{ + struct xe_device *xe = to_xe_device(dev); + + if (xe->preempt_fence_wq) + destroy_workqueue(xe->preempt_fence_wq); + + if (xe->ordered_wq) + destroy_workqueue(xe->ordered_wq); + + if (xe->unordered_wq) + destroy_workqueue(xe->unordered_wq); + + if (xe->destroy_wq) + destroy_workqueue(xe->destroy_wq); + + ttm_device_fini(&xe->ttm); +} + +struct xe_device *xe_device_create(struct pci_dev *pdev, + const struct pci_device_id *ent) +{ + struct xe_device *xe; + int err; + + xe_display_driver_set_hooks(&driver); + + err = aperture_remove_conflicting_pci_devices(pdev, driver.name); + if (err) + return ERR_PTR(err); + + xe = devm_drm_dev_alloc(&pdev->dev, &driver, struct xe_device, drm); + if (IS_ERR(xe)) + return xe; + + err = ttm_device_init(&xe->ttm, &xe_ttm_funcs, xe->drm.dev, + xe->drm.anon_inode->i_mapping, + xe->drm.vma_offset_manager, false, false); + if (WARN_ON(err)) + goto err; + + err = drmm_add_action_or_reset(&xe->drm, xe_device_destroy, NULL); + if (err) + goto err; + + xe->info.devid = pdev->device; + xe->info.revid = pdev->revision; + xe->info.force_execlist = xe_modparam.force_execlist; + + spin_lock_init(&xe->irq.lock); + spin_lock_init(&xe->clients.lock); + + init_waitqueue_head(&xe->ufence_wq); + + init_rwsem(&xe->usm.lock); + + xa_init_flags(&xe->usm.asid_to_vm, XA_FLAGS_ALLOC); + + if (IS_ENABLED(CONFIG_DRM_XE_DEBUG)) { + /* Trigger a large asid and an early asid wrap. */ + u32 asid; + + BUILD_BUG_ON(XE_MAX_ASID < 2); + err = xa_alloc_cyclic(&xe->usm.asid_to_vm, &asid, NULL, + XA_LIMIT(XE_MAX_ASID - 2, XE_MAX_ASID - 1), + &xe->usm.next_asid, GFP_KERNEL); + drm_WARN_ON(&xe->drm, err); + if (err >= 0) + xa_erase(&xe->usm.asid_to_vm, asid); + } + + spin_lock_init(&xe->pinned.lock); + INIT_LIST_HEAD(&xe->pinned.kernel_bo_present); + INIT_LIST_HEAD(&xe->pinned.external_vram); + INIT_LIST_HEAD(&xe->pinned.evicted); + + xe->preempt_fence_wq = alloc_ordered_workqueue("xe-preempt-fence-wq", 0); + xe->ordered_wq = alloc_ordered_workqueue("xe-ordered-wq", 0); + xe->unordered_wq = alloc_workqueue("xe-unordered-wq", 0, 0); + xe->destroy_wq = alloc_workqueue("xe-destroy-wq", 0, 0); + if (!xe->ordered_wq || !xe->unordered_wq || + !xe->preempt_fence_wq || !xe->destroy_wq) { + /* + * Cleanup done in xe_device_destroy via + * drmm_add_action_or_reset register above + */ + drm_err(&xe->drm, "Failed to allocate xe workqueues\n"); + err = -ENOMEM; + goto err; + } + + err = xe_display_create(xe); + if (WARN_ON(err)) + goto err; + + return xe; + +err: + return ERR_PTR(err); +} +ALLOW_ERROR_INJECTION(xe_device_create, ERRNO); /* See xe_pci_probe() */ + +static bool xe_driver_flr_disabled(struct xe_device *xe) +{ + return xe_mmio_read32(xe_root_tile_mmio(xe), GU_CNTL_PROTECTED) & DRIVERINT_FLR_DIS; +} + +/* + * The driver-initiated FLR is the highest level of reset that we can trigger + * from within the driver. It is different from the PCI FLR in that it doesn't + * fully reset the SGUnit and doesn't modify the PCI config space and therefore + * it doesn't require a re-enumeration of the PCI BARs. However, the + * driver-initiated FLR does still cause a reset of both GT and display and a + * memory wipe of local and stolen memory, so recovery would require a full HW + * re-init and saving/restoring (or re-populating) the wiped memory. Since we + * perform the FLR as the very last action before releasing access to the HW + * during the driver release flow, we don't attempt recovery at all, because + * if/when a new instance of i915 is bound to the device it will do a full + * re-init anyway. + */ +static void __xe_driver_flr(struct xe_device *xe) +{ + const unsigned int flr_timeout = 3 * MICRO; /* specs recommend a 3s wait */ + struct xe_mmio *mmio = xe_root_tile_mmio(xe); + int ret; + + drm_dbg(&xe->drm, "Triggering Driver-FLR\n"); + + /* + * Make sure any pending FLR requests have cleared by waiting for the + * FLR trigger bit to go to zero. Also clear GU_DEBUG's DRIVERFLR_STATUS + * to make sure it's not still set from a prior attempt (it's a write to + * clear bit). + * Note that we should never be in a situation where a previous attempt + * is still pending (unless the HW is totally dead), but better to be + * safe in case something unexpected happens + */ + ret = xe_mmio_wait32(mmio, GU_CNTL, DRIVERFLR, 0, flr_timeout, NULL, false); + if (ret) { + drm_err(&xe->drm, "Driver-FLR-prepare wait for ready failed! %d\n", ret); + return; + } + xe_mmio_write32(mmio, GU_DEBUG, DRIVERFLR_STATUS); + + /* Trigger the actual Driver-FLR */ + xe_mmio_rmw32(mmio, GU_CNTL, 0, DRIVERFLR); + + /* Wait for hardware teardown to complete */ + ret = xe_mmio_wait32(mmio, GU_CNTL, DRIVERFLR, 0, flr_timeout, NULL, false); + if (ret) { + drm_err(&xe->drm, "Driver-FLR-teardown wait completion failed! %d\n", ret); + return; + } + + /* Wait for hardware/firmware re-init to complete */ + ret = xe_mmio_wait32(mmio, GU_DEBUG, DRIVERFLR_STATUS, DRIVERFLR_STATUS, + flr_timeout, NULL, false); + if (ret) { + drm_err(&xe->drm, "Driver-FLR-reinit wait completion failed! %d\n", ret); + return; + } + + /* Clear sticky completion status */ + xe_mmio_write32(mmio, GU_DEBUG, DRIVERFLR_STATUS); +} + +static void xe_driver_flr(struct xe_device *xe) +{ + if (xe_driver_flr_disabled(xe)) { + drm_info_once(&xe->drm, "BIOS Disabled Driver-FLR\n"); + return; + } + + __xe_driver_flr(xe); +} + +static void xe_driver_flr_fini(void *arg) +{ + struct xe_device *xe = arg; + + if (xe->needs_flr_on_fini) + xe_driver_flr(xe); +} + +static void xe_device_sanitize(void *arg) +{ + struct xe_device *xe = arg; + struct xe_gt *gt; + u8 id; + + for_each_gt(gt, xe, id) + xe_gt_sanitize(gt); +} + +static int xe_set_dma_info(struct xe_device *xe) +{ + unsigned int mask_size = xe->info.dma_mask_size; + int err; + + dma_set_max_seg_size(xe->drm.dev, xe_sg_segment_size(xe->drm.dev)); + + err = dma_set_mask(xe->drm.dev, DMA_BIT_MASK(mask_size)); + if (err) + goto mask_err; + + err = dma_set_coherent_mask(xe->drm.dev, DMA_BIT_MASK(mask_size)); + if (err) + goto mask_err; + + return 0; + +mask_err: + drm_err(&xe->drm, "Can't set DMA mask/consistent mask (%d)\n", err); + return err; +} + +static bool verify_lmem_ready(struct xe_device *xe) +{ + u32 val = xe_mmio_read32(xe_root_tile_mmio(xe), GU_CNTL) & LMEM_INIT; + + return !!val; +} + +static int wait_for_lmem_ready(struct xe_device *xe) +{ + unsigned long timeout, start; + + if (!IS_DGFX(xe)) + return 0; + + if (IS_SRIOV_VF(xe)) + return 0; + + if (verify_lmem_ready(xe)) + return 0; + + drm_dbg(&xe->drm, "Waiting for lmem initialization\n"); + + start = jiffies; + timeout = start + msecs_to_jiffies(60 * 1000); /* 60 sec! */ + + do { + if (signal_pending(current)) + return -EINTR; + + /* + * The boot firmware initializes local memory and + * assesses its health. If memory training fails, + * the punit will have been instructed to keep the GT powered + * down.we won't be able to communicate with it + * + * If the status check is done before punit updates the register, + * it can lead to the system being unusable. + * use a timeout and defer the probe to prevent this. + */ + if (time_after(jiffies, timeout)) { + drm_dbg(&xe->drm, "lmem not initialized by firmware\n"); + return -EPROBE_DEFER; + } + + msleep(20); + + } while (!verify_lmem_ready(xe)); + + drm_dbg(&xe->drm, "lmem ready after %ums", + jiffies_to_msecs(jiffies - start)); + + return 0; +} +ALLOW_ERROR_INJECTION(wait_for_lmem_ready, ERRNO); /* See xe_pci_probe() */ + +static void update_device_info(struct xe_device *xe) +{ + /* disable features that are not available/applicable to VFs */ + if (IS_SRIOV_VF(xe)) { + xe->info.probe_display = 0; + xe->info.has_heci_gscfi = 0; + xe->info.skip_guc_pc = 1; + xe->info.skip_pcode = 1; + } +} + +/** + * xe_device_probe_early: Device early probe + * @xe: xe device instance + * + * Initialize MMIO resources that don't require any + * knowledge about tile count. Also initialize pcode and + * check vram initialization on root tile. + * + * Return: 0 on success, error code on failure + */ +int xe_device_probe_early(struct xe_device *xe) +{ + int err; + + err = xe_mmio_init(xe); + if (err) + return err; + + xe_sriov_probe_early(xe); + + update_device_info(xe); + + err = xe_pcode_probe_early(xe); + if (err) + return err; + + err = wait_for_lmem_ready(xe); + if (err) + return err; + + xe->wedged.mode = xe_modparam.wedged_mode; + + return 0; +} + +static int probe_has_flat_ccs(struct xe_device *xe) +{ + struct xe_gt *gt; + u32 reg; + int err; + + /* Always enabled/disabled, no runtime check to do */ + if (GRAPHICS_VER(xe) < 20 || !xe->info.has_flat_ccs) + return 0; + + gt = xe_root_mmio_gt(xe); + + err = xe_force_wake_get(gt_to_fw(gt), XE_FW_GT); + if (err) + return err; + + reg = xe_gt_mcr_unicast_read_any(gt, XE2_FLAT_CCS_BASE_RANGE_LOWER); + xe->info.has_flat_ccs = (reg & XE2_FLAT_CCS_ENABLE); + + if (!xe->info.has_flat_ccs) + drm_dbg(&xe->drm, + "Flat CCS has been disabled in bios, May lead to performance impact"); + + return xe_force_wake_put(gt_to_fw(gt), XE_FW_GT); +} + +int xe_device_probe(struct xe_device *xe) +{ + struct xe_tile *tile; + struct xe_gt *gt; + int err; + u8 last_gt; + u8 id; + + xe_pat_init_early(xe); + + err = xe_sriov_init(xe); + if (err) + return err; + + xe->info.mem_region_mask = 1; + err = xe_display_init_nommio(xe); + if (err) + return err; + + err = xe_set_dma_info(xe); + if (err) + return err; + + err = xe_mmio_probe_tiles(xe); + if (err) + return err; + + xe_ttm_sys_mgr_init(xe); + + for_each_gt(gt, xe, id) { + err = xe_gt_init_early(gt); + if (err) + return err; + + /* + * Only after this point can GT-specific MMIO operations + * (including things like communication with the GuC) + * be performed. + */ + xe_gt_mmio_init(gt); + } + + for_each_tile(tile, xe, id) { + if (IS_SRIOV_VF(xe)) { + xe_guc_comm_init_early(&tile->primary_gt->uc.guc); + err = xe_gt_sriov_vf_bootstrap(tile->primary_gt); + if (err) + return err; + err = xe_gt_sriov_vf_query_config(tile->primary_gt); + if (err) + return err; + } + err = xe_ggtt_init_early(tile->mem.ggtt); + if (err) + return err; + err = xe_memirq_init(&tile->memirq); + if (err) + return err; + } + + for_each_gt(gt, xe, id) { + err = xe_gt_init_hwconfig(gt); + if (err) + return err; + } + + err = xe_devcoredump_init(xe); + if (err) + return err; + err = devm_add_action_or_reset(xe->drm.dev, xe_driver_flr_fini, xe); + if (err) + return err; + + err = xe_display_init_noirq(xe); + if (err) + return err; + + err = xe_irq_install(xe); + if (err) + goto err; + + err = probe_has_flat_ccs(xe); + if (err) + goto err; + + err = xe_vram_probe(xe); + if (err) + goto err; + + for_each_tile(tile, xe, id) { + err = xe_tile_init_noalloc(tile); + if (err) + goto err; + } + + /* Allocate and map stolen after potential VRAM resize */ + xe_ttm_stolen_mgr_init(xe); + + /* + * Now that GT is initialized (TTM in particular), + * we can try to init display, and inherit the initial fb. + * This is the reason the first allocation needs to be done + * inside display. + */ + err = xe_display_init_noaccel(xe); + if (err) + goto err; + + for_each_gt(gt, xe, id) { + last_gt = id; + + err = xe_gt_init(gt); + if (err) + goto err_fini_gt; + } + + xe_heci_gsc_init(xe); + + err = xe_oa_init(xe); + if (err) + goto err_fini_gt; + + err = xe_display_init(xe); + if (err) + goto err_fini_oa; + + err = drm_dev_register(&xe->drm, 0); + if (err) + goto err_fini_display; + + xe_display_register(xe); + + xe_oa_register(xe); + + xe_debugfs_register(xe); + + xe_hwmon_register(xe); + + for_each_gt(gt, xe, id) + xe_gt_sanitize_freq(gt); + + return devm_add_action_or_reset(xe->drm.dev, xe_device_sanitize, xe); + +err_fini_display: + xe_display_driver_remove(xe); + +err_fini_oa: + xe_oa_fini(xe); + +err_fini_gt: + for_each_gt(gt, xe, id) { + if (id < last_gt) + xe_gt_remove(gt); + else + break; + } + +err: + xe_display_fini(xe); + return err; +} + +static void xe_device_remove_display(struct xe_device *xe) +{ + xe_display_unregister(xe); + + drm_dev_unplug(&xe->drm); + xe_display_driver_remove(xe); +} + +void xe_device_remove(struct xe_device *xe) +{ + struct xe_gt *gt; + u8 id; + + xe_oa_unregister(xe); + + xe_device_remove_display(xe); + + xe_display_fini(xe); + + xe_oa_fini(xe); + + xe_heci_gsc_fini(xe); + + for_each_gt(gt, xe, id) + xe_gt_remove(gt); +} + +void xe_device_shutdown(struct xe_device *xe) +{ + struct xe_gt *gt; + u8 id; + + drm_dbg(&xe->drm, "Shutting down device\n"); + + if (xe_driver_flr_disabled(xe)) { + xe_display_pm_shutdown(xe); + + xe_irq_suspend(xe); + + for_each_gt(gt, xe, id) + xe_gt_shutdown(gt); + + xe_display_pm_shutdown_late(xe); + } else { + /* BOOM! */ + __xe_driver_flr(xe); + } +} + +/** + * xe_device_wmb() - Device specific write memory barrier + * @xe: the &xe_device + * + * While wmb() is sufficient for a barrier if we use system memory, on discrete + * platforms with device memory we additionally need to issue a register write. + * Since it doesn't matter which register we write to, use the read-only VF_CAP + * register that is also marked as accessible by the VFs. + */ +void xe_device_wmb(struct xe_device *xe) +{ + wmb(); + if (IS_DGFX(xe)) + xe_mmio_write32(xe_root_tile_mmio(xe), VF_CAP_REG, 0); +} + +/** + * xe_device_td_flush() - Flush transient L3 cache entries + * @xe: The device + * + * Display engine has direct access to memory and is never coherent with L3/L4 + * caches (or CPU caches), however KMD is responsible for specifically flushing + * transient L3 GPU cache entries prior to the flip sequence to ensure scanout + * can happen from such a surface without seeing corruption. + * + * Display surfaces can be tagged as transient by mapping it using one of the + * various L3:XD PAT index modes on Xe2. + * + * Note: On non-discrete xe2 platforms, like LNL, the entire L3 cache is flushed + * at the end of each submission via PIPE_CONTROL for compute/render, since SA + * Media is not coherent with L3 and we want to support render-vs-media + * usescases. For other engines like copy/blt the HW internally forces uncached + * behaviour, hence why we can skip the TDF on such platforms. + */ +void xe_device_td_flush(struct xe_device *xe) +{ + struct xe_gt *gt; + u8 id; + + if (!IS_DGFX(xe) || GRAPHICS_VER(xe) < 20) + return; + + if (XE_WA(xe_root_mmio_gt(xe), 16023588340)) { + xe_device_l2_flush(xe); + return; + } + + for_each_gt(gt, xe, id) { + if (xe_gt_is_media_type(gt)) + continue; + + if (xe_force_wake_get(gt_to_fw(gt), XE_FW_GT)) + return; + + xe_mmio_write32(>->mmio, XE2_TDF_CTRL, TRANSIENT_FLUSH_REQUEST); + /* + * FIXME: We can likely do better here with our choice of + * timeout. Currently we just assume the worst case, i.e. 150us, + * which is believed to be sufficient to cover the worst case + * scenario on current platforms if all cache entries are + * transient and need to be flushed.. + */ + if (xe_mmio_wait32(>->mmio, XE2_TDF_CTRL, TRANSIENT_FLUSH_REQUEST, 0, + 150, NULL, false)) + xe_gt_err_once(gt, "TD flush timeout\n"); + + xe_force_wake_put(gt_to_fw(gt), XE_FW_GT); + } +} + +void xe_device_l2_flush(struct xe_device *xe) +{ + struct xe_gt *gt; + int err; + + gt = xe_root_mmio_gt(xe); + + if (!XE_WA(gt, 16023588340)) + return; + + err = xe_force_wake_get(gt_to_fw(gt), XE_FW_GT); + if (err) + return; + + spin_lock(>->global_invl_lock); + xe_mmio_write32(>->mmio, XE2_GLOBAL_INVAL, 0x1); + +<<<<<<< + if (xe_mmio_wait32(>->mmio, XE2_GLOBAL_INVAL, 0x1, 0x0, 500, NULL, true)) +======= + if (xe_mmio_wait32(gt, XE2_GLOBAL_INVAL, 0x1, 0x0, 500, NULL, true)) +>>>>>>> + xe_gt_err_once(gt, "Global invalidation timeout\n"); + spin_unlock(>->global_invl_lock); + + xe_force_wake_put(gt_to_fw(gt), XE_FW_GT); +} + +u32 xe_device_ccs_bytes(struct xe_device *xe, u64 size) +{ + return xe_device_has_flat_ccs(xe) ? + DIV_ROUND_UP_ULL(size, NUM_BYTES_PER_CCS_BYTE(xe)) : 0; +} + +/** + * xe_device_assert_mem_access - Inspect the current runtime_pm state. + * @xe: xe device instance + * + * To be used before any kind of memory access. It will splat a debug warning + * if the device is currently sleeping. But it doesn't guarantee in any way + * that the device is going to remain awake. Xe PM runtime get and put + * functions might be added to the outer bound of the memory access, while + * this check is intended for inner usage to splat some warning if the worst + * case has just happened. + */ +void xe_device_assert_mem_access(struct xe_device *xe) +{ + xe_assert(xe, !xe_pm_runtime_suspended(xe)); +} + +void xe_device_snapshot_print(struct xe_device *xe, struct drm_printer *p) +{ + struct xe_gt *gt; + u8 id; + + drm_printf(p, "PCI ID: 0x%04x\n", xe->info.devid); + drm_printf(p, "PCI revision: 0x%02x\n", xe->info.revid); + + for_each_gt(gt, xe, id) { + drm_printf(p, "GT id: %u\n", id); + drm_printf(p, "\tTile: %u\n", gt->tile->id); + drm_printf(p, "\tType: %s\n", + gt->info.type == XE_GT_TYPE_MAIN ? "main" : "media"); + drm_printf(p, "\tIP ver: %u.%u.%u\n", + REG_FIELD_GET(GMD_ID_ARCH_MASK, gt->info.gmdid), + REG_FIELD_GET(GMD_ID_RELEASE_MASK, gt->info.gmdid), + REG_FIELD_GET(GMD_ID_REVID, gt->info.gmdid)); + drm_printf(p, "\tCS reference clock: %u\n", gt->info.reference_clock); + } +} + +u64 xe_device_canonicalize_addr(struct xe_device *xe, u64 address) +{ + return sign_extend64(address, xe->info.va_bits - 1); +} + +u64 xe_device_uncanonicalize_addr(struct xe_device *xe, u64 address) +{ + return address & GENMASK_ULL(xe->info.va_bits - 1, 0); +} + +static void xe_device_wedged_fini(struct drm_device *drm, void *arg) +{ + struct xe_device *xe = arg; + + xe_pm_runtime_put(xe); +} + +/** + * xe_device_declare_wedged - Declare device wedged + * @xe: xe device instance + * + * This is a final state that can only be cleared with a mudule + * re-probe (unbind + bind). + * In this state every IOCTL will be blocked so the GT cannot be used. + * In general it will be called upon any critical error such as gt reset + * failure or guc loading failure. + * If xe.wedged module parameter is set to 2, this function will be called + * on every single execution timeout (a.k.a. GPU hang) right after devcoredump + * snapshot capture. In this mode, GT reset won't be attempted so the state of + * the issue is preserved for further debugging. + */ +void xe_device_declare_wedged(struct xe_device *xe) +{ + struct xe_gt *gt; + u8 id; + + if (xe->wedged.mode == 0) { + drm_dbg(&xe->drm, "Wedged mode is forcibly disabled\n"); + return; + } + + xe_pm_runtime_get_noresume(xe); + + if (drmm_add_action_or_reset(&xe->drm, xe_device_wedged_fini, xe)) { + drm_err(&xe->drm, "Failed to register xe_device_wedged_fini clean-up. Although device is wedged.\n"); + return; + } + + if (!atomic_xchg(&xe->wedged.flag, 1)) { + xe->needs_flr_on_fini = true; + drm_err(&xe->drm, + "CRITICAL: Xe has declared device %s as wedged.\n" + "IOCTLs and executions are blocked. Only a rebind may clear the failure\n" + "Please file a _new_ bug report at https://gitlab.freedesktop.org/drm/xe/kernel/issues/new\n", + dev_name(xe->drm.dev)); + } + + for_each_gt(gt, xe, id) + xe_gt_declare_wedged(gt); +} diff --git a/rr-cache/3202f565d085f3a7e6151c8b138d91393b3520cd/preimage.2 b/rr-cache/3202f565d085f3a7e6151c8b138d91393b3520cd/preimage.2 new file mode 100644 index 000000000000..daa2b53c6258 --- /dev/null +++ b/rr-cache/3202f565d085f3a7e6151c8b138d91393b3520cd/preimage.2 @@ -0,0 +1,1041 @@ +// SPDX-License-Identifier: MIT +/* + * Copyright © 2021 Intel Corporation + */ + +#include "xe_device.h" + +#include <linux/aperture.h> +#include <linux/delay.h> +#include <linux/fault-inject.h> +#include <linux/units.h> + +#include <drm/drm_atomic_helper.h> +#include <drm/drm_client.h> +#include <drm/drm_gem_ttm_helper.h> +#include <drm/drm_ioctl.h> +#include <drm/drm_managed.h> +#include <drm/drm_print.h> +#include <uapi/drm/xe_drm.h> + +#include "display/xe_display.h" +#include "instructions/xe_gpu_commands.h" +#include "regs/xe_gt_regs.h" +#include "regs/xe_regs.h" +#include "xe_bo.h" +#include "xe_debugfs.h" +#include "xe_devcoredump.h" +#include "xe_dma_buf.h" +#include "xe_drm_client.h" +#include "xe_drv.h" +#include "xe_exec.h" +#include "xe_exec_queue.h" +#include "xe_force_wake.h" +#include "xe_ggtt.h" +#include "xe_gsc_proxy.h" +#include "xe_gt.h" +#include "xe_gt_mcr.h" +#include "xe_gt_printk.h" +#include "xe_gt_sriov_vf.h" +#include "xe_guc.h" +#include "xe_hw_engine_group.h" +#include "xe_hwmon.h" +#include "xe_irq.h" +#include "xe_memirq.h" +#include "xe_mmio.h" +#include "xe_module.h" +#include "xe_observation.h" +#include "xe_pat.h" +#include "xe_pcode.h" +#include "xe_pm.h" +#include "xe_query.h" +#include "xe_sriov.h" +#include "xe_tile.h" +#include "xe_ttm_stolen_mgr.h" +#include "xe_ttm_sys_mgr.h" +#include "xe_vm.h" +#include "xe_vram.h" +#include "xe_wait_user_fence.h" +#include "xe_wa.h" + +#include <generated/xe_wa_oob.h> + +static int xe_file_open(struct drm_device *dev, struct drm_file *file) +{ + struct xe_device *xe = to_xe_device(dev); + struct xe_drm_client *client; + struct xe_file *xef; + int ret = -ENOMEM; + struct task_struct *task = NULL; + + xef = kzalloc(sizeof(*xef), GFP_KERNEL); + if (!xef) + return ret; + + client = xe_drm_client_alloc(); + if (!client) { + kfree(xef); + return ret; + } + + xef->drm = file; + xef->client = client; + xef->xe = xe; + + mutex_init(&xef->vm.lock); + xa_init_flags(&xef->vm.xa, XA_FLAGS_ALLOC1); + + mutex_init(&xef->exec_queue.lock); + xa_init_flags(&xef->exec_queue.xa, XA_FLAGS_ALLOC1); + + spin_lock(&xe->clients.lock); + xe->clients.count++; + spin_unlock(&xe->clients.lock); + + file->driver_priv = xef; + kref_init(&xef->refcount); + + task = get_pid_task(rcu_access_pointer(file->pid), PIDTYPE_PID); + if (task) { + xef->process_name = kstrdup(task->comm, GFP_KERNEL); + xef->pid = task->pid; + put_task_struct(task); + } + + return 0; +} + +static void xe_file_destroy(struct kref *ref) +{ + struct xe_file *xef = container_of(ref, struct xe_file, refcount); + struct xe_device *xe = xef->xe; + + xa_destroy(&xef->exec_queue.xa); + mutex_destroy(&xef->exec_queue.lock); + xa_destroy(&xef->vm.xa); + mutex_destroy(&xef->vm.lock); + + spin_lock(&xe->clients.lock); + xe->clients.count--; + spin_unlock(&xe->clients.lock); + + xe_drm_client_put(xef->client); + kfree(xef->process_name); + kfree(xef); +} + +/** + * xe_file_get() - Take a reference to the xe file object + * @xef: Pointer to the xe file + * + * Anyone with a pointer to xef must take a reference to the xe file + * object using this call. + * + * Return: xe file pointer + */ +struct xe_file *xe_file_get(struct xe_file *xef) +{ + kref_get(&xef->refcount); + return xef; +} + +/** + * xe_file_put() - Drop a reference to the xe file object + * @xef: Pointer to the xe file + * + * Used to drop reference to the xef object + */ +void xe_file_put(struct xe_file *xef) +{ + kref_put(&xef->refcount, xe_file_destroy); +} + +static void xe_file_close(struct drm_device *dev, struct drm_file *file) +{ + struct xe_device *xe = to_xe_device(dev); + struct xe_file *xef = file->driver_priv; + struct xe_vm *vm; + struct xe_exec_queue *q; + unsigned long idx; + + xe_pm_runtime_get(xe); + + /* + * No need for exec_queue.lock here as there is no contention for it + * when FD is closing as IOCTLs presumably can't be modifying the + * xarray. Taking exec_queue.lock here causes undue dependency on + * vm->lock taken during xe_exec_queue_kill(). + */ + xa_for_each(&xef->exec_queue.xa, idx, q) { + if (q->vm && q->hwe->hw_engine_group) + xe_hw_engine_group_del_exec_queue(q->hwe->hw_engine_group, q); + xe_exec_queue_kill(q); + xe_exec_queue_put(q); + } + xa_for_each(&xef->vm.xa, idx, vm) + xe_vm_close_and_put(vm); + + xe_file_put(xef); + + xe_pm_runtime_put(xe); +} + +static const struct drm_ioctl_desc xe_ioctls[] = { + DRM_IOCTL_DEF_DRV(XE_DEVICE_QUERY, xe_query_ioctl, DRM_RENDER_ALLOW), + DRM_IOCTL_DEF_DRV(XE_GEM_CREATE, xe_gem_create_ioctl, DRM_RENDER_ALLOW), + DRM_IOCTL_DEF_DRV(XE_GEM_MMAP_OFFSET, xe_gem_mmap_offset_ioctl, + DRM_RENDER_ALLOW), + DRM_IOCTL_DEF_DRV(XE_VM_CREATE, xe_vm_create_ioctl, DRM_RENDER_ALLOW), + DRM_IOCTL_DEF_DRV(XE_VM_DESTROY, xe_vm_destroy_ioctl, DRM_RENDER_ALLOW), + DRM_IOCTL_DEF_DRV(XE_VM_BIND, xe_vm_bind_ioctl, DRM_RENDER_ALLOW), + DRM_IOCTL_DEF_DRV(XE_EXEC, xe_exec_ioctl, DRM_RENDER_ALLOW), + DRM_IOCTL_DEF_DRV(XE_EXEC_QUEUE_CREATE, xe_exec_queue_create_ioctl, + DRM_RENDER_ALLOW), + DRM_IOCTL_DEF_DRV(XE_EXEC_QUEUE_DESTROY, xe_exec_queue_destroy_ioctl, + DRM_RENDER_ALLOW), + DRM_IOCTL_DEF_DRV(XE_EXEC_QUEUE_GET_PROPERTY, xe_exec_queue_get_property_ioctl, + DRM_RENDER_ALLOW), + DRM_IOCTL_DEF_DRV(XE_WAIT_USER_FENCE, xe_wait_user_fence_ioctl, + DRM_RENDER_ALLOW), + DRM_IOCTL_DEF_DRV(XE_OBSERVATION, xe_observation_ioctl, DRM_RENDER_ALLOW), +}; + +static long xe_drm_ioctl(struct file *file, unsigned int cmd, unsigned long arg) +{ + struct drm_file *file_priv = file->private_data; + struct xe_device *xe = to_xe_device(file_priv->minor->dev); + long ret; + + if (xe_device_wedged(xe)) + return -ECANCELED; + + ret = xe_pm_runtime_get_ioctl(xe); + if (ret >= 0) + ret = drm_ioctl(file, cmd, arg); + xe_pm_runtime_put(xe); + + return ret; +} + +#ifdef CONFIG_COMPAT +static long xe_drm_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg) +{ + struct drm_file *file_priv = file->private_data; + struct xe_device *xe = to_xe_device(file_priv->minor->dev); + long ret; + + if (xe_device_wedged(xe)) + return -ECANCELED; + + ret = xe_pm_runtime_get_ioctl(xe); + if (ret >= 0) + ret = drm_compat_ioctl(file, cmd, arg); + xe_pm_runtime_put(xe); + + return ret; +} +#else +/* similarly to drm_compat_ioctl, let's it be assigned to .compat_ioct unconditionally */ +#define xe_drm_compat_ioctl NULL +#endif + +static const struct file_operations xe_driver_fops = { + .owner = THIS_MODULE, + .open = drm_open, + .release = drm_release_noglobal, + .unlocked_ioctl = xe_drm_ioctl, + .mmap = drm_gem_mmap, + .poll = drm_poll, + .read = drm_read, + .compat_ioctl = xe_drm_compat_ioctl, + .llseek = noop_llseek, +#ifdef CONFIG_PROC_FS + .show_fdinfo = drm_show_fdinfo, +#endif + .fop_flags = FOP_UNSIGNED_OFFSET, +}; + +static struct drm_driver driver = { + /* Don't use MTRRs here; the Xserver or userspace app should + * deal with them for Intel hardware. + */ + .driver_features = + DRIVER_GEM | + DRIVER_RENDER | DRIVER_SYNCOBJ | + DRIVER_SYNCOBJ_TIMELINE | DRIVER_GEM_GPUVA, + .open = xe_file_open, + .postclose = xe_file_close, + + .gem_prime_import = xe_gem_prime_import, + + .dumb_create = xe_bo_dumb_create, + .dumb_map_offset = drm_gem_ttm_dumb_map_offset, +#ifdef CONFIG_PROC_FS + .show_fdinfo = xe_drm_client_fdinfo, +#endif + .ioctls = xe_ioctls, + .num_ioctls = ARRAY_SIZE(xe_ioctls), + .fops = &xe_driver_fops, + .name = DRIVER_NAME, + .desc = DRIVER_DESC, + .date = DRIVER_DATE, + .major = DRIVER_MAJOR, + .minor = DRIVER_MINOR, + .patchlevel = DRIVER_PATCHLEVEL, +}; + +static void xe_device_destroy(struct drm_device *dev, void *dummy) +{ + struct xe_device *xe = to_xe_device(dev); + + if (xe->preempt_fence_wq) + destroy_workqueue(xe->preempt_fence_wq); + + if (xe->ordered_wq) + destroy_workqueue(xe->ordered_wq); + + if (xe->unordered_wq) + destroy_workqueue(xe->unordered_wq); + + if (xe->destroy_wq) + destroy_workqueue(xe->destroy_wq); + + ttm_device_fini(&xe->ttm); +} + +struct xe_device *xe_device_create(struct pci_dev *pdev, + const struct pci_device_id *ent) +{ + struct xe_device *xe; + int err; + + xe_display_driver_set_hooks(&driver); + + err = aperture_remove_conflicting_pci_devices(pdev, driver.name); + if (err) + return ERR_PTR(err); + + xe = devm_drm_dev_alloc(&pdev->dev, &driver, struct xe_device, drm); + if (IS_ERR(xe)) + return xe; + + err = ttm_device_init(&xe->ttm, &xe_ttm_funcs, xe->drm.dev, + xe->drm.anon_inode->i_mapping, + xe->drm.vma_offset_manager, false, false); + if (WARN_ON(err)) + goto err; + + err = drmm_add_action_or_reset(&xe->drm, xe_device_destroy, NULL); + if (err) + goto err; + + xe->info.devid = pdev->device; + xe->info.revid = pdev->revision; + xe->info.force_execlist = xe_modparam.force_execlist; + + spin_lock_init(&xe->irq.lock); + spin_lock_init(&xe->clients.lock); + + init_waitqueue_head(&xe->ufence_wq); + + init_rwsem(&xe->usm.lock); + + xa_init_flags(&xe->usm.asid_to_vm, XA_FLAGS_ALLOC); + + if (IS_ENABLED(CONFIG_DRM_XE_DEBUG)) { + /* Trigger a large asid and an early asid wrap. */ + u32 asid; + + BUILD_BUG_ON(XE_MAX_ASID < 2); + err = xa_alloc_cyclic(&xe->usm.asid_to_vm, &asid, NULL, + XA_LIMIT(XE_MAX_ASID - 2, XE_MAX_ASID - 1), + &xe->usm.next_asid, GFP_KERNEL); + drm_WARN_ON(&xe->drm, err); + if (err >= 0) + xa_erase(&xe->usm.asid_to_vm, asid); + } + + spin_lock_init(&xe->pinned.lock); + INIT_LIST_HEAD(&xe->pinned.kernel_bo_present); + INIT_LIST_HEAD(&xe->pinned.external_vram); + INIT_LIST_HEAD(&xe->pinned.evicted); + + xe->preempt_fence_wq = alloc_ordered_workqueue("xe-preempt-fence-wq", 0); + xe->ordered_wq = alloc_ordered_workqueue("xe-ordered-wq", 0); + xe->unordered_wq = alloc_workqueue("xe-unordered-wq", 0, 0); + xe->destroy_wq = alloc_workqueue("xe-destroy-wq", 0, 0); + if (!xe->ordered_wq || !xe->unordered_wq || + !xe->preempt_fence_wq || !xe->destroy_wq) { + /* + * Cleanup done in xe_device_destroy via + * drmm_add_action_or_reset register above + */ + drm_err(&xe->drm, "Failed to allocate xe workqueues\n"); + err = -ENOMEM; + goto err; + } + + err = xe_display_create(xe); + if (WARN_ON(err)) + goto err; + + return xe; + +err: + return ERR_PTR(err); +} +ALLOW_ERROR_INJECTION(xe_device_create, ERRNO); /* See xe_pci_probe() */ + +static bool xe_driver_flr_disabled(struct xe_device *xe) +{ + return xe_mmio_read32(xe_root_tile_mmio(xe), GU_CNTL_PROTECTED) & DRIVERINT_FLR_DIS; +} + +/* + * The driver-initiated FLR is the highest level of reset that we can trigger + * from within the driver. It is different from the PCI FLR in that it doesn't + * fully reset the SGUnit and doesn't modify the PCI config space and therefore + * it doesn't require a re-enumeration of the PCI BARs. However, the + * driver-initiated FLR does still cause a reset of both GT and display and a + * memory wipe of local and stolen memory, so recovery would require a full HW + * re-init and saving/restoring (or re-populating) the wiped memory. Since we + * perform the FLR as the very last action before releasing access to the HW + * during the driver release flow, we don't attempt recovery at all, because + * if/when a new instance of i915 is bound to the device it will do a full + * re-init anyway. + */ +static void __xe_driver_flr(struct xe_device *xe) +{ + const unsigned int flr_timeout = 3 * MICRO; /* specs recommend a 3s wait */ + struct xe_mmio *mmio = xe_root_tile_mmio(xe); + int ret; + + drm_dbg(&xe->drm, "Triggering Driver-FLR\n"); + + /* + * Make sure any pending FLR requests have cleared by waiting for the + * FLR trigger bit to go to zero. Also clear GU_DEBUG's DRIVERFLR_STATUS + * to make sure it's not still set from a prior attempt (it's a write to + * clear bit). + * Note that we should never be in a situation where a previous attempt + * is still pending (unless the HW is totally dead), but better to be + * safe in case something unexpected happens + */ + ret = xe_mmio_wait32(mmio, GU_CNTL, DRIVERFLR, 0, flr_timeout, NULL, false); + if (ret) { + drm_err(&xe->drm, "Driver-FLR-prepare wait for ready failed! %d\n", ret); + return; + } + xe_mmio_write32(mmio, GU_DEBUG, DRIVERFLR_STATUS); + + /* Trigger the actual Driver-FLR */ + xe_mmio_rmw32(mmio, GU_CNTL, 0, DRIVERFLR); + + /* Wait for hardware teardown to complete */ + ret = xe_mmio_wait32(mmio, GU_CNTL, DRIVERFLR, 0, flr_timeout, NULL, false); + if (ret) { + drm_err(&xe->drm, "Driver-FLR-teardown wait completion failed! %d\n", ret); + return; + } + + /* Wait for hardware/firmware re-init to complete */ + ret = xe_mmio_wait32(mmio, GU_DEBUG, DRIVERFLR_STATUS, DRIVERFLR_STATUS, + flr_timeout, NULL, false); + if (ret) { + drm_err(&xe->drm, "Driver-FLR-reinit wait completion failed! %d\n", ret); + return; + } + + /* Clear sticky completion status */ + xe_mmio_write32(mmio, GU_DEBUG, DRIVERFLR_STATUS); +} + +static void xe_driver_flr(struct xe_device *xe) +{ + if (xe_driver_flr_disabled(xe)) { + drm_info_once(&xe->drm, "BIOS Disabled Driver-FLR\n"); + return; + } + + __xe_driver_flr(xe); +} + +static void xe_driver_flr_fini(void *arg) +{ + struct xe_device *xe = arg; + + if (xe->needs_flr_on_fini) + xe_driver_flr(xe); +} + +static void xe_device_sanitize(void *arg) +{ + struct xe_device *xe = arg; + struct xe_gt *gt; + u8 id; + + for_each_gt(gt, xe, id) + xe_gt_sanitize(gt); +} + +static int xe_set_dma_info(struct xe_device *xe) +{ + unsigned int mask_size = xe->info.dma_mask_size; + int err; + + dma_set_max_seg_size(xe->drm.dev, xe_sg_segment_size(xe->drm.dev)); + + err = dma_set_mask(xe->drm.dev, DMA_BIT_MASK(mask_size)); + if (err) + goto mask_err; + + err = dma_set_coherent_mask(xe->drm.dev, DMA_BIT_MASK(mask_size)); + if (err) + goto mask_err; + + return 0; + +mask_err: + drm_err(&xe->drm, "Can't set DMA mask/consistent mask (%d)\n", err); + return err; +} + +static bool verify_lmem_ready(struct xe_device *xe) +{ + u32 val = xe_mmio_read32(xe_root_tile_mmio(xe), GU_CNTL) & LMEM_INIT; + + return !!val; +} + +static int wait_for_lmem_ready(struct xe_device *xe) +{ + unsigned long timeout, start; + + if (!IS_DGFX(xe)) + return 0; + + if (IS_SRIOV_VF(xe)) + return 0; + + if (verify_lmem_ready(xe)) + return 0; + + drm_dbg(&xe->drm, "Waiting for lmem initialization\n"); + + start = jiffies; + timeout = start + msecs_to_jiffies(60 * 1000); /* 60 sec! */ + + do { + if (signal_pending(current)) + return -EINTR; + + /* + * The boot firmware initializes local memory and + * assesses its health. If memory training fails, + * the punit will have been instructed to keep the GT powered + * down.we won't be able to communicate with it + * + * If the status check is done before punit updates the register, + * it can lead to the system being unusable. + * use a timeout and defer the probe to prevent this. + */ + if (time_after(jiffies, timeout)) { + drm_dbg(&xe->drm, "lmem not initialized by firmware\n"); + return -EPROBE_DEFER; + } + + msleep(20); + + } while (!verify_lmem_ready(xe)); + + drm_dbg(&xe->drm, "lmem ready after %ums", + jiffies_to_msecs(jiffies - start)); + + return 0; +} +ALLOW_ERROR_INJECTION(wait_for_lmem_ready, ERRNO); /* See xe_pci_probe() */ + +static void update_device_info(struct xe_device *xe) +{ + /* disable features that are not available/applicable to VFs */ + if (IS_SRIOV_VF(xe)) { + xe->info.probe_display = 0; + xe->info.has_heci_gscfi = 0; + xe->info.skip_guc_pc = 1; + xe->info.skip_pcode = 1; + } +} + +/** + * xe_device_probe_early: Device early probe + * @xe: xe device instance + * + * Initialize MMIO resources that don't require any + * knowledge about tile count. Also initialize pcode and + * check vram initialization on root tile. + * + * Return: 0 on success, error code on failure + */ +int xe_device_probe_early(struct xe_device *xe) +{ + int err; + + err = xe_mmio_init(xe); + if (err) + return err; + + xe_sriov_probe_early(xe); + + update_device_info(xe); + + err = xe_pcode_probe_early(xe); + if (err) + return err; + + err = wait_for_lmem_ready(xe); + if (err) + return err; + + xe->wedged.mode = xe_modparam.wedged_mode; + + return 0; +} + +static int probe_has_flat_ccs(struct xe_device *xe) +{ + struct xe_gt *gt; + u32 reg; + int err; + + /* Always enabled/disabled, no runtime check to do */ + if (GRAPHICS_VER(xe) < 20 || !xe->info.has_flat_ccs) + return 0; + + gt = xe_root_mmio_gt(xe); + + err = xe_force_wake_get(gt_to_fw(gt), XE_FW_GT); + if (err) + return err; + + reg = xe_gt_mcr_unicast_read_any(gt, XE2_FLAT_CCS_BASE_RANGE_LOWER); + xe->info.has_flat_ccs = (reg & XE2_FLAT_CCS_ENABLE); + + if (!xe->info.has_flat_ccs) + drm_dbg(&xe->drm, + "Flat CCS has been disabled in bios, May lead to performance impact"); + + return xe_force_wake_put(gt_to_fw(gt), XE_FW_GT); +} + +int xe_device_probe(struct xe_device *xe) +{ + struct xe_tile *tile; + struct xe_gt *gt; + int err; + u8 last_gt; + u8 id; + + xe_pat_init_early(xe); + + err = xe_sriov_init(xe); + if (err) + return err; + + xe->info.mem_region_mask = 1; + err = xe_display_init_nommio(xe); + if (err) + return err; + + err = xe_set_dma_info(xe); + if (err) + return err; + + err = xe_mmio_probe_tiles(xe); + if (err) + return err; + + xe_ttm_sys_mgr_init(xe); + + for_each_gt(gt, xe, id) { + err = xe_gt_init_early(gt); + if (err) + return err; + + /* + * Only after this point can GT-specific MMIO operations + * (including things like communication with the GuC) + * be performed. + */ + xe_gt_mmio_init(gt); + } + + for_each_tile(tile, xe, id) { + if (IS_SRIOV_VF(xe)) { + xe_guc_comm_init_early(&tile->primary_gt->uc.guc); + err = xe_gt_sriov_vf_bootstrap(tile->primary_gt); + if (err) + return err; + err = xe_gt_sriov_vf_query_config(tile->primary_gt); + if (err) + return err; + } + err = xe_ggtt_init_early(tile->mem.ggtt); + if (err) + return err; + err = xe_memirq_init(&tile->memirq); + if (err) + return err; + } + + for_each_gt(gt, xe, id) { + err = xe_gt_init_hwconfig(gt); + if (err) + return err; + } + + err = xe_devcoredump_init(xe); + if (err) + return err; + err = devm_add_action_or_reset(xe->drm.dev, xe_driver_flr_fini, xe); + if (err) + return err; + + err = xe_display_init_noirq(xe); + if (err) + return err; + + err = xe_irq_install(xe); + if (err) + goto err; + + err = probe_has_flat_ccs(xe); + if (err) + goto err; + + err = xe_vram_probe(xe); + if (err) + goto err; + + for_each_tile(tile, xe, id) { + err = xe_tile_init_noalloc(tile); + if (err) + goto err; + } + + /* Allocate and map stolen after potential VRAM resize */ + xe_ttm_stolen_mgr_init(xe); + + /* + * Now that GT is initialized (TTM in particular), + * we can try to init display, and inherit the initial fb. + * This is the reason the first allocation needs to be done + * inside display. + */ + err = xe_display_init_noaccel(xe); + if (err) + goto err; + + for_each_gt(gt, xe, id) { + last_gt = id; + + err = xe_gt_init(gt); + if (err) + goto err_fini_gt; + } + + xe_heci_gsc_init(xe); + + err = xe_oa_init(xe); + if (err) + goto err_fini_gt; + + err = xe_display_init(xe); + if (err) + goto err_fini_oa; + + err = drm_dev_register(&xe->drm, 0); + if (err) + goto err_fini_display; + + xe_display_register(xe); + + xe_oa_register(xe); + + xe_debugfs_register(xe); + + xe_hwmon_register(xe); + + for_each_gt(gt, xe, id) + xe_gt_sanitize_freq(gt); + + return devm_add_action_or_reset(xe->drm.dev, xe_device_sanitize, xe); + +err_fini_display: + xe_display_driver_remove(xe); + +err_fini_oa: + xe_oa_fini(xe); + +err_fini_gt: + for_each_gt(gt, xe, id) { + if (id < last_gt) + xe_gt_remove(gt); + else + break; + } + +err: + xe_display_fini(xe); + return err; +} + +static void xe_device_remove_display(struct xe_device *xe) +{ + xe_display_unregister(xe); + + drm_dev_unplug(&xe->drm); + xe_display_driver_remove(xe); +} + +void xe_device_remove(struct xe_device *xe) +{ + struct xe_gt *gt; + u8 id; + + xe_oa_unregister(xe); + + xe_device_remove_display(xe); + + xe_display_fini(xe); + + xe_oa_fini(xe); + + xe_heci_gsc_fini(xe); + + for_each_gt(gt, xe, id) + xe_gt_remove(gt); +} + +void xe_device_shutdown(struct xe_device *xe) +{ + struct xe_gt *gt; + u8 id; + + drm_dbg(&xe->drm, "Shutting down device\n"); + + if (xe_driver_flr_disabled(xe)) { + xe_display_pm_shutdown(xe); + + xe_irq_suspend(xe); + + for_each_gt(gt, xe, id) + xe_gt_shutdown(gt); + + xe_display_pm_shutdown_late(xe); + } else { + /* BOOM! */ + __xe_driver_flr(xe); + } +} + +/** + * xe_device_wmb() - Device specific write memory barrier + * @xe: the &xe_device + * + * While wmb() is sufficient for a barrier if we use system memory, on discrete + * platforms with device memory we additionally need to issue a register write. + * Since it doesn't matter which register we write to, use the read-only VF_CAP + * register that is also marked as accessible by the VFs. + */ +void xe_device_wmb(struct xe_device *xe) +{ + wmb(); + if (IS_DGFX(xe)) + xe_mmio_write32(xe_root_tile_mmio(xe), VF_CAP_REG, 0); +} + +/** + * xe_device_td_flush() - Flush transient L3 cache entries + * @xe: The device + * + * Display engine has direct access to memory and is never coherent with L3/L4 + * caches (or CPU caches), however KMD is responsible for specifically flushing + * transient L3 GPU cache entries prior to the flip sequence to ensure scanout + * can happen from such a surface without seeing corruption. + * + * Display surfaces can be tagged as transient by mapping it using one of the + * various L3:XD PAT index modes on Xe2. + * + * Note: On non-discrete xe2 platforms, like LNL, the entire L3 cache is flushed + * at the end of each submission via PIPE_CONTROL for compute/render, since SA + * Media is not coherent with L3 and we want to support render-vs-media + * usescases. For other engines like copy/blt the HW internally forces uncached + * behaviour, hence why we can skip the TDF on such platforms. + */ +void xe_device_td_flush(struct xe_device *xe) +{ + struct xe_gt *gt; + u8 id; + + if (!IS_DGFX(xe) || GRAPHICS_VER(xe) < 20) + return; + + if (XE_WA(xe_root_mmio_gt(xe), 16023588340)) { + xe_device_l2_flush(xe); + return; + } + + for_each_gt(gt, xe, id) { + if (xe_gt_is_media_type(gt)) + continue; + + if (xe_force_wake_get(gt_to_fw(gt), XE_FW_GT)) + return; + + xe_mmio_write32(>->mmio, XE2_TDF_CTRL, TRANSIENT_FLUSH_REQUEST); + /* + * FIXME: We can likely do better here with our choice of + * timeout. Currently we just assume the worst case, i.e. 150us, + * which is believed to be sufficient to cover the worst case + * scenario on current platforms if all cache entries are + * transient and need to be flushed.. + */ + if (xe_mmio_wait32(>->mmio, XE2_TDF_CTRL, TRANSIENT_FLUSH_REQUEST, 0, + 150, NULL, false)) + xe_gt_err_once(gt, "TD flush timeout\n"); + + xe_force_wake_put(gt_to_fw(gt), XE_FW_GT); + } +} + +void xe_device_l2_flush(struct xe_device *xe) +{ + struct xe_gt *gt; + int err; + + gt = xe_root_mmio_gt(xe); + + if (!XE_WA(gt, 16023588340)) + return; + + err = xe_force_wake_get(gt_to_fw(gt), XE_FW_GT); + if (err) + return; + + spin_lock(>->global_invl_lock); + xe_mmio_write32(>->mmio, XE2_GLOBAL_INVAL, 0x1); + +<<<<<<< + if (xe_mmio_wait32(>->mmio, XE2_GLOBAL_INVAL, 0x1, 0x0, 500, NULL, true)) +======= + if (xe_mmio_wait32(gt, XE2_GLOBAL_INVAL, 0x1, 0x0, 500, NULL, true)) +>>>>>>> + xe_gt_err_once(gt, "Global invalidation timeout\n"); + spin_unlock(>->global_invl_lock); + + xe_force_wake_put(gt_to_fw(gt), XE_FW_GT); +} + +u32 xe_device_ccs_bytes(struct xe_device *xe, u64 size) +{ + return xe_device_has_flat_ccs(xe) ? + DIV_ROUND_UP_ULL(size, NUM_BYTES_PER_CCS_BYTE(xe)) : 0; +} + +/** + * xe_device_assert_mem_access - Inspect the current runtime_pm state. + * @xe: xe device instance + * + * To be used before any kind of memory access. It will splat a debug warning + * if the device is currently sleeping. But it doesn't guarantee in any way + * that the device is going to remain awake. Xe PM runtime get and put + * functions might be added to the outer bound of the memory access, while + * this check is intended for inner usage to splat some warning if the worst + * case has just happened. + */ +void xe_device_assert_mem_access(struct xe_device *xe) +{ + xe_assert(xe, !xe_pm_runtime_suspended(xe)); +} + +void xe_device_snapshot_print(struct xe_device *xe, struct drm_printer *p) +{ + struct xe_gt *gt; + u8 id; + + drm_printf(p, "PCI ID: 0x%04x\n", xe->info.devid); + drm_printf(p, "PCI revision: 0x%02x\n", xe->info.revid); + + for_each_gt(gt, xe, id) { + drm_printf(p, "GT id: %u\n", id); + drm_printf(p, "\tTile: %u\n", gt->tile->id); + drm_printf(p, "\tType: %s\n", + gt->info.type == XE_GT_TYPE_MAIN ? "main" : "media"); + drm_printf(p, "\tIP ver: %u.%u.%u\n", + REG_FIELD_GET(GMD_ID_ARCH_MASK, gt->info.gmdid), + REG_FIELD_GET(GMD_ID_RELEASE_MASK, gt->info.gmdid), + REG_FIELD_GET(GMD_ID_REVID, gt->info.gmdid)); + drm_printf(p, "\tCS reference clock: %u\n", gt->info.reference_clock); + } +} + +u64 xe_device_canonicalize_addr(struct xe_device *xe, u64 address) +{ + return sign_extend64(address, xe->info.va_bits - 1); +} + +u64 xe_device_uncanonicalize_addr(struct xe_device *xe, u64 address) +{ + return address & GENMASK_ULL(xe->info.va_bits - 1, 0); +} + +static void xe_device_wedged_fini(struct drm_device *drm, void *arg) +{ + struct xe_device *xe = arg; + + xe_pm_runtime_put(xe); +} + +/** + * xe_device_declare_wedged - Declare device wedged + * @xe: xe device instance + * + * This is a final state that can only be cleared with a mudule + * re-probe (unbind + bind). + * In this state every IOCTL will be blocked so the GT cannot be used. + * In general it will be called upon any critical error such as gt reset + * failure or guc loading failure. + * If xe.wedged module parameter is set to 2, this function will be called + * on every single execution timeout (a.k.a. GPU hang) right after devcoredump + * snapshot capture. In this mode, GT reset won't be attempted so the state of + * the issue is preserved for further debugging. + */ +void xe_device_declare_wedged(struct xe_device *xe) +{ + struct xe_gt *gt; + u8 id; + + if (xe->wedged.mode == 0) { + drm_dbg(&xe->drm, "Wedged mode is forcibly disabled\n"); + return; + } + + xe_pm_runtime_get_noresume(xe); + + if (drmm_add_action_or_reset(&xe->drm, xe_device_wedged_fini, xe)) { + drm_err(&xe->drm, "Failed to register xe_device_wedged_fini clean-up. Although device is wedged.\n"); + return; + } + + if (!atomic_xchg(&xe->wedged.flag, 1)) { + xe->needs_flr_on_fini = true; + drm_err(&xe->drm, + "CRITICAL: Xe has declared device %s as wedged.\n" + "IOCTLs and executions are blocked. Only a rebind may clear the failure\n" + "Please file a _new_ bug report at https://gitlab.freedesktop.org/drm/xe/kernel/issues/new\n", + dev_name(xe->drm.dev)); + } + + for_each_gt(gt, xe, id) + xe_gt_declare_wedged(gt); +} diff --git a/rr-cache/5fdf7e6a138a878e8f03a52286f9d1bbf3929b0e/preimage b/rr-cache/5fdf7e6a138a878e8f03a52286f9d1bbf3929b0e/preimage new file mode 100644 index 000000000000..cb7c47d1c9a3 --- /dev/null +++ b/rr-cache/5fdf7e6a138a878e8f03a52286f9d1bbf3929b0e/preimage @@ -0,0 +1,529 @@ +// SPDX-License-Identifier: MIT +/* + * Copyright © 2023 Intel Corporation + */ + +#include "xe_display.h" +#include "regs/xe_regs.h" + +#include <linux/fb.h> + +#include <drm/drm_drv.h> +#include <drm/drm_managed.h> +#include <uapi/drm/xe_drm.h> + +#include "soc/intel_dram.h" +#include "i915_drv.h" /* FIXME: HAS_DISPLAY() depends on this */ +#include "intel_acpi.h" +#include "intel_audio.h" +#include "intel_bw.h" +#include "intel_display.h" +#include "intel_display_driver.h" +#include "intel_display_irq.h" +#include "intel_display_types.h" +#include "intel_dmc.h" +#include "intel_dp.h" +#include "intel_encoder.h" +#include "intel_fbdev.h" +#include "intel_hdcp.h" +#include "intel_hotplug.h" +#include "intel_opregion.h" +#include "xe_module.h" + +/* Xe device functions */ + +static bool has_display(struct xe_device *xe) +{ + return HAS_DISPLAY(xe); +} + +/** + * xe_display_driver_probe_defer - Detect if we need to wait for other drivers + * early on + * @pdev: PCI device + * + * Returns: true if probe needs to be deferred, false otherwise + */ +bool xe_display_driver_probe_defer(struct pci_dev *pdev) +{ + if (!xe_modparam.probe_display) + return 0; + + return intel_display_driver_probe_defer(pdev); +} + +/** + * xe_display_driver_set_hooks - Add driver flags and hooks for display + * @driver: DRM device driver + * + * Set features and function hooks in @driver that are needed for driving the + * display IP. This sets the driver's capability of driving display, regardless + * if the device has it enabled + */ +void xe_display_driver_set_hooks(struct drm_driver *driver) +{ + if (!xe_modparam.probe_display) + return; + + driver->driver_features |= DRIVER_MODESET | DRIVER_ATOMIC; +} + +static void unset_display_features(struct xe_device *xe) +{ + xe->drm.driver_features &= ~(DRIVER_MODESET | DRIVER_ATOMIC); +} + +static void display_destroy(struct drm_device *dev, void *dummy) +{ + struct xe_device *xe = to_xe_device(dev); + + destroy_workqueue(xe->display.hotplug.dp_wq); +} + +/** + * xe_display_create - create display struct + * @xe: XE device instance + * + * Initialize all fields used by the display part. + * + * TODO: once everything can be inside a single struct, make the struct opaque + * to the rest of xe and return it to be xe->display. + * + * Returns: 0 on success + */ +int xe_display_create(struct xe_device *xe) +{ + spin_lock_init(&xe->display.fb_tracking.lock); + + xe->display.hotplug.dp_wq = alloc_ordered_workqueue("xe-dp", 0); + + return drmm_add_action_or_reset(&xe->drm, display_destroy, NULL); +} + +static void xe_display_fini_nommio(struct drm_device *dev, void *dummy) +{ + struct xe_device *xe = to_xe_device(dev); + + if (!xe->info.probe_display) + return; + + intel_power_domains_cleanup(xe); +} + +int xe_display_init_nommio(struct xe_device *xe) +{ + if (!xe->info.probe_display) + return 0; + + /* Fake uncore lock */ + spin_lock_init(&xe->uncore.lock); + + /* This must be called before any calls to HAS_PCH_* */ + intel_detect_pch(xe); + + return drmm_add_action_or_reset(&xe->drm, xe_display_fini_nommio, xe); +} + +static void xe_display_fini_noirq(void *arg) +{ + struct xe_device *xe = arg; + struct intel_display *display = &xe->display; + + if (!xe->info.probe_display) + return; + + intel_display_driver_remove_noirq(xe); + intel_opregion_cleanup(display); +} + +int xe_display_init_noirq(struct xe_device *xe) +{ + struct intel_display *display = &xe->display; + int err; + + if (!xe->info.probe_display) + return 0; + + intel_display_driver_early_probe(xe); + + /* Early display init.. */ + intel_opregion_setup(display); + + /* + * Fill the dram structure to get the system dram info. This will be + * used for memory latency calculation. + */ + intel_dram_detect(xe); + + intel_bw_init_hw(xe); + + intel_display_device_info_runtime_init(xe); + + err = intel_display_driver_probe_noirq(xe); + if (err) { + intel_opregion_cleanup(display); + return err; + } + + return devm_add_action_or_reset(xe->drm.dev, xe_display_fini_noirq, xe); +} + +static void xe_display_fini_noaccel(void *arg) +{ + struct xe_device *xe = arg; + + if (!xe->info.probe_display) + return; + + intel_display_driver_remove_nogem(xe); +} + +int xe_display_init_noaccel(struct xe_device *xe) +{ + int err; + + if (!xe->info.probe_display) + return 0; + + err = intel_display_driver_probe_nogem(xe); + if (err) + return err; + + return devm_add_action_or_reset(xe->drm.dev, xe_display_fini_noaccel, xe); +} + +int xe_display_init(struct xe_device *xe) +{ + if (!xe->info.probe_display) + return 0; + + return intel_display_driver_probe(xe); +} + +void xe_display_fini(struct xe_device *xe) +{ + if (!xe->info.probe_display) + return; + + intel_hpd_poll_fini(xe); + + intel_hdcp_component_fini(xe); + intel_audio_deinit(xe); +} + +void xe_display_register(struct xe_device *xe) +{ + if (!xe->info.probe_display) + return; + + intel_display_driver_register(xe); + intel_register_dsm_handler(); + intel_power_domains_enable(xe); +} + +void xe_display_unregister(struct xe_device *xe) +{ + if (!xe->info.probe_display) + return; + + intel_unregister_dsm_handler(); + intel_power_domains_disable(xe); + intel_display_driver_unregister(xe); +} + +void xe_display_driver_remove(struct xe_device *xe) +{ + if (!xe->info.probe_display) + return; + + intel_display_driver_remove(xe); +} + +/* IRQ-related functions */ + +void xe_display_irq_handler(struct xe_device *xe, u32 master_ctl) +{ + if (!xe->info.probe_display) + return; + + if (master_ctl & DISPLAY_IRQ) + gen11_display_irq_handler(xe); +} + +void xe_display_irq_enable(struct xe_device *xe, u32 gu_misc_iir) +{ + struct intel_display *display = &xe->display; + + if (!xe->info.probe_display) + return; + + if (gu_misc_iir & GU_MISC_GSE) + intel_opregion_asle_intr(display); +} + +void xe_display_irq_reset(struct xe_device *xe) +{ + if (!xe->info.probe_display) + return; + + gen11_display_irq_reset(xe); +} + +void xe_display_irq_postinstall(struct xe_device *xe, struct xe_gt *gt) +{ + if (!xe->info.probe_display) + return; + + if (gt->info.id == XE_GT0) + gen11_de_irq_postinstall(xe); +} + +static bool suspend_to_idle(void) +{ +#if IS_ENABLED(CONFIG_ACPI_SLEEP) + if (acpi_target_system_state() < ACPI_STATE_S3) + return true; +#endif + return false; +} + +static void xe_display_flush_cleanup_work(struct xe_device *xe) +{ + struct intel_crtc *crtc; + + for_each_intel_crtc(&xe->drm, crtc) { + struct drm_crtc_commit *commit; + + spin_lock(&crtc->base.commit_lock); + commit = list_first_entry_or_null(&crtc->base.commit_list, + struct drm_crtc_commit, commit_entry); + if (commit) + drm_crtc_commit_get(commit); + spin_unlock(&crtc->base.commit_lock); + + if (commit) { + wait_for_completion(&commit->cleanup_done); + drm_crtc_commit_put(commit); + } + } +} + +/* TODO: System and runtime suspend/resume sequences will be sanitized as a follow-up. */ +void xe_display_pm_runtime_suspend(struct xe_device *xe) +{ + if (!xe->info.probe_display) + return; + + if (xe->d3cold.allowed) + xe_display_pm_suspend(xe, true); + + intel_hpd_poll_enable(xe); +} + +void xe_display_pm_suspend(struct xe_device *xe, bool runtime) +{ + struct intel_display *display = &xe->display; + bool s2idle = suspend_to_idle(); + if (!xe->info.probe_display) + return; + + /* + * We do a lot of poking in a lot of registers, make sure they work + * properly. + */ + intel_power_domains_disable(xe); + intel_fbdev_set_suspend(&xe->drm, FBINFO_STATE_SUSPENDED, true); + if (!runtime && has_display(xe)) { + drm_kms_helper_poll_disable(&xe->drm); + intel_display_driver_disable_user_access(xe); + intel_display_driver_suspend(xe); + } + + xe_display_flush_cleanup_work(xe); + + intel_dp_mst_suspend(xe); + + intel_hpd_cancel_work(xe); + + if (!runtime && has_display(xe)) { + intel_display_driver_suspend_access(xe); + intel_encoder_suspend_all(&xe->display); + } + + intel_opregion_suspend(display, s2idle ? PCI_D1 : PCI_D3cold); + + intel_dmc_suspend(xe); + + if (runtime && has_display(xe)) + intel_hpd_poll_enable(xe); +} + +<<<<<<< +======= +void xe_display_pm_suspend(struct xe_device *xe) +{ + __xe_display_pm_suspend(xe, false); +} + +void xe_display_pm_shutdown(struct xe_device *xe) +{ + struct intel_display *display = &xe->display; + + if (!xe->info.probe_display) + return; + + intel_power_domains_disable(xe); + intel_fbdev_set_suspend(&xe->drm, FBINFO_STATE_SUSPENDED, true); + if (has_display(xe)) { + drm_kms_helper_poll_disable(&xe->drm); + intel_display_driver_disable_user_access(xe); + intel_display_driver_suspend(xe); + } + + xe_display_flush_cleanup_work(xe); + intel_dp_mst_suspend(xe); + intel_hpd_cancel_work(xe); + + if (has_display(xe)) + intel_display_driver_suspend_access(xe); + + intel_encoder_suspend_all(display); + intel_encoder_shutdown_all(display); + + intel_opregion_suspend(display, PCI_D3cold); + + intel_dmc_suspend(xe); +} + +void xe_display_pm_runtime_suspend(struct xe_device *xe) +{ + if (!xe->info.probe_display) + return; + + if (xe->d3cold.allowed) { + __xe_display_pm_suspend(xe, true); + return; + } + + intel_hpd_poll_enable(xe); +} + +>>>>>>> +void xe_display_pm_suspend_late(struct xe_device *xe) +{ + bool s2idle = suspend_to_idle(); + if (!xe->info.probe_display) + return; + + intel_power_domains_suspend(xe, s2idle); + + intel_display_power_suspend_late(xe); +} + +void xe_display_pm_runtime_resume(struct xe_device *xe) +{ + if (!xe->info.probe_display) + return; + + intel_hpd_poll_disable(xe); + + if (xe->d3cold.allowed) + xe_display_pm_resume(xe, true); +} + +void xe_display_pm_resume_early(struct xe_device *xe) +{ + if (!xe->info.probe_display) + return; + + intel_display_power_resume_early(xe); + + intel_power_domains_resume(xe); +} + +void xe_display_pm_resume(struct xe_device *xe, bool runtime) +{ + struct intel_display *display = &xe->display; + + if (!xe->info.probe_display) + return; + + intel_dmc_resume(xe); + + if (has_display(xe)) + drm_mode_config_reset(&xe->drm); + + intel_display_driver_init_hw(xe); + intel_hpd_init(xe); + + if (!runtime && has_display(xe)) + intel_display_driver_resume_access(xe); + + /* MST sideband requires HPD interrupts enabled */ + intel_dp_mst_resume(xe); + if (!runtime && has_display(xe)) { + intel_display_driver_resume(xe); + drm_kms_helper_poll_enable(&xe->drm); + intel_display_driver_enable_user_access(xe); + } + + if (has_display(xe)) + intel_hpd_poll_disable(xe); + + intel_opregion_resume(display); + + intel_fbdev_set_suspend(&xe->drm, FBINFO_STATE_RUNNING, false); + + intel_power_domains_enable(xe); +} + +<<<<<<< +======= +void xe_display_pm_resume(struct xe_device *xe) +{ + __xe_display_pm_resume(xe, false); +} + +void xe_display_pm_runtime_resume(struct xe_device *xe) +{ + if (!xe->info.probe_display) + return; + + if (xe->d3cold.allowed) { + __xe_display_pm_resume(xe, true); + return; + } + + intel_hpd_poll_disable(xe); +} + + +>>>>>>> +static void display_device_remove(struct drm_device *dev, void *arg) +{ + struct xe_device *xe = arg; + + intel_display_device_remove(xe); +} + +int xe_display_probe(struct xe_device *xe) +{ + int err; + + if (!xe->info.probe_display) + goto no_display; + + intel_display_device_probe(xe); + + err = drmm_add_action_or_reset(&xe->drm, display_device_remove, xe); + if (err) + return err; + + if (has_display(xe)) + return 0; + +no_display: + xe->info.probe_display = false; + unset_display_features(xe); + return 0; +} diff --git a/rr-cache/64a8b1e687217096af72085e0d85f39e6d425bd5/preimage b/rr-cache/64a8b1e687217096af72085e0d85f39e6d425bd5/preimage new file mode 100644 index 000000000000..bf64eecd1621 --- /dev/null +++ b/rr-cache/64a8b1e687217096af72085e0d85f39e6d425bd5/preimage @@ -0,0 +1,86 @@ +/* SPDX-License-Identifier: MIT */ +/* + * Copyright © 2023 Intel Corporation + */ + +#ifndef _XE_DISPLAY_H_ +#define _XE_DISPLAY_H_ + +#include "xe_device.h" + +struct drm_driver; + +#if IS_ENABLED(CONFIG_DRM_XE_DISPLAY) + +bool xe_display_driver_probe_defer(struct pci_dev *pdev); +void xe_display_driver_set_hooks(struct drm_driver *driver); +void xe_display_driver_remove(struct xe_device *xe); + +int xe_display_create(struct xe_device *xe); + +int xe_display_probe(struct xe_device *xe); + +int xe_display_init_nommio(struct xe_device *xe); +int xe_display_init_noirq(struct xe_device *xe); +int xe_display_init_noaccel(struct xe_device *xe); +int xe_display_init(struct xe_device *xe); +void xe_display_fini(struct xe_device *xe); + +void xe_display_register(struct xe_device *xe); +void xe_display_unregister(struct xe_device *xe); + +void xe_display_irq_handler(struct xe_device *xe, u32 master_ctl); +void xe_display_irq_enable(struct xe_device *xe, u32 gu_misc_iir); +void xe_display_irq_reset(struct xe_device *xe); +void xe_display_irq_postinstall(struct xe_device *xe, struct xe_gt *gt); + +void xe_display_pm_suspend(struct xe_device *xe); +<<<<<<< +======= +void xe_display_pm_shutdown(struct xe_device *xe); +>>>>>>> +void xe_display_pm_suspend_late(struct xe_device *xe); +void xe_display_pm_shutdown_late(struct xe_device *xe); +void xe_display_pm_resume_early(struct xe_device *xe); +void xe_display_pm_resume(struct xe_device *xe); +void xe_display_pm_runtime_suspend(struct xe_device *xe); +void xe_display_pm_runtime_resume(struct xe_device *xe); + +#else + +static inline int xe_display_driver_probe_defer(struct pci_dev *pdev) { return 0; } +static inline void xe_display_driver_set_hooks(struct drm_driver *driver) { } +static inline void xe_display_driver_remove(struct xe_device *xe) {} + +static inline int xe_display_create(struct xe_device *xe) { return 0; } + +static inline int xe_display_probe(struct xe_device *xe) { return 0; } + +static inline int xe_display_init_nommio(struct xe_device *xe) { return 0; } +static inline int xe_display_init_noirq(struct xe_device *xe) { return 0; } +static inline int xe_display_init_noaccel(struct xe_device *xe) { return 0; } +static inline int xe_display_init(struct xe_device *xe) { return 0; } +static inline void xe_display_fini(struct xe_device *xe) {} + +static inline void xe_display_register(struct xe_device *xe) {} +static inline void xe_display_unregister(struct xe_device *xe) {} + +static inline void xe_display_irq_handler(struct xe_device *xe, u32 master_ctl) {} +static inline void xe_display_irq_enable(struct xe_device *xe, u32 gu_misc_iir) {} +static inline void xe_display_irq_reset(struct xe_device *xe) {} +static inline void xe_display_irq_postinstall(struct xe_device *xe, struct xe_gt *gt) {} + +static inline void xe_display_pm_suspend(struct xe_device *xe) {} +<<<<<<< +======= +static inline void xe_display_pm_shutdown(struct xe_device *xe) {} +>>>>>>> +static inline void xe_display_pm_suspend_late(struct xe_device *xe) {} +static inline void xe_display_pm_shutdown_late(struct xe_device *xe) {} +static inline void xe_display_pm_resume_early(struct xe_device *xe) {} +static inline void xe_display_pm_resume(struct xe_device *xe) {} +static inline void xe_display_pm_runtime_suspend(struct xe_device *xe) {} +static inline void xe_display_pm_runtime_resume(struct xe_device *xe) {} + +#endif /* CONFIG_DRM_XE_DISPLAY */ +#endif /* _XE_DISPLAY_H_ */ diff --git a/rr-cache/a34411237f3928e39f7e5868312a9debb5b6885f/postimage b/rr-cache/a34411237f3928e39f7e5868312a9debb5b6885f/postimage new file mode 100644 index 000000000000..10fd4601b9f2 --- /dev/null +++ b/rr-cache/a34411237f3928e39f7e5868312a9debb5b6885f/postimage @@ -0,0 +1,1001 @@ +// SPDX-License-Identifier: MIT +/* + * Copyright © 2021 Intel Corporation + */ + +#include "xe_device.h" + +#include <linux/delay.h> +#include <linux/units.h> + +#include <drm/drm_aperture.h> +#include <drm/drm_atomic_helper.h> +#include <drm/drm_client.h> +#include <drm/drm_gem_ttm_helper.h> +#include <drm/drm_ioctl.h> +#include <drm/drm_managed.h> +#include <drm/drm_print.h> +#include <uapi/drm/xe_drm.h> + +#include "display/xe_display.h" +#include "instructions/xe_gpu_commands.h" +#include "regs/xe_gt_regs.h" +#include "regs/xe_regs.h" +#include "xe_bo.h" +#include "xe_debugfs.h" +#include "xe_devcoredump.h" +#include "xe_dma_buf.h" +#include "xe_drm_client.h" +#include "xe_drv.h" +#include "xe_exec.h" +#include "xe_exec_queue.h" +#include "xe_force_wake.h" +#include "xe_ggtt.h" +#include "xe_gsc_proxy.h" +#include "xe_gt.h" +#include "xe_gt_mcr.h" +#include "xe_gt_printk.h" +#include "xe_gt_sriov_vf.h" +#include "xe_guc.h" +#include "xe_hw_engine_group.h" +#include "xe_hwmon.h" +#include "xe_irq.h" +#include "xe_memirq.h" +#include "xe_mmio.h" +#include "xe_module.h" +#include "xe_observation.h" +#include "xe_pat.h" +#include "xe_pcode.h" +#include "xe_pm.h" +#include "xe_query.h" +#include "xe_sriov.h" +#include "xe_tile.h" +#include "xe_ttm_stolen_mgr.h" +#include "xe_ttm_sys_mgr.h" +#include "xe_vm.h" +#include "xe_vram.h" +#include "xe_wait_user_fence.h" +#include "xe_wa.h" + +#include <generated/xe_wa_oob.h> + +static int xe_file_open(struct drm_device *dev, struct drm_file *file) +{ + struct xe_device *xe = to_xe_device(dev); + struct xe_drm_client *client; + struct xe_file *xef; + int ret = -ENOMEM; + struct task_struct *task = NULL; + + xef = kzalloc(sizeof(*xef), GFP_KERNEL); + if (!xef) + return ret; + + client = xe_drm_client_alloc(); + if (!client) { + kfree(xef); + return ret; + } + + xef->drm = file; + xef->client = client; + xef->xe = xe; + + mutex_init(&xef->vm.lock); + xa_init_flags(&xef->vm.xa, XA_FLAGS_ALLOC1); + + mutex_init(&xef->exec_queue.lock); + xa_init_flags(&xef->exec_queue.xa, XA_FLAGS_ALLOC1); + + spin_lock(&xe->clients.lock); + xe->clients.count++; + spin_unlock(&xe->clients.lock); + + file->driver_priv = xef; + kref_init(&xef->refcount); + + task = get_pid_task(rcu_access_pointer(file->pid), PIDTYPE_PID); + if (task) { + xef->process_name = kstrdup(task->comm, GFP_KERNEL); + xef->pid = task->pid; + put_task_struct(task); + } + + return 0; +} + +static void xe_file_destroy(struct kref *ref) +{ + struct xe_file *xef = container_of(ref, struct xe_file, refcount); + struct xe_device *xe = xef->xe; + + xa_destroy(&xef->exec_queue.xa); + mutex_destroy(&xef->exec_queue.lock); + xa_destroy(&xef->vm.xa); + mutex_destroy(&xef->vm.lock); + + spin_lock(&xe->clients.lock); + xe->clients.count--; + spin_unlock(&xe->clients.lock); + + xe_drm_client_put(xef->client); + kfree(xef->process_name); + kfree(xef); +} + +/** + * xe_file_get() - Take a reference to the xe file object + * @xef: Pointer to the xe file + * + * Anyone with a pointer to xef must take a reference to the xe file + * object using this call. + * + * Return: xe file pointer + */ +struct xe_file *xe_file_get(struct xe_file *xef) +{ + kref_get(&xef->refcount); + return xef; +} + +/** + * xe_file_put() - Drop a reference to the xe file object + * @xef: Pointer to the xe file + * + * Used to drop reference to the xef object + */ +void xe_file_put(struct xe_file *xef) +{ + kref_put(&xef->refcount, xe_file_destroy); +} + +static void xe_file_close(struct drm_device *dev, struct drm_file *file) +{ + struct xe_device *xe = to_xe_device(dev); + struct xe_file *xef = file->driver_priv; + struct xe_vm *vm; + struct xe_exec_queue *q; + unsigned long idx; + + xe_pm_runtime_get(xe); + + /* + * No need for exec_queue.lock here as there is no contention for it + * when FD is closing as IOCTLs presumably can't be modifying the + * xarray. Taking exec_queue.lock here causes undue dependency on + * vm->lock taken during xe_exec_queue_kill(). + */ + xa_for_each(&xef->exec_queue.xa, idx, q) { + if (q->vm && q->hwe->hw_engine_group) + xe_hw_engine_group_del_exec_queue(q->hwe->hw_engine_group, q); + xe_exec_queue_kill(q); + xe_exec_queue_put(q); + } + xa_for_each(&xef->vm.xa, idx, vm) + xe_vm_close_and_put(vm); + + xe_file_put(xef); + + xe_pm_runtime_put(xe); +} + +static const struct drm_ioctl_desc xe_ioctls[] = { + DRM_IOCTL_DEF_DRV(XE_DEVICE_QUERY, xe_query_ioctl, DRM_RENDER_ALLOW), + DRM_IOCTL_DEF_DRV(XE_GEM_CREATE, xe_gem_create_ioctl, DRM_RENDER_ALLOW), + DRM_IOCTL_DEF_DRV(XE_GEM_MMAP_OFFSET, xe_gem_mmap_offset_ioctl, + DRM_RENDER_ALLOW), + DRM_IOCTL_DEF_DRV(XE_VM_CREATE, xe_vm_create_ioctl, DRM_RENDER_ALLOW), + DRM_IOCTL_DEF_DRV(XE_VM_DESTROY, xe_vm_destroy_ioctl, DRM_RENDER_ALLOW), + DRM_IOCTL_DEF_DRV(XE_VM_BIND, xe_vm_bind_ioctl, DRM_RENDER_ALLOW), + DRM_IOCTL_DEF_DRV(XE_EXEC, xe_exec_ioctl, DRM_RENDER_ALLOW), + DRM_IOCTL_DEF_DRV(XE_EXEC_QUEUE_CREATE, xe_exec_queue_create_ioctl, + DRM_RENDER_ALLOW), + DRM_IOCTL_DEF_DRV(XE_EXEC_QUEUE_DESTROY, xe_exec_queue_destroy_ioctl, + DRM_RENDER_ALLOW), + DRM_IOCTL_DEF_DRV(XE_EXEC_QUEUE_GET_PROPERTY, xe_exec_queue_get_property_ioctl, + DRM_RENDER_ALLOW), + DRM_IOCTL_DEF_DRV(XE_WAIT_USER_FENCE, xe_wait_user_fence_ioctl, + DRM_RENDER_ALLOW), + DRM_IOCTL_DEF_DRV(XE_OBSERVATION, xe_observation_ioctl, DRM_RENDER_ALLOW), +}; + +static long xe_drm_ioctl(struct file *file, unsigned int cmd, unsigned long arg) +{ + struct drm_file *file_priv = file->private_data; + struct xe_device *xe = to_xe_device(file_priv->minor->dev); + long ret; + + if (xe_device_wedged(xe)) + return -ECANCELED; + + ret = xe_pm_runtime_get_ioctl(xe); + if (ret >= 0) + ret = drm_ioctl(file, cmd, arg); + xe_pm_runtime_put(xe); + + return ret; +} + +#ifdef CONFIG_COMPAT +static long xe_drm_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg) +{ + struct drm_file *file_priv = file->private_data; + struct xe_device *xe = to_xe_device(file_priv->minor->dev); + long ret; + + if (xe_device_wedged(xe)) + return -ECANCELED; + + ret = xe_pm_runtime_get_ioctl(xe); + if (ret >= 0) + ret = drm_compat_ioctl(file, cmd, arg); + xe_pm_runtime_put(xe); + + return ret; +} +#else +/* similarly to drm_compat_ioctl, let's it be assigned to .compat_ioct unconditionally */ +#define xe_drm_compat_ioctl NULL +#endif + +static const struct file_operations xe_driver_fops = { + .owner = THIS_MODULE, + .open = drm_open, + .release = drm_release_noglobal, + .unlocked_ioctl = xe_drm_ioctl, + .mmap = drm_gem_mmap, + .poll = drm_poll, + .read = drm_read, + .compat_ioctl = xe_drm_compat_ioctl, + .llseek = noop_llseek, +#ifdef CONFIG_PROC_FS + .show_fdinfo = drm_show_fdinfo, +#endif + .fop_flags = FOP_UNSIGNED_OFFSET, +}; + +static struct drm_driver driver = { + /* Don't use MTRRs here; the Xserver or userspace app should + * deal with them for Intel hardware. + */ + .driver_features = + DRIVER_GEM | + DRIVER_RENDER | DRIVER_SYNCOBJ | + DRIVER_SYNCOBJ_TIMELINE | DRIVER_GEM_GPUVA, + .open = xe_file_open, + .postclose = xe_file_close, + + .gem_prime_import = xe_gem_prime_import, + + .dumb_create = xe_bo_dumb_create, + .dumb_map_offset = drm_gem_ttm_dumb_map_offset, +#ifdef CONFIG_PROC_FS + .show_fdinfo = xe_drm_client_fdinfo, +#endif + .ioctls = xe_ioctls, + .num_ioctls = ARRAY_SIZE(xe_ioctls), + .fops = &xe_driver_fops, + .name = DRIVER_NAME, + .desc = DRIVER_DESC, + .date = DRIVER_DATE, + .major = DRIVER_MAJOR, + .minor = DRIVER_MINOR, + .patchlevel = DRIVER_PATCHLEVEL, +}; + +static void xe_device_destroy(struct drm_device *dev, void *dummy) +{ + struct xe_device *xe = to_xe_device(dev); + + if (xe->preempt_fence_wq) + destroy_workqueue(xe->preempt_fence_wq); + + if (xe->ordered_wq) + destroy_workqueue(xe->ordered_wq); + + if (xe->unordered_wq) + destroy_workqueue(xe->unordered_wq); + + if (xe->destroy_wq) + destroy_workqueue(xe->destroy_wq); + + ttm_device_fini(&xe->ttm); +} + +struct xe_device *xe_device_create(struct pci_dev *pdev, + const struct pci_device_id *ent) +{ + struct xe_device *xe; + int err; + + xe_display_driver_set_hooks(&driver); + + err = drm_aperture_remove_conflicting_pci_framebuffers(pdev, &driver); + if (err) + return ERR_PTR(err); + + xe = devm_drm_dev_alloc(&pdev->dev, &driver, struct xe_device, drm); + if (IS_ERR(xe)) + return xe; + + err = ttm_device_init(&xe->ttm, &xe_ttm_funcs, xe->drm.dev, + xe->drm.anon_inode->i_mapping, + xe->drm.vma_offset_manager, false, false); + if (WARN_ON(err)) + goto err; + + err = drmm_add_action_or_reset(&xe->drm, xe_device_destroy, NULL); + if (err) + goto err; + + xe->info.devid = pdev->device; + xe->info.revid = pdev->revision; + xe->info.force_execlist = xe_modparam.force_execlist; + + spin_lock_init(&xe->irq.lock); + spin_lock_init(&xe->clients.lock); + + init_waitqueue_head(&xe->ufence_wq); + + init_rwsem(&xe->usm.lock); + + xa_init_flags(&xe->usm.asid_to_vm, XA_FLAGS_ALLOC); + + if (IS_ENABLED(CONFIG_DRM_XE_DEBUG)) { + /* Trigger a large asid and an early asid wrap. */ + u32 asid; + + BUILD_BUG_ON(XE_MAX_ASID < 2); + err = xa_alloc_cyclic(&xe->usm.asid_to_vm, &asid, NULL, + XA_LIMIT(XE_MAX_ASID - 2, XE_MAX_ASID - 1), + &xe->usm.next_asid, GFP_KERNEL); + drm_WARN_ON(&xe->drm, err); + if (err >= 0) + xa_erase(&xe->usm.asid_to_vm, asid); + } + + spin_lock_init(&xe->pinned.lock); + INIT_LIST_HEAD(&xe->pinned.kernel_bo_present); + INIT_LIST_HEAD(&xe->pinned.external_vram); + INIT_LIST_HEAD(&xe->pinned.evicted); + + xe->preempt_fence_wq = alloc_ordered_workqueue("xe-preempt-fence-wq", 0); + xe->ordered_wq = alloc_ordered_workqueue("xe-ordered-wq", 0); + xe->unordered_wq = alloc_workqueue("xe-unordered-wq", 0, 0); + xe->destroy_wq = alloc_workqueue("xe-destroy-wq", 0, 0); + if (!xe->ordered_wq || !xe->unordered_wq || + !xe->preempt_fence_wq || !xe->destroy_wq) { + /* + * Cleanup done in xe_device_destroy via + * drmm_add_action_or_reset register above + */ + drm_err(&xe->drm, "Failed to allocate xe workqueues\n"); + err = -ENOMEM; + goto err; + } + + err = xe_display_create(xe); + if (WARN_ON(err)) + goto err; + + return xe; + +err: + return ERR_PTR(err); +} + +/* + * The driver-initiated FLR is the highest level of reset that we can trigger + * from within the driver. It is different from the PCI FLR in that it doesn't + * fully reset the SGUnit and doesn't modify the PCI config space and therefore + * it doesn't require a re-enumeration of the PCI BARs. However, the + * driver-initiated FLR does still cause a reset of both GT and display and a + * memory wipe of local and stolen memory, so recovery would require a full HW + * re-init and saving/restoring (or re-populating) the wiped memory. Since we + * perform the FLR as the very last action before releasing access to the HW + * during the driver release flow, we don't attempt recovery at all, because + * if/when a new instance of i915 is bound to the device it will do a full + * re-init anyway. + */ +static void xe_driver_flr(struct xe_device *xe) +{ + const unsigned int flr_timeout = 3 * MICRO; /* specs recommend a 3s wait */ + struct xe_gt *gt = xe_root_mmio_gt(xe); + int ret; + + if (xe_mmio_read32(gt, GU_CNTL_PROTECTED) & DRIVERINT_FLR_DIS) { + drm_info_once(&xe->drm, "BIOS Disabled Driver-FLR\n"); + return; + } + + drm_dbg(&xe->drm, "Triggering Driver-FLR\n"); + + /* + * Make sure any pending FLR requests have cleared by waiting for the + * FLR trigger bit to go to zero. Also clear GU_DEBUG's DRIVERFLR_STATUS + * to make sure it's not still set from a prior attempt (it's a write to + * clear bit). + * Note that we should never be in a situation where a previous attempt + * is still pending (unless the HW is totally dead), but better to be + * safe in case something unexpected happens + */ + ret = xe_mmio_wait32(gt, GU_CNTL, DRIVERFLR, 0, flr_timeout, NULL, false); + if (ret) { + drm_err(&xe->drm, "Driver-FLR-prepare wait for ready failed! %d\n", ret); + return; + } + xe_mmio_write32(gt, GU_DEBUG, DRIVERFLR_STATUS); + + /* Trigger the actual Driver-FLR */ + xe_mmio_rmw32(gt, GU_CNTL, 0, DRIVERFLR); + + /* Wait for hardware teardown to complete */ + ret = xe_mmio_wait32(gt, GU_CNTL, DRIVERFLR, 0, flr_timeout, NULL, false); + if (ret) { + drm_err(&xe->drm, "Driver-FLR-teardown wait completion failed! %d\n", ret); + return; + } + + /* Wait for hardware/firmware re-init to complete */ + ret = xe_mmio_wait32(gt, GU_DEBUG, DRIVERFLR_STATUS, DRIVERFLR_STATUS, + flr_timeout, NULL, false); + if (ret) { + drm_err(&xe->drm, "Driver-FLR-reinit wait completion failed! %d\n", ret); + return; + } + + /* Clear sticky completion status */ + xe_mmio_write32(gt, GU_DEBUG, DRIVERFLR_STATUS); +} + +static void xe_driver_flr_fini(void *arg) +{ + struct xe_device *xe = arg; + + if (xe->needs_flr_on_fini) + xe_driver_flr(xe); +} + +static void xe_device_sanitize(void *arg) +{ + struct xe_device *xe = arg; + struct xe_gt *gt; + u8 id; + + for_each_gt(gt, xe, id) + xe_gt_sanitize(gt); +} + +static int xe_set_dma_info(struct xe_device *xe) +{ + unsigned int mask_size = xe->info.dma_mask_size; + int err; + + dma_set_max_seg_size(xe->drm.dev, xe_sg_segment_size(xe->drm.dev)); + + err = dma_set_mask(xe->drm.dev, DMA_BIT_MASK(mask_size)); + if (err) + goto mask_err; + + err = dma_set_coherent_mask(xe->drm.dev, DMA_BIT_MASK(mask_size)); + if (err) + goto mask_err; + + return 0; + +mask_err: + drm_err(&xe->drm, "Can't set DMA mask/consistent mask (%d)\n", err); + return err; +} + +static bool verify_lmem_ready(struct xe_gt *gt) +{ + u32 val = xe_mmio_read32(gt, GU_CNTL) & LMEM_INIT; + + return !!val; +} + +static int wait_for_lmem_ready(struct xe_device *xe) +{ + struct xe_gt *gt = xe_root_mmio_gt(xe); + unsigned long timeout, start; + + if (!IS_DGFX(xe)) + return 0; + + if (IS_SRIOV_VF(xe)) + return 0; + + if (verify_lmem_ready(gt)) + return 0; + + drm_dbg(&xe->drm, "Waiting for lmem initialization\n"); + + start = jiffies; + timeout = start + msecs_to_jiffies(60 * 1000); /* 60 sec! */ + + do { + if (signal_pending(current)) + return -EINTR; + + /* + * The boot firmware initializes local memory and + * assesses its health. If memory training fails, + * the punit will have been instructed to keep the GT powered + * down.we won't be able to communicate with it + * + * If the status check is done before punit updates the register, + * it can lead to the system being unusable. + * use a timeout and defer the probe to prevent this. + */ + if (time_after(jiffies, timeout)) { + drm_dbg(&xe->drm, "lmem not initialized by firmware\n"); + return -EPROBE_DEFER; + } + + msleep(20); + + } while (!verify_lmem_ready(gt)); + + drm_dbg(&xe->drm, "lmem ready after %ums", + jiffies_to_msecs(jiffies - start)); + + return 0; +} + +static void update_device_info(struct xe_device *xe) +{ + /* disable features that are not available/applicable to VFs */ + if (IS_SRIOV_VF(xe)) { + xe->info.probe_display = 0; + xe->info.has_heci_gscfi = 0; + xe->info.skip_guc_pc = 1; + xe->info.skip_pcode = 1; + } +} + +/** + * xe_device_probe_early: Device early probe + * @xe: xe device instance + * + * Initialize MMIO resources that don't require any + * knowledge about tile count. Also initialize pcode and + * check vram initialization on root tile. + * + * Return: 0 on success, error code on failure + */ +int xe_device_probe_early(struct xe_device *xe) +{ + int err; + + err = xe_mmio_init(xe); + if (err) + return err; + + xe_sriov_probe_early(xe); + + update_device_info(xe); + + err = xe_pcode_probe_early(xe); + if (err) + return err; + + err = wait_for_lmem_ready(xe); + if (err) + return err; + + xe->wedged.mode = xe_modparam.wedged_mode; + + return 0; +} + +static int xe_device_set_has_flat_ccs(struct xe_device *xe) +{ + u32 reg; + int err; + + if (GRAPHICS_VER(xe) < 20 || !xe->info.has_flat_ccs) + return 0; + + struct xe_gt *gt = xe_root_mmio_gt(xe); + + err = xe_force_wake_get(gt_to_fw(gt), XE_FW_GT); + if (err) + return err; + + reg = xe_gt_mcr_unicast_read_any(gt, XE2_FLAT_CCS_BASE_RANGE_LOWER); + xe->info.has_flat_ccs = (reg & XE2_FLAT_CCS_ENABLE); + + if (!xe->info.has_flat_ccs) + drm_dbg(&xe->drm, + "Flat CCS has been disabled in bios, May lead to performance impact"); + + return xe_force_wake_put(gt_to_fw(gt), XE_FW_GT); +} + +int xe_device_probe(struct xe_device *xe) +{ + struct xe_tile *tile; + struct xe_gt *gt; + int err; + u8 last_gt; + u8 id; + + xe_pat_init_early(xe); + + err = xe_sriov_init(xe); + if (err) + return err; + + xe->info.mem_region_mask = 1; + err = xe_display_init_nommio(xe); + if (err) + return err; + + err = xe_set_dma_info(xe); + if (err) + return err; + + err = xe_mmio_probe_tiles(xe); + if (err) + return err; + + xe_ttm_sys_mgr_init(xe); + + for_each_gt(gt, xe, id) { + err = xe_gt_init_early(gt); + if (err) + return err; + } + + for_each_tile(tile, xe, id) { + if (IS_SRIOV_VF(xe)) { + xe_guc_comm_init_early(&tile->primary_gt->uc.guc); + err = xe_gt_sriov_vf_bootstrap(tile->primary_gt); + if (err) + return err; + err = xe_gt_sriov_vf_query_config(tile->primary_gt); + if (err) + return err; + } + err = xe_ggtt_init_early(tile->mem.ggtt); + if (err) + return err; + if (IS_SRIOV_VF(xe)) { + err = xe_memirq_init(&tile->sriov.vf.memirq); + if (err) + return err; + } + } + + for_each_gt(gt, xe, id) { + err = xe_gt_init_hwconfig(gt); + if (err) + return err; + } + + err = xe_devcoredump_init(xe); + if (err) + return err; + err = devm_add_action_or_reset(xe->drm.dev, xe_driver_flr_fini, xe); + if (err) + return err; + + err = xe_display_init_noirq(xe); + if (err) + return err; + + err = xe_irq_install(xe); + if (err) + goto err; + + err = xe_device_set_has_flat_ccs(xe); + if (err) + goto err; + + err = xe_vram_probe(xe); + if (err) + goto err; + + for_each_tile(tile, xe, id) { + err = xe_tile_init_noalloc(tile); + if (err) + goto err; + } + + /* Allocate and map stolen after potential VRAM resize */ + xe_ttm_stolen_mgr_init(xe); + + /* + * Now that GT is initialized (TTM in particular), + * we can try to init display, and inherit the initial fb. + * This is the reason the first allocation needs to be done + * inside display. + */ + err = xe_display_init_noaccel(xe); + if (err) + goto err; + + for_each_gt(gt, xe, id) { + last_gt = id; + + err = xe_gt_init(gt); + if (err) + goto err_fini_gt; + } + + xe_heci_gsc_init(xe); + + err = xe_oa_init(xe); + if (err) + goto err_fini_gt; + + err = xe_display_init(xe); + if (err) + goto err_fini_oa; + + err = drm_dev_register(&xe->drm, 0); + if (err) + goto err_fini_display; + + xe_display_register(xe); + + xe_oa_register(xe); + + xe_debugfs_register(xe); + + xe_hwmon_register(xe); + + for_each_gt(gt, xe, id) + xe_gt_sanitize_freq(gt); + + return devm_add_action_or_reset(xe->drm.dev, xe_device_sanitize, xe); + +err_fini_display: + xe_display_driver_remove(xe); + +err_fini_oa: + xe_oa_fini(xe); + +err_fini_gt: + for_each_gt(gt, xe, id) { + if (id < last_gt) + xe_gt_remove(gt); + else + break; + } + +err: + xe_display_fini(xe); + return err; +} + +static void xe_device_remove_display(struct xe_device *xe) +{ + xe_display_unregister(xe); + + drm_dev_unplug(&xe->drm); + xe_display_driver_remove(xe); +} + +void xe_device_remove(struct xe_device *xe) +{ + struct xe_gt *gt; + u8 id; + + xe_oa_unregister(xe); + + xe_device_remove_display(xe); + + xe_display_fini(xe); + + xe_oa_fini(xe); + + xe_heci_gsc_fini(xe); + + for_each_gt(gt, xe, id) + xe_gt_remove(gt); +} + +void xe_device_shutdown(struct xe_device *xe) +{ +} + +/** + * xe_device_wmb() - Device specific write memory barrier + * @xe: the &xe_device + * + * While wmb() is sufficient for a barrier if we use system memory, on discrete + * platforms with device memory we additionally need to issue a register write. + * Since it doesn't matter which register we write to, use the read-only VF_CAP + * register that is also marked as accessible by the VFs. + */ +void xe_device_wmb(struct xe_device *xe) +{ + struct xe_gt *gt = xe_root_mmio_gt(xe); + + wmb(); + if (IS_DGFX(xe)) + xe_mmio_write32(gt, VF_CAP_REG, 0); +} + +/** + * xe_device_td_flush() - Flush transient L3 cache entries + * @xe: The device + * + * Display engine has direct access to memory and is never coherent with L3/L4 + * caches (or CPU caches), however KMD is responsible for specifically flushing + * transient L3 GPU cache entries prior to the flip sequence to ensure scanout + * can happen from such a surface without seeing corruption. + * + * Display surfaces can be tagged as transient by mapping it using one of the + * various L3:XD PAT index modes on Xe2. + * + * Note: On non-discrete xe2 platforms, like LNL, the entire L3 cache is flushed + * at the end of each submission via PIPE_CONTROL for compute/render, since SA + * Media is not coherent with L3 and we want to support render-vs-media + * usescases. For other engines like copy/blt the HW internally forces uncached + * behaviour, hence why we can skip the TDF on such platforms. + */ +void xe_device_td_flush(struct xe_device *xe) +{ + struct xe_gt *gt; + u8 id; + + if (!IS_DGFX(xe) || GRAPHICS_VER(xe) < 20) + return; + + if (XE_WA(xe_root_mmio_gt(xe), 16023588340)) { + xe_device_l2_flush(xe); + return; + } + + for_each_gt(gt, xe, id) { + if (xe_gt_is_media_type(gt)) + continue; + + if (xe_force_wake_get(gt_to_fw(gt), XE_FW_GT)) + return; + + xe_mmio_write32(gt, XE2_TDF_CTRL, TRANSIENT_FLUSH_REQUEST); + /* + * FIXME: We can likely do better here with our choice of + * timeout. Currently we just assume the worst case, i.e. 150us, + * which is believed to be sufficient to cover the worst case + * scenario on current platforms if all cache entries are + * transient and need to be flushed.. + */ + if (xe_mmio_wait32(gt, XE2_TDF_CTRL, TRANSIENT_FLUSH_REQUEST, 0, + 150, NULL, false)) + xe_gt_err_once(gt, "TD flush timeout\n"); + + xe_force_wake_put(gt_to_fw(gt), XE_FW_GT); + } +} + +void xe_device_l2_flush(struct xe_device *xe) +{ + struct xe_gt *gt; + int err; + + gt = xe_root_mmio_gt(xe); + + if (!XE_WA(gt, 16023588340)) + return; + + err = xe_force_wake_get(gt_to_fw(gt), XE_FW_GT); + if (err) + return; + + spin_lock(>->global_invl_lock); + xe_mmio_write32(gt, XE2_GLOBAL_INVAL, 0x1); + + if (xe_mmio_wait32(gt, XE2_GLOBAL_INVAL, 0x1, 0x0, 500, NULL, true)) + xe_gt_err_once(gt, "Global invalidation timeout\n"); + spin_unlock(>->global_invl_lock); + + xe_force_wake_put(gt_to_fw(gt), XE_FW_GT); +} + +u32 xe_device_ccs_bytes(struct xe_device *xe, u64 size) +{ + return xe_device_has_flat_ccs(xe) ? + DIV_ROUND_UP_ULL(size, NUM_BYTES_PER_CCS_BYTE(xe)) : 0; +} + +/** + * xe_device_assert_mem_access - Inspect the current runtime_pm state. + * @xe: xe device instance + * + * To be used before any kind of memory access. It will splat a debug warning + * if the device is currently sleeping. But it doesn't guarantee in any way + * that the device is going to remain awake. Xe PM runtime get and put + * functions might be added to the outer bound of the memory access, while + * this check is intended for inner usage to splat some warning if the worst + * case has just happened. + */ +void xe_device_assert_mem_access(struct xe_device *xe) +{ + xe_assert(xe, !xe_pm_runtime_suspended(xe)); +} + +void xe_device_snapshot_print(struct xe_device *xe, struct drm_printer *p) +{ + struct xe_gt *gt; + u8 id; + + drm_printf(p, "PCI ID: 0x%04x\n", xe->info.devid); + drm_printf(p, "PCI revision: 0x%02x\n", xe->info.revid); + + for_each_gt(gt, xe, id) { + drm_printf(p, "GT id: %u\n", id); + drm_printf(p, "\tType: %s\n", + gt->info.type == XE_GT_TYPE_MAIN ? "main" : "media"); + drm_printf(p, "\tIP ver: %u.%u.%u\n", + REG_FIELD_GET(GMD_ID_ARCH_MASK, gt->info.gmdid), + REG_FIELD_GET(GMD_ID_RELEASE_MASK, gt->info.gmdid), + REG_FIELD_GET(GMD_ID_REVID, gt->info.gmdid)); + drm_printf(p, "\tCS reference clock: %u\n", gt->info.reference_clock); + } +} + +u64 xe_device_canonicalize_addr(struct xe_device *xe, u64 address) +{ + return sign_extend64(address, xe->info.va_bits - 1); +} + +u64 xe_device_uncanonicalize_addr(struct xe_device *xe, u64 address) +{ + return address & GENMASK_ULL(xe->info.va_bits - 1, 0); +} + +static void xe_device_wedged_fini(struct drm_device *drm, void *arg) +{ + struct xe_device *xe = arg; + + xe_pm_runtime_put(xe); +} + +/** + * xe_device_declare_wedged - Declare device wedged + * @xe: xe device instance + * + * This is a final state that can only be cleared with a mudule + * re-probe (unbind + bind). + * In this state every IOCTL will be blocked so the GT cannot be used. + * In general it will be called upon any critical error such as gt reset + * failure or guc loading failure. + * If xe.wedged module parameter is set to 2, this function will be called + * on every single execution timeout (a.k.a. GPU hang) right after devcoredump + * snapshot capture. In this mode, GT reset won't be attempted so the state of + * the issue is preserved for further debugging. + */ +void xe_device_declare_wedged(struct xe_device *xe) +{ + struct xe_gt *gt; + u8 id; + + if (xe->wedged.mode == 0) { + drm_dbg(&xe->drm, "Wedged mode is forcibly disabled\n"); + return; + } + + xe_pm_runtime_get_noresume(xe); + + if (drmm_add_action_or_reset(&xe->drm, xe_device_wedged_fini, xe)) { + drm_err(&xe->drm, "Failed to register xe_device_wedged_fini clean-up. Although device is wedged.\n"); + return; + } + + if (!atomic_xchg(&xe->wedged.flag, 1)) { + xe->needs_flr_on_fini = true; + drm_err(&xe->drm, + "CRITICAL: Xe has declared device %s as wedged.\n" + "IOCTLs and executions are blocked. Only a rebind may clear the failure\n" + "Please file a _new_ bug report at https://gitlab.freedesktop.org/drm/xe/kernel/issues/new\n", + dev_name(xe->drm.dev)); + } + + for_each_gt(gt, xe, id) + xe_gt_declare_wedged(gt); +} diff --git a/rr-cache/a34411237f3928e39f7e5868312a9debb5b6885f/preimage b/rr-cache/a34411237f3928e39f7e5868312a9debb5b6885f/preimage new file mode 100644 index 000000000000..b707f9f74054 --- /dev/null +++ b/rr-cache/a34411237f3928e39f7e5868312a9debb5b6885f/preimage @@ -0,0 +1,1005 @@ +// SPDX-License-Identifier: MIT +/* + * Copyright © 2021 Intel Corporation + */ + +#include "xe_device.h" + +#include <linux/delay.h> +#include <linux/units.h> + +#include <drm/drm_aperture.h> +#include <drm/drm_atomic_helper.h> +#include <drm/drm_client.h> +#include <drm/drm_gem_ttm_helper.h> +#include <drm/drm_ioctl.h> +#include <drm/drm_managed.h> +#include <drm/drm_print.h> +#include <uapi/drm/xe_drm.h> + +#include "display/xe_display.h" +#include "instructions/xe_gpu_commands.h" +#include "regs/xe_gt_regs.h" +#include "regs/xe_regs.h" +#include "xe_bo.h" +#include "xe_debugfs.h" +#include "xe_devcoredump.h" +#include "xe_dma_buf.h" +#include "xe_drm_client.h" +#include "xe_drv.h" +#include "xe_exec.h" +#include "xe_exec_queue.h" +#include "xe_force_wake.h" +#include "xe_ggtt.h" +#include "xe_gsc_proxy.h" +#include "xe_gt.h" +#include "xe_gt_mcr.h" +#include "xe_gt_printk.h" +#include "xe_gt_sriov_vf.h" +#include "xe_guc.h" +#include "xe_hw_engine_group.h" +#include "xe_hwmon.h" +#include "xe_irq.h" +#include "xe_memirq.h" +#include "xe_mmio.h" +#include "xe_module.h" +#include "xe_observation.h" +#include "xe_pat.h" +#include "xe_pcode.h" +#include "xe_pm.h" +#include "xe_query.h" +#include "xe_sriov.h" +#include "xe_tile.h" +#include "xe_ttm_stolen_mgr.h" +#include "xe_ttm_sys_mgr.h" +#include "xe_vm.h" +#include "xe_vram.h" +#include "xe_wait_user_fence.h" +#include "xe_wa.h" + +#include <generated/xe_wa_oob.h> + +static int xe_file_open(struct drm_device *dev, struct drm_file *file) +{ + struct xe_device *xe = to_xe_device(dev); + struct xe_drm_client *client; + struct xe_file *xef; + int ret = -ENOMEM; + struct task_struct *task = NULL; + + xef = kzalloc(sizeof(*xef), GFP_KERNEL); + if (!xef) + return ret; + + client = xe_drm_client_alloc(); + if (!client) { + kfree(xef); + return ret; + } + + xef->drm = file; + xef->client = client; + xef->xe = xe; + + mutex_init(&xef->vm.lock); + xa_init_flags(&xef->vm.xa, XA_FLAGS_ALLOC1); + + mutex_init(&xef->exec_queue.lock); + xa_init_flags(&xef->exec_queue.xa, XA_FLAGS_ALLOC1); + + spin_lock(&xe->clients.lock); + xe->clients.count++; + spin_unlock(&xe->clients.lock); + + file->driver_priv = xef; + kref_init(&xef->refcount); + + task = get_pid_task(rcu_access_pointer(file->pid), PIDTYPE_PID); + if (task) { + xef->process_name = kstrdup(task->comm, GFP_KERNEL); + xef->pid = task->pid; + put_task_struct(task); + } + + return 0; +} + +static void xe_file_destroy(struct kref *ref) +{ + struct xe_file *xef = container_of(ref, struct xe_file, refcount); + struct xe_device *xe = xef->xe; + + xa_destroy(&xef->exec_queue.xa); + mutex_destroy(&xef->exec_queue.lock); + xa_destroy(&xef->vm.xa); + mutex_destroy(&xef->vm.lock); + + spin_lock(&xe->clients.lock); + xe->clients.count--; + spin_unlock(&xe->clients.lock); + + xe_drm_client_put(xef->client); + kfree(xef->process_name); + kfree(xef); +} + +/** + * xe_file_get() - Take a reference to the xe file object + * @xef: Pointer to the xe file + * + * Anyone with a pointer to xef must take a reference to the xe file + * object using this call. + * + * Return: xe file pointer + */ +struct xe_file *xe_file_get(struct xe_file *xef) +{ + kref_get(&xef->refcount); + return xef; +} + +/** + * xe_file_put() - Drop a reference to the xe file object + * @xef: Pointer to the xe file + * + * Used to drop reference to the xef object + */ +void xe_file_put(struct xe_file *xef) +{ + kref_put(&xef->refcount, xe_file_destroy); +} + +static void xe_file_close(struct drm_device *dev, struct drm_file *file) +{ + struct xe_device *xe = to_xe_device(dev); + struct xe_file *xef = file->driver_priv; + struct xe_vm *vm; + struct xe_exec_queue *q; + unsigned long idx; + + xe_pm_runtime_get(xe); + + /* + * No need for exec_queue.lock here as there is no contention for it + * when FD is closing as IOCTLs presumably can't be modifying the + * xarray. Taking exec_queue.lock here causes undue dependency on + * vm->lock taken during xe_exec_queue_kill(). + */ + xa_for_each(&xef->exec_queue.xa, idx, q) { + if (q->vm && q->hwe->hw_engine_group) + xe_hw_engine_group_del_exec_queue(q->hwe->hw_engine_group, q); + xe_exec_queue_kill(q); + xe_exec_queue_put(q); + } + xa_for_each(&xef->vm.xa, idx, vm) + xe_vm_close_and_put(vm); + + xe_file_put(xef); + + xe_pm_runtime_put(xe); +} + +static const struct drm_ioctl_desc xe_ioctls[] = { + DRM_IOCTL_DEF_DRV(XE_DEVICE_QUERY, xe_query_ioctl, DRM_RENDER_ALLOW), + DRM_IOCTL_DEF_DRV(XE_GEM_CREATE, xe_gem_create_ioctl, DRM_RENDER_ALLOW), + DRM_IOCTL_DEF_DRV(XE_GEM_MMAP_OFFSET, xe_gem_mmap_offset_ioctl, + DRM_RENDER_ALLOW), + DRM_IOCTL_DEF_DRV(XE_VM_CREATE, xe_vm_create_ioctl, DRM_RENDER_ALLOW), + DRM_IOCTL_DEF_DRV(XE_VM_DESTROY, xe_vm_destroy_ioctl, DRM_RENDER_ALLOW), + DRM_IOCTL_DEF_DRV(XE_VM_BIND, xe_vm_bind_ioctl, DRM_RENDER_ALLOW), + DRM_IOCTL_DEF_DRV(XE_EXEC, xe_exec_ioctl, DRM_RENDER_ALLOW), + DRM_IOCTL_DEF_DRV(XE_EXEC_QUEUE_CREATE, xe_exec_queue_create_ioctl, + DRM_RENDER_ALLOW), + DRM_IOCTL_DEF_DRV(XE_EXEC_QUEUE_DESTROY, xe_exec_queue_destroy_ioctl, + DRM_RENDER_ALLOW), + DRM_IOCTL_DEF_DRV(XE_EXEC_QUEUE_GET_PROPERTY, xe_exec_queue_get_property_ioctl, + DRM_RENDER_ALLOW), + DRM_IOCTL_DEF_DRV(XE_WAIT_USER_FENCE, xe_wait_user_fence_ioctl, + DRM_RENDER_ALLOW), + DRM_IOCTL_DEF_DRV(XE_OBSERVATION, xe_observation_ioctl, DRM_RENDER_ALLOW), +}; + +static long xe_drm_ioctl(struct file *file, unsigned int cmd, unsigned long arg) +{ + struct drm_file *file_priv = file->private_data; + struct xe_device *xe = to_xe_device(file_priv->minor->dev); + long ret; + + if (xe_device_wedged(xe)) + return -ECANCELED; + + ret = xe_pm_runtime_get_ioctl(xe); + if (ret >= 0) + ret = drm_ioctl(file, cmd, arg); + xe_pm_runtime_put(xe); + + return ret; +} + +#ifdef CONFIG_COMPAT +static long xe_drm_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg) +{ + struct drm_file *file_priv = file->private_data; + struct xe_device *xe = to_xe_device(file_priv->minor->dev); + long ret; + + if (xe_device_wedged(xe)) + return -ECANCELED; + + ret = xe_pm_runtime_get_ioctl(xe); + if (ret >= 0) + ret = drm_compat_ioctl(file, cmd, arg); + xe_pm_runtime_put(xe); + + return ret; +} +#else +/* similarly to drm_compat_ioctl, let's it be assigned to .compat_ioct unconditionally */ +#define xe_drm_compat_ioctl NULL +#endif + +static const struct file_operations xe_driver_fops = { + .owner = THIS_MODULE, + .open = drm_open, + .release = drm_release_noglobal, + .unlocked_ioctl = xe_drm_ioctl, + .mmap = drm_gem_mmap, + .poll = drm_poll, + .read = drm_read, + .compat_ioctl = xe_drm_compat_ioctl, + .llseek = noop_llseek, +#ifdef CONFIG_PROC_FS + .show_fdinfo = drm_show_fdinfo, +#endif + .fop_flags = FOP_UNSIGNED_OFFSET, +}; + +static struct drm_driver driver = { + /* Don't use MTRRs here; the Xserver or userspace app should + * deal with them for Intel hardware. + */ + .driver_features = + DRIVER_GEM | + DRIVER_RENDER | DRIVER_SYNCOBJ | + DRIVER_SYNCOBJ_TIMELINE | DRIVER_GEM_GPUVA, + .open = xe_file_open, + .postclose = xe_file_close, + + .gem_prime_import = xe_gem_prime_import, + + .dumb_create = xe_bo_dumb_create, + .dumb_map_offset = drm_gem_ttm_dumb_map_offset, +#ifdef CONFIG_PROC_FS + .show_fdinfo = xe_drm_client_fdinfo, +#endif + .ioctls = xe_ioctls, + .num_ioctls = ARRAY_SIZE(xe_ioctls), + .fops = &xe_driver_fops, + .name = DRIVER_NAME, + .desc = DRIVER_DESC, + .date = DRIVER_DATE, + .major = DRIVER_MAJOR, + .minor = DRIVER_MINOR, + .patchlevel = DRIVER_PATCHLEVEL, +}; + +static void xe_device_destroy(struct drm_device *dev, void *dummy) +{ + struct xe_device *xe = to_xe_device(dev); + + if (xe->preempt_fence_wq) + destroy_workqueue(xe->preempt_fence_wq); + + if (xe->ordered_wq) + destroy_workqueue(xe->ordered_wq); + + if (xe->unordered_wq) + destroy_workqueue(xe->unordered_wq); + + if (xe->destroy_wq) + destroy_workqueue(xe->destroy_wq); + + ttm_device_fini(&xe->ttm); +} + +struct xe_device *xe_device_create(struct pci_dev *pdev, + const struct pci_device_id *ent) +{ + struct xe_device *xe; + int err; + + xe_display_driver_set_hooks(&driver); + + err = drm_aperture_remove_conflicting_pci_framebuffers(pdev, &driver); + if (err) + return ERR_PTR(err); + + xe = devm_drm_dev_alloc(&pdev->dev, &driver, struct xe_device, drm); + if (IS_ERR(xe)) + return xe; + + err = ttm_device_init(&xe->ttm, &xe_ttm_funcs, xe->drm.dev, + xe->drm.anon_inode->i_mapping, + xe->drm.vma_offset_manager, false, false); + if (WARN_ON(err)) + goto err; + + err = drmm_add_action_or_reset(&xe->drm, xe_device_destroy, NULL); + if (err) + goto err; + + xe->info.devid = pdev->device; + xe->info.revid = pdev->revision; + xe->info.force_execlist = xe_modparam.force_execlist; + + spin_lock_init(&xe->irq.lock); + spin_lock_init(&xe->clients.lock); + + init_waitqueue_head(&xe->ufence_wq); + + init_rwsem(&xe->usm.lock); + + xa_init_flags(&xe->usm.asid_to_vm, XA_FLAGS_ALLOC); + + if (IS_ENABLED(CONFIG_DRM_XE_DEBUG)) { + /* Trigger a large asid and an early asid wrap. */ + u32 asid; + + BUILD_BUG_ON(XE_MAX_ASID < 2); + err = xa_alloc_cyclic(&xe->usm.asid_to_vm, &asid, NULL, + XA_LIMIT(XE_MAX_ASID - 2, XE_MAX_ASID - 1), + &xe->usm.next_asid, GFP_KERNEL); + drm_WARN_ON(&xe->drm, err); + if (err >= 0) + xa_erase(&xe->usm.asid_to_vm, asid); + } + + spin_lock_init(&xe->pinned.lock); + INIT_LIST_HEAD(&xe->pinned.kernel_bo_present); + INIT_LIST_HEAD(&xe->pinned.external_vram); + INIT_LIST_HEAD(&xe->pinned.evicted); + + xe->preempt_fence_wq = alloc_ordered_workqueue("xe-preempt-fence-wq", 0); + xe->ordered_wq = alloc_ordered_workqueue("xe-ordered-wq", 0); + xe->unordered_wq = alloc_workqueue("xe-unordered-wq", 0, 0); + xe->destroy_wq = alloc_workqueue("xe-destroy-wq", 0, 0); + if (!xe->ordered_wq || !xe->unordered_wq || + !xe->preempt_fence_wq || !xe->destroy_wq) { + /* + * Cleanup done in xe_device_destroy via + * drmm_add_action_or_reset register above + */ + drm_err(&xe->drm, "Failed to allocate xe workqueues\n"); + err = -ENOMEM; + goto err; + } + + err = xe_display_create(xe); + if (WARN_ON(err)) + goto err; + + return xe; + +err: + return ERR_PTR(err); +} + +/* + * The driver-initiated FLR is the highest level of reset that we can trigger + * from within the driver. It is different from the PCI FLR in that it doesn't + * fully reset the SGUnit and doesn't modify the PCI config space and therefore + * it doesn't require a re-enumeration of the PCI BARs. However, the + * driver-initiated FLR does still cause a reset of both GT and display and a + * memory wipe of local and stolen memory, so recovery would require a full HW + * re-init and saving/restoring (or re-populating) the wiped memory. Since we + * perform the FLR as the very last action before releasing access to the HW + * during the driver release flow, we don't attempt recovery at all, because + * if/when a new instance of i915 is bound to the device it will do a full + * re-init anyway. + */ +static void xe_driver_flr(struct xe_device *xe) +{ + const unsigned int flr_timeout = 3 * MICRO; /* specs recommend a 3s wait */ + struct xe_gt *gt = xe_root_mmio_gt(xe); + int ret; + + if (xe_mmio_read32(gt, GU_CNTL_PROTECTED) & DRIVERINT_FLR_DIS) { + drm_info_once(&xe->drm, "BIOS Disabled Driver-FLR\n"); + return; + } + + drm_dbg(&xe->drm, "Triggering Driver-FLR\n"); + + /* + * Make sure any pending FLR requests have cleared by waiting for the + * FLR trigger bit to go to zero. Also clear GU_DEBUG's DRIVERFLR_STATUS + * to make sure it's not still set from a prior attempt (it's a write to + * clear bit). + * Note that we should never be in a situation where a previous attempt + * is still pending (unless the HW is totally dead), but better to be + * safe in case something unexpected happens + */ + ret = xe_mmio_wait32(gt, GU_CNTL, DRIVERFLR, 0, flr_timeout, NULL, false); + if (ret) { + drm_err(&xe->drm, "Driver-FLR-prepare wait for ready failed! %d\n", ret); + return; + } + xe_mmio_write32(gt, GU_DEBUG, DRIVERFLR_STATUS); + + /* Trigger the actual Driver-FLR */ + xe_mmio_rmw32(gt, GU_CNTL, 0, DRIVERFLR); + + /* Wait for hardware teardown to complete */ + ret = xe_mmio_wait32(gt, GU_CNTL, DRIVERFLR, 0, flr_timeout, NULL, false); + if (ret) { + drm_err(&xe->drm, "Driver-FLR-teardown wait completion failed! %d\n", ret); + return; + } + + /* Wait for hardware/firmware re-init to complete */ + ret = xe_mmio_wait32(gt, GU_DEBUG, DRIVERFLR_STATUS, DRIVERFLR_STATUS, + flr_timeout, NULL, false); + if (ret) { + drm_err(&xe->drm, "Driver-FLR-reinit wait completion failed! %d\n", ret); + return; + } + + /* Clear sticky completion status */ + xe_mmio_write32(gt, GU_DEBUG, DRIVERFLR_STATUS); +} + +static void xe_driver_flr_fini(void *arg) +{ + struct xe_device *xe = arg; + + if (xe->needs_flr_on_fini) + xe_driver_flr(xe); +} + +static void xe_device_sanitize(void *arg) +{ + struct xe_device *xe = arg; + struct xe_gt *gt; + u8 id; + + for_each_gt(gt, xe, id) + xe_gt_sanitize(gt); +} + +static int xe_set_dma_info(struct xe_device *xe) +{ + unsigned int mask_size = xe->info.dma_mask_size; + int err; + + dma_set_max_seg_size(xe->drm.dev, xe_sg_segment_size(xe->drm.dev)); + + err = dma_set_mask(xe->drm.dev, DMA_BIT_MASK(mask_size)); + if (err) + goto mask_err; + + err = dma_set_coherent_mask(xe->drm.dev, DMA_BIT_MASK(mask_size)); + if (err) + goto mask_err; + + return 0; + +mask_err: + drm_err(&xe->drm, "Can't set DMA mask/consistent mask (%d)\n", err); + return err; +} + +static bool verify_lmem_ready(struct xe_gt *gt) +{ + u32 val = xe_mmio_read32(gt, GU_CNTL) & LMEM_INIT; + + return !!val; +} + +static int wait_for_lmem_ready(struct xe_device *xe) +{ + struct xe_gt *gt = xe_root_mmio_gt(xe); + unsigned long timeout, start; + + if (!IS_DGFX(xe)) + return 0; + + if (IS_SRIOV_VF(xe)) + return 0; + + if (verify_lmem_ready(gt)) + return 0; + + drm_dbg(&xe->drm, "Waiting for lmem initialization\n"); + + start = jiffies; + timeout = start + msecs_to_jiffies(60 * 1000); /* 60 sec! */ + + do { + if (signal_pending(current)) + return -EINTR; + + /* + * The boot firmware initializes local memory and + * assesses its health. If memory training fails, + * the punit will have been instructed to keep the GT powered + * down.we won't be able to communicate with it + * + * If the status check is done before punit updates the register, + * it can lead to the system being unusable. + * use a timeout and defer the probe to prevent this. + */ + if (time_after(jiffies, timeout)) { + drm_dbg(&xe->drm, "lmem not initialized by firmware\n"); + return -EPROBE_DEFER; + } + + msleep(20); + + } while (!verify_lmem_ready(gt)); + + drm_dbg(&xe->drm, "lmem ready after %ums", + jiffies_to_msecs(jiffies - start)); + + return 0; +} + +static void update_device_info(struct xe_device *xe) +{ + /* disable features that are not available/applicable to VFs */ + if (IS_SRIOV_VF(xe)) { + xe->info.probe_display = 0; + xe->info.has_heci_gscfi = 0; + xe->info.skip_guc_pc = 1; + xe->info.skip_pcode = 1; + } +} + +/** + * xe_device_probe_early: Device early probe + * @xe: xe device instance + * + * Initialize MMIO resources that don't require any + * knowledge about tile count. Also initialize pcode and + * check vram initialization on root tile. + * + * Return: 0 on success, error code on failure + */ +int xe_device_probe_early(struct xe_device *xe) +{ + int err; + + err = xe_mmio_init(xe); + if (err) + return err; + + xe_sriov_probe_early(xe); + + update_device_info(xe); + + err = xe_pcode_probe_early(xe); + if (err) + return err; + + err = wait_for_lmem_ready(xe); + if (err) + return err; + + xe->wedged.mode = xe_modparam.wedged_mode; + + return 0; +} + +static int xe_device_set_has_flat_ccs(struct xe_device *xe) +{ + u32 reg; + int err; + + if (GRAPHICS_VER(xe) < 20 || !xe->info.has_flat_ccs) + return 0; + + struct xe_gt *gt = xe_root_mmio_gt(xe); + + err = xe_force_wake_get(gt_to_fw(gt), XE_FW_GT); + if (err) + return err; + + reg = xe_gt_mcr_unicast_read_any(gt, XE2_FLAT_CCS_BASE_RANGE_LOWER); + xe->info.has_flat_ccs = (reg & XE2_FLAT_CCS_ENABLE); + + if (!xe->info.has_flat_ccs) + drm_dbg(&xe->drm, + "Flat CCS has been disabled in bios, May lead to performance impact"); + + return xe_force_wake_put(gt_to_fw(gt), XE_FW_GT); +} + +int xe_device_probe(struct xe_device *xe) +{ + struct xe_tile *tile; + struct xe_gt *gt; + int err; + u8 last_gt; + u8 id; + + xe_pat_init_early(xe); + + err = xe_sriov_init(xe); + if (err) + return err; + + xe->info.mem_region_mask = 1; + err = xe_display_init_nommio(xe); + if (err) + return err; + + err = xe_set_dma_info(xe); + if (err) + return err; + + err = xe_mmio_probe_tiles(xe); + if (err) + return err; + + xe_ttm_sys_mgr_init(xe); + + for_each_gt(gt, xe, id) { + err = xe_gt_init_early(gt); + if (err) + return err; + } + + for_each_tile(tile, xe, id) { + if (IS_SRIOV_VF(xe)) { + xe_guc_comm_init_early(&tile->primary_gt->uc.guc); + err = xe_gt_sriov_vf_bootstrap(tile->primary_gt); + if (err) + return err; + err = xe_gt_sriov_vf_query_config(tile->primary_gt); + if (err) + return err; + } + err = xe_ggtt_init_early(tile->mem.ggtt); + if (err) + return err; + if (IS_SRIOV_VF(xe)) { + err = xe_memirq_init(&tile->sriov.vf.memirq); + if (err) + return err; + } + } + + for_each_gt(gt, xe, id) { + err = xe_gt_init_hwconfig(gt); + if (err) + return err; + } + + err = xe_devcoredump_init(xe); + if (err) + return err; + err = devm_add_action_or_reset(xe->drm.dev, xe_driver_flr_fini, xe); + if (err) + return err; + + err = xe_display_init_noirq(xe); + if (err) + return err; + + err = xe_irq_install(xe); + if (err) + goto err; + + err = xe_device_set_has_flat_ccs(xe); + if (err) + goto err; + + err = xe_vram_probe(xe); + if (err) + goto err; + + for_each_tile(tile, xe, id) { + err = xe_tile_init_noalloc(tile); + if (err) + goto err; + } + + /* Allocate and map stolen after potential VRAM resize */ + xe_ttm_stolen_mgr_init(xe); + + /* + * Now that GT is initialized (TTM in particular), + * we can try to init display, and inherit the initial fb. + * This is the reason the first allocation needs to be done + * inside display. + */ + err = xe_display_init_noaccel(xe); + if (err) + goto err; + + for_each_gt(gt, xe, id) { + last_gt = id; + + err = xe_gt_init(gt); + if (err) + goto err_fini_gt; + } + + xe_heci_gsc_init(xe); + + err = xe_oa_init(xe); + if (err) + goto err_fini_gt; + + err = xe_display_init(xe); + if (err) + goto err_fini_oa; + + err = drm_dev_register(&xe->drm, 0); + if (err) + goto err_fini_display; + + xe_display_register(xe); + + xe_oa_register(xe); + + xe_debugfs_register(xe); + + xe_hwmon_register(xe); + + for_each_gt(gt, xe, id) + xe_gt_sanitize_freq(gt); + + return devm_add_action_or_reset(xe->drm.dev, xe_device_sanitize, xe); + +err_fini_display: + xe_display_driver_remove(xe); + +err_fini_oa: + xe_oa_fini(xe); + +err_fini_gt: + for_each_gt(gt, xe, id) { + if (id < last_gt) + xe_gt_remove(gt); + else + break; + } + +err: + xe_display_fini(xe); + return err; +} + +static void xe_device_remove_display(struct xe_device *xe) +{ + xe_display_unregister(xe); + + drm_dev_unplug(&xe->drm); + xe_display_driver_remove(xe); +} + +void xe_device_remove(struct xe_device *xe) +{ + struct xe_gt *gt; + u8 id; + + xe_oa_unregister(xe); + + xe_device_remove_display(xe); + + xe_display_fini(xe); + + xe_oa_fini(xe); + + xe_heci_gsc_fini(xe); + + for_each_gt(gt, xe, id) + xe_gt_remove(gt); +} + +void xe_device_shutdown(struct xe_device *xe) +{ +} + +/** + * xe_device_wmb() - Device specific write memory barrier + * @xe: the &xe_device + * + * While wmb() is sufficient for a barrier if we use system memory, on discrete + * platforms with device memory we additionally need to issue a register write. + * Since it doesn't matter which register we write to, use the read-only VF_CAP + * register that is also marked as accessible by the VFs. + */ +void xe_device_wmb(struct xe_device *xe) +{ + struct xe_gt *gt = xe_root_mmio_gt(xe); + + wmb(); + if (IS_DGFX(xe)) + xe_mmio_write32(gt, VF_CAP_REG, 0); +} + +/** + * xe_device_td_flush() - Flush transient L3 cache entries + * @xe: The device + * + * Display engine has direct access to memory and is never coherent with L3/L4 + * caches (or CPU caches), however KMD is responsible for specifically flushing + * transient L3 GPU cache entries prior to the flip sequence to ensure scanout + * can happen from such a surface without seeing corruption. + * + * Display surfaces can be tagged as transient by mapping it using one of the + * various L3:XD PAT index modes on Xe2. + * + * Note: On non-discrete xe2 platforms, like LNL, the entire L3 cache is flushed + * at the end of each submission via PIPE_CONTROL for compute/render, since SA + * Media is not coherent with L3 and we want to support render-vs-media + * usescases. For other engines like copy/blt the HW internally forces uncached + * behaviour, hence why we can skip the TDF on such platforms. + */ +void xe_device_td_flush(struct xe_device *xe) +{ + struct xe_gt *gt; + u8 id; + + if (!IS_DGFX(xe) || GRAPHICS_VER(xe) < 20) + return; + + if (XE_WA(xe_root_mmio_gt(xe), 16023588340)) { + xe_device_l2_flush(xe); + return; + } + + for_each_gt(gt, xe, id) { + if (xe_gt_is_media_type(gt)) + continue; + + if (xe_force_wake_get(gt_to_fw(gt), XE_FW_GT)) + return; + + xe_mmio_write32(gt, XE2_TDF_CTRL, TRANSIENT_FLUSH_REQUEST); + /* + * FIXME: We can likely do better here with our choice of + * timeout. Currently we just assume the worst case, i.e. 150us, + * which is believed to be sufficient to cover the worst case + * scenario on current platforms if all cache entries are + * transient and need to be flushed.. + */ + if (xe_mmio_wait32(gt, XE2_TDF_CTRL, TRANSIENT_FLUSH_REQUEST, 0, + 150, NULL, false)) + xe_gt_err_once(gt, "TD flush timeout\n"); + + xe_force_wake_put(gt_to_fw(gt), XE_FW_GT); + } +} + +void xe_device_l2_flush(struct xe_device *xe) +{ + struct xe_gt *gt; + int err; + + gt = xe_root_mmio_gt(xe); + + if (!XE_WA(gt, 16023588340)) + return; + + err = xe_force_wake_get(gt_to_fw(gt), XE_FW_GT); + if (err) + return; + + spin_lock(>->global_invl_lock); + xe_mmio_write32(gt, XE2_GLOBAL_INVAL, 0x1); + +<<<<<<< + if (xe_mmio_wait32(>->mmio, XE2_GLOBAL_INVAL, 0x1, 0x0, 500, NULL, true)) +======= + if (xe_mmio_wait32(gt, XE2_GLOBAL_INVAL, 0x1, 0x0, 150, NULL, true)) +>>>>>>> + xe_gt_err_once(gt, "Global invalidation timeout\n"); + spin_unlock(>->global_invl_lock); + + xe_force_wake_put(gt_to_fw(gt), XE_FW_GT); +} + +u32 xe_device_ccs_bytes(struct xe_device *xe, u64 size) +{ + return xe_device_has_flat_ccs(xe) ? + DIV_ROUND_UP_ULL(size, NUM_BYTES_PER_CCS_BYTE(xe)) : 0; +} + +/** + * xe_device_assert_mem_access - Inspect the current runtime_pm state. + * @xe: xe device instance + * + * To be used before any kind of memory access. It will splat a debug warning + * if the device is currently sleeping. But it doesn't guarantee in any way + * that the device is going to remain awake. Xe PM runtime get and put + * functions might be added to the outer bound of the memory access, while + * this check is intended for inner usage to splat some warning if the worst + * case has just happened. + */ +void xe_device_assert_mem_access(struct xe_device *xe) +{ + xe_assert(xe, !xe_pm_runtime_suspended(xe)); +} + +void xe_device_snapshot_print(struct xe_device *xe, struct drm_printer *p) +{ + struct xe_gt *gt; + u8 id; + + drm_printf(p, "PCI ID: 0x%04x\n", xe->info.devid); + drm_printf(p, "PCI revision: 0x%02x\n", xe->info.revid); + + for_each_gt(gt, xe, id) { + drm_printf(p, "GT id: %u\n", id); + drm_printf(p, "\tType: %s\n", + gt->info.type == XE_GT_TYPE_MAIN ? "main" : "media"); + drm_printf(p, "\tIP ver: %u.%u.%u\n", + REG_FIELD_GET(GMD_ID_ARCH_MASK, gt->info.gmdid), + REG_FIELD_GET(GMD_ID_RELEASE_MASK, gt->info.gmdid), + REG_FIELD_GET(GMD_ID_REVID, gt->info.gmdid)); + drm_printf(p, "\tCS reference clock: %u\n", gt->info.reference_clock); + } +} + +u64 xe_device_canonicalize_addr(struct xe_device *xe, u64 address) +{ + return sign_extend64(address, xe->info.va_bits - 1); +} + +u64 xe_device_uncanonicalize_addr(struct xe_device *xe, u64 address) +{ + return address & GENMASK_ULL(xe->info.va_bits - 1, 0); +} + +static void xe_device_wedged_fini(struct drm_device *drm, void *arg) +{ + struct xe_device *xe = arg; + + xe_pm_runtime_put(xe); +} + +/** + * xe_device_declare_wedged - Declare device wedged + * @xe: xe device instance + * + * This is a final state that can only be cleared with a mudule + * re-probe (unbind + bind). + * In this state every IOCTL will be blocked so the GT cannot be used. + * In general it will be called upon any critical error such as gt reset + * failure or guc loading failure. + * If xe.wedged module parameter is set to 2, this function will be called + * on every single execution timeout (a.k.a. GPU hang) right after devcoredump + * snapshot capture. In this mode, GT reset won't be attempted so the state of + * the issue is preserved for further debugging. + */ +void xe_device_declare_wedged(struct xe_device *xe) +{ + struct xe_gt *gt; + u8 id; + + if (xe->wedged.mode == 0) { + drm_dbg(&xe->drm, "Wedged mode is forcibly disabled\n"); + return; + } + + xe_pm_runtime_get_noresume(xe); + + if (drmm_add_action_or_reset(&xe->drm, xe_device_wedged_fini, xe)) { + drm_err(&xe->drm, "Failed to register xe_device_wedged_fini clean-up. Although device is wedged.\n"); + return; + } + + if (!atomic_xchg(&xe->wedged.flag, 1)) { + xe->needs_flr_on_fini = true; + drm_err(&xe->drm, + "CRITICAL: Xe has declared device %s as wedged.\n" + "IOCTLs and executions are blocked. Only a rebind may clear the failure\n" + "Please file a _new_ bug report at https://gitlab.freedesktop.org/drm/xe/kernel/issues/new\n", + dev_name(xe->drm.dev)); + } + + for_each_gt(gt, xe, id) + xe_gt_declare_wedged(gt); +} diff --git a/rr-cache/dc755e41b3920c4fd040291cf34f6f63263f016b/preimage b/rr-cache/dc755e41b3920c4fd040291cf34f6f63263f016b/preimage new file mode 100644 index 000000000000..a71c059b6d65 --- /dev/null +++ b/rr-cache/dc755e41b3920c4fd040291cf34f6f63263f016b/preimage @@ -0,0 +1,531 @@ +// SPDX-License-Identifier: MIT +/* + * Copyright © 2023 Intel Corporation + */ + +#include "xe_display.h" +#include "regs/xe_irq_regs.h" + +#include <linux/fb.h> + +#include <drm/drm_drv.h> +#include <drm/drm_managed.h> +#include <drm/drm_probe_helper.h> +#include <uapi/drm/xe_drm.h> + +#include "soc/intel_dram.h" +#include "intel_acpi.h" +#include "intel_audio.h" +#include "intel_bw.h" +#include "intel_display.h" +#include "intel_display_driver.h" +#include "intel_display_irq.h" +#include "intel_display_types.h" +#include "intel_dmc.h" +#include "intel_dp.h" +#include "intel_encoder.h" +#include "intel_fbdev.h" +#include "intel_hdcp.h" +#include "intel_hotplug.h" +#include "intel_opregion.h" +#include "xe_module.h" + +/* Xe device functions */ + +static bool has_display(struct xe_device *xe) +{ + return HAS_DISPLAY(&xe->display); +} + +/** + * xe_display_driver_probe_defer - Detect if we need to wait for other drivers + * early on + * @pdev: PCI device + * + * Returns: true if probe needs to be deferred, false otherwise + */ +bool xe_display_driver_probe_defer(struct pci_dev *pdev) +{ + if (!xe_modparam.probe_display) + return 0; + + return intel_display_driver_probe_defer(pdev); +} + +/** + * xe_display_driver_set_hooks - Add driver flags and hooks for display + * @driver: DRM device driver + * + * Set features and function hooks in @driver that are needed for driving the + * display IP. This sets the driver's capability of driving display, regardless + * if the device has it enabled + */ +void xe_display_driver_set_hooks(struct drm_driver *driver) +{ + if (!xe_modparam.probe_display) + return; + + driver->driver_features |= DRIVER_MODESET | DRIVER_ATOMIC; +} + +static void unset_display_features(struct xe_device *xe) +{ + xe->drm.driver_features &= ~(DRIVER_MODESET | DRIVER_ATOMIC); +} + +static void display_destroy(struct drm_device *dev, void *dummy) +{ + struct xe_device *xe = to_xe_device(dev); + + destroy_workqueue(xe->display.hotplug.dp_wq); +} + +/** + * xe_display_create - create display struct + * @xe: XE device instance + * + * Initialize all fields used by the display part. + * + * TODO: once everything can be inside a single struct, make the struct opaque + * to the rest of xe and return it to be xe->display. + * + * Returns: 0 on success + */ +int xe_display_create(struct xe_device *xe) +{ + spin_lock_init(&xe->display.fb_tracking.lock); + + xe->display.hotplug.dp_wq = alloc_ordered_workqueue("xe-dp", 0); + + return drmm_add_action_or_reset(&xe->drm, display_destroy, NULL); +} + +static void xe_display_fini_nommio(struct drm_device *dev, void *dummy) +{ + struct xe_device *xe = to_xe_device(dev); + + if (!xe->info.probe_display) + return; + + intel_power_domains_cleanup(xe); +} + +int xe_display_init_nommio(struct xe_device *xe) +{ + if (!xe->info.probe_display) + return 0; + + /* Fake uncore lock */ + spin_lock_init(&xe->uncore.lock); + + /* This must be called before any calls to HAS_PCH_* */ + intel_detect_pch(xe); + + return drmm_add_action_or_reset(&xe->drm, xe_display_fini_nommio, xe); +} + +static void xe_display_fini_noirq(void *arg) +{ + struct xe_device *xe = arg; + struct intel_display *display = &xe->display; + + if (!xe->info.probe_display) + return; + + intel_display_driver_remove_noirq(xe); + intel_opregion_cleanup(display); +} + +int xe_display_init_noirq(struct xe_device *xe) +{ + struct intel_display *display = &xe->display; + int err; + + if (!xe->info.probe_display) + return 0; + + intel_display_driver_early_probe(xe); + + /* Early display init.. */ + intel_opregion_setup(display); + + /* + * Fill the dram structure to get the system dram info. This will be + * used for memory latency calculation. + */ + intel_dram_detect(xe); + + intel_bw_init_hw(xe); + + intel_display_device_info_runtime_init(xe); + + err = intel_display_driver_probe_noirq(xe); + if (err) { + intel_opregion_cleanup(display); + return err; + } + + return devm_add_action_or_reset(xe->drm.dev, xe_display_fini_noirq, xe); +} + +static void xe_display_fini_noaccel(void *arg) +{ + struct xe_device *xe = arg; + + if (!xe->info.probe_display) + return; + + intel_display_driver_remove_nogem(xe); +} + +int xe_display_init_noaccel(struct xe_device *xe) +{ + int err; + + if (!xe->info.probe_display) + return 0; + + err = intel_display_driver_probe_nogem(xe); + if (err) + return err; + + return devm_add_action_or_reset(xe->drm.dev, xe_display_fini_noaccel, xe); +} + +int xe_display_init(struct xe_device *xe) +{ + if (!xe->info.probe_display) + return 0; + + return intel_display_driver_probe(xe); +} + +void xe_display_fini(struct xe_device *xe) +{ + if (!xe->info.probe_display) + return; + + intel_hpd_poll_fini(xe); + + intel_hdcp_component_fini(xe); + intel_audio_deinit(xe); +} + +void xe_display_register(struct xe_device *xe) +{ + if (!xe->info.probe_display) + return; + + intel_display_driver_register(xe); + intel_register_dsm_handler(); + intel_power_domains_enable(xe); +} + +void xe_display_unregister(struct xe_device *xe) +{ + if (!xe->info.probe_display) + return; + + intel_unregister_dsm_handler(); + intel_power_domains_disable(xe); + intel_display_driver_unregister(xe); +} + +void xe_display_driver_remove(struct xe_device *xe) +{ + if (!xe->info.probe_display) + return; + + intel_display_driver_remove(xe); +} + +/* IRQ-related functions */ + +void xe_display_irq_handler(struct xe_device *xe, u32 master_ctl) +{ + if (!xe->info.probe_display) + return; + + if (master_ctl & DISPLAY_IRQ) + gen11_display_irq_handler(xe); +} + +void xe_display_irq_enable(struct xe_device *xe, u32 gu_misc_iir) +{ + struct intel_display *display = &xe->display; + + if (!xe->info.probe_display) + return; + + if (gu_misc_iir & GU_MISC_GSE) + intel_opregion_asle_intr(display); +} + +void xe_display_irq_reset(struct xe_device *xe) +{ + if (!xe->info.probe_display) + return; + + gen11_display_irq_reset(xe); +} + +void xe_display_irq_postinstall(struct xe_device *xe, struct xe_gt *gt) +{ + if (!xe->info.probe_display) + return; + + if (gt->info.id == XE_GT0) + gen11_de_irq_postinstall(xe); +} + +static bool suspend_to_idle(void) +{ +#if IS_ENABLED(CONFIG_ACPI_SLEEP) + if (acpi_target_system_state() < ACPI_STATE_S3) + return true; +#endif + return false; +} + +static void xe_display_flush_cleanup_work(struct xe_device *xe) +{ + struct intel_crtc *crtc; + + for_each_intel_crtc(&xe->drm, crtc) { + struct drm_crtc_commit *commit; + + spin_lock(&crtc->base.commit_lock); + commit = list_first_entry_or_null(&crtc->base.commit_list, + struct drm_crtc_commit, commit_entry); + if (commit) + drm_crtc_commit_get(commit); + spin_unlock(&crtc->base.commit_lock); + + if (commit) { + wait_for_completion(&commit->cleanup_done); + drm_crtc_commit_put(commit); + } + } +} + +/* TODO: System and runtime suspend/resume sequences will be sanitized as a follow-up. */ +static void __xe_display_pm_suspend(struct xe_device *xe, bool runtime) +{ + struct intel_display *display = &xe->display; + bool s2idle = suspend_to_idle(); + if (!xe->info.probe_display) + return; + + /* + * We do a lot of poking in a lot of registers, make sure they work + * properly. + */ + intel_power_domains_disable(xe); + if (!runtime) + intel_fbdev_set_suspend(&xe->drm, FBINFO_STATE_SUSPENDED, true); + + if (!runtime && has_display(xe)) { + drm_kms_helper_poll_disable(&xe->drm); + intel_display_driver_disable_user_access(xe); + intel_display_driver_suspend(xe); + } + + xe_display_flush_cleanup_work(xe); + + if (!runtime) + intel_dp_mst_suspend(xe); + + intel_hpd_cancel_work(xe); + + if (!runtime && has_display(xe)) { + intel_display_driver_suspend_access(xe); + intel_encoder_suspend_all(&xe->display); + } + + intel_opregion_suspend(display, s2idle ? PCI_D1 : PCI_D3cold); + +<<<<<<< + intel_dmc_suspend(display); +======= + intel_dmc_suspend(xe); +>>>>>>> + + if (runtime && has_display(xe)) + intel_hpd_poll_enable(xe); +} + +void xe_display_pm_suspend(struct xe_device *xe) +{ + __xe_display_pm_suspend(xe, false); +} + +<<<<<<< +======= +void xe_display_pm_shutdown(struct xe_device *xe) +{ + struct intel_display *display = &xe->display; + + if (!xe->info.probe_display) + return; + + intel_power_domains_disable(xe); + intel_fbdev_set_suspend(&xe->drm, FBINFO_STATE_SUSPENDED, true); + if (has_display(xe)) { + drm_kms_helper_poll_disable(&xe->drm); + intel_display_driver_disable_user_access(xe); + intel_display_driver_suspend(xe); + } + + xe_display_flush_cleanup_work(xe); + intel_dp_mst_suspend(xe); + intel_hpd_cancel_work(xe); + + if (has_display(xe)) + intel_display_driver_suspend_access(xe); + + intel_encoder_suspend_all(display); + intel_encoder_shutdown_all(display); + + intel_opregion_suspend(display, PCI_D3cold); + + intel_dmc_suspend(display); +} + +>>>>>>> +void xe_display_pm_runtime_suspend(struct xe_device *xe) +{ + if (!xe->info.probe_display) + return; + + if (xe->d3cold.allowed) { + __xe_display_pm_suspend(xe, true); + return; + } + + intel_hpd_poll_enable(xe); +} + +void xe_display_pm_suspend_late(struct xe_device *xe) +{ + bool s2idle = suspend_to_idle(); + if (!xe->info.probe_display) + return; + + intel_power_domains_suspend(xe, s2idle); + + intel_display_power_suspend_late(xe); +} + +<<<<<<< +======= +void xe_display_pm_shutdown_late(struct xe_device *xe) +{ + if (!xe->info.probe_display) + return; + + /* + * The only requirement is to reboot with display DC states disabled, + * for now leaving all display power wells in the INIT power domain + * enabled. + */ + intel_power_domains_driver_remove(xe); +} + +>>>>>>> +void xe_display_pm_resume_early(struct xe_device *xe) +{ + if (!xe->info.probe_display) + return; + + intel_display_power_resume_early(xe); + + intel_power_domains_resume(xe); +} + +static void __xe_display_pm_resume(struct xe_device *xe, bool runtime) +{ + struct intel_display *display = &xe->display; + + if (!xe->info.probe_display) + return; + + intel_dmc_resume(display); + + if (has_display(xe)) + drm_mode_config_reset(&xe->drm); + + intel_display_driver_init_hw(xe); + intel_hpd_init(xe); + + if (!runtime && has_display(xe)) + intel_display_driver_resume_access(xe); + + /* MST sideband requires HPD interrupts enabled */ + if (!runtime) + intel_dp_mst_resume(xe); + + if (!runtime && has_display(xe)) { + intel_display_driver_resume(xe); + drm_kms_helper_poll_enable(&xe->drm); + intel_display_driver_enable_user_access(xe); + } + + if (has_display(xe)) + intel_hpd_poll_disable(xe); + + intel_opregion_resume(display); + + if (!runtime) + intel_fbdev_set_suspend(&xe->drm, FBINFO_STATE_RUNNING, false); + + intel_power_domains_enable(xe); +} + +void xe_display_pm_resume(struct xe_device *xe) +{ + __xe_display_pm_resume(xe, false); +} + +void xe_display_pm_runtime_resume(struct xe_device *xe) +{ + if (!xe->info.probe_display) + return; + + if (xe->d3cold.allowed) { + __xe_display_pm_resume(xe, true); + return; + } + + intel_hpd_init(xe); + intel_hpd_poll_disable(xe); +} + + +static void display_device_remove(struct drm_device *dev, void *arg) +{ + struct xe_device *xe = arg; + + intel_display_device_remove(xe); +} + +int xe_display_probe(struct xe_device *xe) +{ + int err; + + if (!xe->info.probe_display) + goto no_display; + + intel_display_device_probe(xe); + + err = drmm_add_action_or_reset(&xe->drm, display_device_remove, xe); + if (err) + return err; + + if (has_display(xe)) + return 0; + +no_display: + xe->info.probe_display = false; + unset_display_features(xe); + return 0; +} |