1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
|
// SPDX-License-Identifier: GPL-2.0
/*
* Kernel internal timers
*
* Copyright (C) 1991, 1992 Linus Torvalds
*
* 1997-01-28 Modified by Finn Arne Gangstad to make timers scale better.
*
* 1997-09-10 Updated NTP code according to technical memorandum Jan '96
* "A Kernel Model for Precision Timekeeping" by Dave Mills
* 1998-12-24 Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
* serialize accesses to xtime/lost_ticks).
* Copyright (C) 1998 Andrea Arcangeli
* 1999-03-10 Improved NTP compatibility by Ulrich Windl
* 2002-05-31 Move sys_sysinfo here and make its locking sane, Robert Love
* 2000-10-05 Implemented scalable SMP per-CPU timer handling.
* Copyright (C) 2000, 2001, 2002 Ingo Molnar
* Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
*/
#include <linux/kernel_stat.h>
#include <linux/export.h>
#include <linux/interrupt.h>
#include <linux/percpu.h>
#include <linux/init.h>
#include <linux/mm.h>
#include <linux/swap.h>
#include <linux/pid_namespace.h>
#include <linux/notifier.h>
#include <linux/thread_info.h>
#include <linux/time.h>
#include <linux/jiffies.h>
#include <linux/posix-timers.h>
#include <linux/cpu.h>
#include <linux/syscalls.h>
#include <linux/delay.h>
#include <linux/tick.h>
#include <linux/kallsyms.h>
#include <linux/irq_work.h>
#include <linux/sched/signal.h>
#include <linux/sched/sysctl.h>
#include <linux/sched/nohz.h>
#include <linux/sched/debug.h>
#include <linux/slab.h>
#include <linux/compat.h>
#include <linux/random.h>
#include <linux/sysctl.h>
#include <linux/uaccess.h>
#include <asm/unistd.h>
#include <asm/div64.h>
#include <asm/timex.h>
#include <asm/io.h>
#include "tick-internal.h"
#include "timer_migration.h"
#define CREATE_TRACE_POINTS
#include <trace/events/timer.h>
__visible u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES;
EXPORT_SYMBOL(jiffies_64);
/*
* The timer wheel has LVL_DEPTH array levels. Each level provides an array of
* LVL_SIZE buckets. Each level is driven by its own clock and therefore each
* level has a different granularity.
*
* The level granularity is: LVL_CLK_DIV ^ level
* The level clock frequency is: HZ / (LVL_CLK_DIV ^ level)
*
* The array level of a newly armed timer depends on the relative expiry
* time. The farther the expiry time is away the higher the array level and
* therefore the granularity becomes.
*
* Contrary to the original timer wheel implementation, which aims for 'exact'
* expiry of the timers, this implementation removes the need for recascading
* the timers into the lower array levels. The previous 'classic' timer wheel
* implementation of the kernel already violated the 'exact' expiry by adding
* slack to the expiry time to provide batched expiration. The granularity
* levels provide implicit batching.
*
* This is an optimization of the original timer wheel implementation for the
* majority of the timer wheel use cases: timeouts. The vast majority of
* timeout timers (networking, disk I/O ...) are canceled before expiry. If
* the timeout expires it indicates that normal operation is disturbed, so it
* does not matter much whether the timeout comes with a slight delay.
*
* The only exception to this are networking timers with a small expiry
* time. They rely on the granularity. Those fit into the first wheel level,
* which has HZ granularity.
*
* We don't have cascading anymore. timers with a expiry time above the
* capacity of the last wheel level are force expired at the maximum timeout
* value of the last wheel level. From data sampling we know that the maximum
* value observed is 5 days (network connection tracking), so this should not
* be an issue.
*
* The currently chosen array constants values are a good compromise between
* array size and granularity.
*
* This results in the following granularity and range levels:
*
* HZ 1000 steps
* Level Offset Granularity Range
* 0 0 1 ms 0 ms - 63 ms
* 1 64 8 ms 64 ms - 511 ms
* 2 128 64 ms 512 ms - 4095 ms (512ms - ~4s)
* 3 192 512 ms 4096 ms - 32767 ms (~4s - ~32s)
* 4 256 4096 ms (~4s) 32768 ms - 262143 ms (~32s - ~4m)
* 5 320 32768 ms (~32s) 262144 ms - 2097151 ms (~4m - ~34m)
* 6 384 262144 ms (~4m) 2097152 ms - 16777215 ms (~34m - ~4h)
* 7 448 2097152 ms (~34m) 16777216 ms - 134217727 ms (~4h - ~1d)
* 8 512 16777216 ms (~4h) 134217728 ms - 1073741822 ms (~1d - ~12d)
*
* HZ 300
* Level Offset Granularity Range
* 0 0 3 ms 0 ms - 210 ms
* 1 64 26 ms 213 ms - 1703 ms (213ms - ~1s)
* 2 128 213 ms 1706 ms - 13650 ms (~1s - ~13s)
* 3 192 1706 ms (~1s) 13653 ms - 109223 ms (~13s - ~1m)
* 4 256 13653 ms (~13s) 109226 ms - 873810 ms (~1m - ~14m)
* 5 320 109226 ms (~1m) 873813 ms - 6990503 ms (~14m - ~1h)
* 6 384 873813 ms (~14m) 6990506 ms - 55924050 ms (~1h - ~15h)
* 7 448 6990506 ms (~1h) 55924053 ms - 447392423 ms (~15h - ~5d)
* 8 512 55924053 ms (~15h) 447392426 ms - 3579139406 ms (~5d - ~41d)
*
* HZ 250
* Level Offset Granularity Range
* 0 0 4 ms 0 ms - 255 ms
* 1 64 32 ms 256 ms - 2047 ms (256ms - ~2s)
* 2 128 256 ms 2048 ms - 16383 ms (~2s - ~16s)
* 3 192 2048 ms (~2s) 16384 ms - 131071 ms (~16s - ~2m)
* 4 256 16384 ms (~16s) 131072 ms - 1048575 ms (~2m - ~17m)
* 5 320 131072 ms (~2m) 1048576 ms - 8388607 ms (~17m - ~2h)
* 6 384 1048576 ms (~17m) 8388608 ms - 67108863 ms (~2h - ~18h)
* 7 448 8388608 ms (~2h) 67108864 ms - 536870911 ms (~18h - ~6d)
* 8 512 67108864 ms (~18h) 536870912 ms - 4294967288 ms (~6d - ~49d)
*
* HZ 100
* Level Offset Granularity Range
* 0 0 10 ms 0 ms - 630 ms
* 1 64 80 ms 640 ms - 5110 ms (640ms - ~5s)
* 2 128 640 ms 5120 ms - 40950 ms (~5s - ~40s)
* 3 192 5120 ms (~5s) 40960 ms - 327670 ms (~40s - ~5m)
* 4 256 40960 ms (~40s) 327680 ms - 2621430 ms (~5m - ~43m)
* 5 320 327680 ms (~5m) 2621440 ms - 20971510 ms (~43m - ~5h)
* 6 384 2621440 ms (~43m) 20971520 ms - 167772150 ms (~5h - ~1d)
* 7 448 20971520 ms (~5h) 167772160 ms - 1342177270 ms (~1d - ~15d)
*/
/* Clock divisor for the next level */
#define LVL_CLK_SHIFT 3
#define LVL_CLK_DIV (1UL << LVL_CLK_SHIFT)
#define LVL_CLK_MASK (LVL_CLK_DIV - 1)
#define LVL_SHIFT(n) ((n) * LVL_CLK_SHIFT)
#define LVL_GRAN(n) (1UL << LVL_SHIFT(n))
/*
* The time start value for each level to select the bucket at enqueue
* time. We start from the last possible delta of the previous level
* so that we can later add an extra LVL_GRAN(n) to n (see calc_index()).
*/
#define LVL_START(n) ((LVL_SIZE - 1) << (((n) - 1) * LVL_CLK_SHIFT))
/* Size of each clock level */
#define LVL_BITS 6
#define LVL_SIZE (1UL << LVL_BITS)
#define LVL_MASK (LVL_SIZE - 1)
#define LVL_OFFS(n) ((n) * LVL_SIZE)
/* Level depth */
#if HZ > 100
# define LVL_DEPTH 9
# else
# define LVL_DEPTH 8
#endif
/* The cutoff (max. capacity of the wheel) */
#define WHEEL_TIMEOUT_CUTOFF (LVL_START(LVL_DEPTH))
#define WHEEL_TIMEOUT_MAX (WHEEL_TIMEOUT_CUTOFF - LVL_GRAN(LVL_DEPTH - 1))
/*
* The resulting wheel size. If NOHZ is configured we allocate two
* wheels so we have a separate storage for the deferrable timers.
*/
#define WHEEL_SIZE (LVL_SIZE * LVL_DEPTH)
#ifdef CONFIG_NO_HZ_COMMON
/*
* If multiple bases need to be locked, use the base ordering for lock
* nesting, i.e. lowest number first.
*/
# define NR_BASES 3
# define BASE_LOCAL 0
# define BASE_GLOBAL 1
# define BASE_DEF 2
#else
# define NR_BASES 1
# define BASE_LOCAL 0
# define BASE_GLOBAL 0
# define BASE_DEF 0
#endif
/**
* struct timer_base - Per CPU timer base (number of base depends on config)
* @lock: Lock protecting the timer_base
* @running_timer: When expiring timers, the lock is dropped. To make
* sure not to race against deleting/modifying a
* currently running timer, the pointer is set to the
* timer, which expires at the moment. If no timer is
* running, the pointer is NULL.
* @expiry_lock: PREEMPT_RT only: Lock is taken in softirq around
* timer expiry callback execution and when trying to
* delete a running timer and it wasn't successful in
* the first glance. It prevents priority inversion
* when callback was preempted on a remote CPU and a
* caller tries to delete the running timer. It also
* prevents a life lock, when the task which tries to
* delete a timer preempted the softirq thread which
* is running the timer callback function.
* @timer_waiters: PREEMPT_RT only: Tells, if there is a waiter
* waiting for the end of the timer callback function
* execution.
* @clk: clock of the timer base; is updated before enqueue
* of a timer; during expiry, it is 1 offset ahead of
* jiffies to avoid endless requeuing to current
* jiffies
* @next_expiry: expiry value of the first timer; it is updated when
* finding the next timer and during enqueue; the
* value is not valid, when next_expiry_recalc is set
* @cpu: Number of CPU the timer base belongs to
* @next_expiry_recalc: States, whether a recalculation of next_expiry is
* required. Value is set true, when a timer was
* deleted.
* @is_idle: Is set, when timer_base is idle. It is triggered by NOHZ
* code. This state is only used in standard
* base. Deferrable timers, which are enqueued remotely
* never wake up an idle CPU. So no matter of supporting it
* for this base.
* @timers_pending: Is set, when a timer is pending in the base. It is only
* reliable when next_expiry_recalc is not set.
* @pending_map: bitmap of the timer wheel; each bit reflects a
* bucket of the wheel. When a bit is set, at least a
* single timer is enqueued in the related bucket.
* @vectors: Array of lists; Each array member reflects a bucket
* of the timer wheel. The list contains all timers
* which are enqueued into a specific bucket.
*/
struct timer_base {
raw_spinlock_t lock;
struct timer_list *running_timer;
#ifdef CONFIG_PREEMPT_RT
spinlock_t expiry_lock;
atomic_t timer_waiters;
#endif
unsigned long clk;
unsigned long next_expiry;
unsigned int cpu;
bool next_expiry_recalc;
bool is_idle;
bool timers_pending;
DECLARE_BITMAP(pending_map, WHEEL_SIZE);
struct hlist_head vectors[WHEEL_SIZE];
} ____cacheline_aligned;
static DEFINE_PER_CPU(struct timer_base, timer_bases[NR_BASES]);
#ifdef CONFIG_NO_HZ_COMMON
static DEFINE_STATIC_KEY_FALSE(timers_nohz_active);
static DEFINE_MUTEX(timer_keys_mutex);
static void timer_update_keys(struct work_struct *work);
static DECLARE_WORK(timer_update_work, timer_update_keys);
#ifdef CONFIG_SMP
static unsigned int sysctl_timer_migration = 1;
DEFINE_STATIC_KEY_FALSE(timers_migration_enabled);
static void timers_update_migration(void)
{
if (sysctl_timer_migration && tick_nohz_active)
static_branch_enable(&timers_migration_enabled);
else
static_branch_disable(&timers_migration_enabled);
}
#ifdef CONFIG_SYSCTL
static int timer_migration_handler(const struct ctl_table *table, int write,
void *buffer, size_t *lenp, loff_t *ppos)
{
int ret;
mutex_lock(&timer_keys_mutex);
ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
if (!ret && write)
timers_update_migration();
mutex_unlock(&timer_keys_mutex);
return ret;
}
static struct ctl_table timer_sysctl[] = {
{
.procname = "timer_migration",
.data = &sysctl_timer_migration,
.maxlen = sizeof(unsigned int),
.mode = 0644,
.proc_handler = timer_migration_handler,
.extra1 = SYSCTL_ZERO,
.extra2 = SYSCTL_ONE,
},
};
static int __init timer_sysctl_init(void)
{
register_sysctl("kernel", timer_sysctl);
return 0;
}
device_initcall(timer_sysctl_init);
#endif /* CONFIG_SYSCTL */
#else /* CONFIG_SMP */
static inline void timers_update_migration(void) { }
#endif /* !CONFIG_SMP */
static void timer_update_keys(struct work_struct *work)
{
mutex_lock(&timer_keys_mutex);
timers_update_migration();
static_branch_enable(&timers_nohz_active);
mutex_unlock(&timer_keys_mutex);
}
void timers_update_nohz(void)
{
schedule_work(&timer_update_work);
}
static inline bool is_timers_nohz_active(void)
{
return static_branch_unlikely(&timers_nohz_active);
}
#else
static inline bool is_timers_nohz_active(void) { return false; }
#endif /* NO_HZ_COMMON */
static unsigned long round_jiffies_common(unsigned long j, int cpu,
bool force_up)
{
int rem;
unsigned long original = j;
/*
* We don't want all cpus firing their timers at once hitting the
* same lock or cachelines, so we skew each extra cpu with an extra
* 3 jiffies. This 3 jiffies came originally from the mm/ code which
* already did this.
* The skew is done by adding 3*cpunr, then round, then subtract this
* extra offset again.
*/
j += cpu * 3;
rem = j % HZ;
/*
* If the target jiffy is just after a whole second (which can happen
* due to delays of the timer irq, long irq off times etc etc) then
* we should round down to the whole second, not up. Use 1/4th second
* as cutoff for this rounding as an extreme upper bound for this.
* But never round down if @force_up is set.
*/
if (rem < HZ/4 && !force_up) /* round down */
j = j - rem;
else /* round up */
j = j - rem + HZ;
/* now that we have rounded, subtract the extra skew again */
j -= cpu * 3;
/*
* Make sure j is still in the future. Otherwise return the
* unmodified value.
*/
return time_is_after_jiffies(j) ? j : original;
}
/**
* __round_jiffies - function to round jiffies to a full second
* @j: the time in (absolute) jiffies that should be rounded
* @cpu: the processor number on which the timeout will happen
*
* __round_jiffies() rounds an absolute time in the future (in jiffies)
* up or down to (approximately) full seconds. This is useful for timers
* for which the exact time they fire does not matter too much, as long as
* they fire approximately every X seconds.
*
* By rounding these timers to whole seconds, all such timers will fire
* at the same time, rather than at various times spread out. The goal
* of this is to have the CPU wake up less, which saves power.
*
* The exact rounding is skewed for each processor to avoid all
* processors firing at the exact same time, which could lead
* to lock contention or spurious cache line bouncing.
*
* The return value is the rounded version of the @j parameter.
*/
unsigned long __round_jiffies(unsigned long j, int cpu)
{
return round_jiffies_common(j, cpu, false);
}
EXPORT_SYMBOL_GPL(__round_jiffies);
/**
* __round_jiffies_relative - function to round jiffies to a full second
* @j: the time in (relative) jiffies that should be rounded
* @cpu: the processor number on which the timeout will happen
*
* __round_jiffies_relative() rounds a time delta in the future (in jiffies)
* up or down to (approximately) full seconds. This is useful for timers
* for which the exact time they fire does not matter too much, as long as
* they fire approximately every X seconds.
*
* By rounding these timers to whole seconds, all such timers will fire
* at the same time, rather than at various times spread out. The goal
* of this is to have the CPU wake up less, which saves power.
*
* The exact rounding is skewed for each processor to avoid all
* processors firing at the exact same time, which could lead
* to lock contention or spurious cache line bouncing.
*
* The return value is the rounded version of the @j parameter.
*/
unsigned long __round_jiffies_relative(unsigned long j, int cpu)
{
unsigned long j0 = jiffies;
/* Use j0 because jiffies might change while we run */
return round_jiffies_common(j + j0, cpu, false) - j0;
}
EXPORT_SYMBOL_GPL(__round_jiffies_relative);
/**
* round_jiffies - function to round jiffies to a full second
* @j: the time in (absolute) jiffies that should be rounded
*
* round_jiffies() rounds an absolute time in the future (in jiffies)
* up or down to (approximately) full seconds. This is useful for timers
* for which the exact time they fire does not matter too much, as long as
* they fire approximately every X seconds.
*
* By rounding these timers to whole seconds, all such timers will fire
* at the same time, rather than at various times spread out. The goal
* of this is to have the CPU wake up less, which saves power.
*
* The return value is the rounded version of the @j parameter.
*/
unsigned long round_jiffies(unsigned long j)
{
return round_jiffies_common(j, raw_smp_processor_id(), false);
}
EXPORT_SYMBOL_GPL(round_jiffies);
/**
* round_jiffies_relative - function to round jiffies to a full second
* @j: the time in (relative) jiffies that should be rounded
*
* round_jiffies_relative() rounds a time delta in the future (in jiffies)
* up or down to (approximately) full seconds. This is useful for timers
* for which the exact time they fire does not matter too much, as long as
* they fire approximately every X seconds.
*
* By rounding these timers to whole seconds, all such timers will fire
* at the same time, rather than at various times spread out. The goal
* of this is to have the CPU wake up less, which saves power.
*
* The return value is the rounded version of the @j parameter.
*/
unsigned long round_jiffies_relative(unsigned long j)
{
return __round_jiffies_relative(j, raw_smp_processor_id());
}
EXPORT_SYMBOL_GPL(round_jiffies_relative);
/**
* __round_jiffies_up - function to round jiffies up to a full second
* @j: the time in (absolute) jiffies that should be rounded
* @cpu: the processor number on which the timeout will happen
*
* This is the same as __round_jiffies() except that it will never
* round down. This is useful for timeouts for which the exact time
* of firing does not matter too much, as long as they don't fire too
* early.
*/
unsigned long __round_jiffies_up(unsigned long j, int cpu)
{
return round_jiffies_common(j, cpu, true);
}
EXPORT_SYMBOL_GPL(__round_jiffies_up);
/**
* __round_jiffies_up_relative - function to round jiffies up to a full second
* @j: the time in (relative) jiffies that should be rounded
* @cpu: the processor number on which the timeout will happen
*
* This is the same as __round_jiffies_relative() except that it will never
* round down. This is useful for timeouts for which the exact time
* of firing does not matter too much, as long as they don't fire too
* early.
*/
unsigned long __round_jiffies_up_relative(unsigned long j, int cpu)
{
unsigned long j0 = jiffies;
/* Use j0 because jiffies might change while we run */
return round_jiffies_common(j + j0, cpu, true) - j0;
}
EXPORT_SYMBOL_GPL(__round_jiffies_up_relative);
/**
* round_jiffies_up - function to round jiffies up to a full second
* @j: the time in (absolute) jiffies that should be rounded
*
* This is the same as round_jiffies() except that it will never
* round down. This is useful for timeouts for which the exact time
* of firing does not matter too much, as long as they don't fire too
* early.
*/
unsigned long round_jiffies_up(unsigned long j)
{
return round_jiffies_common(j, raw_smp_processor_id(), true);
}
EXPORT_SYMBOL_GPL(round_jiffies_up);
/**
* round_jiffies_up_relative - function to round jiffies up to a full second
* @j: the time in (relative) jiffies that should be rounded
*
* This is the same as round_jiffies_relative() except that it will never
* round down. This is useful for timeouts for which the exact time
* of firing does not matter too much, as long as they don't fire too
* early.
*/
unsigned long round_jiffies_up_relative(unsigned long j)
{
return __round_jiffies_up_relative(j, raw_smp_processor_id());
}
EXPORT_SYMBOL_GPL(round_jiffies_up_relative);
static inline unsigned int timer_get_idx(struct timer_list *timer)
{
return (timer->flags & TIMER_ARRAYMASK) >> TIMER_ARRAYSHIFT;
}
static inline void timer_set_idx(struct timer_list *timer, unsigned int idx)
{
timer->flags = (timer->flags & ~TIMER_ARRAYMASK) |
idx << TIMER_ARRAYSHIFT;
}
/*
* Helper function to calculate the array index for a given expiry
* time.
*/
static inline unsigned calc_index(unsigned long expires, unsigned lvl,
unsigned long *bucket_expiry)
{
/*
* The timer wheel has to guarantee that a timer does not fire
* early. Early expiry can happen due to:
* - Timer is armed at the edge of a tick
* - Truncation of the expiry time in the outer wheel levels
*
* Round up with level granularity to prevent this.
*/
expires = (expires >> LVL_SHIFT(lvl)) + 1;
*bucket_expiry = expires << LVL_SHIFT(lvl);
return LVL_OFFS(lvl) + (expires & LVL_MASK);
}
static int calc_wheel_index(unsigned long expires, unsigned long clk,
unsigned long *bucket_expiry)
{
unsigned long delta = expires - clk;
unsigned int idx;
if (delta < LVL_START(1)) {
idx = calc_index(expires, 0, bucket_expiry);
} else if (delta < LVL_START(2)) {
idx = calc_index(expires, 1, bucket_expiry);
} else if (delta < LVL_START(3)) {
idx = calc_index(expires, 2, bucket_expiry);
} else if (delta < LVL_START(4)) {
idx = calc_index(expires, 3, bucket_expiry);
} else if (delta < LVL_START(5)) {
idx = calc_index(expires, 4, bucket_expiry);
} else if (delta < LVL_START(6)) {
idx = calc_index(expires, 5, bucket_expiry);
} else if (delta < LVL_START(7)) {
idx = calc_index(expires, 6, bucket_expiry);
} else if (LVL_DEPTH > 8 && delta < LVL_START(8)) {
idx = calc_index(expires, 7, bucket_expiry);
} else if ((long) delta < 0) {
idx = clk & LVL_MASK;
*bucket_expiry = clk;
} else {
/*
* Force expire obscene large timeouts to expire at the
* capacity limit of the wheel.
*/
if (delta >= WHEEL_TIMEOUT_CUTOFF)
expires = clk + WHEEL_TIMEOUT_MAX;
idx = calc_index(expires, LVL_DEPTH - 1, bucket_expiry);
}
return idx;
}
static void
trigger_dyntick_cpu(struct timer_base *base, struct timer_list *timer)
{
/*
* Deferrable timers do not prevent the CPU from entering dynticks and
* are not taken into account on the idle/nohz_full path. An IPI when a
* new deferrable timer is enqueued will wake up the remote CPU but
* nothing will be done with the deferrable timer base. Therefore skip
* the remote IPI for deferrable timers completely.
*/
if (!is_timers_nohz_active() || timer->flags & TIMER_DEFERRABLE)
return;
/*
* We might have to IPI the remote CPU if the base is idle and the
* timer is pinned. If it is a non pinned timer, it is only queued
* on the remote CPU, when timer was running during queueing. Then
* everything is handled by remote CPU anyway. If the other CPU is
* on the way to idle then it can't set base->is_idle as we hold
* the base lock:
*/
if (base->is_idle) {
WARN_ON_ONCE(!(timer->flags & TIMER_PINNED ||
tick_nohz_full_cpu(base->cpu)));
wake_up_nohz_cpu(base->cpu);
}
}
/*
* Enqueue the timer into the hash bucket, mark it pending in
* the bitmap, store the index in the timer flags then wake up
* the target CPU if needed.
*/
static void enqueue_timer(struct timer_base *base, struct timer_list *timer,
unsigned int idx, unsigned long bucket_expiry)
{
hlist_add_head(&timer->entry, base->vectors + idx);
__set_bit(idx, base->pending_map);
timer_set_idx(timer, idx);
trace_timer_start(timer, bucket_expiry);
/*
* Check whether this is the new first expiring timer. The
* effective expiry time of the timer is required here
* (bucket_expiry) instead of timer->expires.
*/
if (time_before(bucket_expiry, base->next_expiry)) {
/*
* Set the next expiry time and kick the CPU so it
* can reevaluate the wheel:
*/
WRITE_ONCE(base->next_expiry, bucket_expiry);
base->timers_pending = true;
base->next_expiry_recalc = false;
trigger_dyntick_cpu(base, timer);
}
}
static void internal_add_timer(struct timer_base *base, struct timer_list *timer)
{
unsigned long bucket_expiry;
unsigned int idx;
idx = calc_wheel_index(timer->expires, base->clk, &bucket_expiry);
enqueue_timer(base, timer, idx, bucket_expiry);
}
#ifdef CONFIG_DEBUG_OBJECTS_TIMERS
static const struct debug_obj_descr timer_debug_descr;
struct timer_hint {
void (*function)(struct timer_list *t);
long offset;
};
#define TIMER_HINT(fn, container, timr, hintfn) \
{ \
.function = fn, \
.offset = offsetof(container, hintfn) - \
offsetof(container, timr) \
}
static const struct timer_hint timer_hints[] = {
TIMER_HINT(delayed_work_timer_fn,
struct delayed_work, timer, work.func),
TIMER_HINT(kthread_delayed_work_timer_fn,
struct kthread_delayed_work, timer, work.func),
};
static void *timer_debug_hint(void *addr)
{
struct timer_list *timer = addr;
int i;
for (i = 0; i < ARRAY_SIZE(timer_hints); i++) {
if (timer_hints[i].function == timer->function) {
void (**fn)(void) = addr + timer_hints[i].offset;
return *fn;
}
}
return timer->function;
}
static bool timer_is_static_object(void *addr)
{
struct timer_list *timer = addr;
return (timer->entry.pprev == NULL &&
timer->entry.next == TIMER_ENTRY_STATIC);
}
/*
* timer_fixup_init is called when:
* - an active object is initialized
*/
static bool timer_fixup_init(void *addr, enum debug_obj_state state)
{
struct timer_list *timer = addr;
switch (state) {
case ODEBUG_STATE_ACTIVE:
del_timer_sync(timer);
debug_object_init(timer, &timer_debug_descr);
return true;
default:
return false;
}
}
/* Stub timer callback for improperly used timers. */
static void stub_timer(struct timer_list *unused)
{
WARN_ON(1);
}
/*
* timer_fixup_activate is called when:
* - an active object is activated
* - an unknown non-static object is activated
*/
static bool timer_fixup_activate(void *addr, enum debug_obj_state state)
{
struct timer_list *timer = addr;
switch (state) {
case ODEBUG_STATE_NOTAVAILABLE:
timer_setup(timer, stub_timer, 0);
return true;
case ODEBUG_STATE_ACTIVE:
WARN_ON(1);
fallthrough;
default:
return false;
}
}
/*
* timer_fixup_free is called when:
* - an active object is freed
*/
static bool timer_fixup_free(void *addr, enum debug_obj_state state)
{
struct timer_list *timer = addr;
switch (state) {
case ODEBUG_STATE_ACTIVE:
del_timer_sync(timer);
debug_object_free(timer, &timer_debug_descr);
return true;
default:
return false;
}
}
/*
* timer_fixup_assert_init is called when:
* - an untracked/uninit-ed object is found
*/
static bool timer_fixup_assert_init(void *addr, enum debug_obj_state state)
{
struct timer_list *timer = addr;
switch (state) {
case ODEBUG_STATE_NOTAVAILABLE:
timer_setup(timer, stub_timer, 0);
return true;
default:
return false;
}
}
static const struct debug_obj_descr timer_debug_descr = {
.name = "timer_list",
.debug_hint = timer_debug_hint,
.is_static_object = timer_is_static_object,
.fixup_init = timer_fixup_init,
.fixup_activate = timer_fixup_activate,
.fixup_free = timer_fixup_free,
.fixup_assert_init = timer_fixup_assert_init,
};
static inline void debug_timer_init(struct timer_list *timer)
{
debug_object_init(timer, &timer_debug_descr);
}
static inline void debug_timer_activate(struct timer_list *timer)
{
debug_object_activate(timer, &timer_debug_descr);
}
static inline void debug_timer_deactivate(struct timer_list *timer)
{
debug_object_deactivate(timer, &timer_debug_descr);
}
static inline void debug_timer_assert_init(struct timer_list *timer)
{
debug_object_assert_init(timer, &timer_debug_descr);
}
static void do_init_timer(struct timer_list *timer,
void (*func)(struct timer_list *),
unsigned int flags,
const char *name, struct lock_class_key *key);
void init_timer_on_stack_key(struct timer_list *timer,
void (*func)(struct timer_list *),
unsigned int flags,
const char *name, struct lock_class_key *key)
{
debug_object_init_on_stack(timer, &timer_debug_descr);
do_init_timer(timer, func, flags, name, key);
}
EXPORT_SYMBOL_GPL(init_timer_on_stack_key);
void destroy_timer_on_stack(struct timer_list *timer)
{
debug_object_free(timer, &timer_debug_descr);
}
EXPORT_SYMBOL_GPL(destroy_timer_on_stack);
#else
static inline void debug_timer_init(struct timer_list *timer) { }
static inline void debug_timer_activate(struct timer_list *timer) { }
static inline void debug_timer_deactivate(struct timer_list *timer) { }
static inline void debug_timer_assert_init(struct timer_list *timer) { }
#endif
static inline void debug_init(struct timer_list *timer)
{
debug_timer_init(timer);
trace_timer_init(timer);
}
static inline void debug_deactivate(struct timer_list *timer)
{
debug_timer_deactivate(timer);
trace_timer_cancel(timer);
}
static inline void debug_assert_init(struct timer_list *timer)
{
debug_timer_assert_init(timer);
}
static void do_init_timer(struct timer_list *timer,
void (*func)(struct timer_list *),
unsigned int flags,
const char *name, struct lock_class_key *key)
{
timer->entry.pprev = NULL;
timer->function = func;
if (WARN_ON_ONCE(flags & ~TIMER_INIT_FLAGS))
flags &= TIMER_INIT_FLAGS;
timer->flags = flags | raw_smp_processor_id();
lockdep_init_map(&timer->lockdep_map, name, key, 0);
}
/**
* init_timer_key - initialize a timer
* @timer: the timer to be initialized
* @func: timer callback function
* @flags: timer flags
* @name: name of the timer
* @key: lockdep class key of the fake lock used for tracking timer
* sync lock dependencies
*
* init_timer_key() must be done to a timer prior to calling *any* of the
* other timer functions.
*/
void init_timer_key(struct timer_list *timer,
void (*func)(struct timer_list *), unsigned int flags,
const char *name, struct lock_class_key *key)
{
debug_init(timer);
do_init_timer(timer, func, flags, name, key);
}
EXPORT_SYMBOL(init_timer_key);
static inline void detach_timer(struct timer_list *timer, bool clear_pending)
{
struct hlist_node *entry = &timer->entry;
debug_deactivate(timer);
__hlist_del(entry);
if (clear_pending)
entry->pprev = NULL;
entry->next = LIST_POISON2;
}
static int detach_if_pending(struct timer_list *timer, struct timer_base *base,
bool clear_pending)
{
unsigned idx = timer_get_idx(timer);
if (!timer_pending(timer))
return 0;
if (hlist_is_singular_node(&timer->entry, base->vectors + idx)) {
__clear_bit(idx, base->pending_map);
base->next_expiry_recalc = true;
}
detach_timer(timer, clear_pending);
return 1;
}
static inline struct timer_base *get_timer_cpu_base(u32 tflags, u32 cpu)
{
int index = tflags & TIMER_PINNED ? BASE_LOCAL : BASE_GLOBAL;
struct timer_base *base;
base = per_cpu_ptr(&timer_bases[index], cpu);
/*
* If the timer is deferrable and NO_HZ_COMMON is set then we need
* to use the deferrable base.
*/
if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && (tflags & TIMER_DEFERRABLE))
base = per_cpu_ptr(&timer_bases[BASE_DEF], cpu);
return base;
}
static inline struct timer_base *get_timer_this_cpu_base(u32 tflags)
{
int index = tflags & TIMER_PINNED ? BASE_LOCAL : BASE_GLOBAL;
struct timer_base *base;
base = this_cpu_ptr(&timer_bases[index]);
/*
* If the timer is deferrable and NO_HZ_COMMON is set then we need
* to use the deferrable base.
*/
if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && (tflags & TIMER_DEFERRABLE))
base = this_cpu_ptr(&timer_bases[BASE_DEF]);
return base;
}
static inline struct timer_base *get_timer_base(u32 tflags)
{
return get_timer_cpu_base(tflags, tflags & TIMER_CPUMASK);
}
static inline void __forward_timer_base(struct timer_base *base,
unsigned long basej)
{
/*
* Check whether we can forward the base. We can only do that when
* @basej is past base->clk otherwise we might rewind base->clk.
*/
if (time_before_eq(basej, base->clk))
return;
/*
* If the next expiry value is > jiffies, then we fast forward to
* jiffies otherwise we forward to the next expiry value.
*/
if (time_after(base->next_expiry, basej)) {
base->clk = basej;
} else {
if (WARN_ON_ONCE(time_before(base->next_expiry, base->clk)))
return;
base->clk = base->next_expiry;
}
}
static inline void forward_timer_base(struct timer_base *base)
{
__forward_timer_base(base, READ_ONCE(jiffies));
}
/*
* We are using hashed locking: Holding per_cpu(timer_bases[x]).lock means
* that all timers which are tied to this base are locked, and the base itself
* is locked too.
*
* So __run_timers/migrate_timers can safely modify all timers which could
* be found in the base->vectors array.
*
* When a timer is migrating then the TIMER_MIGRATING flag is set and we need
* to wait until the migration is done.
*/
static struct timer_base *lock_timer_base(struct timer_list *timer,
unsigned long *flags)
__acquires(timer->base->lock)
{
for (;;) {
struct timer_base *base;
u32 tf;
/*
* We need to use READ_ONCE() here, otherwise the compiler
* might re-read @tf between the check for TIMER_MIGRATING
* and spin_lock().
*/
tf = READ_ONCE(timer->flags);
if (!(tf & TIMER_MIGRATING)) {
base = get_timer_base(tf);
raw_spin_lock_irqsave(&base->lock, *flags);
if (timer->flags == tf)
return base;
raw_spin_unlock_irqrestore(&base->lock, *flags);
}
cpu_relax();
}
}
#define MOD_TIMER_PENDING_ONLY 0x01
#define MOD_TIMER_REDUCE 0x02
#define MOD_TIMER_NOTPENDING 0x04
static inline int
__mod_timer(struct timer_list *timer, unsigned long expires, unsigned int options)
{
unsigned long clk = 0, flags, bucket_expiry;
struct timer_base *base, *new_base;
unsigned int idx = UINT_MAX;
int ret = 0;
debug_assert_init(timer);
/*
* This is a common optimization triggered by the networking code - if
* the timer is re-modified to have the same timeout or ends up in the
* same array bucket then just return:
*/
if (!(options & MOD_TIMER_NOTPENDING) && timer_pending(timer)) {
/*
* The downside of this optimization is that it can result in
* larger granularity than you would get from adding a new
* timer with this expiry.
*/
long diff = timer->expires - expires;
if (!diff)
return 1;
if (options & MOD_TIMER_REDUCE && diff <= 0)
return 1;
/*
* We lock timer base and calculate the bucket index right
* here. If the timer ends up in the same bucket, then we
* just update the expiry time and avoid the whole
* dequeue/enqueue dance.
*/
base = lock_timer_base(timer, &flags);
/*
* Has @timer been shutdown? This needs to be evaluated
* while holding base lock to prevent a race against the
* shutdown code.
*/
if (!timer->function)
goto out_unlock;
forward_timer_base(base);
if (timer_pending(timer) && (options & MOD_TIMER_REDUCE) &&
time_before_eq(timer->expires, expires)) {
ret = 1;
goto out_unlock;
}
clk = base->clk;
idx = calc_wheel_index(expires, clk, &bucket_expiry);
/*
* Retrieve and compare the array index of the pending
* timer. If it matches set the expiry to the new value so a
* subsequent call will exit in the expires check above.
*/
if (idx == timer_get_idx(timer)) {
if (!(options & MOD_TIMER_REDUCE))
timer->expires = expires;
else if (time_after(timer->expires, expires))
timer->expires = expires;
ret = 1;
goto out_unlock;
}
} else {
base = lock_timer_base(timer, &flags);
/*
* Has @timer been shutdown? This needs to be evaluated
* while holding base lock to prevent a race against the
* shutdown code.
*/
if (!timer->function)
goto out_unlock;
forward_timer_base(base);
}
ret = detach_if_pending(timer, base, false);
if (!ret && (options & MOD_TIMER_PENDING_ONLY))
goto out_unlock;
new_base = get_timer_this_cpu_base(timer->flags);
if (base != new_base) {
/*
* We are trying to schedule the timer on the new base.
* However we can't change timer's base while it is running,
* otherwise timer_delete_sync() can't detect that the timer's
* handler yet has not finished. This also guarantees that the
* timer is serialized wrt itself.
*/
if (likely(base->running_timer != timer)) {
/* See the comment in lock_timer_base() */
timer->flags |= TIMER_MIGRATING;
raw_spin_unlock(&base->lock);
base = new_base;
raw_spin_lock(&base->lock);
WRITE_ONCE(timer->flags,
(timer->flags & ~TIMER_BASEMASK) | base->cpu);
forward_timer_base(base);
}
}
debug_timer_activate(timer);
timer->expires = expires;
/*
* If 'idx' was calculated above and the base time did not advance
* between calculating 'idx' and possibly switching the base, only
* enqueue_timer() is required. Otherwise we need to (re)calculate
* the wheel index via internal_add_timer().
*/
if (idx != UINT_MAX && clk == base->clk)
enqueue_timer(base, timer, idx, bucket_expiry);
else
internal_add_timer(base, timer);
out_unlock:
raw_spin_unlock_irqrestore(&base->lock, flags);
return ret;
}
/**
* mod_timer_pending - Modify a pending timer's timeout
* @timer: The pending timer to be modified
* @expires: New absolute timeout in jiffies
*
* mod_timer_pending() is the same for pending timers as mod_timer(), but
* will not activate inactive timers.
*
* If @timer->function == NULL then the start operation is silently
* discarded.
*
* Return:
* * %0 - The timer was inactive and not modified or was in
* shutdown state and the operation was discarded
* * %1 - The timer was active and requeued to expire at @expires
*/
int mod_timer_pending(struct timer_list *timer, unsigned long expires)
{
return __mod_timer(timer, expires, MOD_TIMER_PENDING_ONLY);
}
EXPORT_SYMBOL(mod_timer_pending);
/**
* mod_timer - Modify a timer's timeout
* @timer: The timer to be modified
* @expires: New absolute timeout in jiffies
*
* mod_timer(timer, expires) is equivalent to:
*
* del_timer(timer); timer->expires = expires; add_timer(timer);
*
* mod_timer() is more efficient than the above open coded sequence. In
* case that the timer is inactive, the del_timer() part is a NOP. The
* timer is in any case activated with the new expiry time @expires.
*
* Note that if there are multiple unserialized concurrent users of the
* same timer, then mod_timer() is the only safe way to modify the timeout,
* since add_timer() cannot modify an already running timer.
*
* If @timer->function == NULL then the start operation is silently
* discarded. In this case the return value is 0 and meaningless.
*
* Return:
* * %0 - The timer was inactive and started or was in shutdown
* state and the operation was discarded
* * %1 - The timer was active and requeued to expire at @expires or
* the timer was active and not modified because @expires did
* not change the effective expiry time
*/
int mod_timer(struct timer_list *timer, unsigned long expires)
{
return __mod_timer(timer, expires, 0);
}
EXPORT_SYMBOL(mod_timer);
/**
* timer_reduce - Modify a timer's timeout if it would reduce the timeout
* @timer: The timer to be modified
* @expires: New absolute timeout in jiffies
*
* timer_reduce() is very similar to mod_timer(), except that it will only
* modify an enqueued timer if that would reduce the expiration time. If
* @timer is not enqueued it starts the timer.
*
* If @timer->function == NULL then the start operation is silently
* discarded.
*
* Return:
* * %0 - The timer was inactive and started or was in shutdown
* state and the operation was discarded
* * %1 - The timer was active and requeued to expire at @expires or
* the timer was active and not modified because @expires
* did not change the effective expiry time such that the
* timer would expire earlier than already scheduled
*/
int timer_reduce(struct timer_list *timer, unsigned long expires)
{
return __mod_timer(timer, expires, MOD_TIMER_REDUCE);
}
EXPORT_SYMBOL(timer_reduce);
/**
* add_timer - Start a timer
* @timer: The timer to be started
*
* Start @timer to expire at @timer->expires in the future. @timer->expires
* is the absolute expiry time measured in 'jiffies'. When the timer expires
* timer->function(timer) will be invoked from soft interrupt context.
*
* The @timer->expires and @timer->function fields must be set prior
* to calling this function.
*
* If @timer->function == NULL then the start operation is silently
* discarded.
*
* If @timer->expires is already in the past @timer will be queued to
* expire at the next timer tick.
*
* This can only operate on an inactive timer. Attempts to invoke this on
* an active timer are rejected with a warning.
*/
void add_timer(struct timer_list *timer)
{
if (WARN_ON_ONCE(timer_pending(timer)))
return;
__mod_timer(timer, timer->expires, MOD_TIMER_NOTPENDING);
}
EXPORT_SYMBOL(add_timer);
/**
* add_timer_local() - Start a timer on the local CPU
* @timer: The timer to be started
*
* Same as add_timer() except that the timer flag TIMER_PINNED is set.
*
* See add_timer() for further details.
*/
void add_timer_local(struct timer_list *timer)
{
if (WARN_ON_ONCE(timer_pending(timer)))
return;
timer->flags |= TIMER_PINNED;
__mod_timer(timer, timer->expires, MOD_TIMER_NOTPENDING);
}
EXPORT_SYMBOL(add_timer_local);
/**
* add_timer_global() - Start a timer without TIMER_PINNED flag set
* @timer: The timer to be started
*
* Same as add_timer() except that the timer flag TIMER_PINNED is unset.
*
* See add_timer() for further details.
*/
void add_timer_global(struct timer_list *timer)
{
if (WARN_ON_ONCE(timer_pending(timer)))
return;
timer->flags &= ~TIMER_PINNED;
__mod_timer(timer, timer->expires, MOD_TIMER_NOTPENDING);
}
EXPORT_SYMBOL(add_timer_global);
/**
* add_timer_on - Start a timer on a particular CPU
* @timer: The timer to be started
* @cpu: The CPU to start it on
*
* Same as add_timer() except that it starts the timer on the given CPU and
* the TIMER_PINNED flag is set. When timer shouldn't be a pinned timer in
* the next round, add_timer_global() should be used instead as it unsets
* the TIMER_PINNED flag.
*
* See add_timer() for further details.
*/
void add_timer_on(struct timer_list *timer, int cpu)
{
struct timer_base *new_base, *base;
unsigned long flags;
debug_assert_init(timer);
if (WARN_ON_ONCE(timer_pending(timer)))
return;
/* Make sure timer flags have TIMER_PINNED flag set */
timer->flags |= TIMER_PINNED;
new_base = get_timer_cpu_base(timer->flags, cpu);
/*
* If @timer was on a different CPU, it should be migrated with the
* old base locked to prevent other operations proceeding with the
* wrong base locked. See lock_timer_base().
*/
base = lock_timer_base(timer, &flags);
/*
* Has @timer been shutdown? This needs to be evaluated while
* holding base lock to prevent a race against the shutdown code.
*/
if (!timer->function)
goto out_unlock;
if (base != new_base) {
timer->flags |= TIMER_MIGRATING;
raw_spin_unlock(&base->lock);
base = new_base;
raw_spin_lock(&base->lock);
WRITE_ONCE(timer->flags,
(timer->flags & ~TIMER_BASEMASK) | cpu);
}
forward_timer_base(base);
debug_timer_activate(timer);
internal_add_timer(base, timer);
out_unlock:
raw_spin_unlock_irqrestore(&base->lock, flags);
}
EXPORT_SYMBOL_GPL(add_timer_on);
/**
* __timer_delete - Internal function: Deactivate a timer
* @timer: The timer to be deactivated
* @shutdown: If true, this indicates that the timer is about to be
* shutdown permanently.
*
* If @shutdown is true then @timer->function is set to NULL under the
* timer base lock which prevents further rearming of the time. In that
* case any attempt to rearm @timer after this function returns will be
* silently ignored.
*
* Return:
* * %0 - The timer was not pending
* * %1 - The timer was pending and deactivated
*/
static int __timer_delete(struct timer_list *timer, bool shutdown)
{
struct timer_base *base;
unsigned long flags;
int ret = 0;
debug_assert_init(timer);
/*
* If @shutdown is set then the lock has to be taken whether the
* timer is pending or not to protect against a concurrent rearm
* which might hit between the lockless pending check and the lock
* acquisition. By taking the lock it is ensured that such a newly
* enqueued timer is dequeued and cannot end up with
* timer->function == NULL in the expiry code.
*
* If timer->function is currently executed, then this makes sure
* that the callback cannot requeue the timer.
*/
if (timer_pending(timer) || shutdown) {
base = lock_timer_base(timer, &flags);
ret = detach_if_pending(timer, base, true);
if (shutdown)
timer->function = NULL;
raw_spin_unlock_irqrestore(&base->lock, flags);
}
return ret;
}
/**
* timer_delete - Deactivate a timer
* @timer: The timer to be deactivated
*
* The function only deactivates a pending timer, but contrary to
* timer_delete_sync() it does not take into account whether the timer's
* callback function is concurrently executed on a different CPU or not.
* It neither prevents rearming of the timer. If @timer can be rearmed
* concurrently then the return value of this function is meaningless.
*
* Return:
* * %0 - The timer was not pending
* * %1 - The timer was pending and deactivated
*/
int timer_delete(struct timer_list *timer)
{
return __timer_delete(timer, false);
}
EXPORT_SYMBOL(timer_delete);
/**
* timer_shutdown - Deactivate a timer and prevent rearming
* @timer: The timer to be deactivated
*
* The function does not wait for an eventually running timer callback on a
* different CPU but it prevents rearming of the timer. Any attempt to arm
* @timer after this function returns will be silently ignored.
*
* This function is useful for teardown code and should only be used when
* timer_shutdown_sync() cannot be invoked due to locking or context constraints.
*
* Return:
* * %0 - The timer was not pending
* * %1 - The timer was pending
*/
int timer_shutdown(struct timer_list *timer)
{
return __timer_delete(timer, true);
}
EXPORT_SYMBOL_GPL(timer_shutdown);
/**
* __try_to_del_timer_sync - Internal function: Try to deactivate a timer
* @timer: Timer to deactivate
* @shutdown: If true, this indicates that the timer is about to be
* shutdown permanently.
*
* If @shutdown is true then @timer->function is set to NULL under the
* timer base lock which prevents further rearming of the timer. Any
* attempt to rearm @timer after this function returns will be silently
* ignored.
*
* This function cannot guarantee that the timer cannot be rearmed
* right after dropping the base lock if @shutdown is false. That
* needs to be prevented by the calling code if necessary.
*
* Return:
* * %0 - The timer was not pending
* * %1 - The timer was pending and deactivated
* * %-1 - The timer callback function is running on a different CPU
*/
static int __try_to_del_timer_sync(struct timer_list *timer, bool shutdown)
{
struct timer_base *base;
unsigned long flags;
int ret = -1;
debug_assert_init(timer);
base = lock_timer_base(timer, &flags);
if (base->running_timer != timer)
ret = detach_if_pending(timer, base, true);
if (shutdown)
timer->function = NULL;
raw_spin_unlock_irqrestore(&base->lock, flags);
return ret;
}
/**
* try_to_del_timer_sync - Try to deactivate a timer
* @timer: Timer to deactivate
*
* This function tries to deactivate a timer. On success the timer is not
* queued and the timer callback function is not running on any CPU.
*
* This function does not guarantee that the timer cannot be rearmed right
* after dropping the base lock. That needs to be prevented by the calling
* code if necessary.
*
* Return:
* * %0 - The timer was not pending
* * %1 - The timer was pending and deactivated
* * %-1 - The timer callback function is running on a different CPU
*/
int try_to_del_timer_sync(struct timer_list *timer)
{
return __try_to_del_timer_sync(timer, false);
}
EXPORT_SYMBOL(try_to_del_timer_sync);
#ifdef CONFIG_PREEMPT_RT
static __init void timer_base_init_expiry_lock(struct timer_base *base)
{
spin_lock_init(&base->expiry_lock);
}
static inline void timer_base_lock_expiry(struct timer_base *base)
{
spin_lock(&base->expiry_lock);
}
static inline void timer_base_unlock_expiry(struct timer_base *base)
{
spin_unlock(&base->expiry_lock);
}
/*
* The counterpart to del_timer_wait_running().
*
* If there is a waiter for base->expiry_lock, then it was waiting for the
* timer callback to finish. Drop expiry_lock and reacquire it. That allows
* the waiter to acquire the lock and make progress.
*/
static void timer_sync_wait_running(struct timer_base *base)
__releases(&base->lock) __releases(&base->expiry_lock)
__acquires(&base->expiry_lock) __acquires(&base->lock)
{
if (atomic_read(&base->timer_waiters)) {
raw_spin_unlock_irq(&base->lock);
spin_unlock(&base->expiry_lock);
spin_lock(&base->expiry_lock);
raw_spin_lock_irq(&base->lock);
}
}
/*
* This function is called on PREEMPT_RT kernels when the fast path
* deletion of a timer failed because the timer callback function was
* running.
*
* This prevents priority inversion, if the softirq thread on a remote CPU
* got preempted, and it prevents a life lock when the task which tries to
* delete a timer preempted the softirq thread running the timer callback
* function.
*/
static void del_timer_wait_running(struct timer_list *timer)
{
u32 tf;
tf = READ_ONCE(timer->flags);
if (!(tf & (TIMER_MIGRATING | TIMER_IRQSAFE))) {
struct timer_base *base = get_timer_base(tf);
/*
* Mark the base as contended and grab the expiry lock,
* which is held by the softirq across the timer
* callback. Drop the lock immediately so the softirq can
* expire the next timer. In theory the timer could already
* be running again, but that's more than unlikely and just
* causes another wait loop.
*/
atomic_inc(&base->timer_waiters);
spin_lock_bh(&base->expiry_lock);
atomic_dec(&base->timer_waiters);
spin_unlock_bh(&base->expiry_lock);
}
}
#else
static inline void timer_base_init_expiry_lock(struct timer_base *base) { }
static inline void timer_base_lock_expiry(struct timer_base *base) { }
static inline void timer_base_unlock_expiry(struct timer_base *base) { }
static inline void timer_sync_wait_running(struct timer_base *base) { }
static inline void del_timer_wait_running(struct timer_list *timer) { }
#endif
/**
* __timer_delete_sync - Internal function: Deactivate a timer and wait
* for the handler to finish.
* @timer: The timer to be deactivated
* @shutdown: If true, @timer->function will be set to NULL under the
* timer base lock which prevents rearming of @timer
*
* If @shutdown is not set the timer can be rearmed later. If the timer can
* be rearmed concurrently, i.e. after dropping the base lock then the
* return value is meaningless.
*
* If @shutdown is set then @timer->function is set to NULL under timer
* base lock which prevents rearming of the timer. Any attempt to rearm
* a shutdown timer is silently ignored.
*
* If the timer should be reused after shutdown it has to be initialized
* again.
*
* Return:
* * %0 - The timer was not pending
* * %1 - The timer was pending and deactivated
*/
static int __timer_delete_sync(struct timer_list *timer, bool shutdown)
{
int ret;
#ifdef CONFIG_LOCKDEP
unsigned long flags;
/*
* If lockdep gives a backtrace here, please reference
* the synchronization rules above.
*/
local_irq_save(flags);
lock_map_acquire(&timer->lockdep_map);
lock_map_release(&timer->lockdep_map);
local_irq_restore(flags);
#endif
/*
* don't use it in hardirq context, because it
* could lead to deadlock.
*/
WARN_ON(in_hardirq() && !(timer->flags & TIMER_IRQSAFE));
/*
* Must be able to sleep on PREEMPT_RT because of the slowpath in
* del_timer_wait_running().
*/
if (IS_ENABLED(CONFIG_PREEMPT_RT) && !(timer->flags & TIMER_IRQSAFE))
lockdep_assert_preemption_enabled();
do {
ret = __try_to_del_timer_sync(timer, shutdown);
if (unlikely(ret < 0)) {
del_timer_wait_running(timer);
cpu_relax();
}
} while (ret < 0);
return ret;
}
/**
* timer_delete_sync - Deactivate a timer and wait for the handler to finish.
* @timer: The timer to be deactivated
*
* Synchronization rules: Callers must prevent restarting of the timer,
* otherwise this function is meaningless. It must not be called from
* interrupt contexts unless the timer is an irqsafe one. The caller must
* not hold locks which would prevent completion of the timer's callback
* function. The timer's handler must not call add_timer_on(). Upon exit
* the timer is not queued and the handler is not running on any CPU.
*
* For !irqsafe timers, the caller must not hold locks that are held in
* interrupt context. Even if the lock has nothing to do with the timer in
* question. Here's why::
*
* CPU0 CPU1
* ---- ----
* <SOFTIRQ>
* call_timer_fn();
* base->running_timer = mytimer;
* spin_lock_irq(somelock);
* <IRQ>
* spin_lock(somelock);
* timer_delete_sync(mytimer);
* while (base->running_timer == mytimer);
*
* Now timer_delete_sync() will never return and never release somelock.
* The interrupt on the other CPU is waiting to grab somelock but it has
* interrupted the softirq that CPU0 is waiting to finish.
*
* This function cannot guarantee that the timer is not rearmed again by
* some concurrent or preempting code, right after it dropped the base
* lock. If there is the possibility of a concurrent rearm then the return
* value of the function is meaningless.
*
* If such a guarantee is needed, e.g. for teardown situations then use
* timer_shutdown_sync() instead.
*
* Return:
* * %0 - The timer was not pending
* * %1 - The timer was pending and deactivated
*/
int timer_delete_sync(struct timer_list *timer)
{
return __timer_delete_sync(timer, false);
}
EXPORT_SYMBOL(timer_delete_sync);
/**
* timer_shutdown_sync - Shutdown a timer and prevent rearming
* @timer: The timer to be shutdown
*
* When the function returns it is guaranteed that:
* - @timer is not queued
* - The callback function of @timer is not running
* - @timer cannot be enqueued again. Any attempt to rearm
* @timer is silently ignored.
*
* See timer_delete_sync() for synchronization rules.
*
* This function is useful for final teardown of an infrastructure where
* the timer is subject to a circular dependency problem.
*
* A common pattern for this is a timer and a workqueue where the timer can
* schedule work and work can arm the timer. On shutdown the workqueue must
* be destroyed and the timer must be prevented from rearming. Unless the
* code has conditionals like 'if (mything->in_shutdown)' to prevent that
* there is no way to get this correct with timer_delete_sync().
*
* timer_shutdown_sync() is solving the problem. The correct ordering of
* calls in this case is:
*
* timer_shutdown_sync(&mything->timer);
* workqueue_destroy(&mything->workqueue);
*
* After this 'mything' can be safely freed.
*
* This obviously implies that the timer is not required to be functional
* for the rest of the shutdown operation.
*
* Return:
* * %0 - The timer was not pending
* * %1 - The timer was pending
*/
int timer_shutdown_sync(struct timer_list *timer)
{
return __timer_delete_sync(timer, true);
}
EXPORT_SYMBOL_GPL(timer_shutdown_sync);
static void call_timer_fn(struct timer_list *timer,
void (*fn)(struct timer_list *),
unsigned long baseclk)
{
int count = preempt_count();
#ifdef CONFIG_LOCKDEP
/*
* It is permissible to free the timer from inside the
* function that is called from it, this we need to take into
* account for lockdep too. To avoid bogus "held lock freed"
* warnings as well as problems when looking into
* timer->lockdep_map, make a copy and use that here.
*/
struct lockdep_map lockdep_map;
lockdep_copy_map(&lockdep_map, &timer->lockdep_map);
#endif
/*
* Couple the lock chain with the lock chain at
* timer_delete_sync() by acquiring the lock_map around the fn()
* call here and in timer_delete_sync().
*/
lock_map_acquire(&lockdep_map);
trace_timer_expire_entry(timer, baseclk);
fn(timer);
trace_timer_expire_exit(timer);
lock_map_release(&lockdep_map);
if (count != preempt_count()) {
WARN_ONCE(1, "timer: %pS preempt leak: %08x -> %08x\n",
fn, count, preempt_count());
/*
* Restore the preempt count. That gives us a decent
* chance to survive and extract information. If the
* callback kept a lock held, bad luck, but not worse
* than the BUG() we had.
*/
preempt_count_set(count);
}
}
static void expire_timers(struct timer_base *base, struct hlist_head *head)
{
/*
* This value is required only for tracing. base->clk was
* incremented directly before expire_timers was called. But expiry
* is related to the old base->clk value.
*/
unsigned long baseclk = base->clk - 1;
while (!hlist_empty(head)) {
struct timer_list *timer;
void (*fn)(struct timer_list *);
timer = hlist_entry(head->first, struct timer_list, entry);
base->running_timer = timer;
detach_timer(timer, true);
fn = timer->function;
if (WARN_ON_ONCE(!fn)) {
/* Should never happen. Emphasis on should! */
base->running_timer = NULL;
continue;
}
if (timer->flags & TIMER_IRQSAFE) {
raw_spin_unlock(&base->lock);
call_timer_fn(timer, fn, baseclk);
raw_spin_lock(&base->lock);
base->running_timer = NULL;
} else {
raw_spin_unlock_irq(&base->lock);
call_timer_fn(timer, fn, baseclk);
raw_spin_lock_irq(&base->lock);
base->running_timer = NULL;
timer_sync_wait_running(base);
}
}
}
static int collect_expired_timers(struct timer_base *base,
struct hlist_head *heads)
{
unsigned long clk = base->clk = base->next_expiry;
struct hlist_head *vec;
int i, levels = 0;
unsigned int idx;
for (i = 0; i < LVL_DEPTH; i++) {
idx = (clk & LVL_MASK) + i * LVL_SIZE;
if (__test_and_clear_bit(idx, base->pending_map)) {
vec = base->vectors + idx;
hlist_move_list(vec, heads++);
levels++;
}
/* Is it time to look at the next level? */
if (clk & LVL_CLK_MASK)
break;
/* Shift clock for the next level granularity */
clk >>= LVL_CLK_SHIFT;
}
return levels;
}
/*
* Find the next pending bucket of a level. Search from level start (@offset)
* + @clk upwards and if nothing there, search from start of the level
* (@offset) up to @offset + clk.
*/
static int next_pending_bucket(struct timer_base *base, unsigned offset,
unsigned clk)
{
unsigned pos, start = offset + clk;
unsigned end = offset + LVL_SIZE;
pos = find_next_bit(base->pending_map, end, start);
if (pos < end)
return pos - start;
pos = find_next_bit(base->pending_map, start, offset);
return pos < start ? pos + LVL_SIZE - start : -1;
}
/*
* Search the first expiring timer in the various clock levels. Caller must
* hold base->lock.
*
* Store next expiry time in base->next_expiry.
*/
static void timer_recalc_next_expiry(struct timer_base *base)
{
unsigned long clk, next, adj;
unsigned lvl, offset = 0;
next = base->clk + NEXT_TIMER_MAX_DELTA;
clk = base->clk;
for (lvl = 0; lvl < LVL_DEPTH; lvl++, offset += LVL_SIZE) {
int pos = next_pending_bucket(base, offset, clk & LVL_MASK);
unsigned long lvl_clk = clk & LVL_CLK_MASK;
if (pos >= 0) {
unsigned long tmp = clk + (unsigned long) pos;
tmp <<= LVL_SHIFT(lvl);
if (time_before(tmp, next))
next = tmp;
/*
* If the next expiration happens before we reach
* the next level, no need to check further.
*/
if (pos <= ((LVL_CLK_DIV - lvl_clk) & LVL_CLK_MASK))
break;
}
/*
* Clock for the next level. If the current level clock lower
* bits are zero, we look at the next level as is. If not we
* need to advance it by one because that's going to be the
* next expiring bucket in that level. base->clk is the next
* expiring jiffy. So in case of:
*
* LVL5 LVL4 LVL3 LVL2 LVL1 LVL0
* 0 0 0 0 0 0
*
* we have to look at all levels @index 0. With
*
* LVL5 LVL4 LVL3 LVL2 LVL1 LVL0
* 0 0 0 0 0 2
*
* LVL0 has the next expiring bucket @index 2. The upper
* levels have the next expiring bucket @index 1.
*
* In case that the propagation wraps the next level the same
* rules apply:
*
* LVL5 LVL4 LVL3 LVL2 LVL1 LVL0
* 0 0 0 0 F 2
*
* So after looking at LVL0 we get:
*
* LVL5 LVL4 LVL3 LVL2 LVL1
* 0 0 0 1 0
*
* So no propagation from LVL1 to LVL2 because that happened
* with the add already, but then we need to propagate further
* from LVL2 to LVL3.
*
* So the simple check whether the lower bits of the current
* level are 0 or not is sufficient for all cases.
*/
adj = lvl_clk ? 1 : 0;
clk >>= LVL_CLK_SHIFT;
clk += adj;
}
WRITE_ONCE(base->next_expiry, next);
base->next_expiry_recalc = false;
base->timers_pending = !(next == base->clk + NEXT_TIMER_MAX_DELTA);
}
#ifdef CONFIG_NO_HZ_COMMON
/*
* Check, if the next hrtimer event is before the next timer wheel
* event:
*/
static u64 cmp_next_hrtimer_event(u64 basem, u64 expires)
{
u64 nextevt = hrtimer_get_next_event();
/*
* If high resolution timers are enabled
* hrtimer_get_next_event() returns KTIME_MAX.
*/
if (expires <= nextevt)
return expires;
/*
* If the next timer is already expired, return the tick base
* time so the tick is fired immediately.
*/
if (nextevt <= basem)
return basem;
/*
* Round up to the next jiffy. High resolution timers are
* off, so the hrtimers are expired in the tick and we need to
* make sure that this tick really expires the timer to avoid
* a ping pong of the nohz stop code.
*
* Use DIV_ROUND_UP_ULL to prevent gcc calling __divdi3
*/
return DIV_ROUND_UP_ULL(nextevt, TICK_NSEC) * TICK_NSEC;
}
static unsigned long next_timer_interrupt(struct timer_base *base,
unsigned long basej)
{
if (base->next_expiry_recalc)
timer_recalc_next_expiry(base);
/*
* Move next_expiry for the empty base into the future to prevent an
* unnecessary raise of the timer softirq when the next_expiry value
* will be reached even if there is no timer pending.
*
* This update is also required to make timer_base::next_expiry values
* easy comparable to find out which base holds the first pending timer.
*/
if (!base->timers_pending)
WRITE_ONCE(base->next_expiry, basej + NEXT_TIMER_MAX_DELTA);
return base->next_expiry;
}
static unsigned long fetch_next_timer_interrupt(unsigned long basej, u64 basem,
struct timer_base *base_local,
struct timer_base *base_global,
struct timer_events *tevt)
{
unsigned long nextevt, nextevt_local, nextevt_global;
bool local_first;
nextevt_local = next_timer_interrupt(base_local, basej);
nextevt_global = next_timer_interrupt(base_global, basej);
local_first = time_before_eq(nextevt_local, nextevt_global);
nextevt = local_first ? nextevt_local : nextevt_global;
/*
* If the @nextevt is at max. one tick away, use @nextevt and store
* it in the local expiry value. The next global event is irrelevant in
* this case and can be left as KTIME_MAX.
*/
if (time_before_eq(nextevt, basej + 1)) {
/* If we missed a tick already, force 0 delta */
if (time_before(nextevt, basej))
nextevt = basej;
tevt->local = basem + (u64)(nextevt - basej) * TICK_NSEC;
/*
* This is required for the remote check only but it doesn't
* hurt, when it is done for both call sites:
*
* * The remote callers will only take care of the global timers
* as local timers will be handled by CPU itself. When not
* updating tevt->global with the already missed first global
* timer, it is possible that it will be missed completely.
*
* * The local callers will ignore the tevt->global anyway, when
* nextevt is max. one tick away.
*/
if (!local_first)
tevt->global = tevt->local;
return nextevt;
}
/*
* Update tevt.* values:
*
* If the local queue expires first, then the global event can be
* ignored. If the global queue is empty, nothing to do either.
*/
if (!local_first && base_global->timers_pending)
tevt->global = basem + (u64)(nextevt_global - basej) * TICK_NSEC;
if (base_local->timers_pending)
tevt->local = basem + (u64)(nextevt_local - basej) * TICK_NSEC;
return nextevt;
}
# ifdef CONFIG_SMP
/**
* fetch_next_timer_interrupt_remote() - Store next timers into @tevt
* @basej: base time jiffies
* @basem: base time clock monotonic
* @tevt: Pointer to the storage for the expiry values
* @cpu: Remote CPU
*
* Stores the next pending local and global timer expiry values in the
* struct pointed to by @tevt. If a queue is empty the corresponding
* field is set to KTIME_MAX. If local event expires before global
* event, global event is set to KTIME_MAX as well.
*
* Caller needs to make sure timer base locks are held (use
* timer_lock_remote_bases() for this purpose).
*/
void fetch_next_timer_interrupt_remote(unsigned long basej, u64 basem,
struct timer_events *tevt,
unsigned int cpu)
{
struct timer_base *base_local, *base_global;
/* Preset local / global events */
tevt->local = tevt->global = KTIME_MAX;
base_local = per_cpu_ptr(&timer_bases[BASE_LOCAL], cpu);
base_global = per_cpu_ptr(&timer_bases[BASE_GLOBAL], cpu);
lockdep_assert_held(&base_local->lock);
lockdep_assert_held(&base_global->lock);
fetch_next_timer_interrupt(basej, basem, base_local, base_global, tevt);
}
/**
* timer_unlock_remote_bases - unlock timer bases of cpu
* @cpu: Remote CPU
*
* Unlocks the remote timer bases.
*/
void timer_unlock_remote_bases(unsigned int cpu)
__releases(timer_bases[BASE_LOCAL]->lock)
__releases(timer_bases[BASE_GLOBAL]->lock)
{
struct timer_base *base_local, *base_global;
base_local = per_cpu_ptr(&timer_bases[BASE_LOCAL], cpu);
base_global = per_cpu_ptr(&timer_bases[BASE_GLOBAL], cpu);
raw_spin_unlock(&base_global->lock);
raw_spin_unlock(&base_local->lock);
}
/**
* timer_lock_remote_bases - lock timer bases of cpu
* @cpu: Remote CPU
*
* Locks the remote timer bases.
*/
void timer_lock_remote_bases(unsigned int cpu)
__acquires(timer_bases[BASE_LOCAL]->lock)
__acquires(timer_bases[BASE_GLOBAL]->lock)
{
struct timer_base *base_local, *base_global;
base_local = per_cpu_ptr(&timer_bases[BASE_LOCAL], cpu);
base_global = per_cpu_ptr(&timer_bases[BASE_GLOBAL], cpu);
lockdep_assert_irqs_disabled();
raw_spin_lock(&base_local->lock);
raw_spin_lock_nested(&base_global->lock, SINGLE_DEPTH_NESTING);
}
/**
* timer_base_is_idle() - Return whether timer base is set idle
*
* Returns value of local timer base is_idle value.
*/
bool timer_base_is_idle(void)
{
return __this_cpu_read(timer_bases[BASE_LOCAL].is_idle);
}
static void __run_timer_base(struct timer_base *base);
/**
* timer_expire_remote() - expire global timers of cpu
* @cpu: Remote CPU
*
* Expire timers of global base of remote CPU.
*/
void timer_expire_remote(unsigned int cpu)
{
struct timer_base *base = per_cpu_ptr(&timer_bases[BASE_GLOBAL], cpu);
__run_timer_base(base);
}
static void timer_use_tmigr(unsigned long basej, u64 basem,
unsigned long *nextevt, bool *tick_stop_path,
bool timer_base_idle, struct timer_events *tevt)
{
u64 next_tmigr;
if (timer_base_idle)
next_tmigr = tmigr_cpu_new_timer(tevt->global);
else if (tick_stop_path)
next_tmigr = tmigr_cpu_deactivate(tevt->global);
else
next_tmigr = tmigr_quick_check(tevt->global);
/*
* If the CPU is the last going idle in timer migration hierarchy, make
* sure the CPU will wake up in time to handle remote timers.
* next_tmigr == KTIME_MAX if other CPUs are still active.
*/
if (next_tmigr < tevt->local) {
u64 tmp;
/* If we missed a tick already, force 0 delta */
if (next_tmigr < basem)
next_tmigr = basem;
tmp = div_u64(next_tmigr - basem, TICK_NSEC);
*nextevt = basej + (unsigned long)tmp;
tevt->local = next_tmigr;
}
}
# else
static void timer_use_tmigr(unsigned long basej, u64 basem,
unsigned long *nextevt, bool *tick_stop_path,
bool timer_base_idle, struct timer_events *tevt)
{
/*
* Make sure first event is written into tevt->local to not miss a
* timer on !SMP systems.
*/
tevt->local = min_t(u64, tevt->local, tevt->global);
}
# endif /* CONFIG_SMP */
static inline u64 __get_next_timer_interrupt(unsigned long basej, u64 basem,
bool *idle)
{
struct timer_events tevt = { .local = KTIME_MAX, .global = KTIME_MAX };
struct timer_base *base_local, *base_global;
unsigned long nextevt;
bool idle_is_possible;
/*
* When the CPU is offline, the tick is cancelled and nothing is supposed
* to try to stop it.
*/
if (WARN_ON_ONCE(cpu_is_offline(smp_processor_id()))) {
if (idle)
*idle = true;
return tevt.local;
}
base_local = this_cpu_ptr(&timer_bases[BASE_LOCAL]);
base_global = this_cpu_ptr(&timer_bases[BASE_GLOBAL]);
raw_spin_lock(&base_local->lock);
raw_spin_lock_nested(&base_global->lock, SINGLE_DEPTH_NESTING);
nextevt = fetch_next_timer_interrupt(basej, basem, base_local,
base_global, &tevt);
/*
* If the next event is only one jiffy ahead there is no need to call
* timer migration hierarchy related functions. The value for the next
* global timer in @tevt struct equals then KTIME_MAX. This is also
* true, when the timer base is idle.
*
* The proper timer migration hierarchy function depends on the callsite
* and whether timer base is idle or not. @nextevt will be updated when
* this CPU needs to handle the first timer migration hierarchy
* event. See timer_use_tmigr() for detailed information.
*/
idle_is_possible = time_after(nextevt, basej + 1);
if (idle_is_possible)
timer_use_tmigr(basej, basem, &nextevt, idle,
base_local->is_idle, &tevt);
/*
* We have a fresh next event. Check whether we can forward the
* base.
*/
__forward_timer_base(base_local, basej);
__forward_timer_base(base_global, basej);
/*
* Set base->is_idle only when caller is timer_base_try_to_set_idle()
*/
if (idle) {
/*
* Bases are idle if the next event is more than a tick
* away. Caution: @nextevt could have changed by enqueueing a
* global timer into timer migration hierarchy. Therefore a new
* check is required here.
*
* If the base is marked idle then any timer add operation must
* forward the base clk itself to keep granularity small. This
* idle logic is only maintained for the BASE_LOCAL and
* BASE_GLOBAL base, deferrable timers may still see large
* granularity skew (by design).
*/
if (!base_local->is_idle && time_after(nextevt, basej + 1)) {
base_local->is_idle = true;
/*
* Global timers queued locally while running in a task
* in nohz_full mode need a self-IPI to kick reprogramming
* in IRQ tail.
*/
if (tick_nohz_full_cpu(base_local->cpu))
base_global->is_idle = true;
trace_timer_base_idle(true, base_local->cpu);
}
*idle = base_local->is_idle;
/*
* When timer base is not set idle, undo the effect of
* tmigr_cpu_deactivate() to prevent inconsistent states - active
* timer base but inactive timer migration hierarchy.
*
* When timer base was already marked idle, nothing will be
* changed here.
*/
if (!base_local->is_idle && idle_is_possible)
tmigr_cpu_activate();
}
raw_spin_unlock(&base_global->lock);
raw_spin_unlock(&base_local->lock);
return cmp_next_hrtimer_event(basem, tevt.local);
}
/**
* get_next_timer_interrupt() - return the time (clock mono) of the next timer
* @basej: base time jiffies
* @basem: base time clock monotonic
*
* Returns the tick aligned clock monotonic time of the next pending timer or
* KTIME_MAX if no timer is pending. If timer of global base was queued into
* timer migration hierarchy, first global timer is not taken into account. If
* it was the last CPU of timer migration hierarchy going idle, first global
* event is taken into account.
*/
u64 get_next_timer_interrupt(unsigned long basej, u64 basem)
{
return __get_next_timer_interrupt(basej, basem, NULL);
}
/**
* timer_base_try_to_set_idle() - Try to set the idle state of the timer bases
* @basej: base time jiffies
* @basem: base time clock monotonic
* @idle: pointer to store the value of timer_base->is_idle on return;
* *idle contains the information whether tick was already stopped
*
* Returns the tick aligned clock monotonic time of the next pending timer or
* KTIME_MAX if no timer is pending. When tick was already stopped KTIME_MAX is
* returned as well.
*/
u64 timer_base_try_to_set_idle(unsigned long basej, u64 basem, bool *idle)
{
if (*idle)
return KTIME_MAX;
return __get_next_timer_interrupt(basej, basem, idle);
}
/**
* timer_clear_idle - Clear the idle state of the timer base
*
* Called with interrupts disabled
*/
void timer_clear_idle(void)
{
/*
* We do this unlocked. The worst outcome is a remote pinned timer
* enqueue sending a pointless IPI, but taking the lock would just
* make the window for sending the IPI a few instructions smaller
* for the cost of taking the lock in the exit from idle
* path. Required for BASE_LOCAL only.
*/
__this_cpu_write(timer_bases[BASE_LOCAL].is_idle, false);
if (tick_nohz_full_cpu(smp_processor_id()))
__this_cpu_write(timer_bases[BASE_GLOBAL].is_idle, false);
trace_timer_base_idle(false, smp_processor_id());
/* Activate without holding the timer_base->lock */
tmigr_cpu_activate();
}
#endif
/**
* __run_timers - run all expired timers (if any) on this CPU.
* @base: the timer vector to be processed.
*/
static inline void __run_timers(struct timer_base *base)
{
struct hlist_head heads[LVL_DEPTH];
int levels;
lockdep_assert_held(&base->lock);
if (base->running_timer)
return;
while (time_after_eq(jiffies, base->clk) &&
time_after_eq(jiffies, base->next_expiry)) {
levels = collect_expired_timers(base, heads);
/*
* The two possible reasons for not finding any expired
* timer at this clk are that all matching timers have been
* dequeued or no timer has been queued since
* base::next_expiry was set to base::clk +
* NEXT_TIMER_MAX_DELTA.
*/
WARN_ON_ONCE(!levels && !base->next_expiry_recalc
&& base->timers_pending);
/*
* While executing timers, base->clk is set 1 offset ahead of
* jiffies to avoid endless requeuing to current jiffies.
*/
base->clk++;
timer_recalc_next_expiry(base);
while (levels--)
expire_timers(base, heads + levels);
}
}
static void __run_timer_base(struct timer_base *base)
{
if (time_before(jiffies, base->next_expiry))
return;
timer_base_lock_expiry(base);
raw_spin_lock_irq(&base->lock);
__run_timers(base);
raw_spin_unlock_irq(&base->lock);
timer_base_unlock_expiry(base);
}
static void run_timer_base(int index)
{
struct timer_base *base = this_cpu_ptr(&timer_bases[index]);
__run_timer_base(base);
}
/*
* This function runs timers and the timer-tq in bottom half context.
*/
static __latent_entropy void run_timer_softirq(void)
{
run_timer_base(BASE_LOCAL);
if (IS_ENABLED(CONFIG_NO_HZ_COMMON)) {
run_timer_base(BASE_GLOBAL);
run_timer_base(BASE_DEF);
if (is_timers_nohz_active())
tmigr_handle_remote();
}
}
/*
* Called by the local, per-CPU timer interrupt on SMP.
*/
static void run_local_timers(void)
{
struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_LOCAL]);
hrtimer_run_queues();
for (int i = 0; i < NR_BASES; i++, base++) {
/*
* Raise the softirq only if required.
*
* timer_base::next_expiry can be written by a remote CPU while
* holding the lock. If this write happens at the same time than
* the lockless local read, sanity checker could complain about
* data corruption.
*
* There are two possible situations where
* timer_base::next_expiry is written by a remote CPU:
*
* 1. Remote CPU expires global timers of this CPU and updates
* timer_base::next_expiry of BASE_GLOBAL afterwards in
* next_timer_interrupt() or timer_recalc_next_expiry(). The
* worst outcome is a superfluous raise of the timer softirq
* when the not yet updated value is read.
*
* 2. A new first pinned timer is enqueued by a remote CPU
* and therefore timer_base::next_expiry of BASE_LOCAL is
* updated. When this update is missed, this isn't a
* problem, as an IPI is executed nevertheless when the CPU
* was idle before. When the CPU wasn't idle but the update
* is missed, then the timer would expire one jiffy late -
* bad luck.
*
* Those unlikely corner cases where the worst outcome is only a
* one jiffy delay or a superfluous raise of the softirq are
* not that expensive as doing the check always while holding
* the lock.
*
* Possible remote writers are using WRITE_ONCE(). Local reader
* uses therefore READ_ONCE().
*/
if (time_after_eq(jiffies, READ_ONCE(base->next_expiry)) ||
(i == BASE_DEF && tmigr_requires_handle_remote())) {
raise_softirq(TIMER_SOFTIRQ);
return;
}
}
}
/*
* Called from the timer interrupt handler to charge one tick to the current
* process. user_tick is 1 if the tick is user time, 0 for system.
*/
void update_process_times(int user_tick)
{
struct task_struct *p = current;
/* Note: this timer irq context must be accounted for as well. */
account_process_tick(p, user_tick);
run_local_timers();
rcu_sched_clock_irq(user_tick);
#ifdef CONFIG_IRQ_WORK
if (in_irq())
irq_work_tick();
#endif
sched_tick();
if (IS_ENABLED(CONFIG_POSIX_TIMERS))
run_posix_cpu_timers();
}
/*
* Since schedule_timeout()'s timer is defined on the stack, it must store
* the target task on the stack as well.
*/
struct process_timer {
struct timer_list timer;
struct task_struct *task;
};
static void process_timeout(struct timer_list *t)
{
struct process_timer *timeout = from_timer(timeout, t, timer);
wake_up_process(timeout->task);
}
/**
* schedule_timeout - sleep until timeout
* @timeout: timeout value in jiffies
*
* Make the current task sleep until @timeout jiffies have elapsed.
* The function behavior depends on the current task state
* (see also set_current_state() description):
*
* %TASK_RUNNING - the scheduler is called, but the task does not sleep
* at all. That happens because sched_submit_work() does nothing for
* tasks in %TASK_RUNNING state.
*
* %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
* pass before the routine returns unless the current task is explicitly
* woken up, (e.g. by wake_up_process()).
*
* %TASK_INTERRUPTIBLE - the routine may return early if a signal is
* delivered to the current task or the current task is explicitly woken
* up.
*
* The current task state is guaranteed to be %TASK_RUNNING when this
* routine returns.
*
* Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
* the CPU away without a bound on the timeout. In this case the return
* value will be %MAX_SCHEDULE_TIMEOUT.
*
* Returns 0 when the timer has expired otherwise the remaining time in
* jiffies will be returned. In all cases the return value is guaranteed
* to be non-negative.
*/
signed long __sched schedule_timeout(signed long timeout)
{
struct process_timer timer;
unsigned long expire;
switch (timeout)
{
case MAX_SCHEDULE_TIMEOUT:
/*
* These two special cases are useful to be comfortable
* in the caller. Nothing more. We could take
* MAX_SCHEDULE_TIMEOUT from one of the negative value
* but I' d like to return a valid offset (>=0) to allow
* the caller to do everything it want with the retval.
*/
schedule();
goto out;
default:
/*
* Another bit of PARANOID. Note that the retval will be
* 0 since no piece of kernel is supposed to do a check
* for a negative retval of schedule_timeout() (since it
* should never happens anyway). You just have the printk()
* that will tell you if something is gone wrong and where.
*/
if (timeout < 0) {
printk(KERN_ERR "schedule_timeout: wrong timeout "
"value %lx\n", timeout);
dump_stack();
__set_current_state(TASK_RUNNING);
goto out;
}
}
expire = timeout + jiffies;
timer.task = current;
timer_setup_on_stack(&timer.timer, process_timeout, 0);
__mod_timer(&timer.timer, expire, MOD_TIMER_NOTPENDING);
schedule();
del_timer_sync(&timer.timer);
/* Remove the timer from the object tracker */
destroy_timer_on_stack(&timer.timer);
timeout = expire - jiffies;
out:
return timeout < 0 ? 0 : timeout;
}
EXPORT_SYMBOL(schedule_timeout);
/*
* We can use __set_current_state() here because schedule_timeout() calls
* schedule() unconditionally.
*/
signed long __sched schedule_timeout_interruptible(signed long timeout)
{
__set_current_state(TASK_INTERRUPTIBLE);
return schedule_timeout(timeout);
}
EXPORT_SYMBOL(schedule_timeout_interruptible);
signed long __sched schedule_timeout_killable(signed long timeout)
{
__set_current_state(TASK_KILLABLE);
return schedule_timeout(timeout);
}
EXPORT_SYMBOL(schedule_timeout_killable);
signed long __sched schedule_timeout_uninterruptible(signed long timeout)
{
__set_current_state(TASK_UNINTERRUPTIBLE);
return schedule_timeout(timeout);
}
EXPORT_SYMBOL(schedule_timeout_uninterruptible);
/*
* Like schedule_timeout_uninterruptible(), except this task will not contribute
* to load average.
*/
signed long __sched schedule_timeout_idle(signed long timeout)
{
__set_current_state(TASK_IDLE);
return schedule_timeout(timeout);
}
EXPORT_SYMBOL(schedule_timeout_idle);
#ifdef CONFIG_HOTPLUG_CPU
static void migrate_timer_list(struct timer_base *new_base, struct hlist_head *head)
{
struct timer_list *timer;
int cpu = new_base->cpu;
while (!hlist_empty(head)) {
timer = hlist_entry(head->first, struct timer_list, entry);
detach_timer(timer, false);
timer->flags = (timer->flags & ~TIMER_BASEMASK) | cpu;
internal_add_timer(new_base, timer);
}
}
int timers_prepare_cpu(unsigned int cpu)
{
struct timer_base *base;
int b;
for (b = 0; b < NR_BASES; b++) {
base = per_cpu_ptr(&timer_bases[b], cpu);
base->clk = jiffies;
base->next_expiry = base->clk + NEXT_TIMER_MAX_DELTA;
base->next_expiry_recalc = false;
base->timers_pending = false;
base->is_idle = false;
}
return 0;
}
int timers_dead_cpu(unsigned int cpu)
{
struct timer_base *old_base;
struct timer_base *new_base;
int b, i;
for (b = 0; b < NR_BASES; b++) {
old_base = per_cpu_ptr(&timer_bases[b], cpu);
new_base = get_cpu_ptr(&timer_bases[b]);
/*
* The caller is globally serialized and nobody else
* takes two locks at once, deadlock is not possible.
*/
raw_spin_lock_irq(&new_base->lock);
raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
/*
* The current CPUs base clock might be stale. Update it
* before moving the timers over.
*/
forward_timer_base(new_base);
WARN_ON_ONCE(old_base->running_timer);
old_base->running_timer = NULL;
for (i = 0; i < WHEEL_SIZE; i++)
migrate_timer_list(new_base, old_base->vectors + i);
raw_spin_unlock(&old_base->lock);
raw_spin_unlock_irq(&new_base->lock);
put_cpu_ptr(&timer_bases);
}
return 0;
}
#endif /* CONFIG_HOTPLUG_CPU */
static void __init init_timer_cpu(int cpu)
{
struct timer_base *base;
int i;
for (i = 0; i < NR_BASES; i++) {
base = per_cpu_ptr(&timer_bases[i], cpu);
base->cpu = cpu;
raw_spin_lock_init(&base->lock);
base->clk = jiffies;
base->next_expiry = base->clk + NEXT_TIMER_MAX_DELTA;
timer_base_init_expiry_lock(base);
}
}
static void __init init_timer_cpus(void)
{
int cpu;
for_each_possible_cpu(cpu)
init_timer_cpu(cpu);
}
void __init init_timers(void)
{
init_timer_cpus();
posix_cputimers_init_work();
open_softirq(TIMER_SOFTIRQ, run_timer_softirq);
}
/**
* msleep - sleep safely even with waitqueue interruptions
* @msecs: Time in milliseconds to sleep for
*/
void msleep(unsigned int msecs)
{
unsigned long timeout = msecs_to_jiffies(msecs);
while (timeout)
timeout = schedule_timeout_uninterruptible(timeout);
}
EXPORT_SYMBOL(msleep);
/**
* msleep_interruptible - sleep waiting for signals
* @msecs: Time in milliseconds to sleep for
*/
unsigned long msleep_interruptible(unsigned int msecs)
{
unsigned long timeout = msecs_to_jiffies(msecs);
while (timeout && !signal_pending(current))
timeout = schedule_timeout_interruptible(timeout);
return jiffies_to_msecs(timeout);
}
EXPORT_SYMBOL(msleep_interruptible);
/**
* usleep_range_state - Sleep for an approximate time in a given state
* @min: Minimum time in usecs to sleep
* @max: Maximum time in usecs to sleep
* @state: State of the current task that will be while sleeping
*
* In non-atomic context where the exact wakeup time is flexible, use
* usleep_range_state() instead of udelay(). The sleep improves responsiveness
* by avoiding the CPU-hogging busy-wait of udelay(), and the range reduces
* power usage by allowing hrtimers to take advantage of an already-
* scheduled interrupt instead of scheduling a new one just for this sleep.
*/
void __sched usleep_range_state(unsigned long min, unsigned long max,
unsigned int state)
{
ktime_t exp = ktime_add_us(ktime_get(), min);
u64 delta = (u64)(max - min) * NSEC_PER_USEC;
for (;;) {
__set_current_state(state);
/* Do not return before the requested sleep time has elapsed */
if (!schedule_hrtimeout_range(&exp, delta, HRTIMER_MODE_ABS))
break;
}
}
EXPORT_SYMBOL(usleep_range_state);
|