summaryrefslogtreecommitdiff
path: root/fs/xfs/scrub/scrub.c
blob: 4cbcf7a86dbec5920af6b2070d9e5e5e287225e8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
// SPDX-License-Identifier: GPL-2.0-or-later
/*
 * Copyright (C) 2017-2023 Oracle.  All Rights Reserved.
 * Author: Darrick J. Wong <djwong@kernel.org>
 */
#include "xfs.h"
#include "xfs_fs.h"
#include "xfs_shared.h"
#include "xfs_format.h"
#include "xfs_trans_resv.h"
#include "xfs_mount.h"
#include "xfs_log_format.h"
#include "xfs_trans.h"
#include "xfs_inode.h"
#include "xfs_quota.h"
#include "xfs_qm.h"
#include "xfs_scrub.h"
#include "xfs_buf_mem.h"
#include "xfs_rmap.h"
#include "xfs_exchrange.h"
#include "xfs_exchmaps.h"
#include "xfs_dir2.h"
#include "xfs_parent.h"
#include "xfs_icache.h"
#include "scrub/scrub.h"
#include "scrub/common.h"
#include "scrub/trace.h"
#include "scrub/repair.h"
#include "scrub/health.h"
#include "scrub/stats.h"
#include "scrub/xfile.h"
#include "scrub/tempfile.h"
#include "scrub/orphanage.h"

/*
 * Online Scrub and Repair
 *
 * Traditionally, XFS (the kernel driver) did not know how to check or
 * repair on-disk data structures.  That task was left to the xfs_check
 * and xfs_repair tools, both of which require taking the filesystem
 * offline for a thorough but time consuming examination.  Online
 * scrub & repair, on the other hand, enables us to check the metadata
 * for obvious errors while carefully stepping around the filesystem's
 * ongoing operations, locking rules, etc.
 *
 * Given that most XFS metadata consist of records stored in a btree,
 * most of the checking functions iterate the btree blocks themselves
 * looking for irregularities.  When a record block is encountered, each
 * record can be checked for obviously bad values.  Record values can
 * also be cross-referenced against other btrees to look for potential
 * misunderstandings between pieces of metadata.
 *
 * It is expected that the checkers responsible for per-AG metadata
 * structures will lock the AG headers (AGI, AGF, AGFL), iterate the
 * metadata structure, and perform any relevant cross-referencing before
 * unlocking the AG and returning the results to userspace.  These
 * scrubbers must not keep an AG locked for too long to avoid tying up
 * the block and inode allocators.
 *
 * Block maps and b-trees rooted in an inode present a special challenge
 * because they can involve extents from any AG.  The general scrubber
 * structure of lock -> check -> xref -> unlock still holds, but AG
 * locking order rules /must/ be obeyed to avoid deadlocks.  The
 * ordering rule, of course, is that we must lock in increasing AG
 * order.  Helper functions are provided to track which AG headers we've
 * already locked.  If we detect an imminent locking order violation, we
 * can signal a potential deadlock, in which case the scrubber can jump
 * out to the top level, lock all the AGs in order, and retry the scrub.
 *
 * For file data (directories, extended attributes, symlinks) scrub, we
 * can simply lock the inode and walk the data.  For btree data
 * (directories and attributes) we follow the same btree-scrubbing
 * strategy outlined previously to check the records.
 *
 * We use a bit of trickery with transactions to avoid buffer deadlocks
 * if there is a cycle in the metadata.  The basic problem is that
 * travelling down a btree involves locking the current buffer at each
 * tree level.  If a pointer should somehow point back to a buffer that
 * we've already examined, we will deadlock due to the second buffer
 * locking attempt.  Note however that grabbing a buffer in transaction
 * context links the locked buffer to the transaction.  If we try to
 * re-grab the buffer in the context of the same transaction, we avoid
 * the second lock attempt and continue.  Between the verifier and the
 * scrubber, something will notice that something is amiss and report
 * the corruption.  Therefore, each scrubber will allocate an empty
 * transaction, attach buffers to it, and cancel the transaction at the
 * end of the scrub run.  Cancelling a non-dirty transaction simply
 * unlocks the buffers.
 *
 * There are four pieces of data that scrub can communicate to
 * userspace.  The first is the error code (errno), which can be used to
 * communicate operational errors in performing the scrub.  There are
 * also three flags that can be set in the scrub context.  If the data
 * structure itself is corrupt, the CORRUPT flag will be set.  If
 * the metadata is correct but otherwise suboptimal, the PREEN flag
 * will be set.
 *
 * We perform secondary validation of filesystem metadata by
 * cross-referencing every record with all other available metadata.
 * For example, for block mapping extents, we verify that there are no
 * records in the free space and inode btrees corresponding to that
 * space extent and that there is a corresponding entry in the reverse
 * mapping btree.  Inconsistent metadata is noted by setting the
 * XCORRUPT flag; btree query function errors are noted by setting the
 * XFAIL flag and deleting the cursor to prevent further attempts to
 * cross-reference with a defective btree.
 *
 * If a piece of metadata proves corrupt or suboptimal, the userspace
 * program can ask the kernel to apply some tender loving care (TLC) to
 * the metadata object by setting the REPAIR flag and re-calling the
 * scrub ioctl.  "Corruption" is defined by metadata violating the
 * on-disk specification; operations cannot continue if the violation is
 * left untreated.  It is possible for XFS to continue if an object is
 * "suboptimal", however performance may be degraded.  Repairs are
 * usually performed by rebuilding the metadata entirely out of
 * redundant metadata.  Optimizing, on the other hand, can sometimes be
 * done without rebuilding entire structures.
 *
 * Generally speaking, the repair code has the following code structure:
 * Lock -> scrub -> repair -> commit -> re-lock -> re-scrub -> unlock.
 * The first check helps us figure out if we need to rebuild or simply
 * optimize the structure so that the rebuild knows what to do.  The
 * second check evaluates the completeness of the repair; that is what
 * is reported to userspace.
 *
 * A quick note on symbol prefixes:
 * - "xfs_" are general XFS symbols.
 * - "xchk_" are symbols related to metadata checking.
 * - "xrep_" are symbols related to metadata repair.
 * - "xfs_scrub_" are symbols that tie online fsck to the rest of XFS.
 */

/*
 * Scrub probe -- userspace uses this to probe if we're willing to scrub
 * or repair a given mountpoint.  This will be used by xfs_scrub to
 * probe the kernel's abilities to scrub (and repair) the metadata.  We
 * do this by validating the ioctl inputs from userspace, preparing the
 * filesystem for a scrub (or a repair) operation, and immediately
 * returning to userspace.  Userspace can use the returned errno and
 * structure state to decide (in broad terms) if scrub/repair are
 * supported by the running kernel.
 */
static int
xchk_probe(
	struct xfs_scrub	*sc)
{
	int			error = 0;

	if (xchk_should_terminate(sc, &error))
		return error;

	return 0;
}

/* Scrub setup and teardown */

static inline void
xchk_fsgates_disable(
	struct xfs_scrub	*sc)
{
	if (!(sc->flags & XCHK_FSGATES_ALL))
		return;

	trace_xchk_fsgates_disable(sc, sc->flags & XCHK_FSGATES_ALL);

	if (sc->flags & XCHK_FSGATES_DRAIN)
		xfs_drain_wait_disable();

	if (sc->flags & XCHK_FSGATES_QUOTA)
		xfs_dqtrx_hook_disable();

	if (sc->flags & XCHK_FSGATES_DIRENTS)
		xfs_dir_hook_disable();

	if (sc->flags & XCHK_FSGATES_RMAP)
		xfs_rmap_hook_disable();

	sc->flags &= ~XCHK_FSGATES_ALL;
}

/* Free the resources associated with a scrub subtype. */
void
xchk_scrub_free_subord(
	struct xfs_scrub_subord	*sub)
{
	struct xfs_scrub	*sc = sub->parent_sc;

	ASSERT(sc->ip == sub->sc.ip);
	ASSERT(sc->orphanage == sub->sc.orphanage);
	ASSERT(sc->tempip == sub->sc.tempip);

	sc->sm->sm_type = sub->old_smtype;
	sc->sm->sm_flags = sub->old_smflags |
				(sc->sm->sm_flags & XFS_SCRUB_FLAGS_OUT);
	sc->tp = sub->sc.tp;

	if (sub->sc.buf) {
		if (sub->sc.buf_cleanup)
			sub->sc.buf_cleanup(sub->sc.buf);
		kvfree(sub->sc.buf);
	}
	if (sub->sc.xmbtp)
		xmbuf_free(sub->sc.xmbtp);
	if (sub->sc.xfile)
		xfile_destroy(sub->sc.xfile);

	sc->ilock_flags = sub->sc.ilock_flags;
	sc->orphanage_ilock_flags = sub->sc.orphanage_ilock_flags;
	sc->temp_ilock_flags = sub->sc.temp_ilock_flags;

	kfree(sub);
}

/* Free all the resources and finish the transactions. */
STATIC int
xchk_teardown(
	struct xfs_scrub	*sc,
	int			error)
{
	xchk_ag_free(sc, &sc->sa);
	if (sc->tp) {
		if (error == 0 && (sc->sm->sm_flags & XFS_SCRUB_IFLAG_REPAIR))
			error = xfs_trans_commit(sc->tp);
		else
			xfs_trans_cancel(sc->tp);
		sc->tp = NULL;
	}
	if (sc->ip) {
		if (sc->ilock_flags)
			xchk_iunlock(sc, sc->ilock_flags);
		xchk_irele(sc, sc->ip);
		sc->ip = NULL;
	}
	if (sc->flags & XCHK_HAVE_FREEZE_PROT) {
		sc->flags &= ~XCHK_HAVE_FREEZE_PROT;
		mnt_drop_write_file(sc->file);
	}
	if (sc->xmbtp) {
		xmbuf_free(sc->xmbtp);
		sc->xmbtp = NULL;
	}
	if (sc->xfile) {
		xfile_destroy(sc->xfile);
		sc->xfile = NULL;
	}
	if (sc->buf) {
		if (sc->buf_cleanup)
			sc->buf_cleanup(sc->buf);
		kvfree(sc->buf);
		sc->buf_cleanup = NULL;
		sc->buf = NULL;
	}

	xrep_tempfile_rele(sc);
	xrep_orphanage_rele(sc);
	xchk_fsgates_disable(sc);
	return error;
}

/* Scrubbing dispatch. */

static const struct xchk_meta_ops meta_scrub_ops[] = {
	[XFS_SCRUB_TYPE_PROBE] = {	/* ioctl presence test */
		.type	= ST_NONE,
		.setup	= xchk_setup_fs,
		.scrub	= xchk_probe,
		.repair = xrep_probe,
	},
	[XFS_SCRUB_TYPE_SB] = {		/* superblock */
		.type	= ST_PERAG,
		.setup	= xchk_setup_agheader,
		.scrub	= xchk_superblock,
		.repair	= xrep_superblock,
	},
	[XFS_SCRUB_TYPE_AGF] = {	/* agf */
		.type	= ST_PERAG,
		.setup	= xchk_setup_agheader,
		.scrub	= xchk_agf,
		.repair	= xrep_agf,
	},
	[XFS_SCRUB_TYPE_AGFL]= {	/* agfl */
		.type	= ST_PERAG,
		.setup	= xchk_setup_agheader,
		.scrub	= xchk_agfl,
		.repair	= xrep_agfl,
	},
	[XFS_SCRUB_TYPE_AGI] = {	/* agi */
		.type	= ST_PERAG,
		.setup	= xchk_setup_agheader,
		.scrub	= xchk_agi,
		.repair	= xrep_agi,
	},
	[XFS_SCRUB_TYPE_BNOBT] = {	/* bnobt */
		.type	= ST_PERAG,
		.setup	= xchk_setup_ag_allocbt,
		.scrub	= xchk_allocbt,
		.repair	= xrep_allocbt,
		.repair_eval = xrep_revalidate_allocbt,
	},
	[XFS_SCRUB_TYPE_CNTBT] = {	/* cntbt */
		.type	= ST_PERAG,
		.setup	= xchk_setup_ag_allocbt,
		.scrub	= xchk_allocbt,
		.repair	= xrep_allocbt,
		.repair_eval = xrep_revalidate_allocbt,
	},
	[XFS_SCRUB_TYPE_INOBT] = {	/* inobt */
		.type	= ST_PERAG,
		.setup	= xchk_setup_ag_iallocbt,
		.scrub	= xchk_iallocbt,
		.repair	= xrep_iallocbt,
		.repair_eval = xrep_revalidate_iallocbt,
	},
	[XFS_SCRUB_TYPE_FINOBT] = {	/* finobt */
		.type	= ST_PERAG,
		.setup	= xchk_setup_ag_iallocbt,
		.scrub	= xchk_iallocbt,
		.has	= xfs_has_finobt,
		.repair	= xrep_iallocbt,
		.repair_eval = xrep_revalidate_iallocbt,
	},
	[XFS_SCRUB_TYPE_RMAPBT] = {	/* rmapbt */
		.type	= ST_PERAG,
		.setup	= xchk_setup_ag_rmapbt,
		.scrub	= xchk_rmapbt,
		.has	= xfs_has_rmapbt,
		.repair	= xrep_rmapbt,
	},
	[XFS_SCRUB_TYPE_REFCNTBT] = {	/* refcountbt */
		.type	= ST_PERAG,
		.setup	= xchk_setup_ag_refcountbt,
		.scrub	= xchk_refcountbt,
		.has	= xfs_has_reflink,
		.repair	= xrep_refcountbt,
	},
	[XFS_SCRUB_TYPE_INODE] = {	/* inode record */
		.type	= ST_INODE,
		.setup	= xchk_setup_inode,
		.scrub	= xchk_inode,
		.repair	= xrep_inode,
	},
	[XFS_SCRUB_TYPE_BMBTD] = {	/* inode data fork */
		.type	= ST_INODE,
		.setup	= xchk_setup_inode_bmap,
		.scrub	= xchk_bmap_data,
		.repair	= xrep_bmap_data,
	},
	[XFS_SCRUB_TYPE_BMBTA] = {	/* inode attr fork */
		.type	= ST_INODE,
		.setup	= xchk_setup_inode_bmap,
		.scrub	= xchk_bmap_attr,
		.repair	= xrep_bmap_attr,
	},
	[XFS_SCRUB_TYPE_BMBTC] = {	/* inode CoW fork */
		.type	= ST_INODE,
		.setup	= xchk_setup_inode_bmap,
		.scrub	= xchk_bmap_cow,
		.repair	= xrep_bmap_cow,
	},
	[XFS_SCRUB_TYPE_DIR] = {	/* directory */
		.type	= ST_INODE,
		.setup	= xchk_setup_directory,
		.scrub	= xchk_directory,
		.repair	= xrep_directory,
	},
	[XFS_SCRUB_TYPE_XATTR] = {	/* extended attributes */
		.type	= ST_INODE,
		.setup	= xchk_setup_xattr,
		.scrub	= xchk_xattr,
		.repair	= xrep_xattr,
	},
	[XFS_SCRUB_TYPE_SYMLINK] = {	/* symbolic link */
		.type	= ST_INODE,
		.setup	= xchk_setup_symlink,
		.scrub	= xchk_symlink,
		.repair	= xrep_symlink,
	},
	[XFS_SCRUB_TYPE_PARENT] = {	/* parent pointers */
		.type	= ST_INODE,
		.setup	= xchk_setup_parent,
		.scrub	= xchk_parent,
		.repair	= xrep_parent,
	},
	[XFS_SCRUB_TYPE_RTBITMAP] = {	/* realtime bitmap */
		.type	= ST_FS,
		.setup	= xchk_setup_rtbitmap,
		.scrub	= xchk_rtbitmap,
		.repair	= xrep_rtbitmap,
	},
	[XFS_SCRUB_TYPE_RTSUM] = {	/* realtime summary */
		.type	= ST_FS,
		.setup	= xchk_setup_rtsummary,
		.scrub	= xchk_rtsummary,
		.repair	= xrep_rtsummary,
	},
	[XFS_SCRUB_TYPE_UQUOTA] = {	/* user quota */
		.type	= ST_FS,
		.setup	= xchk_setup_quota,
		.scrub	= xchk_quota,
		.repair	= xrep_quota,
	},
	[XFS_SCRUB_TYPE_GQUOTA] = {	/* group quota */
		.type	= ST_FS,
		.setup	= xchk_setup_quota,
		.scrub	= xchk_quota,
		.repair	= xrep_quota,
	},
	[XFS_SCRUB_TYPE_PQUOTA] = {	/* project quota */
		.type	= ST_FS,
		.setup	= xchk_setup_quota,
		.scrub	= xchk_quota,
		.repair	= xrep_quota,
	},
	[XFS_SCRUB_TYPE_FSCOUNTERS] = {	/* fs summary counters */
		.type	= ST_FS,
		.setup	= xchk_setup_fscounters,
		.scrub	= xchk_fscounters,
		.repair	= xrep_fscounters,
	},
	[XFS_SCRUB_TYPE_QUOTACHECK] = {	/* quota counters */
		.type	= ST_FS,
		.setup	= xchk_setup_quotacheck,
		.scrub	= xchk_quotacheck,
		.repair	= xrep_quotacheck,
	},
	[XFS_SCRUB_TYPE_NLINKS] = {	/* inode link counts */
		.type	= ST_FS,
		.setup	= xchk_setup_nlinks,
		.scrub	= xchk_nlinks,
		.repair	= xrep_nlinks,
	},
	[XFS_SCRUB_TYPE_HEALTHY] = {	/* fs healthy; clean all reminders */
		.type	= ST_FS,
		.setup	= xchk_setup_fs,
		.scrub	= xchk_health_record,
		.repair = xrep_notsupported,
	},
	[XFS_SCRUB_TYPE_DIRTREE] = {	/* directory tree structure */
		.type	= ST_INODE,
		.setup	= xchk_setup_dirtree,
		.scrub	= xchk_dirtree,
		.has	= xfs_has_parent,
		.repair	= xrep_dirtree,
	},
};

static int
xchk_validate_inputs(
	struct xfs_mount		*mp,
	struct xfs_scrub_metadata	*sm)
{
	int				error;
	const struct xchk_meta_ops	*ops;

	error = -EINVAL;
	/* Check our inputs. */
	sm->sm_flags &= ~XFS_SCRUB_FLAGS_OUT;
	if (sm->sm_flags & ~XFS_SCRUB_FLAGS_IN)
		goto out;
	/* sm_reserved[] must be zero */
	if (memchr_inv(sm->sm_reserved, 0, sizeof(sm->sm_reserved)))
		goto out;

	error = -ENOENT;
	/* Do we know about this type of metadata? */
	if (sm->sm_type >= XFS_SCRUB_TYPE_NR)
		goto out;
	ops = &meta_scrub_ops[sm->sm_type];
	if (ops->setup == NULL || ops->scrub == NULL)
		goto out;
	/* Does this fs even support this type of metadata? */
	if (ops->has && !ops->has(mp))
		goto out;

	error = -EINVAL;
	/* restricting fields must be appropriate for type */
	switch (ops->type) {
	case ST_NONE:
	case ST_FS:
		if (sm->sm_ino || sm->sm_gen || sm->sm_agno)
			goto out;
		break;
	case ST_PERAG:
		if (sm->sm_ino || sm->sm_gen ||
		    sm->sm_agno >= mp->m_sb.sb_agcount)
			goto out;
		break;
	case ST_INODE:
		if (sm->sm_agno || (sm->sm_gen && !sm->sm_ino))
			goto out;
		break;
	default:
		goto out;
	}

	/* No rebuild without repair. */
	if ((sm->sm_flags & XFS_SCRUB_IFLAG_FORCE_REBUILD) &&
	    !(sm->sm_flags & XFS_SCRUB_IFLAG_REPAIR))
		return -EINVAL;

	/*
	 * We only want to repair read-write v5+ filesystems.  Defer the check
	 * for ops->repair until after our scrub confirms that we need to
	 * perform repairs so that we avoid failing due to not supporting
	 * repairing an object that doesn't need repairs.
	 */
	if (sm->sm_flags & XFS_SCRUB_IFLAG_REPAIR) {
		error = -EOPNOTSUPP;
		if (!xfs_has_crc(mp))
			goto out;

		error = -EROFS;
		if (xfs_is_readonly(mp))
			goto out;
	}

	error = 0;
out:
	return error;
}

#ifdef CONFIG_XFS_ONLINE_REPAIR
static inline void xchk_postmortem(struct xfs_scrub *sc)
{
	/*
	 * Userspace asked us to repair something, we repaired it, rescanned
	 * it, and the rescan says it's still broken.  Scream about this in
	 * the system logs.
	 */
	if ((sc->sm->sm_flags & XFS_SCRUB_IFLAG_REPAIR) &&
	    (sc->sm->sm_flags & (XFS_SCRUB_OFLAG_CORRUPT |
				 XFS_SCRUB_OFLAG_XCORRUPT)))
		xrep_failure(sc->mp);
}
#else
static inline void xchk_postmortem(struct xfs_scrub *sc)
{
	/*
	 * Userspace asked us to scrub something, it's broken, and we have no
	 * way of fixing it.  Scream in the logs.
	 */
	if (sc->sm->sm_flags & (XFS_SCRUB_OFLAG_CORRUPT |
				XFS_SCRUB_OFLAG_XCORRUPT))
		xfs_alert_ratelimited(sc->mp,
				"Corruption detected during scrub.");
}
#endif /* CONFIG_XFS_ONLINE_REPAIR */

/*
 * Create a new scrub context from an existing one, but with a different scrub
 * type.
 */
struct xfs_scrub_subord *
xchk_scrub_create_subord(
	struct xfs_scrub	*sc,
	unsigned int		subtype)
{
	struct xfs_scrub_subord	*sub;

	sub = kzalloc(sizeof(*sub), XCHK_GFP_FLAGS);
	if (!sub)
		return ERR_PTR(-ENOMEM);

	sub->old_smtype = sc->sm->sm_type;
	sub->old_smflags = sc->sm->sm_flags;
	sub->parent_sc = sc;
	memcpy(&sub->sc, sc, sizeof(struct xfs_scrub));
	sub->sc.ops = &meta_scrub_ops[subtype];
	sub->sc.sm->sm_type = subtype;
	sub->sc.sm->sm_flags &= ~XFS_SCRUB_FLAGS_OUT;
	sub->sc.buf = NULL;
	sub->sc.buf_cleanup = NULL;
	sub->sc.xfile = NULL;
	sub->sc.xmbtp = NULL;

	return sub;
}

/* Dispatch metadata scrubbing. */
STATIC int
xfs_scrub_metadata(
	struct file			*file,
	struct xfs_scrub_metadata	*sm)
{
	struct xchk_stats_run		run = { };
	struct xfs_scrub		*sc;
	struct xfs_mount		*mp = XFS_I(file_inode(file))->i_mount;
	u64				check_start;
	int				error = 0;

	BUILD_BUG_ON(sizeof(meta_scrub_ops) !=
		(sizeof(struct xchk_meta_ops) * XFS_SCRUB_TYPE_NR));

	trace_xchk_start(XFS_I(file_inode(file)), sm, error);

	/* Forbidden if we are shut down or mounted norecovery. */
	error = -ESHUTDOWN;
	if (xfs_is_shutdown(mp))
		goto out;
	error = -ENOTRECOVERABLE;
	if (xfs_has_norecovery(mp))
		goto out;

	error = xchk_validate_inputs(mp, sm);
	if (error)
		goto out;

	xfs_warn_mount(mp, XFS_OPSTATE_WARNED_SCRUB,
 "EXPERIMENTAL online scrub feature in use. Use at your own risk!");

	sc = kzalloc(sizeof(struct xfs_scrub), XCHK_GFP_FLAGS);
	if (!sc) {
		error = -ENOMEM;
		goto out;
	}

	sc->mp = mp;
	sc->file = file;
	sc->sm = sm;
	sc->ops = &meta_scrub_ops[sm->sm_type];
	sc->sick_mask = xchk_health_mask_for_scrub_type(sm->sm_type);
	sc->relax = INIT_XCHK_RELAX;
retry_op:
	/*
	 * When repairs are allowed, prevent freezing or readonly remount while
	 * scrub is running with a real transaction.
	 */
	if (sm->sm_flags & XFS_SCRUB_IFLAG_REPAIR) {
		error = mnt_want_write_file(sc->file);
		if (error)
			goto out_sc;

		sc->flags |= XCHK_HAVE_FREEZE_PROT;
	}

	/* Set up for the operation. */
	error = sc->ops->setup(sc);
	if (error == -EDEADLOCK && !(sc->flags & XCHK_TRY_HARDER))
		goto try_harder;
	if (error == -ECHRNG && !(sc->flags & XCHK_NEED_DRAIN))
		goto need_drain;
	if (error)
		goto out_teardown;

	/* Scrub for errors. */
	check_start = xchk_stats_now();
	if ((sc->flags & XREP_ALREADY_FIXED) && sc->ops->repair_eval != NULL)
		error = sc->ops->repair_eval(sc);
	else
		error = sc->ops->scrub(sc);
	run.scrub_ns += xchk_stats_elapsed_ns(check_start);
	if (error == -EDEADLOCK && !(sc->flags & XCHK_TRY_HARDER))
		goto try_harder;
	if (error == -ECHRNG && !(sc->flags & XCHK_NEED_DRAIN))
		goto need_drain;
	if (error || (sm->sm_flags & XFS_SCRUB_OFLAG_INCOMPLETE))
		goto out_teardown;

	xchk_update_health(sc);

	if (xchk_could_repair(sc)) {
		/*
		 * If userspace asked for a repair but it wasn't necessary,
		 * report that back to userspace.
		 */
		if (!xrep_will_attempt(sc)) {
			sc->sm->sm_flags |= XFS_SCRUB_OFLAG_NO_REPAIR_NEEDED;
			goto out_nofix;
		}

		/*
		 * If it's broken, userspace wants us to fix it, and we haven't
		 * already tried to fix it, then attempt a repair.
		 */
		error = xrep_attempt(sc, &run);
		if (error == -EAGAIN) {
			/*
			 * Either the repair function succeeded or it couldn't
			 * get all the resources it needs; either way, we go
			 * back to the beginning and call the scrub function.
			 */
			error = xchk_teardown(sc, 0);
			if (error) {
				xrep_failure(mp);
				goto out_sc;
			}
			goto retry_op;
		}
	}

out_nofix:
	xchk_postmortem(sc);
out_teardown:
	error = xchk_teardown(sc, error);
out_sc:
	if (error != -ENOENT)
		xchk_stats_merge(mp, sm, &run);
	kfree(sc);
out:
	trace_xchk_done(XFS_I(file_inode(file)), sm, error);
	if (error == -EFSCORRUPTED || error == -EFSBADCRC) {
		sm->sm_flags |= XFS_SCRUB_OFLAG_CORRUPT;
		error = 0;
	}
	return error;
need_drain:
	error = xchk_teardown(sc, 0);
	if (error)
		goto out_sc;
	sc->flags |= XCHK_NEED_DRAIN;
	run.retries++;
	goto retry_op;
try_harder:
	/*
	 * Scrubbers return -EDEADLOCK to mean 'try harder'.  Tear down
	 * everything we hold, then set up again with preparation for
	 * worst-case scenarios.
	 */
	error = xchk_teardown(sc, 0);
	if (error)
		goto out_sc;
	sc->flags |= XCHK_TRY_HARDER;
	run.retries++;
	goto retry_op;
}

/* Scrub one aspect of one piece of metadata. */
int
xfs_ioc_scrub_metadata(
	struct file			*file,
	void				__user *arg)
{
	struct xfs_scrub_metadata	scrub;
	int				error;

	if (!capable(CAP_SYS_ADMIN))
		return -EPERM;

	if (copy_from_user(&scrub, arg, sizeof(scrub)))
		return -EFAULT;

	error = xfs_scrub_metadata(file, &scrub);
	if (error)
		return error;

	if (copy_to_user(arg, &scrub, sizeof(scrub)))
		return -EFAULT;

	return 0;
}

/* Decide if there have been any scrub failures up to this point. */
static inline int
xfs_scrubv_check_barrier(
	struct xfs_mount		*mp,
	const struct xfs_scrub_vec	*vectors,
	const struct xfs_scrub_vec	*stop_vec)
{
	const struct xfs_scrub_vec	*v;
	__u32				failmask;

	failmask = stop_vec->sv_flags & XFS_SCRUB_FLAGS_OUT;

	for (v = vectors; v < stop_vec; v++) {
		if (v->sv_type == XFS_SCRUB_TYPE_BARRIER)
			continue;

		/*
		 * Runtime errors count as a previous failure, except the ones
		 * used to ask userspace to retry.
		 */
		switch (v->sv_ret) {
		case -EBUSY:
		case -ENOENT:
		case -EUSERS:
		case 0:
			break;
		default:
			return -ECANCELED;
		}

		/*
		 * If any of the out-flags on the scrub vector match the mask
		 * that was set on the barrier vector, that's a previous fail.
		 */
		if (v->sv_flags & failmask)
			return -ECANCELED;
	}

	return 0;
}

/*
 * If the caller provided us with a nonzero inode number that isn't the ioctl
 * file, try to grab a reference to it to eliminate all further untrusted inode
 * lookups.  If we can't get the inode, let each scrub function try again.
 */
STATIC struct xfs_inode *
xchk_scrubv_open_by_handle(
	struct xfs_mount		*mp,
	const struct xfs_scrub_vec_head	*head)
{
	struct xfs_trans		*tp;
	struct xfs_inode		*ip;
	int				error;

	error = xfs_trans_alloc_empty(mp, &tp);
	if (error)
		return NULL;

	error = xfs_iget(mp, tp, head->svh_ino, XCHK_IGET_FLAGS, 0, &ip);
	xfs_trans_cancel(tp);
	if (error)
		return NULL;

	if (VFS_I(ip)->i_generation != head->svh_gen) {
		xfs_irele(ip);
		return NULL;
	}

	return ip;
}

/* Vectored scrub implementation to reduce ioctl calls. */
int
xfs_ioc_scrubv_metadata(
	struct file			*file,
	void				__user *arg)
{
	struct xfs_scrub_vec_head	head;
	struct xfs_scrub_vec_head	__user *uhead = arg;
	struct xfs_scrub_vec		*vectors;
	struct xfs_scrub_vec		__user *uvectors;
	struct xfs_inode		*ip_in = XFS_I(file_inode(file));
	struct xfs_mount		*mp = ip_in->i_mount;
	struct xfs_inode		*handle_ip = NULL;
	struct xfs_scrub_vec		*v;
	size_t				vec_bytes;
	unsigned int			i;
	int				error = 0;

	if (!capable(CAP_SYS_ADMIN))
		return -EPERM;

	if (copy_from_user(&head, uhead, sizeof(head)))
		return -EFAULT;

	if (head.svh_reserved)
		return -EINVAL;
	if (head.svh_flags & ~XFS_SCRUB_VEC_FLAGS_ALL)
		return -EINVAL;
	if (head.svh_nr == 0)
		return 0;

	vec_bytes = array_size(head.svh_nr, sizeof(struct xfs_scrub_vec));
	if (vec_bytes > PAGE_SIZE)
		return -ENOMEM;

	uvectors = u64_to_user_ptr(head.svh_vectors);
	vectors = memdup_user(uvectors, vec_bytes);
	if (IS_ERR(vectors))
		return PTR_ERR(vectors);

	trace_xchk_scrubv_start(ip_in, &head);

	for (i = 0, v = vectors; i < head.svh_nr; i++, v++) {
		if (v->sv_reserved) {
			error = -EINVAL;
			goto out_free;
		}

		if (v->sv_type == XFS_SCRUB_TYPE_BARRIER &&
		    (v->sv_flags & ~XFS_SCRUB_FLAGS_OUT)) {
			error = -EINVAL;
			goto out_free;
		}

		trace_xchk_scrubv_item(mp, &head, i, v);
	}

	/*
	 * If the caller wants us to do a scrub-by-handle and the file used to
	 * call the ioctl is not the same file, load the incore inode and pin
	 * it across all the scrubv actions to avoid repeated UNTRUSTED
	 * lookups.  The reference is not passed to deeper layers of scrub
	 * because each scrubber gets to decide its own strategy and return
	 * values for getting an inode.
	 */
	if (head.svh_ino && head.svh_ino != ip_in->i_ino)
		handle_ip = xchk_scrubv_open_by_handle(mp, &head);

	/* Run all the scrubbers. */
	for (i = 0, v = vectors; i < head.svh_nr; i++, v++) {
		struct xfs_scrub_metadata	sm = {
			.sm_type		= v->sv_type,
			.sm_flags		= v->sv_flags,
			.sm_ino			= head.svh_ino,
			.sm_gen			= head.svh_gen,
			.sm_agno		= head.svh_agno,
		};

		if (v->sv_type == XFS_SCRUB_TYPE_BARRIER) {
			v->sv_ret = xfs_scrubv_check_barrier(mp, vectors, v);
			if (v->sv_ret) {
				trace_xchk_scrubv_barrier_fail(mp, &head, i, v);
				break;
			}

			continue;
		}

		v->sv_ret = xfs_scrub_metadata(file, &sm);
		v->sv_flags = sm.sm_flags;

		trace_xchk_scrubv_outcome(mp, &head, i, v);

		if (head.svh_rest_us) {
			ktime_t		expires;

			expires = ktime_add_ns(ktime_get(),
					head.svh_rest_us * 1000);
			set_current_state(TASK_KILLABLE);
			schedule_hrtimeout(&expires, HRTIMER_MODE_ABS);
		}

		if (fatal_signal_pending(current)) {
			error = -EINTR;
			goto out_free;
		}
	}

	if (copy_to_user(uvectors, vectors, vec_bytes) ||
	    copy_to_user(uhead, &head, sizeof(head))) {
		error = -EFAULT;
		goto out_free;
	}

out_free:
	if (handle_ip)
		xfs_irele(handle_ip);
	kfree(vectors);
	return error;
}