summaryrefslogtreecommitdiff
path: root/fs/super.c
blob: 69ce6c600968479bd6832a6705352eb2d88427c1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
// SPDX-License-Identifier: GPL-2.0
/*
 *  linux/fs/super.c
 *
 *  Copyright (C) 1991, 1992  Linus Torvalds
 *
 *  super.c contains code to handle: - mount structures
 *                                   - super-block tables
 *                                   - filesystem drivers list
 *                                   - mount system call
 *                                   - umount system call
 *                                   - ustat system call
 *
 * GK 2/5/95  -  Changed to support mounting the root fs via NFS
 *
 *  Added kerneld support: Jacques Gelinas and Bjorn Ekwall
 *  Added change_root: Werner Almesberger & Hans Lermen, Feb '96
 *  Added options to /proc/mounts:
 *    Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
 *  Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
 *  Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
 */

#include <linux/export.h>
#include <linux/slab.h>
#include <linux/blkdev.h>
#include <linux/mount.h>
#include <linux/security.h>
#include <linux/writeback.h>		/* for the emergency remount stuff */
#include <linux/idr.h>
#include <linux/mutex.h>
#include <linux/backing-dev.h>
#include <linux/rculist_bl.h>
#include <linux/fscrypt.h>
#include <linux/fsnotify.h>
#include <linux/lockdep.h>
#include <linux/user_namespace.h>
#include <linux/fs_context.h>
#include <uapi/linux/mount.h>
#include "internal.h"

static int thaw_super_locked(struct super_block *sb, enum freeze_holder who);

static LIST_HEAD(super_blocks);
static DEFINE_SPINLOCK(sb_lock);

static char *sb_writers_name[SB_FREEZE_LEVELS] = {
	"sb_writers",
	"sb_pagefaults",
	"sb_internal",
};

static inline void __super_lock(struct super_block *sb, bool excl)
{
	if (excl)
		down_write(&sb->s_umount);
	else
		down_read(&sb->s_umount);
}

static inline void super_unlock(struct super_block *sb, bool excl)
{
	if (excl)
		up_write(&sb->s_umount);
	else
		up_read(&sb->s_umount);
}

static inline void __super_lock_excl(struct super_block *sb)
{
	__super_lock(sb, true);
}

static inline void super_unlock_excl(struct super_block *sb)
{
	super_unlock(sb, true);
}

static inline void super_unlock_shared(struct super_block *sb)
{
	super_unlock(sb, false);
}

static bool super_flags(const struct super_block *sb, unsigned int flags)
{
	/*
	 * Pairs with smp_store_release() in super_wake() and ensures
	 * that we see @flags after we're woken.
	 */
	return smp_load_acquire(&sb->s_flags) & flags;
}

/**
 * super_lock - wait for superblock to become ready and lock it
 * @sb: superblock to wait for
 * @excl: whether exclusive access is required
 *
 * If the superblock has neither passed through vfs_get_tree() or
 * generic_shutdown_super() yet wait for it to happen. Either superblock
 * creation will succeed and SB_BORN is set by vfs_get_tree() or we're
 * woken and we'll see SB_DYING.
 *
 * The caller must have acquired a temporary reference on @sb->s_count.
 *
 * Return: The function returns true if SB_BORN was set and with
 *         s_umount held. The function returns false if SB_DYING was
 *         set and without s_umount held.
 */
static __must_check bool super_lock(struct super_block *sb, bool excl)
{
	lockdep_assert_not_held(&sb->s_umount);

	/* wait until the superblock is ready or dying */
	wait_var_event(&sb->s_flags, super_flags(sb, SB_BORN | SB_DYING));

	/* Don't pointlessly acquire s_umount. */
	if (super_flags(sb, SB_DYING))
		return false;

	__super_lock(sb, excl);

	/*
	 * Has gone through generic_shutdown_super() in the meantime.
	 * @sb->s_root is NULL and @sb->s_active is 0. No one needs to
	 * grab a reference to this. Tell them so.
	 */
	if (sb->s_flags & SB_DYING) {
		super_unlock(sb, excl);
		return false;
	}

	WARN_ON_ONCE(!(sb->s_flags & SB_BORN));
	return true;
}

/* wait and try to acquire read-side of @sb->s_umount */
static inline bool super_lock_shared(struct super_block *sb)
{
	return super_lock(sb, false);
}

/* wait and try to acquire write-side of @sb->s_umount */
static inline bool super_lock_excl(struct super_block *sb)
{
	return super_lock(sb, true);
}

/* wake waiters */
#define SUPER_WAKE_FLAGS (SB_BORN | SB_DYING | SB_DEAD)
static void super_wake(struct super_block *sb, unsigned int flag)
{
	WARN_ON_ONCE((flag & ~SUPER_WAKE_FLAGS));
	WARN_ON_ONCE(hweight32(flag & SUPER_WAKE_FLAGS) > 1);

	/*
	 * Pairs with smp_load_acquire() in super_lock() to make sure
	 * all initializations in the superblock are seen by the user
	 * seeing SB_BORN sent.
	 */
	smp_store_release(&sb->s_flags, sb->s_flags | flag);
	/*
	 * Pairs with the barrier in prepare_to_wait_event() to make sure
	 * ___wait_var_event() either sees SB_BORN set or
	 * waitqueue_active() check in wake_up_var() sees the waiter.
	 */
	smp_mb();
	wake_up_var(&sb->s_flags);
}

/*
 * One thing we have to be careful of with a per-sb shrinker is that we don't
 * drop the last active reference to the superblock from within the shrinker.
 * If that happens we could trigger unregistering the shrinker from within the
 * shrinker path and that leads to deadlock on the shrinker_mutex. Hence we
 * take a passive reference to the superblock to avoid this from occurring.
 */
static unsigned long super_cache_scan(struct shrinker *shrink,
				      struct shrink_control *sc)
{
	struct super_block *sb;
	long	fs_objects = 0;
	long	total_objects;
	long	freed = 0;
	long	dentries;
	long	inodes;

	sb = shrink->private_data;

	/*
	 * Deadlock avoidance.  We may hold various FS locks, and we don't want
	 * to recurse into the FS that called us in clear_inode() and friends..
	 */
	if (!(sc->gfp_mask & __GFP_FS))
		return SHRINK_STOP;

	if (!super_trylock_shared(sb))
		return SHRINK_STOP;

	if (sb->s_op->nr_cached_objects)
		fs_objects = sb->s_op->nr_cached_objects(sb, sc);

	inodes = list_lru_shrink_count(&sb->s_inode_lru, sc);
	dentries = list_lru_shrink_count(&sb->s_dentry_lru, sc);
	total_objects = dentries + inodes + fs_objects + 1;
	if (!total_objects)
		total_objects = 1;

	/* proportion the scan between the caches */
	dentries = mult_frac(sc->nr_to_scan, dentries, total_objects);
	inodes = mult_frac(sc->nr_to_scan, inodes, total_objects);
	fs_objects = mult_frac(sc->nr_to_scan, fs_objects, total_objects);

	/*
	 * prune the dcache first as the icache is pinned by it, then
	 * prune the icache, followed by the filesystem specific caches
	 *
	 * Ensure that we always scan at least one object - memcg kmem
	 * accounting uses this to fully empty the caches.
	 */
	sc->nr_to_scan = dentries + 1;
	freed = prune_dcache_sb(sb, sc);
	sc->nr_to_scan = inodes + 1;
	freed += prune_icache_sb(sb, sc);

	if (fs_objects) {
		sc->nr_to_scan = fs_objects + 1;
		freed += sb->s_op->free_cached_objects(sb, sc);
	}

	super_unlock_shared(sb);
	return freed;
}

static unsigned long super_cache_count(struct shrinker *shrink,
				       struct shrink_control *sc)
{
	struct super_block *sb;
	long	total_objects = 0;

	sb = shrink->private_data;

	/*
	 * We don't call super_trylock_shared() here as it is a scalability
	 * bottleneck, so we're exposed to partial setup state. The shrinker
	 * rwsem does not protect filesystem operations backing
	 * list_lru_shrink_count() or s_op->nr_cached_objects(). Counts can
	 * change between super_cache_count and super_cache_scan, so we really
	 * don't need locks here.
	 *
	 * However, if we are currently mounting the superblock, the underlying
	 * filesystem might be in a state of partial construction and hence it
	 * is dangerous to access it.  super_trylock_shared() uses a SB_BORN check
	 * to avoid this situation, so do the same here. The memory barrier is
	 * matched with the one in mount_fs() as we don't hold locks here.
	 */
	if (!(sb->s_flags & SB_BORN))
		return 0;
	smp_rmb();

	if (sb->s_op && sb->s_op->nr_cached_objects)
		total_objects = sb->s_op->nr_cached_objects(sb, sc);

	total_objects += list_lru_shrink_count(&sb->s_dentry_lru, sc);
	total_objects += list_lru_shrink_count(&sb->s_inode_lru, sc);

	if (!total_objects)
		return SHRINK_EMPTY;

	total_objects = vfs_pressure_ratio(total_objects);
	return total_objects;
}

static void destroy_super_work(struct work_struct *work)
{
	struct super_block *s = container_of(work, struct super_block,
							destroy_work);
	security_sb_free(s);
	put_user_ns(s->s_user_ns);
	kfree(s->s_subtype);
	for (int i = 0; i < SB_FREEZE_LEVELS; i++)
		percpu_free_rwsem(&s->s_writers.rw_sem[i]);
	kfree(s);
}

static void destroy_super_rcu(struct rcu_head *head)
{
	struct super_block *s = container_of(head, struct super_block, rcu);
	INIT_WORK(&s->destroy_work, destroy_super_work);
	schedule_work(&s->destroy_work);
}

/* Free a superblock that has never been seen by anyone */
static void destroy_unused_super(struct super_block *s)
{
	if (!s)
		return;
	super_unlock_excl(s);
	list_lru_destroy(&s->s_dentry_lru);
	list_lru_destroy(&s->s_inode_lru);
	shrinker_free(s->s_shrink);
	/* no delays needed */
	destroy_super_work(&s->destroy_work);
}

/**
 *	alloc_super	-	create new superblock
 *	@type:	filesystem type superblock should belong to
 *	@flags: the mount flags
 *	@user_ns: User namespace for the super_block
 *
 *	Allocates and initializes a new &struct super_block.  alloc_super()
 *	returns a pointer new superblock or %NULL if allocation had failed.
 */
static struct super_block *alloc_super(struct file_system_type *type, int flags,
				       struct user_namespace *user_ns)
{
	struct super_block *s = kzalloc(sizeof(struct super_block), GFP_KERNEL);
	static const struct super_operations default_op;
	int i;

	if (!s)
		return NULL;

	INIT_LIST_HEAD(&s->s_mounts);
	s->s_user_ns = get_user_ns(user_ns);
	init_rwsem(&s->s_umount);
	lockdep_set_class(&s->s_umount, &type->s_umount_key);
	/*
	 * sget() can have s_umount recursion.
	 *
	 * When it cannot find a suitable sb, it allocates a new
	 * one (this one), and tries again to find a suitable old
	 * one.
	 *
	 * In case that succeeds, it will acquire the s_umount
	 * lock of the old one. Since these are clearly distrinct
	 * locks, and this object isn't exposed yet, there's no
	 * risk of deadlocks.
	 *
	 * Annotate this by putting this lock in a different
	 * subclass.
	 */
	down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING);

	if (security_sb_alloc(s))
		goto fail;

	for (i = 0; i < SB_FREEZE_LEVELS; i++) {
		if (__percpu_init_rwsem(&s->s_writers.rw_sem[i],
					sb_writers_name[i],
					&type->s_writers_key[i]))
			goto fail;
	}
	s->s_bdi = &noop_backing_dev_info;
	s->s_flags = flags;
	if (s->s_user_ns != &init_user_ns)
		s->s_iflags |= SB_I_NODEV;
	INIT_HLIST_NODE(&s->s_instances);
	INIT_HLIST_BL_HEAD(&s->s_roots);
	mutex_init(&s->s_sync_lock);
	INIT_LIST_HEAD(&s->s_inodes);
	spin_lock_init(&s->s_inode_list_lock);
	INIT_LIST_HEAD(&s->s_inodes_wb);
	spin_lock_init(&s->s_inode_wblist_lock);

	s->s_count = 1;
	atomic_set(&s->s_active, 1);
	mutex_init(&s->s_vfs_rename_mutex);
	lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key);
	init_rwsem(&s->s_dquot.dqio_sem);
	s->s_maxbytes = MAX_NON_LFS;
	s->s_op = &default_op;
	s->s_time_gran = 1000000000;
	s->s_time_min = TIME64_MIN;
	s->s_time_max = TIME64_MAX;

	s->s_shrink = shrinker_alloc(SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE,
				     "sb-%s", type->name);
	if (!s->s_shrink)
		goto fail;

	s->s_shrink->scan_objects = super_cache_scan;
	s->s_shrink->count_objects = super_cache_count;
	s->s_shrink->batch = 1024;
	s->s_shrink->private_data = s;

	if (list_lru_init_memcg(&s->s_dentry_lru, s->s_shrink))
		goto fail;
	if (list_lru_init_memcg(&s->s_inode_lru, s->s_shrink))
		goto fail;
	return s;

fail:
	destroy_unused_super(s);
	return NULL;
}

/* Superblock refcounting  */

/*
 * Drop a superblock's refcount.  The caller must hold sb_lock.
 */
static void __put_super(struct super_block *s)
{
	if (!--s->s_count) {
		list_del_init(&s->s_list);
		WARN_ON(s->s_dentry_lru.node);
		WARN_ON(s->s_inode_lru.node);
		WARN_ON(!list_empty(&s->s_mounts));
		call_rcu(&s->rcu, destroy_super_rcu);
	}
}

/**
 *	put_super	-	drop a temporary reference to superblock
 *	@sb: superblock in question
 *
 *	Drops a temporary reference, frees superblock if there's no
 *	references left.
 */
void put_super(struct super_block *sb)
{
	spin_lock(&sb_lock);
	__put_super(sb);
	spin_unlock(&sb_lock);
}

static void kill_super_notify(struct super_block *sb)
{
	lockdep_assert_not_held(&sb->s_umount);

	/* already notified earlier */
	if (sb->s_flags & SB_DEAD)
		return;

	/*
	 * Remove it from @fs_supers so it isn't found by new
	 * sget{_fc}() walkers anymore. Any concurrent mounter still
	 * managing to grab a temporary reference is guaranteed to
	 * already see SB_DYING and will wait until we notify them about
	 * SB_DEAD.
	 */
	spin_lock(&sb_lock);
	hlist_del_init(&sb->s_instances);
	spin_unlock(&sb_lock);

	/*
	 * Let concurrent mounts know that this thing is really dead.
	 * We don't need @sb->s_umount here as every concurrent caller
	 * will see SB_DYING and either discard the superblock or wait
	 * for SB_DEAD.
	 */
	super_wake(sb, SB_DEAD);
}

/**
 *	deactivate_locked_super	-	drop an active reference to superblock
 *	@s: superblock to deactivate
 *
 *	Drops an active reference to superblock, converting it into a temporary
 *	one if there is no other active references left.  In that case we
 *	tell fs driver to shut it down and drop the temporary reference we
 *	had just acquired.
 *
 *	Caller holds exclusive lock on superblock; that lock is released.
 */
void deactivate_locked_super(struct super_block *s)
{
	struct file_system_type *fs = s->s_type;
	if (atomic_dec_and_test(&s->s_active)) {
		shrinker_free(s->s_shrink);
		fs->kill_sb(s);

		kill_super_notify(s);

		/*
		 * Since list_lru_destroy() may sleep, we cannot call it from
		 * put_super(), where we hold the sb_lock. Therefore we destroy
		 * the lru lists right now.
		 */
		list_lru_destroy(&s->s_dentry_lru);
		list_lru_destroy(&s->s_inode_lru);

		put_filesystem(fs);
		put_super(s);
	} else {
		super_unlock_excl(s);
	}
}

EXPORT_SYMBOL(deactivate_locked_super);

/**
 *	deactivate_super	-	drop an active reference to superblock
 *	@s: superblock to deactivate
 *
 *	Variant of deactivate_locked_super(), except that superblock is *not*
 *	locked by caller.  If we are going to drop the final active reference,
 *	lock will be acquired prior to that.
 */
void deactivate_super(struct super_block *s)
{
	if (!atomic_add_unless(&s->s_active, -1, 1)) {
		__super_lock_excl(s);
		deactivate_locked_super(s);
	}
}

EXPORT_SYMBOL(deactivate_super);

/**
 * grab_super - acquire an active reference to a superblock
 * @sb: superblock to acquire
 *
 * Acquire a temporary reference on a superblock and try to trade it for
 * an active reference. This is used in sget{_fc}() to wait for a
 * superblock to either become SB_BORN or for it to pass through
 * sb->kill() and be marked as SB_DEAD.
 *
 * Return: This returns true if an active reference could be acquired,
 *         false if not.
 */
static bool grab_super(struct super_block *sb)
{
	bool locked;

	sb->s_count++;
	spin_unlock(&sb_lock);
	locked = super_lock_excl(sb);
	if (locked) {
		if (atomic_inc_not_zero(&sb->s_active)) {
			put_super(sb);
			return true;
		}
		super_unlock_excl(sb);
	}
	wait_var_event(&sb->s_flags, super_flags(sb, SB_DEAD));
	put_super(sb);
	return false;
}

/*
 *	super_trylock_shared - try to grab ->s_umount shared
 *	@sb: reference we are trying to grab
 *
 *	Try to prevent fs shutdown.  This is used in places where we
 *	cannot take an active reference but we need to ensure that the
 *	filesystem is not shut down while we are working on it. It returns
 *	false if we cannot acquire s_umount or if we lose the race and
 *	filesystem already got into shutdown, and returns true with the s_umount
 *	lock held in read mode in case of success. On successful return,
 *	the caller must drop the s_umount lock when done.
 *
 *	Note that unlike get_super() et.al. this one does *not* bump ->s_count.
 *	The reason why it's safe is that we are OK with doing trylock instead
 *	of down_read().  There's a couple of places that are OK with that, but
 *	it's very much not a general-purpose interface.
 */
bool super_trylock_shared(struct super_block *sb)
{
	if (down_read_trylock(&sb->s_umount)) {
		if (!(sb->s_flags & SB_DYING) && sb->s_root &&
		    (sb->s_flags & SB_BORN))
			return true;
		super_unlock_shared(sb);
	}

	return false;
}

/**
 *	retire_super	-	prevents superblock from being reused
 *	@sb: superblock to retire
 *
 *	The function marks superblock to be ignored in superblock test, which
 *	prevents it from being reused for any new mounts.  If the superblock has
 *	a private bdi, it also unregisters it, but doesn't reduce the refcount
 *	of the superblock to prevent potential races.  The refcount is reduced
 *	by generic_shutdown_super().  The function can not be called
 *	concurrently with generic_shutdown_super().  It is safe to call the
 *	function multiple times, subsequent calls have no effect.
 *
 *	The marker will affect the re-use only for block-device-based
 *	superblocks.  Other superblocks will still get marked if this function
 *	is used, but that will not affect their reusability.
 */
void retire_super(struct super_block *sb)
{
	WARN_ON(!sb->s_bdev);
	__super_lock_excl(sb);
	if (sb->s_iflags & SB_I_PERSB_BDI) {
		bdi_unregister(sb->s_bdi);
		sb->s_iflags &= ~SB_I_PERSB_BDI;
	}
	sb->s_iflags |= SB_I_RETIRED;
	super_unlock_excl(sb);
}
EXPORT_SYMBOL(retire_super);

/**
 *	generic_shutdown_super	-	common helper for ->kill_sb()
 *	@sb: superblock to kill
 *
 *	generic_shutdown_super() does all fs-independent work on superblock
 *	shutdown.  Typical ->kill_sb() should pick all fs-specific objects
 *	that need destruction out of superblock, call generic_shutdown_super()
 *	and release aforementioned objects.  Note: dentries and inodes _are_
 *	taken care of and do not need specific handling.
 *
 *	Upon calling this function, the filesystem may no longer alter or
 *	rearrange the set of dentries belonging to this super_block, nor may it
 *	change the attachments of dentries to inodes.
 */
void generic_shutdown_super(struct super_block *sb)
{
	const struct super_operations *sop = sb->s_op;

	if (sb->s_root) {
		shrink_dcache_for_umount(sb);
		sync_filesystem(sb);
		sb->s_flags &= ~SB_ACTIVE;

		cgroup_writeback_umount();

		/* Evict all inodes with zero refcount. */
		evict_inodes(sb);

		/*
		 * Clean up and evict any inodes that still have references due
		 * to fsnotify or the security policy.
		 */
		fsnotify_sb_delete(sb);
		security_sb_delete(sb);

		if (sb->s_dio_done_wq) {
			destroy_workqueue(sb->s_dio_done_wq);
			sb->s_dio_done_wq = NULL;
		}

		if (sop->put_super)
			sop->put_super(sb);

		/*
		 * Now that all potentially-encrypted inodes have been evicted,
		 * the fscrypt keyring can be destroyed.
		 */
		fscrypt_destroy_keyring(sb);

		if (CHECK_DATA_CORRUPTION(!list_empty(&sb->s_inodes),
				"VFS: Busy inodes after unmount of %s (%s)",
				sb->s_id, sb->s_type->name)) {
			/*
			 * Adding a proper bailout path here would be hard, but
			 * we can at least make it more likely that a later
			 * iput_final() or such crashes cleanly.
			 */
			struct inode *inode;

			spin_lock(&sb->s_inode_list_lock);
			list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
				inode->i_op = VFS_PTR_POISON;
				inode->i_sb = VFS_PTR_POISON;
				inode->i_mapping = VFS_PTR_POISON;
			}
			spin_unlock(&sb->s_inode_list_lock);
		}
	}
	/*
	 * Broadcast to everyone that grabbed a temporary reference to this
	 * superblock before we removed it from @fs_supers that the superblock
	 * is dying. Every walker of @fs_supers outside of sget{_fc}() will now
	 * discard this superblock and treat it as dead.
	 *
	 * We leave the superblock on @fs_supers so it can be found by
	 * sget{_fc}() until we passed sb->kill_sb().
	 */
	super_wake(sb, SB_DYING);
	super_unlock_excl(sb);
	if (sb->s_bdi != &noop_backing_dev_info) {
		if (sb->s_iflags & SB_I_PERSB_BDI)
			bdi_unregister(sb->s_bdi);
		bdi_put(sb->s_bdi);
		sb->s_bdi = &noop_backing_dev_info;
	}
}

EXPORT_SYMBOL(generic_shutdown_super);

bool mount_capable(struct fs_context *fc)
{
	if (!(fc->fs_type->fs_flags & FS_USERNS_MOUNT))
		return capable(CAP_SYS_ADMIN);
	else
		return ns_capable(fc->user_ns, CAP_SYS_ADMIN);
}

/**
 * sget_fc - Find or create a superblock
 * @fc:	Filesystem context.
 * @test: Comparison callback
 * @set: Setup callback
 *
 * Create a new superblock or find an existing one.
 *
 * The @test callback is used to find a matching existing superblock.
 * Whether or not the requested parameters in @fc are taken into account
 * is specific to the @test callback that is used. They may even be
 * completely ignored.
 *
 * If an extant superblock is matched, it will be returned unless:
 *
 * (1) the namespace the filesystem context @fc and the extant
 *     superblock's namespace differ
 *
 * (2) the filesystem context @fc has requested that reusing an extant
 *     superblock is not allowed
 *
 * In both cases EBUSY will be returned.
 *
 * If no match is made, a new superblock will be allocated and basic
 * initialisation will be performed (s_type, s_fs_info and s_id will be
 * set and the @set callback will be invoked), the superblock will be
 * published and it will be returned in a partially constructed state
 * with SB_BORN and SB_ACTIVE as yet unset.
 *
 * Return: On success, an extant or newly created superblock is
 *         returned. On failure an error pointer is returned.
 */
struct super_block *sget_fc(struct fs_context *fc,
			    int (*test)(struct super_block *, struct fs_context *),
			    int (*set)(struct super_block *, struct fs_context *))
{
	struct super_block *s = NULL;
	struct super_block *old;
	struct user_namespace *user_ns = fc->global ? &init_user_ns : fc->user_ns;
	int err;

retry:
	spin_lock(&sb_lock);
	if (test) {
		hlist_for_each_entry(old, &fc->fs_type->fs_supers, s_instances) {
			if (test(old, fc))
				goto share_extant_sb;
		}
	}
	if (!s) {
		spin_unlock(&sb_lock);
		s = alloc_super(fc->fs_type, fc->sb_flags, user_ns);
		if (!s)
			return ERR_PTR(-ENOMEM);
		goto retry;
	}

	s->s_fs_info = fc->s_fs_info;
	err = set(s, fc);
	if (err) {
		s->s_fs_info = NULL;
		spin_unlock(&sb_lock);
		destroy_unused_super(s);
		return ERR_PTR(err);
	}
	fc->s_fs_info = NULL;
	s->s_type = fc->fs_type;
	s->s_iflags |= fc->s_iflags;
	strscpy(s->s_id, s->s_type->name, sizeof(s->s_id));
	/*
	 * Make the superblock visible on @super_blocks and @fs_supers.
	 * It's in a nascent state and users should wait on SB_BORN or
	 * SB_DYING to be set.
	 */
	list_add_tail(&s->s_list, &super_blocks);
	hlist_add_head(&s->s_instances, &s->s_type->fs_supers);
	spin_unlock(&sb_lock);
	get_filesystem(s->s_type);
	shrinker_register(s->s_shrink);
	return s;

share_extant_sb:
	if (user_ns != old->s_user_ns || fc->exclusive) {
		spin_unlock(&sb_lock);
		destroy_unused_super(s);
		if (fc->exclusive)
			warnfc(fc, "reusing existing filesystem not allowed");
		else
			warnfc(fc, "reusing existing filesystem in another namespace not allowed");
		return ERR_PTR(-EBUSY);
	}
	if (!grab_super(old))
		goto retry;
	destroy_unused_super(s);
	return old;
}
EXPORT_SYMBOL(sget_fc);

/**
 *	sget	-	find or create a superblock
 *	@type:	  filesystem type superblock should belong to
 *	@test:	  comparison callback
 *	@set:	  setup callback
 *	@flags:	  mount flags
 *	@data:	  argument to each of them
 */
struct super_block *sget(struct file_system_type *type,
			int (*test)(struct super_block *,void *),
			int (*set)(struct super_block *,void *),
			int flags,
			void *data)
{
	struct user_namespace *user_ns = current_user_ns();
	struct super_block *s = NULL;
	struct super_block *old;
	int err;

	/* We don't yet pass the user namespace of the parent
	 * mount through to here so always use &init_user_ns
	 * until that changes.
	 */
	if (flags & SB_SUBMOUNT)
		user_ns = &init_user_ns;

retry:
	spin_lock(&sb_lock);
	if (test) {
		hlist_for_each_entry(old, &type->fs_supers, s_instances) {
			if (!test(old, data))
				continue;
			if (user_ns != old->s_user_ns) {
				spin_unlock(&sb_lock);
				destroy_unused_super(s);
				return ERR_PTR(-EBUSY);
			}
			if (!grab_super(old))
				goto retry;
			destroy_unused_super(s);
			return old;
		}
	}
	if (!s) {
		spin_unlock(&sb_lock);
		s = alloc_super(type, (flags & ~SB_SUBMOUNT), user_ns);
		if (!s)
			return ERR_PTR(-ENOMEM);
		goto retry;
	}

	err = set(s, data);
	if (err) {
		spin_unlock(&sb_lock);
		destroy_unused_super(s);
		return ERR_PTR(err);
	}
	s->s_type = type;
	strscpy(s->s_id, type->name, sizeof(s->s_id));
	list_add_tail(&s->s_list, &super_blocks);
	hlist_add_head(&s->s_instances, &type->fs_supers);
	spin_unlock(&sb_lock);
	get_filesystem(type);
	shrinker_register(s->s_shrink);
	return s;
}
EXPORT_SYMBOL(sget);

void drop_super(struct super_block *sb)
{
	super_unlock_shared(sb);
	put_super(sb);
}

EXPORT_SYMBOL(drop_super);

void drop_super_exclusive(struct super_block *sb)
{
	super_unlock_excl(sb);
	put_super(sb);
}
EXPORT_SYMBOL(drop_super_exclusive);

static void __iterate_supers(void (*f)(struct super_block *))
{
	struct super_block *sb, *p = NULL;

	spin_lock(&sb_lock);
	list_for_each_entry(sb, &super_blocks, s_list) {
		if (super_flags(sb, SB_DYING))
			continue;
		sb->s_count++;
		spin_unlock(&sb_lock);

		f(sb);

		spin_lock(&sb_lock);
		if (p)
			__put_super(p);
		p = sb;
	}
	if (p)
		__put_super(p);
	spin_unlock(&sb_lock);
}
/**
 *	iterate_supers - call function for all active superblocks
 *	@f: function to call
 *	@arg: argument to pass to it
 *
 *	Scans the superblock list and calls given function, passing it
 *	locked superblock and given argument.
 */
void iterate_supers(void (*f)(struct super_block *, void *), void *arg)
{
	struct super_block *sb, *p = NULL;

	spin_lock(&sb_lock);
	list_for_each_entry(sb, &super_blocks, s_list) {
		bool locked;

		sb->s_count++;
		spin_unlock(&sb_lock);

		locked = super_lock_shared(sb);
		if (locked) {
			if (sb->s_root)
				f(sb, arg);
			super_unlock_shared(sb);
		}

		spin_lock(&sb_lock);
		if (p)
			__put_super(p);
		p = sb;
	}
	if (p)
		__put_super(p);
	spin_unlock(&sb_lock);
}

/**
 *	iterate_supers_type - call function for superblocks of given type
 *	@type: fs type
 *	@f: function to call
 *	@arg: argument to pass to it
 *
 *	Scans the superblock list and calls given function, passing it
 *	locked superblock and given argument.
 */
void iterate_supers_type(struct file_system_type *type,
	void (*f)(struct super_block *, void *), void *arg)
{
	struct super_block *sb, *p = NULL;

	spin_lock(&sb_lock);
	hlist_for_each_entry(sb, &type->fs_supers, s_instances) {
		bool locked;

		sb->s_count++;
		spin_unlock(&sb_lock);

		locked = super_lock_shared(sb);
		if (locked) {
			if (sb->s_root)
				f(sb, arg);
			super_unlock_shared(sb);
		}

		spin_lock(&sb_lock);
		if (p)
			__put_super(p);
		p = sb;
	}
	if (p)
		__put_super(p);
	spin_unlock(&sb_lock);
}

EXPORT_SYMBOL(iterate_supers_type);

struct super_block *user_get_super(dev_t dev, bool excl)
{
	struct super_block *sb;

	spin_lock(&sb_lock);
	list_for_each_entry(sb, &super_blocks, s_list) {
		if (sb->s_dev ==  dev) {
			bool locked;

			sb->s_count++;
			spin_unlock(&sb_lock);
			/* still alive? */
			locked = super_lock(sb, excl);
			if (locked) {
				if (sb->s_root)
					return sb;
				super_unlock(sb, excl);
			}
			/* nope, got unmounted */
			spin_lock(&sb_lock);
			__put_super(sb);
			break;
		}
	}
	spin_unlock(&sb_lock);
	return NULL;
}

/**
 * reconfigure_super - asks filesystem to change superblock parameters
 * @fc: The superblock and configuration
 *
 * Alters the configuration parameters of a live superblock.
 */
int reconfigure_super(struct fs_context *fc)
{
	struct super_block *sb = fc->root->d_sb;
	int retval;
	bool remount_ro = false;
	bool remount_rw = false;
	bool force = fc->sb_flags & SB_FORCE;

	if (fc->sb_flags_mask & ~MS_RMT_MASK)
		return -EINVAL;
	if (sb->s_writers.frozen != SB_UNFROZEN)
		return -EBUSY;

	retval = security_sb_remount(sb, fc->security);
	if (retval)
		return retval;

	if (fc->sb_flags_mask & SB_RDONLY) {
#ifdef CONFIG_BLOCK
		if (!(fc->sb_flags & SB_RDONLY) && sb->s_bdev &&
		    bdev_read_only(sb->s_bdev))
			return -EACCES;
#endif
		remount_rw = !(fc->sb_flags & SB_RDONLY) && sb_rdonly(sb);
		remount_ro = (fc->sb_flags & SB_RDONLY) && !sb_rdonly(sb);
	}

	if (remount_ro) {
		if (!hlist_empty(&sb->s_pins)) {
			super_unlock_excl(sb);
			group_pin_kill(&sb->s_pins);
			__super_lock_excl(sb);
			if (!sb->s_root)
				return 0;
			if (sb->s_writers.frozen != SB_UNFROZEN)
				return -EBUSY;
			remount_ro = !sb_rdonly(sb);
		}
	}
	shrink_dcache_sb(sb);

	/* If we are reconfiguring to RDONLY and current sb is read/write,
	 * make sure there are no files open for writing.
	 */
	if (remount_ro) {
		if (force) {
			sb_start_ro_state_change(sb);
		} else {
			retval = sb_prepare_remount_readonly(sb);
			if (retval)
				return retval;
		}
	} else if (remount_rw) {
		/*
		 * Protect filesystem's reconfigure code from writes from
		 * userspace until reconfigure finishes.
		 */
		sb_start_ro_state_change(sb);
	}

	if (fc->ops->reconfigure) {
		retval = fc->ops->reconfigure(fc);
		if (retval) {
			if (!force)
				goto cancel_readonly;
			/* If forced remount, go ahead despite any errors */
			WARN(1, "forced remount of a %s fs returned %i\n",
			     sb->s_type->name, retval);
		}
	}

	WRITE_ONCE(sb->s_flags, ((sb->s_flags & ~fc->sb_flags_mask) |
				 (fc->sb_flags & fc->sb_flags_mask)));
	sb_end_ro_state_change(sb);

	/*
	 * Some filesystems modify their metadata via some other path than the
	 * bdev buffer cache (eg. use a private mapping, or directories in
	 * pagecache, etc). Also file data modifications go via their own
	 * mappings. So If we try to mount readonly then copy the filesystem
	 * from bdev, we could get stale data, so invalidate it to give a best
	 * effort at coherency.
	 */
	if (remount_ro && sb->s_bdev)
		invalidate_bdev(sb->s_bdev);
	return 0;

cancel_readonly:
	sb_end_ro_state_change(sb);
	return retval;
}

static void do_emergency_remount_callback(struct super_block *sb)
{
	bool locked = super_lock_excl(sb);

	if (locked && sb->s_root && sb->s_bdev && !sb_rdonly(sb)) {
		struct fs_context *fc;

		fc = fs_context_for_reconfigure(sb->s_root,
					SB_RDONLY | SB_FORCE, SB_RDONLY);
		if (!IS_ERR(fc)) {
			if (parse_monolithic_mount_data(fc, NULL) == 0)
				(void)reconfigure_super(fc);
			put_fs_context(fc);
		}
	}
	if (locked)
		super_unlock_excl(sb);
}

static void do_emergency_remount(struct work_struct *work)
{
	__iterate_supers(do_emergency_remount_callback);
	kfree(work);
	printk("Emergency Remount complete\n");
}

void emergency_remount(void)
{
	struct work_struct *work;

	work = kmalloc(sizeof(*work), GFP_ATOMIC);
	if (work) {
		INIT_WORK(work, do_emergency_remount);
		schedule_work(work);
	}
}

static void do_thaw_all_callback(struct super_block *sb)
{
	bool locked = super_lock_excl(sb);

	if (locked && sb->s_root) {
		if (IS_ENABLED(CONFIG_BLOCK))
			while (sb->s_bdev && !bdev_thaw(sb->s_bdev))
				pr_warn("Emergency Thaw on %pg\n", sb->s_bdev);
		thaw_super_locked(sb, FREEZE_HOLDER_USERSPACE);
		return;
	}
	if (locked)
		super_unlock_excl(sb);
}

static void do_thaw_all(struct work_struct *work)
{
	__iterate_supers(do_thaw_all_callback);
	kfree(work);
	printk(KERN_WARNING "Emergency Thaw complete\n");
}

/**
 * emergency_thaw_all -- forcibly thaw every frozen filesystem
 *
 * Used for emergency unfreeze of all filesystems via SysRq
 */
void emergency_thaw_all(void)
{
	struct work_struct *work;

	work = kmalloc(sizeof(*work), GFP_ATOMIC);
	if (work) {
		INIT_WORK(work, do_thaw_all);
		schedule_work(work);
	}
}

static DEFINE_IDA(unnamed_dev_ida);

/**
 * get_anon_bdev - Allocate a block device for filesystems which don't have one.
 * @p: Pointer to a dev_t.
 *
 * Filesystems which don't use real block devices can call this function
 * to allocate a virtual block device.
 *
 * Context: Any context.  Frequently called while holding sb_lock.
 * Return: 0 on success, -EMFILE if there are no anonymous bdevs left
 * or -ENOMEM if memory allocation failed.
 */
int get_anon_bdev(dev_t *p)
{
	int dev;

	/*
	 * Many userspace utilities consider an FSID of 0 invalid.
	 * Always return at least 1 from get_anon_bdev.
	 */
	dev = ida_alloc_range(&unnamed_dev_ida, 1, (1 << MINORBITS) - 1,
			GFP_ATOMIC);
	if (dev == -ENOSPC)
		dev = -EMFILE;
	if (dev < 0)
		return dev;

	*p = MKDEV(0, dev);
	return 0;
}
EXPORT_SYMBOL(get_anon_bdev);

void free_anon_bdev(dev_t dev)
{
	ida_free(&unnamed_dev_ida, MINOR(dev));
}
EXPORT_SYMBOL(free_anon_bdev);

int set_anon_super(struct super_block *s, void *data)
{
	return get_anon_bdev(&s->s_dev);
}
EXPORT_SYMBOL(set_anon_super);

void kill_anon_super(struct super_block *sb)
{
	dev_t dev = sb->s_dev;
	generic_shutdown_super(sb);
	kill_super_notify(sb);
	free_anon_bdev(dev);
}
EXPORT_SYMBOL(kill_anon_super);

void kill_litter_super(struct super_block *sb)
{
	if (sb->s_root)
		d_genocide(sb->s_root);
	kill_anon_super(sb);
}
EXPORT_SYMBOL(kill_litter_super);

int set_anon_super_fc(struct super_block *sb, struct fs_context *fc)
{
	return set_anon_super(sb, NULL);
}
EXPORT_SYMBOL(set_anon_super_fc);

static int test_keyed_super(struct super_block *sb, struct fs_context *fc)
{
	return sb->s_fs_info == fc->s_fs_info;
}

static int test_single_super(struct super_block *s, struct fs_context *fc)
{
	return 1;
}

static int vfs_get_super(struct fs_context *fc,
		int (*test)(struct super_block *, struct fs_context *),
		int (*fill_super)(struct super_block *sb,
				  struct fs_context *fc))
{
	struct super_block *sb;
	int err;

	sb = sget_fc(fc, test, set_anon_super_fc);
	if (IS_ERR(sb))
		return PTR_ERR(sb);

	if (!sb->s_root) {
		err = fill_super(sb, fc);
		if (err)
			goto error;

		sb->s_flags |= SB_ACTIVE;
	}

	fc->root = dget(sb->s_root);
	return 0;

error:
	deactivate_locked_super(sb);
	return err;
}

int get_tree_nodev(struct fs_context *fc,
		  int (*fill_super)(struct super_block *sb,
				    struct fs_context *fc))
{
	return vfs_get_super(fc, NULL, fill_super);
}
EXPORT_SYMBOL(get_tree_nodev);

int get_tree_single(struct fs_context *fc,
		  int (*fill_super)(struct super_block *sb,
				    struct fs_context *fc))
{
	return vfs_get_super(fc, test_single_super, fill_super);
}
EXPORT_SYMBOL(get_tree_single);

int get_tree_keyed(struct fs_context *fc,
		  int (*fill_super)(struct super_block *sb,
				    struct fs_context *fc),
		void *key)
{
	fc->s_fs_info = key;
	return vfs_get_super(fc, test_keyed_super, fill_super);
}
EXPORT_SYMBOL(get_tree_keyed);

static int set_bdev_super(struct super_block *s, void *data)
{
	s->s_dev = *(dev_t *)data;
	return 0;
}

static int super_s_dev_set(struct super_block *s, struct fs_context *fc)
{
	return set_bdev_super(s, fc->sget_key);
}

static int super_s_dev_test(struct super_block *s, struct fs_context *fc)
{
	return !(s->s_iflags & SB_I_RETIRED) &&
		s->s_dev == *(dev_t *)fc->sget_key;
}

/**
 * sget_dev - Find or create a superblock by device number
 * @fc: Filesystem context.
 * @dev: device number
 *
 * Find or create a superblock using the provided device number that
 * will be stored in fc->sget_key.
 *
 * If an extant superblock is matched, then that will be returned with
 * an elevated reference count that the caller must transfer or discard.
 *
 * If no match is made, a new superblock will be allocated and basic
 * initialisation will be performed (s_type, s_fs_info, s_id, s_dev will
 * be set). The superblock will be published and it will be returned in
 * a partially constructed state with SB_BORN and SB_ACTIVE as yet
 * unset.
 *
 * Return: an existing or newly created superblock on success, an error
 *         pointer on failure.
 */
struct super_block *sget_dev(struct fs_context *fc, dev_t dev)
{
	fc->sget_key = &dev;
	return sget_fc(fc, super_s_dev_test, super_s_dev_set);
}
EXPORT_SYMBOL(sget_dev);

#ifdef CONFIG_BLOCK
/*
 * Lock the superblock that is holder of the bdev. Returns the superblock
 * pointer if we successfully locked the superblock and it is alive. Otherwise
 * we return NULL and just unlock bdev->bd_holder_lock.
 *
 * The function must be called with bdev->bd_holder_lock and releases it.
 */
static struct super_block *bdev_super_lock(struct block_device *bdev, bool excl)
	__releases(&bdev->bd_holder_lock)
{
	struct super_block *sb = bdev->bd_holder;
	bool locked;

	lockdep_assert_held(&bdev->bd_holder_lock);
	lockdep_assert_not_held(&sb->s_umount);
	lockdep_assert_not_held(&bdev->bd_disk->open_mutex);

	/* Make sure sb doesn't go away from under us */
	spin_lock(&sb_lock);
	sb->s_count++;
	spin_unlock(&sb_lock);

	mutex_unlock(&bdev->bd_holder_lock);

	locked = super_lock(sb, excl);

	/*
	 * If the superblock wasn't already SB_DYING then we hold
	 * s_umount and can safely drop our temporary reference.
         */
	put_super(sb);

	if (!locked)
		return NULL;

	if (!sb->s_root || !(sb->s_flags & SB_ACTIVE)) {
		super_unlock(sb, excl);
		return NULL;
	}

	return sb;
}

static void fs_bdev_mark_dead(struct block_device *bdev, bool surprise)
{
	struct super_block *sb;

	sb = bdev_super_lock(bdev, false);
	if (!sb)
		return;

	if (!surprise)
		sync_filesystem(sb);
	shrink_dcache_sb(sb);
	invalidate_inodes(sb);
	if (sb->s_op->shutdown)
		sb->s_op->shutdown(sb);

	super_unlock_shared(sb);
}

static void fs_bdev_sync(struct block_device *bdev)
{
	struct super_block *sb;

	sb = bdev_super_lock(bdev, false);
	if (!sb)
		return;

	sync_filesystem(sb);
	super_unlock_shared(sb);
}

static struct super_block *get_bdev_super(struct block_device *bdev)
{
	bool active = false;
	struct super_block *sb;

	sb = bdev_super_lock(bdev, true);
	if (sb) {
		active = atomic_inc_not_zero(&sb->s_active);
		super_unlock_excl(sb);
	}
	if (!active)
		return NULL;
	return sb;
}

/**
 * fs_bdev_freeze - freeze owning filesystem of block device
 * @bdev: block device
 *
 * Freeze the filesystem that owns this block device if it is still
 * active.
 *
 * A filesystem that owns multiple block devices may be frozen from each
 * block device and won't be unfrozen until all block devices are
 * unfrozen. Each block device can only freeze the filesystem once as we
 * nest freezes for block devices in the block layer.
 *
 * Return: If the freeze was successful zero is returned. If the freeze
 *         failed a negative error code is returned.
 */
static int fs_bdev_freeze(struct block_device *bdev)
{
	struct super_block *sb;
	int error = 0;

	lockdep_assert_held(&bdev->bd_fsfreeze_mutex);

	sb = get_bdev_super(bdev);
	if (!sb)
		return -EINVAL;

	if (sb->s_op->freeze_super)
		error = sb->s_op->freeze_super(sb,
				FREEZE_MAY_NEST | FREEZE_HOLDER_USERSPACE);
	else
		error = freeze_super(sb,
				FREEZE_MAY_NEST | FREEZE_HOLDER_USERSPACE);
	if (!error)
		error = sync_blockdev(bdev);
	deactivate_super(sb);
	return error;
}

/**
 * fs_bdev_thaw - thaw owning filesystem of block device
 * @bdev: block device
 *
 * Thaw the filesystem that owns this block device.
 *
 * A filesystem that owns multiple block devices may be frozen from each
 * block device and won't be unfrozen until all block devices are
 * unfrozen. Each block device can only freeze the filesystem once as we
 * nest freezes for block devices in the block layer.
 *
 * Return: If the thaw was successful zero is returned. If the thaw
 *         failed a negative error code is returned. If this function
 *         returns zero it doesn't mean that the filesystem is unfrozen
 *         as it may have been frozen multiple times (kernel may hold a
 *         freeze or might be frozen from other block devices).
 */
static int fs_bdev_thaw(struct block_device *bdev)
{
	struct super_block *sb;
	int error;

	lockdep_assert_held(&bdev->bd_fsfreeze_mutex);

	sb = get_bdev_super(bdev);
	if (WARN_ON_ONCE(!sb))
		return -EINVAL;

	if (sb->s_op->thaw_super)
		error = sb->s_op->thaw_super(sb,
				FREEZE_MAY_NEST | FREEZE_HOLDER_USERSPACE);
	else
		error = thaw_super(sb,
				FREEZE_MAY_NEST | FREEZE_HOLDER_USERSPACE);
	deactivate_super(sb);
	return error;
}

const struct blk_holder_ops fs_holder_ops = {
	.mark_dead		= fs_bdev_mark_dead,
	.sync			= fs_bdev_sync,
	.freeze			= fs_bdev_freeze,
	.thaw			= fs_bdev_thaw,
};
EXPORT_SYMBOL_GPL(fs_holder_ops);

int setup_bdev_super(struct super_block *sb, int sb_flags,
		struct fs_context *fc)
{
	blk_mode_t mode = sb_open_mode(sb_flags);
	struct file *bdev_file;
	struct block_device *bdev;

	bdev_file = bdev_file_open_by_dev(sb->s_dev, mode, sb, &fs_holder_ops);
	if (IS_ERR(bdev_file)) {
		if (fc)
			errorf(fc, "%s: Can't open blockdev", fc->source);
		return PTR_ERR(bdev_file);
	}
	bdev = file_bdev(bdev_file);

	/*
	 * This really should be in blkdev_get_by_dev, but right now can't due
	 * to legacy issues that require us to allow opening a block device node
	 * writable from userspace even for a read-only block device.
	 */
	if ((mode & BLK_OPEN_WRITE) && bdev_read_only(bdev)) {
		bdev_fput(bdev_file);
		return -EACCES;
	}

	/*
	 * It is enough to check bdev was not frozen before we set
	 * s_bdev as freezing will wait until SB_BORN is set.
	 */
	if (atomic_read(&bdev->bd_fsfreeze_count) > 0) {
		if (fc)
			warnf(fc, "%pg: Can't mount, blockdev is frozen", bdev);
		bdev_fput(bdev_file);
		return -EBUSY;
	}
	spin_lock(&sb_lock);
	sb->s_bdev_file = bdev_file;
	sb->s_bdev = bdev;
	sb->s_bdi = bdi_get(bdev->bd_disk->bdi);
	if (bdev_stable_writes(bdev))
		sb->s_iflags |= SB_I_STABLE_WRITES;
	spin_unlock(&sb_lock);

	snprintf(sb->s_id, sizeof(sb->s_id), "%pg", bdev);
	shrinker_debugfs_rename(sb->s_shrink, "sb-%s:%s", sb->s_type->name,
				sb->s_id);
	sb_set_blocksize(sb, block_size(bdev));
	return 0;
}
EXPORT_SYMBOL_GPL(setup_bdev_super);

/**
 * get_tree_bdev - Get a superblock based on a single block device
 * @fc: The filesystem context holding the parameters
 * @fill_super: Helper to initialise a new superblock
 */
int get_tree_bdev(struct fs_context *fc,
		int (*fill_super)(struct super_block *,
				  struct fs_context *))
{
	struct super_block *s;
	int error = 0;
	dev_t dev;

	if (!fc->source)
		return invalf(fc, "No source specified");

	error = lookup_bdev(fc->source, &dev);
	if (error) {
		errorf(fc, "%s: Can't lookup blockdev", fc->source);
		return error;
	}

	fc->sb_flags |= SB_NOSEC;
	s = sget_dev(fc, dev);
	if (IS_ERR(s))
		return PTR_ERR(s);

	if (s->s_root) {
		/* Don't summarily change the RO/RW state. */
		if ((fc->sb_flags ^ s->s_flags) & SB_RDONLY) {
			warnf(fc, "%pg: Can't mount, would change RO state", s->s_bdev);
			deactivate_locked_super(s);
			return -EBUSY;
		}
	} else {
		error = setup_bdev_super(s, fc->sb_flags, fc);
		if (!error)
			error = fill_super(s, fc);
		if (error) {
			deactivate_locked_super(s);
			return error;
		}
		s->s_flags |= SB_ACTIVE;
	}

	BUG_ON(fc->root);
	fc->root = dget(s->s_root);
	return 0;
}
EXPORT_SYMBOL(get_tree_bdev);

static int test_bdev_super(struct super_block *s, void *data)
{
	return !(s->s_iflags & SB_I_RETIRED) && s->s_dev == *(dev_t *)data;
}

struct dentry *mount_bdev(struct file_system_type *fs_type,
	int flags, const char *dev_name, void *data,
	int (*fill_super)(struct super_block *, void *, int))
{
	struct super_block *s;
	int error;
	dev_t dev;

	error = lookup_bdev(dev_name, &dev);
	if (error)
		return ERR_PTR(error);

	flags |= SB_NOSEC;
	s = sget(fs_type, test_bdev_super, set_bdev_super, flags, &dev);
	if (IS_ERR(s))
		return ERR_CAST(s);

	if (s->s_root) {
		if ((flags ^ s->s_flags) & SB_RDONLY) {
			deactivate_locked_super(s);
			return ERR_PTR(-EBUSY);
		}
	} else {
		error = setup_bdev_super(s, flags, NULL);
		if (!error)
			error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
		if (error) {
			deactivate_locked_super(s);
			return ERR_PTR(error);
		}

		s->s_flags |= SB_ACTIVE;
	}

	return dget(s->s_root);
}
EXPORT_SYMBOL(mount_bdev);

void kill_block_super(struct super_block *sb)
{
	struct block_device *bdev = sb->s_bdev;

	generic_shutdown_super(sb);
	if (bdev) {
		sync_blockdev(bdev);
		bdev_fput(sb->s_bdev_file);
	}
}

EXPORT_SYMBOL(kill_block_super);
#endif

struct dentry *mount_nodev(struct file_system_type *fs_type,
	int flags, void *data,
	int (*fill_super)(struct super_block *, void *, int))
{
	int error;
	struct super_block *s = sget(fs_type, NULL, set_anon_super, flags, NULL);

	if (IS_ERR(s))
		return ERR_CAST(s);

	error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
	if (error) {
		deactivate_locked_super(s);
		return ERR_PTR(error);
	}
	s->s_flags |= SB_ACTIVE;
	return dget(s->s_root);
}
EXPORT_SYMBOL(mount_nodev);

int reconfigure_single(struct super_block *s,
		       int flags, void *data)
{
	struct fs_context *fc;
	int ret;

	/* The caller really need to be passing fc down into mount_single(),
	 * then a chunk of this can be removed.  [Bollocks -- AV]
	 * Better yet, reconfiguration shouldn't happen, but rather the second
	 * mount should be rejected if the parameters are not compatible.
	 */
	fc = fs_context_for_reconfigure(s->s_root, flags, MS_RMT_MASK);
	if (IS_ERR(fc))
		return PTR_ERR(fc);

	ret = parse_monolithic_mount_data(fc, data);
	if (ret < 0)
		goto out;

	ret = reconfigure_super(fc);
out:
	put_fs_context(fc);
	return ret;
}

static int compare_single(struct super_block *s, void *p)
{
	return 1;
}

struct dentry *mount_single(struct file_system_type *fs_type,
	int flags, void *data,
	int (*fill_super)(struct super_block *, void *, int))
{
	struct super_block *s;
	int error;

	s = sget(fs_type, compare_single, set_anon_super, flags, NULL);
	if (IS_ERR(s))
		return ERR_CAST(s);
	if (!s->s_root) {
		error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
		if (!error)
			s->s_flags |= SB_ACTIVE;
	} else {
		error = reconfigure_single(s, flags, data);
	}
	if (unlikely(error)) {
		deactivate_locked_super(s);
		return ERR_PTR(error);
	}
	return dget(s->s_root);
}
EXPORT_SYMBOL(mount_single);

/**
 * vfs_get_tree - Get the mountable root
 * @fc: The superblock configuration context.
 *
 * The filesystem is invoked to get or create a superblock which can then later
 * be used for mounting.  The filesystem places a pointer to the root to be
 * used for mounting in @fc->root.
 */
int vfs_get_tree(struct fs_context *fc)
{
	struct super_block *sb;
	int error;

	if (fc->root)
		return -EBUSY;

	/* Get the mountable root in fc->root, with a ref on the root and a ref
	 * on the superblock.
	 */
	error = fc->ops->get_tree(fc);
	if (error < 0)
		return error;

	if (!fc->root) {
		pr_err("Filesystem %s get_tree() didn't set fc->root\n",
		       fc->fs_type->name);
		/* We don't know what the locking state of the superblock is -
		 * if there is a superblock.
		 */
		BUG();
	}

	sb = fc->root->d_sb;
	WARN_ON(!sb->s_bdi);

	/*
	 * super_wake() contains a memory barrier which also care of
	 * ordering for super_cache_count(). We place it before setting
	 * SB_BORN as the data dependency between the two functions is
	 * the superblock structure contents that we just set up, not
	 * the SB_BORN flag.
	 */
	super_wake(sb, SB_BORN);

	error = security_sb_set_mnt_opts(sb, fc->security, 0, NULL);
	if (unlikely(error)) {
		fc_drop_locked(fc);
		return error;
	}

	/*
	 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE
	 * but s_maxbytes was an unsigned long long for many releases. Throw
	 * this warning for a little while to try and catch filesystems that
	 * violate this rule.
	 */
	WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to "
		"negative value (%lld)\n", fc->fs_type->name, sb->s_maxbytes);

	return 0;
}
EXPORT_SYMBOL(vfs_get_tree);

/*
 * Setup private BDI for given superblock. It gets automatically cleaned up
 * in generic_shutdown_super().
 */
int super_setup_bdi_name(struct super_block *sb, char *fmt, ...)
{
	struct backing_dev_info *bdi;
	int err;
	va_list args;

	bdi = bdi_alloc(NUMA_NO_NODE);
	if (!bdi)
		return -ENOMEM;

	va_start(args, fmt);
	err = bdi_register_va(bdi, fmt, args);
	va_end(args);
	if (err) {
		bdi_put(bdi);
		return err;
	}
	WARN_ON(sb->s_bdi != &noop_backing_dev_info);
	sb->s_bdi = bdi;
	sb->s_iflags |= SB_I_PERSB_BDI;

	return 0;
}
EXPORT_SYMBOL(super_setup_bdi_name);

/*
 * Setup private BDI for given superblock. I gets automatically cleaned up
 * in generic_shutdown_super().
 */
int super_setup_bdi(struct super_block *sb)
{
	static atomic_long_t bdi_seq = ATOMIC_LONG_INIT(0);

	return super_setup_bdi_name(sb, "%.28s-%ld", sb->s_type->name,
				    atomic_long_inc_return(&bdi_seq));
}
EXPORT_SYMBOL(super_setup_bdi);

/**
 * sb_wait_write - wait until all writers to given file system finish
 * @sb: the super for which we wait
 * @level: type of writers we wait for (normal vs page fault)
 *
 * This function waits until there are no writers of given type to given file
 * system.
 */
static void sb_wait_write(struct super_block *sb, int level)
{
	percpu_down_write(sb->s_writers.rw_sem + level-1);
}

/*
 * We are going to return to userspace and forget about these locks, the
 * ownership goes to the caller of thaw_super() which does unlock().
 */
static void lockdep_sb_freeze_release(struct super_block *sb)
{
	int level;

	for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--)
		percpu_rwsem_release(sb->s_writers.rw_sem + level, 0, _THIS_IP_);
}

/*
 * Tell lockdep we are holding these locks before we call ->unfreeze_fs(sb).
 */
static void lockdep_sb_freeze_acquire(struct super_block *sb)
{
	int level;

	for (level = 0; level < SB_FREEZE_LEVELS; ++level)
		percpu_rwsem_acquire(sb->s_writers.rw_sem + level, 0, _THIS_IP_);
}

static void sb_freeze_unlock(struct super_block *sb, int level)
{
	for (level--; level >= 0; level--)
		percpu_up_write(sb->s_writers.rw_sem + level);
}

static int wait_for_partially_frozen(struct super_block *sb)
{
	int ret = 0;

	do {
		unsigned short old = sb->s_writers.frozen;

		up_write(&sb->s_umount);
		ret = wait_var_event_killable(&sb->s_writers.frozen,
					       sb->s_writers.frozen != old);
		down_write(&sb->s_umount);
	} while (ret == 0 &&
		 sb->s_writers.frozen != SB_UNFROZEN &&
		 sb->s_writers.frozen != SB_FREEZE_COMPLETE);

	return ret;
}

#define FREEZE_HOLDERS (FREEZE_HOLDER_KERNEL | FREEZE_HOLDER_USERSPACE)
#define FREEZE_FLAGS (FREEZE_HOLDERS | FREEZE_MAY_NEST)

static inline int freeze_inc(struct super_block *sb, enum freeze_holder who)
{
	WARN_ON_ONCE((who & ~FREEZE_FLAGS));
	WARN_ON_ONCE(hweight32(who & FREEZE_HOLDERS) > 1);

	if (who & FREEZE_HOLDER_KERNEL)
		++sb->s_writers.freeze_kcount;
	if (who & FREEZE_HOLDER_USERSPACE)
		++sb->s_writers.freeze_ucount;
	return sb->s_writers.freeze_kcount + sb->s_writers.freeze_ucount;
}

static inline int freeze_dec(struct super_block *sb, enum freeze_holder who)
{
	WARN_ON_ONCE((who & ~FREEZE_FLAGS));
	WARN_ON_ONCE(hweight32(who & FREEZE_HOLDERS) > 1);

	if ((who & FREEZE_HOLDER_KERNEL) && sb->s_writers.freeze_kcount)
		--sb->s_writers.freeze_kcount;
	if ((who & FREEZE_HOLDER_USERSPACE) && sb->s_writers.freeze_ucount)
		--sb->s_writers.freeze_ucount;
	return sb->s_writers.freeze_kcount + sb->s_writers.freeze_ucount;
}

static inline bool may_freeze(struct super_block *sb, enum freeze_holder who)
{
	WARN_ON_ONCE((who & ~FREEZE_FLAGS));
	WARN_ON_ONCE(hweight32(who & FREEZE_HOLDERS) > 1);

	if (who & FREEZE_HOLDER_KERNEL)
		return (who & FREEZE_MAY_NEST) ||
		       sb->s_writers.freeze_kcount == 0;
	if (who & FREEZE_HOLDER_USERSPACE)
		return (who & FREEZE_MAY_NEST) ||
		       sb->s_writers.freeze_ucount == 0;
	return false;
}

/**
 * freeze_super - lock the filesystem and force it into a consistent state
 * @sb: the super to lock
 * @who: context that wants to freeze
 *
 * Syncs the super to make sure the filesystem is consistent and calls the fs's
 * freeze_fs.  Subsequent calls to this without first thawing the fs may return
 * -EBUSY.
 *
 * @who should be:
 * * %FREEZE_HOLDER_USERSPACE if userspace wants to freeze the fs;
 * * %FREEZE_HOLDER_KERNEL if the kernel wants to freeze the fs.
 * * %FREEZE_MAY_NEST whether nesting freeze and thaw requests is allowed.
 *
 * The @who argument distinguishes between the kernel and userspace trying to
 * freeze the filesystem.  Although there cannot be multiple kernel freezes or
 * multiple userspace freezes in effect at any given time, the kernel and
 * userspace can both hold a filesystem frozen.  The filesystem remains frozen
 * until there are no kernel or userspace freezes in effect.
 *
 * A filesystem may hold multiple devices and thus a filesystems may be
 * frozen through the block layer via multiple block devices. In this
 * case the request is marked as being allowed to nest by passing
 * FREEZE_MAY_NEST. The filesystem remains frozen until all block
 * devices are unfrozen. If multiple freezes are attempted without
 * FREEZE_MAY_NEST -EBUSY will be returned.
 *
 * During this function, sb->s_writers.frozen goes through these values:
 *
 * SB_UNFROZEN: File system is normal, all writes progress as usual.
 *
 * SB_FREEZE_WRITE: The file system is in the process of being frozen.  New
 * writes should be blocked, though page faults are still allowed. We wait for
 * all writes to complete and then proceed to the next stage.
 *
 * SB_FREEZE_PAGEFAULT: Freezing continues. Now also page faults are blocked
 * but internal fs threads can still modify the filesystem (although they
 * should not dirty new pages or inodes), writeback can run etc. After waiting
 * for all running page faults we sync the filesystem which will clean all
 * dirty pages and inodes (no new dirty pages or inodes can be created when
 * sync is running).
 *
 * SB_FREEZE_FS: The file system is frozen. Now all internal sources of fs
 * modification are blocked (e.g. XFS preallocation truncation on inode
 * reclaim). This is usually implemented by blocking new transactions for
 * filesystems that have them and need this additional guard. After all
 * internal writers are finished we call ->freeze_fs() to finish filesystem
 * freezing. Then we transition to SB_FREEZE_COMPLETE state. This state is
 * mostly auxiliary for filesystems to verify they do not modify frozen fs.
 *
 * sb->s_writers.frozen is protected by sb->s_umount.
 *
 * Return: If the freeze was successful zero is returned. If the freeze
 *         failed a negative error code is returned.
 */
int freeze_super(struct super_block *sb, enum freeze_holder who)
{
	int ret;

	if (!super_lock_excl(sb)) {
		WARN_ON_ONCE("Dying superblock while freezing!");
		return -EINVAL;
	}
	atomic_inc(&sb->s_active);

retry:
	if (sb->s_writers.frozen == SB_FREEZE_COMPLETE) {
		if (may_freeze(sb, who))
			ret = !!WARN_ON_ONCE(freeze_inc(sb, who) == 1);
		else
			ret = -EBUSY;
		/* All freezers share a single active reference. */
		deactivate_locked_super(sb);
		return ret;
	}

	if (sb->s_writers.frozen != SB_UNFROZEN) {
		ret = wait_for_partially_frozen(sb);
		if (ret) {
			deactivate_locked_super(sb);
			return ret;
		}

		goto retry;
	}

	if (sb_rdonly(sb)) {
		/* Nothing to do really... */
		WARN_ON_ONCE(freeze_inc(sb, who) > 1);
		sb->s_writers.frozen = SB_FREEZE_COMPLETE;
		wake_up_var(&sb->s_writers.frozen);
		super_unlock_excl(sb);
		return 0;
	}

	sb->s_writers.frozen = SB_FREEZE_WRITE;
	/* Release s_umount to preserve sb_start_write -> s_umount ordering */
	super_unlock_excl(sb);
	sb_wait_write(sb, SB_FREEZE_WRITE);
	__super_lock_excl(sb);

	/* Now we go and block page faults... */
	sb->s_writers.frozen = SB_FREEZE_PAGEFAULT;
	sb_wait_write(sb, SB_FREEZE_PAGEFAULT);

	/* All writers are done so after syncing there won't be dirty data */
	ret = sync_filesystem(sb);
	if (ret) {
		sb->s_writers.frozen = SB_UNFROZEN;
		sb_freeze_unlock(sb, SB_FREEZE_PAGEFAULT);
		wake_up_var(&sb->s_writers.frozen);
		deactivate_locked_super(sb);
		return ret;
	}

	/* Now wait for internal filesystem counter */
	sb->s_writers.frozen = SB_FREEZE_FS;
	sb_wait_write(sb, SB_FREEZE_FS);

	if (sb->s_op->freeze_fs) {
		ret = sb->s_op->freeze_fs(sb);
		if (ret) {
			printk(KERN_ERR
				"VFS:Filesystem freeze failed\n");
			sb->s_writers.frozen = SB_UNFROZEN;
			sb_freeze_unlock(sb, SB_FREEZE_FS);
			wake_up_var(&sb->s_writers.frozen);
			deactivate_locked_super(sb);
			return ret;
		}
	}
	/*
	 * For debugging purposes so that fs can warn if it sees write activity
	 * when frozen is set to SB_FREEZE_COMPLETE, and for thaw_super().
	 */
	WARN_ON_ONCE(freeze_inc(sb, who) > 1);
	sb->s_writers.frozen = SB_FREEZE_COMPLETE;
	wake_up_var(&sb->s_writers.frozen);
	lockdep_sb_freeze_release(sb);
	super_unlock_excl(sb);
	return 0;
}
EXPORT_SYMBOL(freeze_super);

/*
 * Undoes the effect of a freeze_super_locked call.  If the filesystem is
 * frozen both by userspace and the kernel, a thaw call from either source
 * removes that state without releasing the other state or unlocking the
 * filesystem.
 */
static int thaw_super_locked(struct super_block *sb, enum freeze_holder who)
{
	int error = -EINVAL;

	if (sb->s_writers.frozen != SB_FREEZE_COMPLETE)
		goto out_unlock;

	/*
	 * All freezers share a single active reference.
	 * So just unlock in case there are any left.
	 */
	if (freeze_dec(sb, who))
		goto out_unlock;

	if (sb_rdonly(sb)) {
		sb->s_writers.frozen = SB_UNFROZEN;
		wake_up_var(&sb->s_writers.frozen);
		goto out_deactivate;
	}

	lockdep_sb_freeze_acquire(sb);

	if (sb->s_op->unfreeze_fs) {
		error = sb->s_op->unfreeze_fs(sb);
		if (error) {
			pr_err("VFS: Filesystem thaw failed\n");
			freeze_inc(sb, who);
			lockdep_sb_freeze_release(sb);
			goto out_unlock;
		}
	}

	sb->s_writers.frozen = SB_UNFROZEN;
	wake_up_var(&sb->s_writers.frozen);
	sb_freeze_unlock(sb, SB_FREEZE_FS);
out_deactivate:
	deactivate_locked_super(sb);
	return 0;

out_unlock:
	super_unlock_excl(sb);
	return error;
}

/**
 * thaw_super -- unlock filesystem
 * @sb: the super to thaw
 * @who: context that wants to freeze
 *
 * Unlocks the filesystem and marks it writeable again after freeze_super()
 * if there are no remaining freezes on the filesystem.
 *
 * @who should be:
 * * %FREEZE_HOLDER_USERSPACE if userspace wants to thaw the fs;
 * * %FREEZE_HOLDER_KERNEL if the kernel wants to thaw the fs.
 * * %FREEZE_MAY_NEST whether nesting freeze and thaw requests is allowed
 *
 * A filesystem may hold multiple devices and thus a filesystems may
 * have been frozen through the block layer via multiple block devices.
 * The filesystem remains frozen until all block devices are unfrozen.
 */
int thaw_super(struct super_block *sb, enum freeze_holder who)
{
	if (!super_lock_excl(sb)) {
		WARN_ON_ONCE("Dying superblock while thawing!");
		return -EINVAL;
	}
	return thaw_super_locked(sb, who);
}
EXPORT_SYMBOL(thaw_super);

/*
 * Create workqueue for deferred direct IO completions. We allocate the
 * workqueue when it's first needed. This avoids creating workqueue for
 * filesystems that don't need it and also allows us to create the workqueue
 * late enough so the we can include s_id in the name of the workqueue.
 */
int sb_init_dio_done_wq(struct super_block *sb)
{
	struct workqueue_struct *old;
	struct workqueue_struct *wq = alloc_workqueue("dio/%s",
						      WQ_MEM_RECLAIM, 0,
						      sb->s_id);
	if (!wq)
		return -ENOMEM;
	/*
	 * This has to be atomic as more DIOs can race to create the workqueue
	 */
	old = cmpxchg(&sb->s_dio_done_wq, NULL, wq);
	/* Someone created workqueue before us? Free ours... */
	if (old)
		destroy_workqueue(wq);
	return 0;
}
EXPORT_SYMBOL_GPL(sb_init_dio_done_wq);