summaryrefslogtreecommitdiff
path: root/fs/btrfs/ctree.c
blob: 3855242240378bbfe910065e5b3c95d4a4be82df (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
// SPDX-License-Identifier: GPL-2.0
/*
 * Copyright (C) 2007,2008 Oracle.  All rights reserved.
 */

#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/rbtree.h>
#include <linux/mm.h>
#include <linux/error-injection.h>
#include "messages.h"
#include "ctree.h"
#include "disk-io.h"
#include "transaction.h"
#include "print-tree.h"
#include "locking.h"
#include "volumes.h"
#include "qgroup.h"
#include "tree-mod-log.h"
#include "tree-checker.h"
#include "fs.h"
#include "accessors.h"
#include "extent-tree.h"
#include "relocation.h"
#include "file-item.h"

static struct kmem_cache *btrfs_path_cachep;

static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
		      *root, struct btrfs_path *path, int level);
static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root *root,
		      const struct btrfs_key *ins_key, struct btrfs_path *path,
		      int data_size, int extend);
static int push_node_left(struct btrfs_trans_handle *trans,
			  struct extent_buffer *dst,
			  struct extent_buffer *src, int empty);
static int balance_node_right(struct btrfs_trans_handle *trans,
			      struct extent_buffer *dst_buf,
			      struct extent_buffer *src_buf);

static const struct btrfs_csums {
	u16		size;
	const char	name[10];
	const char	driver[12];
} btrfs_csums[] = {
	[BTRFS_CSUM_TYPE_CRC32] = { .size = 4, .name = "crc32c" },
	[BTRFS_CSUM_TYPE_XXHASH] = { .size = 8, .name = "xxhash64" },
	[BTRFS_CSUM_TYPE_SHA256] = { .size = 32, .name = "sha256" },
	[BTRFS_CSUM_TYPE_BLAKE2] = { .size = 32, .name = "blake2b",
				     .driver = "blake2b-256" },
};

/*
 * The leaf data grows from end-to-front in the node.  this returns the address
 * of the start of the last item, which is the stop of the leaf data stack.
 */
static unsigned int leaf_data_end(const struct extent_buffer *leaf)
{
	u32 nr = btrfs_header_nritems(leaf);

	if (nr == 0)
		return BTRFS_LEAF_DATA_SIZE(leaf->fs_info);
	return btrfs_item_offset(leaf, nr - 1);
}

/*
 * Move data in a @leaf (using memmove, safe for overlapping ranges).
 *
 * @leaf:	leaf that we're doing a memmove on
 * @dst_offset:	item data offset we're moving to
 * @src_offset:	item data offset were' moving from
 * @len:	length of the data we're moving
 *
 * Wrapper around memmove_extent_buffer() that takes into account the header on
 * the leaf.  The btrfs_item offset's start directly after the header, so we
 * have to adjust any offsets to account for the header in the leaf.  This
 * handles that math to simplify the callers.
 */
static inline void memmove_leaf_data(const struct extent_buffer *leaf,
				     unsigned long dst_offset,
				     unsigned long src_offset,
				     unsigned long len)
{
	memmove_extent_buffer(leaf, btrfs_item_nr_offset(leaf, 0) + dst_offset,
			      btrfs_item_nr_offset(leaf, 0) + src_offset, len);
}

/*
 * Copy item data from @src into @dst at the given @offset.
 *
 * @dst:	destination leaf that we're copying into
 * @src:	source leaf that we're copying from
 * @dst_offset:	item data offset we're copying to
 * @src_offset:	item data offset were' copying from
 * @len:	length of the data we're copying
 *
 * Wrapper around copy_extent_buffer() that takes into account the header on
 * the leaf.  The btrfs_item offset's start directly after the header, so we
 * have to adjust any offsets to account for the header in the leaf.  This
 * handles that math to simplify the callers.
 */
static inline void copy_leaf_data(const struct extent_buffer *dst,
				  const struct extent_buffer *src,
				  unsigned long dst_offset,
				  unsigned long src_offset, unsigned long len)
{
	copy_extent_buffer(dst, src, btrfs_item_nr_offset(dst, 0) + dst_offset,
			   btrfs_item_nr_offset(src, 0) + src_offset, len);
}

/*
 * Move items in a @leaf (using memmove).
 *
 * @dst:	destination leaf for the items
 * @dst_item:	the item nr we're copying into
 * @src_item:	the item nr we're copying from
 * @nr_items:	the number of items to copy
 *
 * Wrapper around memmove_extent_buffer() that does the math to get the
 * appropriate offsets into the leaf from the item numbers.
 */
static inline void memmove_leaf_items(const struct extent_buffer *leaf,
				      int dst_item, int src_item, int nr_items)
{
	memmove_extent_buffer(leaf, btrfs_item_nr_offset(leaf, dst_item),
			      btrfs_item_nr_offset(leaf, src_item),
			      nr_items * sizeof(struct btrfs_item));
}

/*
 * Copy items from @src into @dst at the given @offset.
 *
 * @dst:	destination leaf for the items
 * @src:	source leaf for the items
 * @dst_item:	the item nr we're copying into
 * @src_item:	the item nr we're copying from
 * @nr_items:	the number of items to copy
 *
 * Wrapper around copy_extent_buffer() that does the math to get the
 * appropriate offsets into the leaf from the item numbers.
 */
static inline void copy_leaf_items(const struct extent_buffer *dst,
				   const struct extent_buffer *src,
				   int dst_item, int src_item, int nr_items)
{
	copy_extent_buffer(dst, src, btrfs_item_nr_offset(dst, dst_item),
			      btrfs_item_nr_offset(src, src_item),
			      nr_items * sizeof(struct btrfs_item));
}

/* This exists for btrfs-progs usages. */
u16 btrfs_csum_type_size(u16 type)
{
	return btrfs_csums[type].size;
}

int btrfs_super_csum_size(const struct btrfs_super_block *s)
{
	u16 t = btrfs_super_csum_type(s);
	/*
	 * csum type is validated at mount time
	 */
	return btrfs_csum_type_size(t);
}

const char *btrfs_super_csum_name(u16 csum_type)
{
	/* csum type is validated at mount time */
	return btrfs_csums[csum_type].name;
}

/*
 * Return driver name if defined, otherwise the name that's also a valid driver
 * name
 */
const char *btrfs_super_csum_driver(u16 csum_type)
{
	/* csum type is validated at mount time */
	return btrfs_csums[csum_type].driver[0] ?
		btrfs_csums[csum_type].driver :
		btrfs_csums[csum_type].name;
}

size_t __attribute_const__ btrfs_get_num_csums(void)
{
	return ARRAY_SIZE(btrfs_csums);
}

struct btrfs_path *btrfs_alloc_path(void)
{
	might_sleep();

	return kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
}

/* this also releases the path */
void btrfs_free_path(struct btrfs_path *p)
{
	if (!p)
		return;
	btrfs_release_path(p);
	kmem_cache_free(btrfs_path_cachep, p);
}

/*
 * path release drops references on the extent buffers in the path
 * and it drops any locks held by this path
 *
 * It is safe to call this on paths that no locks or extent buffers held.
 */
noinline void btrfs_release_path(struct btrfs_path *p)
{
	int i;

	for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
		p->slots[i] = 0;
		if (!p->nodes[i])
			continue;
		if (p->locks[i]) {
			btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
			p->locks[i] = 0;
		}
		free_extent_buffer(p->nodes[i]);
		p->nodes[i] = NULL;
	}
}

/*
 * We want the transaction abort to print stack trace only for errors where the
 * cause could be a bug, eg. due to ENOSPC, and not for common errors that are
 * caused by external factors.
 */
bool __cold abort_should_print_stack(int errno)
{
	switch (errno) {
	case -EIO:
	case -EROFS:
	case -ENOMEM:
		return false;
	}
	return true;
}

/*
 * safely gets a reference on the root node of a tree.  A lock
 * is not taken, so a concurrent writer may put a different node
 * at the root of the tree.  See btrfs_lock_root_node for the
 * looping required.
 *
 * The extent buffer returned by this has a reference taken, so
 * it won't disappear.  It may stop being the root of the tree
 * at any time because there are no locks held.
 */
struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
{
	struct extent_buffer *eb;

	while (1) {
		rcu_read_lock();
		eb = rcu_dereference(root->node);

		/*
		 * RCU really hurts here, we could free up the root node because
		 * it was COWed but we may not get the new root node yet so do
		 * the inc_not_zero dance and if it doesn't work then
		 * synchronize_rcu and try again.
		 */
		if (atomic_inc_not_zero(&eb->refs)) {
			rcu_read_unlock();
			break;
		}
		rcu_read_unlock();
		synchronize_rcu();
	}
	return eb;
}

/*
 * Cowonly root (not-shareable trees, everything not subvolume or reloc roots),
 * just get put onto a simple dirty list.  Transaction walks this list to make
 * sure they get properly updated on disk.
 */
static void add_root_to_dirty_list(struct btrfs_root *root)
{
	struct btrfs_fs_info *fs_info = root->fs_info;

	if (test_bit(BTRFS_ROOT_DIRTY, &root->state) ||
	    !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state))
		return;

	spin_lock(&fs_info->trans_lock);
	if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) {
		/* Want the extent tree to be the last on the list */
		if (root->root_key.objectid == BTRFS_EXTENT_TREE_OBJECTID)
			list_move_tail(&root->dirty_list,
				       &fs_info->dirty_cowonly_roots);
		else
			list_move(&root->dirty_list,
				  &fs_info->dirty_cowonly_roots);
	}
	spin_unlock(&fs_info->trans_lock);
}

/*
 * used by snapshot creation to make a copy of a root for a tree with
 * a given objectid.  The buffer with the new root node is returned in
 * cow_ret, and this func returns zero on success or a negative error code.
 */
int btrfs_copy_root(struct btrfs_trans_handle *trans,
		      struct btrfs_root *root,
		      struct extent_buffer *buf,
		      struct extent_buffer **cow_ret, u64 new_root_objectid)
{
	struct btrfs_fs_info *fs_info = root->fs_info;
	struct extent_buffer *cow;
	int ret = 0;
	int level;
	struct btrfs_disk_key disk_key;

	WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
		trans->transid != fs_info->running_transaction->transid);
	WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
		trans->transid != root->last_trans);

	level = btrfs_header_level(buf);
	if (level == 0)
		btrfs_item_key(buf, &disk_key, 0);
	else
		btrfs_node_key(buf, &disk_key, 0);

	cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid,
				     &disk_key, level, buf->start, 0,
				     BTRFS_NESTING_NEW_ROOT);
	if (IS_ERR(cow))
		return PTR_ERR(cow);

	copy_extent_buffer_full(cow, buf);
	btrfs_set_header_bytenr(cow, cow->start);
	btrfs_set_header_generation(cow, trans->transid);
	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
				     BTRFS_HEADER_FLAG_RELOC);
	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
	else
		btrfs_set_header_owner(cow, new_root_objectid);

	write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);

	WARN_ON(btrfs_header_generation(buf) > trans->transid);
	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
		ret = btrfs_inc_ref(trans, root, cow, 1);
	else
		ret = btrfs_inc_ref(trans, root, cow, 0);
	if (ret) {
		btrfs_tree_unlock(cow);
		free_extent_buffer(cow);
		btrfs_abort_transaction(trans, ret);
		return ret;
	}

	btrfs_mark_buffer_dirty(cow);
	*cow_ret = cow;
	return 0;
}

/*
 * check if the tree block can be shared by multiple trees
 */
int btrfs_block_can_be_shared(struct btrfs_root *root,
			      struct extent_buffer *buf)
{
	/*
	 * Tree blocks not in shareable trees and tree roots are never shared.
	 * If a block was allocated after the last snapshot and the block was
	 * not allocated by tree relocation, we know the block is not shared.
	 */
	if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
	    buf != root->node && buf != root->commit_root &&
	    (btrfs_header_generation(buf) <=
	     btrfs_root_last_snapshot(&root->root_item) ||
	     btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
		return 1;

	return 0;
}

static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
				       struct btrfs_root *root,
				       struct extent_buffer *buf,
				       struct extent_buffer *cow,
				       int *last_ref)
{
	struct btrfs_fs_info *fs_info = root->fs_info;
	u64 refs;
	u64 owner;
	u64 flags;
	u64 new_flags = 0;
	int ret;

	/*
	 * Backrefs update rules:
	 *
	 * Always use full backrefs for extent pointers in tree block
	 * allocated by tree relocation.
	 *
	 * If a shared tree block is no longer referenced by its owner
	 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
	 * use full backrefs for extent pointers in tree block.
	 *
	 * If a tree block is been relocating
	 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
	 * use full backrefs for extent pointers in tree block.
	 * The reason for this is some operations (such as drop tree)
	 * are only allowed for blocks use full backrefs.
	 */

	if (btrfs_block_can_be_shared(root, buf)) {
		ret = btrfs_lookup_extent_info(trans, fs_info, buf->start,
					       btrfs_header_level(buf), 1,
					       &refs, &flags);
		if (ret)
			return ret;
		if (refs == 0) {
			ret = -EROFS;
			btrfs_handle_fs_error(fs_info, ret, NULL);
			return ret;
		}
	} else {
		refs = 1;
		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
			flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
		else
			flags = 0;
	}

	owner = btrfs_header_owner(buf);
	BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
	       !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));

	if (refs > 1) {
		if ((owner == root->root_key.objectid ||
		     root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
		    !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
			ret = btrfs_inc_ref(trans, root, buf, 1);
			if (ret)
				return ret;

			if (root->root_key.objectid ==
			    BTRFS_TREE_RELOC_OBJECTID) {
				ret = btrfs_dec_ref(trans, root, buf, 0);
				if (ret)
					return ret;
				ret = btrfs_inc_ref(trans, root, cow, 1);
				if (ret)
					return ret;
			}
			new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
		} else {

			if (root->root_key.objectid ==
			    BTRFS_TREE_RELOC_OBJECTID)
				ret = btrfs_inc_ref(trans, root, cow, 1);
			else
				ret = btrfs_inc_ref(trans, root, cow, 0);
			if (ret)
				return ret;
		}
		if (new_flags != 0) {
			ret = btrfs_set_disk_extent_flags(trans, buf, new_flags);
			if (ret)
				return ret;
		}
	} else {
		if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
			if (root->root_key.objectid ==
			    BTRFS_TREE_RELOC_OBJECTID)
				ret = btrfs_inc_ref(trans, root, cow, 1);
			else
				ret = btrfs_inc_ref(trans, root, cow, 0);
			if (ret)
				return ret;
			ret = btrfs_dec_ref(trans, root, buf, 1);
			if (ret)
				return ret;
		}
		btrfs_clear_buffer_dirty(trans, buf);
		*last_ref = 1;
	}
	return 0;
}

/*
 * does the dirty work in cow of a single block.  The parent block (if
 * supplied) is updated to point to the new cow copy.  The new buffer is marked
 * dirty and returned locked.  If you modify the block it needs to be marked
 * dirty again.
 *
 * search_start -- an allocation hint for the new block
 *
 * empty_size -- a hint that you plan on doing more cow.  This is the size in
 * bytes the allocator should try to find free next to the block it returns.
 * This is just a hint and may be ignored by the allocator.
 */
static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
			     struct btrfs_root *root,
			     struct extent_buffer *buf,
			     struct extent_buffer *parent, int parent_slot,
			     struct extent_buffer **cow_ret,
			     u64 search_start, u64 empty_size,
			     enum btrfs_lock_nesting nest)
{
	struct btrfs_fs_info *fs_info = root->fs_info;
	struct btrfs_disk_key disk_key;
	struct extent_buffer *cow;
	int level, ret;
	int last_ref = 0;
	int unlock_orig = 0;
	u64 parent_start = 0;

	if (*cow_ret == buf)
		unlock_orig = 1;

	btrfs_assert_tree_write_locked(buf);

	WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
		trans->transid != fs_info->running_transaction->transid);
	WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
		trans->transid != root->last_trans);

	level = btrfs_header_level(buf);

	if (level == 0)
		btrfs_item_key(buf, &disk_key, 0);
	else
		btrfs_node_key(buf, &disk_key, 0);

	if ((root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && parent)
		parent_start = parent->start;

	cow = btrfs_alloc_tree_block(trans, root, parent_start,
				     root->root_key.objectid, &disk_key, level,
				     search_start, empty_size, nest);
	if (IS_ERR(cow))
		return PTR_ERR(cow);

	/* cow is set to blocking by btrfs_init_new_buffer */

	copy_extent_buffer_full(cow, buf);
	btrfs_set_header_bytenr(cow, cow->start);
	btrfs_set_header_generation(cow, trans->transid);
	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
				     BTRFS_HEADER_FLAG_RELOC);
	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
	else
		btrfs_set_header_owner(cow, root->root_key.objectid);

	write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);

	ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
	if (ret) {
		btrfs_tree_unlock(cow);
		free_extent_buffer(cow);
		btrfs_abort_transaction(trans, ret);
		return ret;
	}

	if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) {
		ret = btrfs_reloc_cow_block(trans, root, buf, cow);
		if (ret) {
			btrfs_tree_unlock(cow);
			free_extent_buffer(cow);
			btrfs_abort_transaction(trans, ret);
			return ret;
		}
	}

	if (buf == root->node) {
		WARN_ON(parent && parent != buf);
		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
			parent_start = buf->start;

		atomic_inc(&cow->refs);
		ret = btrfs_tree_mod_log_insert_root(root->node, cow, true);
		BUG_ON(ret < 0);
		rcu_assign_pointer(root->node, cow);

		btrfs_free_tree_block(trans, btrfs_root_id(root), buf,
				      parent_start, last_ref);
		free_extent_buffer(buf);
		add_root_to_dirty_list(root);
	} else {
		WARN_ON(trans->transid != btrfs_header_generation(parent));
		btrfs_tree_mod_log_insert_key(parent, parent_slot,
					      BTRFS_MOD_LOG_KEY_REPLACE);
		btrfs_set_node_blockptr(parent, parent_slot,
					cow->start);
		btrfs_set_node_ptr_generation(parent, parent_slot,
					      trans->transid);
		btrfs_mark_buffer_dirty(parent);
		if (last_ref) {
			ret = btrfs_tree_mod_log_free_eb(buf);
			if (ret) {
				btrfs_tree_unlock(cow);
				free_extent_buffer(cow);
				btrfs_abort_transaction(trans, ret);
				return ret;
			}
		}
		btrfs_free_tree_block(trans, btrfs_root_id(root), buf,
				      parent_start, last_ref);
	}
	if (unlock_orig)
		btrfs_tree_unlock(buf);
	free_extent_buffer_stale(buf);
	btrfs_mark_buffer_dirty(cow);
	*cow_ret = cow;
	return 0;
}

static inline int should_cow_block(struct btrfs_trans_handle *trans,
				   struct btrfs_root *root,
				   struct extent_buffer *buf)
{
	if (btrfs_is_testing(root->fs_info))
		return 0;

	/* Ensure we can see the FORCE_COW bit */
	smp_mb__before_atomic();

	/*
	 * We do not need to cow a block if
	 * 1) this block is not created or changed in this transaction;
	 * 2) this block does not belong to TREE_RELOC tree;
	 * 3) the root is not forced COW.
	 *
	 * What is forced COW:
	 *    when we create snapshot during committing the transaction,
	 *    after we've finished copying src root, we must COW the shared
	 *    block to ensure the metadata consistency.
	 */
	if (btrfs_header_generation(buf) == trans->transid &&
	    !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
	    !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
	      btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
	    !test_bit(BTRFS_ROOT_FORCE_COW, &root->state))
		return 0;
	return 1;
}

/*
 * cows a single block, see __btrfs_cow_block for the real work.
 * This version of it has extra checks so that a block isn't COWed more than
 * once per transaction, as long as it hasn't been written yet
 */
noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
		    struct btrfs_root *root, struct extent_buffer *buf,
		    struct extent_buffer *parent, int parent_slot,
		    struct extent_buffer **cow_ret,
		    enum btrfs_lock_nesting nest)
{
	struct btrfs_fs_info *fs_info = root->fs_info;
	u64 search_start;
	int ret;

	if (test_bit(BTRFS_ROOT_DELETING, &root->state))
		btrfs_err(fs_info,
			"COW'ing blocks on a fs root that's being dropped");

	if (trans->transaction != fs_info->running_transaction)
		WARN(1, KERN_CRIT "trans %llu running %llu\n",
		       trans->transid,
		       fs_info->running_transaction->transid);

	if (trans->transid != fs_info->generation)
		WARN(1, KERN_CRIT "trans %llu running %llu\n",
		       trans->transid, fs_info->generation);

	if (!should_cow_block(trans, root, buf)) {
		*cow_ret = buf;
		return 0;
	}

	search_start = buf->start & ~((u64)SZ_1G - 1);

	/*
	 * Before CoWing this block for later modification, check if it's
	 * the subtree root and do the delayed subtree trace if needed.
	 *
	 * Also We don't care about the error, as it's handled internally.
	 */
	btrfs_qgroup_trace_subtree_after_cow(trans, root, buf);
	ret = __btrfs_cow_block(trans, root, buf, parent,
				 parent_slot, cow_ret, search_start, 0, nest);

	trace_btrfs_cow_block(root, buf, *cow_ret);

	return ret;
}
ALLOW_ERROR_INJECTION(btrfs_cow_block, ERRNO);

/*
 * helper function for defrag to decide if two blocks pointed to by a
 * node are actually close by
 */
static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
{
	if (blocknr < other && other - (blocknr + blocksize) < 32768)
		return 1;
	if (blocknr > other && blocknr - (other + blocksize) < 32768)
		return 1;
	return 0;
}

#ifdef __LITTLE_ENDIAN

/*
 * Compare two keys, on little-endian the disk order is same as CPU order and
 * we can avoid the conversion.
 */
static int comp_keys(const struct btrfs_disk_key *disk_key,
		     const struct btrfs_key *k2)
{
	const struct btrfs_key *k1 = (const struct btrfs_key *)disk_key;

	return btrfs_comp_cpu_keys(k1, k2);
}

#else

/*
 * compare two keys in a memcmp fashion
 */
static int comp_keys(const struct btrfs_disk_key *disk,
		     const struct btrfs_key *k2)
{
	struct btrfs_key k1;

	btrfs_disk_key_to_cpu(&k1, disk);

	return btrfs_comp_cpu_keys(&k1, k2);
}
#endif

/*
 * same as comp_keys only with two btrfs_key's
 */
int __pure btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2)
{
	if (k1->objectid > k2->objectid)
		return 1;
	if (k1->objectid < k2->objectid)
		return -1;
	if (k1->type > k2->type)
		return 1;
	if (k1->type < k2->type)
		return -1;
	if (k1->offset > k2->offset)
		return 1;
	if (k1->offset < k2->offset)
		return -1;
	return 0;
}

/*
 * this is used by the defrag code to go through all the
 * leaves pointed to by a node and reallocate them so that
 * disk order is close to key order
 */
int btrfs_realloc_node(struct btrfs_trans_handle *trans,
		       struct btrfs_root *root, struct extent_buffer *parent,
		       int start_slot, u64 *last_ret,
		       struct btrfs_key *progress)
{
	struct btrfs_fs_info *fs_info = root->fs_info;
	struct extent_buffer *cur;
	u64 blocknr;
	u64 search_start = *last_ret;
	u64 last_block = 0;
	u64 other;
	u32 parent_nritems;
	int end_slot;
	int i;
	int err = 0;
	u32 blocksize;
	int progress_passed = 0;
	struct btrfs_disk_key disk_key;

	WARN_ON(trans->transaction != fs_info->running_transaction);
	WARN_ON(trans->transid != fs_info->generation);

	parent_nritems = btrfs_header_nritems(parent);
	blocksize = fs_info->nodesize;
	end_slot = parent_nritems - 1;

	if (parent_nritems <= 1)
		return 0;

	for (i = start_slot; i <= end_slot; i++) {
		int close = 1;

		btrfs_node_key(parent, &disk_key, i);
		if (!progress_passed && comp_keys(&disk_key, progress) < 0)
			continue;

		progress_passed = 1;
		blocknr = btrfs_node_blockptr(parent, i);
		if (last_block == 0)
			last_block = blocknr;

		if (i > 0) {
			other = btrfs_node_blockptr(parent, i - 1);
			close = close_blocks(blocknr, other, blocksize);
		}
		if (!close && i < end_slot) {
			other = btrfs_node_blockptr(parent, i + 1);
			close = close_blocks(blocknr, other, blocksize);
		}
		if (close) {
			last_block = blocknr;
			continue;
		}

		cur = btrfs_read_node_slot(parent, i);
		if (IS_ERR(cur))
			return PTR_ERR(cur);
		if (search_start == 0)
			search_start = last_block;

		btrfs_tree_lock(cur);
		err = __btrfs_cow_block(trans, root, cur, parent, i,
					&cur, search_start,
					min(16 * blocksize,
					    (end_slot - i) * blocksize),
					BTRFS_NESTING_COW);
		if (err) {
			btrfs_tree_unlock(cur);
			free_extent_buffer(cur);
			break;
		}
		search_start = cur->start;
		last_block = cur->start;
		*last_ret = search_start;
		btrfs_tree_unlock(cur);
		free_extent_buffer(cur);
	}
	return err;
}

/*
 * Search for a key in the given extent_buffer.
 *
 * The lower boundary for the search is specified by the slot number @first_slot.
 * Use a value of 0 to search over the whole extent buffer. Works for both
 * leaves and nodes.
 *
 * The slot in the extent buffer is returned via @slot. If the key exists in the
 * extent buffer, then @slot will point to the slot where the key is, otherwise
 * it points to the slot where you would insert the key.
 *
 * Slot may point to the total number of items (i.e. one position beyond the last
 * key) if the key is bigger than the last key in the extent buffer.
 */
int btrfs_bin_search(struct extent_buffer *eb, int first_slot,
		     const struct btrfs_key *key, int *slot)
{
	unsigned long p;
	int item_size;
	/*
	 * Use unsigned types for the low and high slots, so that we get a more
	 * efficient division in the search loop below.
	 */
	u32 low = first_slot;
	u32 high = btrfs_header_nritems(eb);
	int ret;
	const int key_size = sizeof(struct btrfs_disk_key);

	if (unlikely(low > high)) {
		btrfs_err(eb->fs_info,
		 "%s: low (%u) > high (%u) eb %llu owner %llu level %d",
			  __func__, low, high, eb->start,
			  btrfs_header_owner(eb), btrfs_header_level(eb));
		return -EINVAL;
	}

	if (btrfs_header_level(eb) == 0) {
		p = offsetof(struct btrfs_leaf, items);
		item_size = sizeof(struct btrfs_item);
	} else {
		p = offsetof(struct btrfs_node, ptrs);
		item_size = sizeof(struct btrfs_key_ptr);
	}

	while (low < high) {
		unsigned long oip;
		unsigned long offset;
		struct btrfs_disk_key *tmp;
		struct btrfs_disk_key unaligned;
		int mid;

		mid = (low + high) / 2;
		offset = p + mid * item_size;
		oip = offset_in_page(offset);

		if (oip + key_size <= PAGE_SIZE) {
			const unsigned long idx = get_eb_page_index(offset);
			char *kaddr = page_address(eb->pages[idx]);

			oip = get_eb_offset_in_page(eb, offset);
			tmp = (struct btrfs_disk_key *)(kaddr + oip);
		} else {
			read_extent_buffer(eb, &unaligned, offset, key_size);
			tmp = &unaligned;
		}

		ret = comp_keys(tmp, key);

		if (ret < 0)
			low = mid + 1;
		else if (ret > 0)
			high = mid;
		else {
			*slot = mid;
			return 0;
		}
	}
	*slot = low;
	return 1;
}

static void root_add_used(struct btrfs_root *root, u32 size)
{
	spin_lock(&root->accounting_lock);
	btrfs_set_root_used(&root->root_item,
			    btrfs_root_used(&root->root_item) + size);
	spin_unlock(&root->accounting_lock);
}

static void root_sub_used(struct btrfs_root *root, u32 size)
{
	spin_lock(&root->accounting_lock);
	btrfs_set_root_used(&root->root_item,
			    btrfs_root_used(&root->root_item) - size);
	spin_unlock(&root->accounting_lock);
}

/* given a node and slot number, this reads the blocks it points to.  The
 * extent buffer is returned with a reference taken (but unlocked).
 */
struct extent_buffer *btrfs_read_node_slot(struct extent_buffer *parent,
					   int slot)
{
	int level = btrfs_header_level(parent);
	struct btrfs_tree_parent_check check = { 0 };
	struct extent_buffer *eb;

	if (slot < 0 || slot >= btrfs_header_nritems(parent))
		return ERR_PTR(-ENOENT);

	ASSERT(level);

	check.level = level - 1;
	check.transid = btrfs_node_ptr_generation(parent, slot);
	check.owner_root = btrfs_header_owner(parent);
	check.has_first_key = true;
	btrfs_node_key_to_cpu(parent, &check.first_key, slot);

	eb = read_tree_block(parent->fs_info, btrfs_node_blockptr(parent, slot),
			     &check);
	if (IS_ERR(eb))
		return eb;
	if (!extent_buffer_uptodate(eb)) {
		free_extent_buffer(eb);
		return ERR_PTR(-EIO);
	}

	return eb;
}

/*
 * node level balancing, used to make sure nodes are in proper order for
 * item deletion.  We balance from the top down, so we have to make sure
 * that a deletion won't leave an node completely empty later on.
 */
static noinline int balance_level(struct btrfs_trans_handle *trans,
			 struct btrfs_root *root,
			 struct btrfs_path *path, int level)
{
	struct btrfs_fs_info *fs_info = root->fs_info;
	struct extent_buffer *right = NULL;
	struct extent_buffer *mid;
	struct extent_buffer *left = NULL;
	struct extent_buffer *parent = NULL;
	int ret = 0;
	int wret;
	int pslot;
	int orig_slot = path->slots[level];
	u64 orig_ptr;

	ASSERT(level > 0);

	mid = path->nodes[level];

	WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK);
	WARN_ON(btrfs_header_generation(mid) != trans->transid);

	orig_ptr = btrfs_node_blockptr(mid, orig_slot);

	if (level < BTRFS_MAX_LEVEL - 1) {
		parent = path->nodes[level + 1];
		pslot = path->slots[level + 1];
	}

	/*
	 * deal with the case where there is only one pointer in the root
	 * by promoting the node below to a root
	 */
	if (!parent) {
		struct extent_buffer *child;

		if (btrfs_header_nritems(mid) != 1)
			return 0;

		/* promote the child to a root */
		child = btrfs_read_node_slot(mid, 0);
		if (IS_ERR(child)) {
			ret = PTR_ERR(child);
			btrfs_handle_fs_error(fs_info, ret, NULL);
			goto enospc;
		}

		btrfs_tree_lock(child);
		ret = btrfs_cow_block(trans, root, child, mid, 0, &child,
				      BTRFS_NESTING_COW);
		if (ret) {
			btrfs_tree_unlock(child);
			free_extent_buffer(child);
			goto enospc;
		}

		ret = btrfs_tree_mod_log_insert_root(root->node, child, true);
		BUG_ON(ret < 0);
		rcu_assign_pointer(root->node, child);

		add_root_to_dirty_list(root);
		btrfs_tree_unlock(child);

		path->locks[level] = 0;
		path->nodes[level] = NULL;
		btrfs_clear_buffer_dirty(trans, mid);
		btrfs_tree_unlock(mid);
		/* once for the path */
		free_extent_buffer(mid);

		root_sub_used(root, mid->len);
		btrfs_free_tree_block(trans, btrfs_root_id(root), mid, 0, 1);
		/* once for the root ptr */
		free_extent_buffer_stale(mid);
		return 0;
	}
	if (btrfs_header_nritems(mid) >
	    BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 4)
		return 0;

	if (pslot) {
		left = btrfs_read_node_slot(parent, pslot - 1);
		if (IS_ERR(left)) {
			ret = PTR_ERR(left);
			left = NULL;
			goto enospc;
		}

		__btrfs_tree_lock(left, BTRFS_NESTING_LEFT);
		wret = btrfs_cow_block(trans, root, left,
				       parent, pslot - 1, &left,
				       BTRFS_NESTING_LEFT_COW);
		if (wret) {
			ret = wret;
			goto enospc;
		}
	}

	if (pslot + 1 < btrfs_header_nritems(parent)) {
		right = btrfs_read_node_slot(parent, pslot + 1);
		if (IS_ERR(right)) {
			ret = PTR_ERR(right);
			right = NULL;
			goto enospc;
		}

		__btrfs_tree_lock(right, BTRFS_NESTING_RIGHT);
		wret = btrfs_cow_block(trans, root, right,
				       parent, pslot + 1, &right,
				       BTRFS_NESTING_RIGHT_COW);
		if (wret) {
			ret = wret;
			goto enospc;
		}
	}

	/* first, try to make some room in the middle buffer */
	if (left) {
		orig_slot += btrfs_header_nritems(left);
		wret = push_node_left(trans, left, mid, 1);
		if (wret < 0)
			ret = wret;
	}

	/*
	 * then try to empty the right most buffer into the middle
	 */
	if (right) {
		wret = push_node_left(trans, mid, right, 1);
		if (wret < 0 && wret != -ENOSPC)
			ret = wret;
		if (btrfs_header_nritems(right) == 0) {
			btrfs_clear_buffer_dirty(trans, right);
			btrfs_tree_unlock(right);
			btrfs_del_ptr(root, path, level + 1, pslot + 1);
			root_sub_used(root, right->len);
			btrfs_free_tree_block(trans, btrfs_root_id(root), right,
					      0, 1);
			free_extent_buffer_stale(right);
			right = NULL;
		} else {
			struct btrfs_disk_key right_key;
			btrfs_node_key(right, &right_key, 0);
			ret = btrfs_tree_mod_log_insert_key(parent, pslot + 1,
					BTRFS_MOD_LOG_KEY_REPLACE);
			BUG_ON(ret < 0);
			btrfs_set_node_key(parent, &right_key, pslot + 1);
			btrfs_mark_buffer_dirty(parent);
		}
	}
	if (btrfs_header_nritems(mid) == 1) {
		/*
		 * we're not allowed to leave a node with one item in the
		 * tree during a delete.  A deletion from lower in the tree
		 * could try to delete the only pointer in this node.
		 * So, pull some keys from the left.
		 * There has to be a left pointer at this point because
		 * otherwise we would have pulled some pointers from the
		 * right
		 */
		if (!left) {
			ret = -EROFS;
			btrfs_handle_fs_error(fs_info, ret, NULL);
			goto enospc;
		}
		wret = balance_node_right(trans, mid, left);
		if (wret < 0) {
			ret = wret;
			goto enospc;
		}
		if (wret == 1) {
			wret = push_node_left(trans, left, mid, 1);
			if (wret < 0)
				ret = wret;
		}
		BUG_ON(wret == 1);
	}
	if (btrfs_header_nritems(mid) == 0) {
		btrfs_clear_buffer_dirty(trans, mid);
		btrfs_tree_unlock(mid);
		btrfs_del_ptr(root, path, level + 1, pslot);
		root_sub_used(root, mid->len);
		btrfs_free_tree_block(trans, btrfs_root_id(root), mid, 0, 1);
		free_extent_buffer_stale(mid);
		mid = NULL;
	} else {
		/* update the parent key to reflect our changes */
		struct btrfs_disk_key mid_key;
		btrfs_node_key(mid, &mid_key, 0);
		ret = btrfs_tree_mod_log_insert_key(parent, pslot,
						    BTRFS_MOD_LOG_KEY_REPLACE);
		BUG_ON(ret < 0);
		btrfs_set_node_key(parent, &mid_key, pslot);
		btrfs_mark_buffer_dirty(parent);
	}

	/* update the path */
	if (left) {
		if (btrfs_header_nritems(left) > orig_slot) {
			atomic_inc(&left->refs);
			/* left was locked after cow */
			path->nodes[level] = left;
			path->slots[level + 1] -= 1;
			path->slots[level] = orig_slot;
			if (mid) {
				btrfs_tree_unlock(mid);
				free_extent_buffer(mid);
			}
		} else {
			orig_slot -= btrfs_header_nritems(left);
			path->slots[level] = orig_slot;
		}
	}
	/* double check we haven't messed things up */
	if (orig_ptr !=
	    btrfs_node_blockptr(path->nodes[level], path->slots[level]))
		BUG();
enospc:
	if (right) {
		btrfs_tree_unlock(right);
		free_extent_buffer(right);
	}
	if (left) {
		if (path->nodes[level] != left)
			btrfs_tree_unlock(left);
		free_extent_buffer(left);
	}
	return ret;
}

/* Node balancing for insertion.  Here we only split or push nodes around
 * when they are completely full.  This is also done top down, so we
 * have to be pessimistic.
 */
static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
					  struct btrfs_root *root,
					  struct btrfs_path *path, int level)
{
	struct btrfs_fs_info *fs_info = root->fs_info;
	struct extent_buffer *right = NULL;
	struct extent_buffer *mid;
	struct extent_buffer *left = NULL;
	struct extent_buffer *parent = NULL;
	int ret = 0;
	int wret;
	int pslot;
	int orig_slot = path->slots[level];

	if (level == 0)
		return 1;

	mid = path->nodes[level];
	WARN_ON(btrfs_header_generation(mid) != trans->transid);

	if (level < BTRFS_MAX_LEVEL - 1) {
		parent = path->nodes[level + 1];
		pslot = path->slots[level + 1];
	}

	if (!parent)
		return 1;

	/* first, try to make some room in the middle buffer */
	if (pslot) {
		u32 left_nr;

		left = btrfs_read_node_slot(parent, pslot - 1);
		if (IS_ERR(left))
			return PTR_ERR(left);

		__btrfs_tree_lock(left, BTRFS_NESTING_LEFT);

		left_nr = btrfs_header_nritems(left);
		if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
			wret = 1;
		} else {
			ret = btrfs_cow_block(trans, root, left, parent,
					      pslot - 1, &left,
					      BTRFS_NESTING_LEFT_COW);
			if (ret)
				wret = 1;
			else {
				wret = push_node_left(trans, left, mid, 0);
			}
		}
		if (wret < 0)
			ret = wret;
		if (wret == 0) {
			struct btrfs_disk_key disk_key;
			orig_slot += left_nr;
			btrfs_node_key(mid, &disk_key, 0);
			ret = btrfs_tree_mod_log_insert_key(parent, pslot,
					BTRFS_MOD_LOG_KEY_REPLACE);
			BUG_ON(ret < 0);
			btrfs_set_node_key(parent, &disk_key, pslot);
			btrfs_mark_buffer_dirty(parent);
			if (btrfs_header_nritems(left) > orig_slot) {
				path->nodes[level] = left;
				path->slots[level + 1] -= 1;
				path->slots[level] = orig_slot;
				btrfs_tree_unlock(mid);
				free_extent_buffer(mid);
			} else {
				orig_slot -=
					btrfs_header_nritems(left);
				path->slots[level] = orig_slot;
				btrfs_tree_unlock(left);
				free_extent_buffer(left);
			}
			return 0;
		}
		btrfs_tree_unlock(left);
		free_extent_buffer(left);
	}

	/*
	 * then try to empty the right most buffer into the middle
	 */
	if (pslot + 1 < btrfs_header_nritems(parent)) {
		u32 right_nr;

		right = btrfs_read_node_slot(parent, pslot + 1);
		if (IS_ERR(right))
			return PTR_ERR(right);

		__btrfs_tree_lock(right, BTRFS_NESTING_RIGHT);

		right_nr = btrfs_header_nritems(right);
		if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
			wret = 1;
		} else {
			ret = btrfs_cow_block(trans, root, right,
					      parent, pslot + 1,
					      &right, BTRFS_NESTING_RIGHT_COW);
			if (ret)
				wret = 1;
			else {
				wret = balance_node_right(trans, right, mid);
			}
		}
		if (wret < 0)
			ret = wret;
		if (wret == 0) {
			struct btrfs_disk_key disk_key;

			btrfs_node_key(right, &disk_key, 0);
			ret = btrfs_tree_mod_log_insert_key(parent, pslot + 1,
					BTRFS_MOD_LOG_KEY_REPLACE);
			BUG_ON(ret < 0);
			btrfs_set_node_key(parent, &disk_key, pslot + 1);
			btrfs_mark_buffer_dirty(parent);

			if (btrfs_header_nritems(mid) <= orig_slot) {
				path->nodes[level] = right;
				path->slots[level + 1] += 1;
				path->slots[level] = orig_slot -
					btrfs_header_nritems(mid);
				btrfs_tree_unlock(mid);
				free_extent_buffer(mid);
			} else {
				btrfs_tree_unlock(right);
				free_extent_buffer(right);
			}
			return 0;
		}
		btrfs_tree_unlock(right);
		free_extent_buffer(right);
	}
	return 1;
}

/*
 * readahead one full node of leaves, finding things that are close
 * to the block in 'slot', and triggering ra on them.
 */
static void reada_for_search(struct btrfs_fs_info *fs_info,
			     struct btrfs_path *path,
			     int level, int slot, u64 objectid)
{
	struct extent_buffer *node;
	struct btrfs_disk_key disk_key;
	u32 nritems;
	u64 search;
	u64 target;
	u64 nread = 0;
	u64 nread_max;
	u32 nr;
	u32 blocksize;
	u32 nscan = 0;

	if (level != 1 && path->reada != READA_FORWARD_ALWAYS)
		return;

	if (!path->nodes[level])
		return;

	node = path->nodes[level];

	/*
	 * Since the time between visiting leaves is much shorter than the time
	 * between visiting nodes, limit read ahead of nodes to 1, to avoid too
	 * much IO at once (possibly random).
	 */
	if (path->reada == READA_FORWARD_ALWAYS) {
		if (level > 1)
			nread_max = node->fs_info->nodesize;
		else
			nread_max = SZ_128K;
	} else {
		nread_max = SZ_64K;
	}

	search = btrfs_node_blockptr(node, slot);
	blocksize = fs_info->nodesize;
	if (path->reada != READA_FORWARD_ALWAYS) {
		struct extent_buffer *eb;

		eb = find_extent_buffer(fs_info, search);
		if (eb) {
			free_extent_buffer(eb);
			return;
		}
	}

	target = search;

	nritems = btrfs_header_nritems(node);
	nr = slot;

	while (1) {
		if (path->reada == READA_BACK) {
			if (nr == 0)
				break;
			nr--;
		} else if (path->reada == READA_FORWARD ||
			   path->reada == READA_FORWARD_ALWAYS) {
			nr++;
			if (nr >= nritems)
				break;
		}
		if (path->reada == READA_BACK && objectid) {
			btrfs_node_key(node, &disk_key, nr);
			if (btrfs_disk_key_objectid(&disk_key) != objectid)
				break;
		}
		search = btrfs_node_blockptr(node, nr);
		if (path->reada == READA_FORWARD_ALWAYS ||
		    (search <= target && target - search <= 65536) ||
		    (search > target && search - target <= 65536)) {
			btrfs_readahead_node_child(node, nr);
			nread += blocksize;
		}
		nscan++;
		if (nread > nread_max || nscan > 32)
			break;
	}
}

static noinline void reada_for_balance(struct btrfs_path *path, int level)
{
	struct extent_buffer *parent;
	int slot;
	int nritems;

	parent = path->nodes[level + 1];
	if (!parent)
		return;

	nritems = btrfs_header_nritems(parent);
	slot = path->slots[level + 1];

	if (slot > 0)
		btrfs_readahead_node_child(parent, slot - 1);
	if (slot + 1 < nritems)
		btrfs_readahead_node_child(parent, slot + 1);
}


/*
 * when we walk down the tree, it is usually safe to unlock the higher layers
 * in the tree.  The exceptions are when our path goes through slot 0, because
 * operations on the tree might require changing key pointers higher up in the
 * tree.
 *
 * callers might also have set path->keep_locks, which tells this code to keep
 * the lock if the path points to the last slot in the block.  This is part of
 * walking through the tree, and selecting the next slot in the higher block.
 *
 * lowest_unlock sets the lowest level in the tree we're allowed to unlock.  so
 * if lowest_unlock is 1, level 0 won't be unlocked
 */
static noinline void unlock_up(struct btrfs_path *path, int level,
			       int lowest_unlock, int min_write_lock_level,
			       int *write_lock_level)
{
	int i;
	int skip_level = level;
	bool check_skip = true;

	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
		if (!path->nodes[i])
			break;
		if (!path->locks[i])
			break;

		if (check_skip) {
			if (path->slots[i] == 0) {
				skip_level = i + 1;
				continue;
			}

			if (path->keep_locks) {
				u32 nritems;

				nritems = btrfs_header_nritems(path->nodes[i]);
				if (nritems < 1 || path->slots[i] >= nritems - 1) {
					skip_level = i + 1;
					continue;
				}
			}
		}

		if (i >= lowest_unlock && i > skip_level) {
			check_skip = false;
			btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
			path->locks[i] = 0;
			if (write_lock_level &&
			    i > min_write_lock_level &&
			    i <= *write_lock_level) {
				*write_lock_level = i - 1;
			}
		}
	}
}

/*
 * Helper function for btrfs_search_slot() and other functions that do a search
 * on a btree. The goal is to find a tree block in the cache (the radix tree at
 * fs_info->buffer_radix), but if we can't find it, or it's not up to date, read
 * its pages from disk.
 *
 * Returns -EAGAIN, with the path unlocked, if the caller needs to repeat the
 * whole btree search, starting again from the current root node.
 */
static int
read_block_for_search(struct btrfs_root *root, struct btrfs_path *p,
		      struct extent_buffer **eb_ret, int level, int slot,
		      const struct btrfs_key *key)
{
	struct btrfs_fs_info *fs_info = root->fs_info;
	struct btrfs_tree_parent_check check = { 0 };
	u64 blocknr;
	u64 gen;
	struct extent_buffer *tmp;
	int ret;
	int parent_level;
	bool unlock_up;

	unlock_up = ((level + 1 < BTRFS_MAX_LEVEL) && p->locks[level + 1]);
	blocknr = btrfs_node_blockptr(*eb_ret, slot);
	gen = btrfs_node_ptr_generation(*eb_ret, slot);
	parent_level = btrfs_header_level(*eb_ret);
	btrfs_node_key_to_cpu(*eb_ret, &check.first_key, slot);
	check.has_first_key = true;
	check.level = parent_level - 1;
	check.transid = gen;
	check.owner_root = root->root_key.objectid;

	/*
	 * If we need to read an extent buffer from disk and we are holding locks
	 * on upper level nodes, we unlock all the upper nodes before reading the
	 * extent buffer, and then return -EAGAIN to the caller as it needs to
	 * restart the search. We don't release the lock on the current level
	 * because we need to walk this node to figure out which blocks to read.
	 */
	tmp = find_extent_buffer(fs_info, blocknr);
	if (tmp) {
		if (p->reada == READA_FORWARD_ALWAYS)
			reada_for_search(fs_info, p, level, slot, key->objectid);

		/* first we do an atomic uptodate check */
		if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
			/*
			 * Do extra check for first_key, eb can be stale due to
			 * being cached, read from scrub, or have multiple
			 * parents (shared tree blocks).
			 */
			if (btrfs_verify_level_key(tmp,
					parent_level - 1, &check.first_key, gen)) {
				free_extent_buffer(tmp);
				return -EUCLEAN;
			}
			*eb_ret = tmp;
			return 0;
		}

		if (p->nowait) {
			free_extent_buffer(tmp);
			return -EAGAIN;
		}

		if (unlock_up)
			btrfs_unlock_up_safe(p, level + 1);

		/* now we're allowed to do a blocking uptodate check */
		ret = btrfs_read_extent_buffer(tmp, &check);
		if (ret) {
			free_extent_buffer(tmp);
			btrfs_release_path(p);
			return -EIO;
		}
		if (btrfs_check_eb_owner(tmp, root->root_key.objectid)) {
			free_extent_buffer(tmp);
			btrfs_release_path(p);
			return -EUCLEAN;
		}

		if (unlock_up)
			ret = -EAGAIN;

		goto out;
	} else if (p->nowait) {
		return -EAGAIN;
	}

	if (unlock_up) {
		btrfs_unlock_up_safe(p, level + 1);
		ret = -EAGAIN;
	} else {
		ret = 0;
	}

	if (p->reada != READA_NONE)
		reada_for_search(fs_info, p, level, slot, key->objectid);

	tmp = read_tree_block(fs_info, blocknr, &check);
	if (IS_ERR(tmp)) {
		btrfs_release_path(p);
		return PTR_ERR(tmp);
	}
	/*
	 * If the read above didn't mark this buffer up to date,
	 * it will never end up being up to date.  Set ret to EIO now
	 * and give up so that our caller doesn't loop forever
	 * on our EAGAINs.
	 */
	if (!extent_buffer_uptodate(tmp))
		ret = -EIO;

out:
	if (ret == 0) {
		*eb_ret = tmp;
	} else {
		free_extent_buffer(tmp);
		btrfs_release_path(p);
	}

	return ret;
}

/*
 * helper function for btrfs_search_slot.  This does all of the checks
 * for node-level blocks and does any balancing required based on
 * the ins_len.
 *
 * If no extra work was required, zero is returned.  If we had to
 * drop the path, -EAGAIN is returned and btrfs_search_slot must
 * start over
 */
static int
setup_nodes_for_search(struct btrfs_trans_handle *trans,
		       struct btrfs_root *root, struct btrfs_path *p,
		       struct extent_buffer *b, int level, int ins_len,
		       int *write_lock_level)
{
	struct btrfs_fs_info *fs_info = root->fs_info;
	int ret = 0;

	if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
	    BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) {

		if (*write_lock_level < level + 1) {
			*write_lock_level = level + 1;
			btrfs_release_path(p);
			return -EAGAIN;
		}

		reada_for_balance(p, level);
		ret = split_node(trans, root, p, level);

		b = p->nodes[level];
	} else if (ins_len < 0 && btrfs_header_nritems(b) <
		   BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 2) {

		if (*write_lock_level < level + 1) {
			*write_lock_level = level + 1;
			btrfs_release_path(p);
			return -EAGAIN;
		}

		reada_for_balance(p, level);
		ret = balance_level(trans, root, p, level);
		if (ret)
			return ret;

		b = p->nodes[level];
		if (!b) {
			btrfs_release_path(p);
			return -EAGAIN;
		}
		BUG_ON(btrfs_header_nritems(b) == 1);
	}
	return ret;
}

int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
		u64 iobjectid, u64 ioff, u8 key_type,
		struct btrfs_key *found_key)
{
	int ret;
	struct btrfs_key key;
	struct extent_buffer *eb;

	ASSERT(path);
	ASSERT(found_key);

	key.type = key_type;
	key.objectid = iobjectid;
	key.offset = ioff;

	ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
	if (ret < 0)
		return ret;

	eb = path->nodes[0];
	if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
		ret = btrfs_next_leaf(fs_root, path);
		if (ret)
			return ret;
		eb = path->nodes[0];
	}

	btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
	if (found_key->type != key.type ||
			found_key->objectid != key.objectid)
		return 1;

	return 0;
}

static struct extent_buffer *btrfs_search_slot_get_root(struct btrfs_root *root,
							struct btrfs_path *p,
							int write_lock_level)
{
	struct extent_buffer *b;
	int root_lock = 0;
	int level = 0;

	if (p->search_commit_root) {
		b = root->commit_root;
		atomic_inc(&b->refs);
		level = btrfs_header_level(b);
		/*
		 * Ensure that all callers have set skip_locking when
		 * p->search_commit_root = 1.
		 */
		ASSERT(p->skip_locking == 1);

		goto out;
	}

	if (p->skip_locking) {
		b = btrfs_root_node(root);
		level = btrfs_header_level(b);
		goto out;
	}

	/* We try very hard to do read locks on the root */
	root_lock = BTRFS_READ_LOCK;

	/*
	 * If the level is set to maximum, we can skip trying to get the read
	 * lock.
	 */
	if (write_lock_level < BTRFS_MAX_LEVEL) {
		/*
		 * We don't know the level of the root node until we actually
		 * have it read locked
		 */
		if (p->nowait) {
			b = btrfs_try_read_lock_root_node(root);
			if (IS_ERR(b))
				return b;
		} else {
			b = btrfs_read_lock_root_node(root);
		}
		level = btrfs_header_level(b);
		if (level > write_lock_level)
			goto out;

		/* Whoops, must trade for write lock */
		btrfs_tree_read_unlock(b);
		free_extent_buffer(b);
	}

	b = btrfs_lock_root_node(root);
	root_lock = BTRFS_WRITE_LOCK;

	/* The level might have changed, check again */
	level = btrfs_header_level(b);

out:
	/*
	 * The root may have failed to write out at some point, and thus is no
	 * longer valid, return an error in this case.
	 */
	if (!extent_buffer_uptodate(b)) {
		if (root_lock)
			btrfs_tree_unlock_rw(b, root_lock);
		free_extent_buffer(b);
		return ERR_PTR(-EIO);
	}

	p->nodes[level] = b;
	if (!p->skip_locking)
		p->locks[level] = root_lock;
	/*
	 * Callers are responsible for dropping b's references.
	 */
	return b;
}

/*
 * Replace the extent buffer at the lowest level of the path with a cloned
 * version. The purpose is to be able to use it safely, after releasing the
 * commit root semaphore, even if relocation is happening in parallel, the
 * transaction used for relocation is committed and the extent buffer is
 * reallocated in the next transaction.
 *
 * This is used in a context where the caller does not prevent transaction
 * commits from happening, either by holding a transaction handle or holding
 * some lock, while it's doing searches through a commit root.
 * At the moment it's only used for send operations.
 */
static int finish_need_commit_sem_search(struct btrfs_path *path)
{
	const int i = path->lowest_level;
	const int slot = path->slots[i];
	struct extent_buffer *lowest = path->nodes[i];
	struct extent_buffer *clone;

	ASSERT(path->need_commit_sem);

	if (!lowest)
		return 0;

	lockdep_assert_held_read(&lowest->fs_info->commit_root_sem);

	clone = btrfs_clone_extent_buffer(lowest);
	if (!clone)
		return -ENOMEM;

	btrfs_release_path(path);
	path->nodes[i] = clone;
	path->slots[i] = slot;

	return 0;
}

static inline int search_for_key_slot(struct extent_buffer *eb,
				      int search_low_slot,
				      const struct btrfs_key *key,
				      int prev_cmp,
				      int *slot)
{
	/*
	 * If a previous call to btrfs_bin_search() on a parent node returned an
	 * exact match (prev_cmp == 0), we can safely assume the target key will
	 * always be at slot 0 on lower levels, since each key pointer
	 * (struct btrfs_key_ptr) refers to the lowest key accessible from the
	 * subtree it points to. Thus we can skip searching lower levels.
	 */
	if (prev_cmp == 0) {
		*slot = 0;
		return 0;
	}

	return btrfs_bin_search(eb, search_low_slot, key, slot);
}

static int search_leaf(struct btrfs_trans_handle *trans,
		       struct btrfs_root *root,
		       const struct btrfs_key *key,
		       struct btrfs_path *path,
		       int ins_len,
		       int prev_cmp)
{
	struct extent_buffer *leaf = path->nodes[0];
	int leaf_free_space = -1;
	int search_low_slot = 0;
	int ret;
	bool do_bin_search = true;

	/*
	 * If we are doing an insertion, the leaf has enough free space and the
	 * destination slot for the key is not slot 0, then we can unlock our
	 * write lock on the parent, and any other upper nodes, before doing the
	 * binary search on the leaf (with search_for_key_slot()), allowing other
	 * tasks to lock the parent and any other upper nodes.
	 */
	if (ins_len > 0) {
		/*
		 * Cache the leaf free space, since we will need it later and it
		 * will not change until then.
		 */
		leaf_free_space = btrfs_leaf_free_space(leaf);

		/*
		 * !path->locks[1] means we have a single node tree, the leaf is
		 * the root of the tree.
		 */
		if (path->locks[1] && leaf_free_space >= ins_len) {
			struct btrfs_disk_key first_key;

			ASSERT(btrfs_header_nritems(leaf) > 0);
			btrfs_item_key(leaf, &first_key, 0);

			/*
			 * Doing the extra comparison with the first key is cheap,
			 * taking into account that the first key is very likely
			 * already in a cache line because it immediately follows
			 * the extent buffer's header and we have recently accessed
			 * the header's level field.
			 */
			ret = comp_keys(&first_key, key);
			if (ret < 0) {
				/*
				 * The first key is smaller than the key we want
				 * to insert, so we are safe to unlock all upper
				 * nodes and we have to do the binary search.
				 *
				 * We do use btrfs_unlock_up_safe() and not
				 * unlock_up() because the later does not unlock
				 * nodes with a slot of 0 - we can safely unlock
				 * any node even if its slot is 0 since in this
				 * case the key does not end up at slot 0 of the
				 * leaf and there's no need to split the leaf.
				 */
				btrfs_unlock_up_safe(path, 1);
				search_low_slot = 1;
			} else {
				/*
				 * The first key is >= then the key we want to
				 * insert, so we can skip the binary search as
				 * the target key will be at slot 0.
				 *
				 * We can not unlock upper nodes when the key is
				 * less than the first key, because we will need
				 * to update the key at slot 0 of the parent node
				 * and possibly of other upper nodes too.
				 * If the key matches the first key, then we can
				 * unlock all the upper nodes, using
				 * btrfs_unlock_up_safe() instead of unlock_up()
				 * as stated above.
				 */
				if (ret == 0)
					btrfs_unlock_up_safe(path, 1);
				/*
				 * ret is already 0 or 1, matching the result of
				 * a btrfs_bin_search() call, so there is no need
				 * to adjust it.
				 */
				do_bin_search = false;
				path->slots[0] = 0;
			}
		}
	}

	if (do_bin_search) {
		ret = search_for_key_slot(leaf, search_low_slot, key,
					  prev_cmp, &path->slots[0]);
		if (ret < 0)
			return ret;
	}

	if (ins_len > 0) {
		/*
		 * Item key already exists. In this case, if we are allowed to
		 * insert the item (for example, in dir_item case, item key
		 * collision is allowed), it will be merged with the original
		 * item. Only the item size grows, no new btrfs item will be
		 * added. If search_for_extension is not set, ins_len already
		 * accounts the size btrfs_item, deduct it here so leaf space
		 * check will be correct.
		 */
		if (ret == 0 && !path->search_for_extension) {
			ASSERT(ins_len >= sizeof(struct btrfs_item));
			ins_len -= sizeof(struct btrfs_item);
		}

		ASSERT(leaf_free_space >= 0);

		if (leaf_free_space < ins_len) {
			int err;

			err = split_leaf(trans, root, key, path, ins_len,
					 (ret == 0));
			ASSERT(err <= 0);
			if (WARN_ON(err > 0))
				err = -EUCLEAN;
			if (err)
				ret = err;
		}
	}

	return ret;
}

/*
 * btrfs_search_slot - look for a key in a tree and perform necessary
 * modifications to preserve tree invariants.
 *
 * @trans:	Handle of transaction, used when modifying the tree
 * @p:		Holds all btree nodes along the search path
 * @root:	The root node of the tree
 * @key:	The key we are looking for
 * @ins_len:	Indicates purpose of search:
 *              >0  for inserts it's size of item inserted (*)
 *              <0  for deletions
 *               0  for plain searches, not modifying the tree
 *
 *              (*) If size of item inserted doesn't include
 *              sizeof(struct btrfs_item), then p->search_for_extension must
 *              be set.
 * @cow:	boolean should CoW operations be performed. Must always be 1
 *		when modifying the tree.
 *
 * If @ins_len > 0, nodes and leaves will be split as we walk down the tree.
 * If @ins_len < 0, nodes will be merged as we walk down the tree (if possible)
 *
 * If @key is found, 0 is returned and you can find the item in the leaf level
 * of the path (level 0)
 *
 * If @key isn't found, 1 is returned and the leaf level of the path (level 0)
 * points to the slot where it should be inserted
 *
 * If an error is encountered while searching the tree a negative error number
 * is returned
 */
int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root,
		      const struct btrfs_key *key, struct btrfs_path *p,
		      int ins_len, int cow)
{
	struct btrfs_fs_info *fs_info = root->fs_info;
	struct extent_buffer *b;
	int slot;
	int ret;
	int err;
	int level;
	int lowest_unlock = 1;
	/* everything at write_lock_level or lower must be write locked */
	int write_lock_level = 0;
	u8 lowest_level = 0;
	int min_write_lock_level;
	int prev_cmp;

	might_sleep();

	lowest_level = p->lowest_level;
	WARN_ON(lowest_level && ins_len > 0);
	WARN_ON(p->nodes[0] != NULL);
	BUG_ON(!cow && ins_len);

	/*
	 * For now only allow nowait for read only operations.  There's no
	 * strict reason why we can't, we just only need it for reads so it's
	 * only implemented for reads.
	 */
	ASSERT(!p->nowait || !cow);

	if (ins_len < 0) {
		lowest_unlock = 2;

		/* when we are removing items, we might have to go up to level
		 * two as we update tree pointers  Make sure we keep write
		 * for those levels as well
		 */
		write_lock_level = 2;
	} else if (ins_len > 0) {
		/*
		 * for inserting items, make sure we have a write lock on
		 * level 1 so we can update keys
		 */
		write_lock_level = 1;
	}

	if (!cow)
		write_lock_level = -1;

	if (cow && (p->keep_locks || p->lowest_level))
		write_lock_level = BTRFS_MAX_LEVEL;

	min_write_lock_level = write_lock_level;

	if (p->need_commit_sem) {
		ASSERT(p->search_commit_root);
		if (p->nowait) {
			if (!down_read_trylock(&fs_info->commit_root_sem))
				return -EAGAIN;
		} else {
			down_read(&fs_info->commit_root_sem);
		}
	}

again:
	prev_cmp = -1;
	b = btrfs_search_slot_get_root(root, p, write_lock_level);
	if (IS_ERR(b)) {
		ret = PTR_ERR(b);
		goto done;
	}

	while (b) {
		int dec = 0;

		level = btrfs_header_level(b);

		if (cow) {
			bool last_level = (level == (BTRFS_MAX_LEVEL - 1));

			/*
			 * if we don't really need to cow this block
			 * then we don't want to set the path blocking,
			 * so we test it here
			 */
			if (!should_cow_block(trans, root, b))
				goto cow_done;

			/*
			 * must have write locks on this node and the
			 * parent
			 */
			if (level > write_lock_level ||
			    (level + 1 > write_lock_level &&
			    level + 1 < BTRFS_MAX_LEVEL &&
			    p->nodes[level + 1])) {
				write_lock_level = level + 1;
				btrfs_release_path(p);
				goto again;
			}

			if (last_level)
				err = btrfs_cow_block(trans, root, b, NULL, 0,
						      &b,
						      BTRFS_NESTING_COW);
			else
				err = btrfs_cow_block(trans, root, b,
						      p->nodes[level + 1],
						      p->slots[level + 1], &b,
						      BTRFS_NESTING_COW);
			if (err) {
				ret = err;
				goto done;
			}
		}
cow_done:
		p->nodes[level] = b;

		/*
		 * we have a lock on b and as long as we aren't changing
		 * the tree, there is no way to for the items in b to change.
		 * It is safe to drop the lock on our parent before we
		 * go through the expensive btree search on b.
		 *
		 * If we're inserting or deleting (ins_len != 0), then we might
		 * be changing slot zero, which may require changing the parent.
		 * So, we can't drop the lock until after we know which slot
		 * we're operating on.
		 */
		if (!ins_len && !p->keep_locks) {
			int u = level + 1;

			if (u < BTRFS_MAX_LEVEL && p->locks[u]) {
				btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]);
				p->locks[u] = 0;
			}
		}

		if (level == 0) {
			if (ins_len > 0)
				ASSERT(write_lock_level >= 1);

			ret = search_leaf(trans, root, key, p, ins_len, prev_cmp);
			if (!p->search_for_split)
				unlock_up(p, level, lowest_unlock,
					  min_write_lock_level, NULL);
			goto done;
		}

		ret = search_for_key_slot(b, 0, key, prev_cmp, &slot);
		if (ret < 0)
			goto done;
		prev_cmp = ret;

		if (ret && slot > 0) {
			dec = 1;
			slot--;
		}
		p->slots[level] = slot;
		err = setup_nodes_for_search(trans, root, p, b, level, ins_len,
					     &write_lock_level);
		if (err == -EAGAIN)
			goto again;
		if (err) {
			ret = err;
			goto done;
		}
		b = p->nodes[level];
		slot = p->slots[level];

		/*
		 * Slot 0 is special, if we change the key we have to update
		 * the parent pointer which means we must have a write lock on
		 * the parent
		 */
		if (slot == 0 && ins_len && write_lock_level < level + 1) {
			write_lock_level = level + 1;
			btrfs_release_path(p);
			goto again;
		}

		unlock_up(p, level, lowest_unlock, min_write_lock_level,
			  &write_lock_level);

		if (level == lowest_level) {
			if (dec)
				p->slots[level]++;
			goto done;
		}

		err = read_block_for_search(root, p, &b, level, slot, key);
		if (err == -EAGAIN)
			goto again;
		if (err) {
			ret = err;
			goto done;
		}

		if (!p->skip_locking) {
			level = btrfs_header_level(b);

			btrfs_maybe_reset_lockdep_class(root, b);

			if (level <= write_lock_level) {
				btrfs_tree_lock(b);
				p->locks[level] = BTRFS_WRITE_LOCK;
			} else {
				if (p->nowait) {
					if (!btrfs_try_tree_read_lock(b)) {
						free_extent_buffer(b);
						ret = -EAGAIN;
						goto done;
					}
				} else {
					btrfs_tree_read_lock(b);
				}
				p->locks[level] = BTRFS_READ_LOCK;
			}
			p->nodes[level] = b;
		}
	}
	ret = 1;
done:
	if (ret < 0 && !p->skip_release_on_error)
		btrfs_release_path(p);

	if (p->need_commit_sem) {
		int ret2;

		ret2 = finish_need_commit_sem_search(p);
		up_read(&fs_info->commit_root_sem);
		if (ret2)
			ret = ret2;
	}

	return ret;
}
ALLOW_ERROR_INJECTION(btrfs_search_slot, ERRNO);

/*
 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
 * current state of the tree together with the operations recorded in the tree
 * modification log to search for the key in a previous version of this tree, as
 * denoted by the time_seq parameter.
 *
 * Naturally, there is no support for insert, delete or cow operations.
 *
 * The resulting path and return value will be set up as if we called
 * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
 */
int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key,
			  struct btrfs_path *p, u64 time_seq)
{
	struct btrfs_fs_info *fs_info = root->fs_info;
	struct extent_buffer *b;
	int slot;
	int ret;
	int err;
	int level;
	int lowest_unlock = 1;
	u8 lowest_level = 0;

	lowest_level = p->lowest_level;
	WARN_ON(p->nodes[0] != NULL);
	ASSERT(!p->nowait);

	if (p->search_commit_root) {
		BUG_ON(time_seq);
		return btrfs_search_slot(NULL, root, key, p, 0, 0);
	}

again:
	b = btrfs_get_old_root(root, time_seq);
	if (!b) {
		ret = -EIO;
		goto done;
	}
	level = btrfs_header_level(b);
	p->locks[level] = BTRFS_READ_LOCK;

	while (b) {
		int dec = 0;

		level = btrfs_header_level(b);
		p->nodes[level] = b;

		/*
		 * we have a lock on b and as long as we aren't changing
		 * the tree, there is no way to for the items in b to change.
		 * It is safe to drop the lock on our parent before we
		 * go through the expensive btree search on b.
		 */
		btrfs_unlock_up_safe(p, level + 1);

		ret = btrfs_bin_search(b, 0, key, &slot);
		if (ret < 0)
			goto done;

		if (level == 0) {
			p->slots[level] = slot;
			unlock_up(p, level, lowest_unlock, 0, NULL);
			goto done;
		}

		if (ret && slot > 0) {
			dec = 1;
			slot--;
		}
		p->slots[level] = slot;
		unlock_up(p, level, lowest_unlock, 0, NULL);

		if (level == lowest_level) {
			if (dec)
				p->slots[level]++;
			goto done;
		}

		err = read_block_for_search(root, p, &b, level, slot, key);
		if (err == -EAGAIN)
			goto again;
		if (err) {
			ret = err;
			goto done;
		}

		level = btrfs_header_level(b);
		btrfs_tree_read_lock(b);
		b = btrfs_tree_mod_log_rewind(fs_info, p, b, time_seq);
		if (!b) {
			ret = -ENOMEM;
			goto done;
		}
		p->locks[level] = BTRFS_READ_LOCK;
		p->nodes[level] = b;
	}
	ret = 1;
done:
	if (ret < 0)
		btrfs_release_path(p);

	return ret;
}

/*
 * Search the tree again to find a leaf with smaller keys.
 * Returns 0 if it found something.
 * Returns 1 if there are no smaller keys.
 * Returns < 0 on error.
 *
 * This may release the path, and so you may lose any locks held at the
 * time you call it.
 */
static int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
{
	struct btrfs_key key;
	struct btrfs_key orig_key;
	struct btrfs_disk_key found_key;
	int ret;

	btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
	orig_key = key;

	if (key.offset > 0) {
		key.offset--;
	} else if (key.type > 0) {
		key.type--;
		key.offset = (u64)-1;
	} else if (key.objectid > 0) {
		key.objectid--;
		key.type = (u8)-1;
		key.offset = (u64)-1;
	} else {
		return 1;
	}

	btrfs_release_path(path);
	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
	if (ret <= 0)
		return ret;

	/*
	 * Previous key not found. Even if we were at slot 0 of the leaf we had
	 * before releasing the path and calling btrfs_search_slot(), we now may
	 * be in a slot pointing to the same original key - this can happen if
	 * after we released the path, one of more items were moved from a
	 * sibling leaf into the front of the leaf we had due to an insertion
	 * (see push_leaf_right()).
	 * If we hit this case and our slot is > 0 and just decrement the slot
	 * so that the caller does not process the same key again, which may or
	 * may not break the caller, depending on its logic.
	 */
	if (path->slots[0] < btrfs_header_nritems(path->nodes[0])) {
		btrfs_item_key(path->nodes[0], &found_key, path->slots[0]);
		ret = comp_keys(&found_key, &orig_key);
		if (ret == 0) {
			if (path->slots[0] > 0) {
				path->slots[0]--;
				return 0;
			}
			/*
			 * At slot 0, same key as before, it means orig_key is
			 * the lowest, leftmost, key in the tree. We're done.
			 */
			return 1;
		}
	}

	btrfs_item_key(path->nodes[0], &found_key, 0);
	ret = comp_keys(&found_key, &key);
	/*
	 * We might have had an item with the previous key in the tree right
	 * before we released our path. And after we released our path, that
	 * item might have been pushed to the first slot (0) of the leaf we
	 * were holding due to a tree balance. Alternatively, an item with the
	 * previous key can exist as the only element of a leaf (big fat item).
	 * Therefore account for these 2 cases, so that our callers (like
	 * btrfs_previous_item) don't miss an existing item with a key matching
	 * the previous key we computed above.
	 */
	if (ret <= 0)
		return 0;
	return 1;
}

/*
 * helper to use instead of search slot if no exact match is needed but
 * instead the next or previous item should be returned.
 * When find_higher is true, the next higher item is returned, the next lower
 * otherwise.
 * When return_any and find_higher are both true, and no higher item is found,
 * return the next lower instead.
 * When return_any is true and find_higher is false, and no lower item is found,
 * return the next higher instead.
 * It returns 0 if any item is found, 1 if none is found (tree empty), and
 * < 0 on error
 */
int btrfs_search_slot_for_read(struct btrfs_root *root,
			       const struct btrfs_key *key,
			       struct btrfs_path *p, int find_higher,
			       int return_any)
{
	int ret;
	struct extent_buffer *leaf;

again:
	ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
	if (ret <= 0)
		return ret;
	/*
	 * a return value of 1 means the path is at the position where the
	 * item should be inserted. Normally this is the next bigger item,
	 * but in case the previous item is the last in a leaf, path points
	 * to the first free slot in the previous leaf, i.e. at an invalid
	 * item.
	 */
	leaf = p->nodes[0];

	if (find_higher) {
		if (p->slots[0] >= btrfs_header_nritems(leaf)) {
			ret = btrfs_next_leaf(root, p);
			if (ret <= 0)
				return ret;
			if (!return_any)
				return 1;
			/*
			 * no higher item found, return the next
			 * lower instead
			 */
			return_any = 0;
			find_higher = 0;
			btrfs_release_path(p);
			goto again;
		}
	} else {
		if (p->slots[0] == 0) {
			ret = btrfs_prev_leaf(root, p);
			if (ret < 0)
				return ret;
			if (!ret) {
				leaf = p->nodes[0];
				if (p->slots[0] == btrfs_header_nritems(leaf))
					p->slots[0]--;
				return 0;
			}
			if (!return_any)
				return 1;
			/*
			 * no lower item found, return the next
			 * higher instead
			 */
			return_any = 0;
			find_higher = 1;
			btrfs_release_path(p);
			goto again;
		} else {
			--p->slots[0];
		}
	}
	return 0;
}

/*
 * Execute search and call btrfs_previous_item to traverse backwards if the item
 * was not found.
 *
 * Return 0 if found, 1 if not found and < 0 if error.
 */
int btrfs_search_backwards(struct btrfs_root *root, struct btrfs_key *key,
			   struct btrfs_path *path)
{
	int ret;

	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
	if (ret > 0)
		ret = btrfs_previous_item(root, path, key->objectid, key->type);

	if (ret == 0)
		btrfs_item_key_to_cpu(path->nodes[0], key, path->slots[0]);

	return ret;
}

/*
 * Search for a valid slot for the given path.
 *
 * @root:	The root node of the tree.
 * @key:	Will contain a valid item if found.
 * @path:	The starting point to validate the slot.
 *
 * Return: 0  if the item is valid
 *         1  if not found
 *         <0 if error.
 */
int btrfs_get_next_valid_item(struct btrfs_root *root, struct btrfs_key *key,
			      struct btrfs_path *path)
{
	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
		int ret;

		ret = btrfs_next_leaf(root, path);
		if (ret)
			return ret;
	}

	btrfs_item_key_to_cpu(path->nodes[0], key, path->slots[0]);
	return 0;
}

/*
 * adjust the pointers going up the tree, starting at level
 * making sure the right key of each node is points to 'key'.
 * This is used after shifting pointers to the left, so it stops
 * fixing up pointers when a given leaf/node is not in slot 0 of the
 * higher levels
 *
 */
static void fixup_low_keys(struct btrfs_path *path,
			   struct btrfs_disk_key *key, int level)
{
	int i;
	struct extent_buffer *t;
	int ret;

	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
		int tslot = path->slots[i];

		if (!path->nodes[i])
			break;
		t = path->nodes[i];
		ret = btrfs_tree_mod_log_insert_key(t, tslot,
						    BTRFS_MOD_LOG_KEY_REPLACE);
		BUG_ON(ret < 0);
		btrfs_set_node_key(t, key, tslot);
		btrfs_mark_buffer_dirty(path->nodes[i]);
		if (tslot != 0)
			break;
	}
}

/*
 * update item key.
 *
 * This function isn't completely safe. It's the caller's responsibility
 * that the new key won't break the order
 */
void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info,
			     struct btrfs_path *path,
			     const struct btrfs_key *new_key)
{
	struct btrfs_disk_key disk_key;
	struct extent_buffer *eb;
	int slot;

	eb = path->nodes[0];
	slot = path->slots[0];
	if (slot > 0) {
		btrfs_item_key(eb, &disk_key, slot - 1);
		if (unlikely(comp_keys(&disk_key, new_key) >= 0)) {
			btrfs_print_leaf(eb);
			btrfs_crit(fs_info,
		"slot %u key (%llu %u %llu) new key (%llu %u %llu)",
				   slot, btrfs_disk_key_objectid(&disk_key),
				   btrfs_disk_key_type(&disk_key),
				   btrfs_disk_key_offset(&disk_key),
				   new_key->objectid, new_key->type,
				   new_key->offset);
			BUG();
		}
	}
	if (slot < btrfs_header_nritems(eb) - 1) {
		btrfs_item_key(eb, &disk_key, slot + 1);
		if (unlikely(comp_keys(&disk_key, new_key) <= 0)) {
			btrfs_print_leaf(eb);
			btrfs_crit(fs_info,
		"slot %u key (%llu %u %llu) new key (%llu %u %llu)",
				   slot, btrfs_disk_key_objectid(&disk_key),
				   btrfs_disk_key_type(&disk_key),
				   btrfs_disk_key_offset(&disk_key),
				   new_key->objectid, new_key->type,
				   new_key->offset);
			BUG();
		}
	}

	btrfs_cpu_key_to_disk(&disk_key, new_key);
	btrfs_set_item_key(eb, &disk_key, slot);
	btrfs_mark_buffer_dirty(eb);
	if (slot == 0)
		fixup_low_keys(path, &disk_key, 1);
}

/*
 * Check key order of two sibling extent buffers.
 *
 * Return true if something is wrong.
 * Return false if everything is fine.
 *
 * Tree-checker only works inside one tree block, thus the following
 * corruption can not be detected by tree-checker:
 *
 * Leaf @left			| Leaf @right
 * --------------------------------------------------------------
 * | 1 | 2 | 3 | 4 | 5 | f6 |   | 7 | 8 |
 *
 * Key f6 in leaf @left itself is valid, but not valid when the next
 * key in leaf @right is 7.
 * This can only be checked at tree block merge time.
 * And since tree checker has ensured all key order in each tree block
 * is correct, we only need to bother the last key of @left and the first
 * key of @right.
 */
static bool check_sibling_keys(struct extent_buffer *left,
			       struct extent_buffer *right)
{
	struct btrfs_key left_last;
	struct btrfs_key right_first;
	int level = btrfs_header_level(left);
	int nr_left = btrfs_header_nritems(left);
	int nr_right = btrfs_header_nritems(right);

	/* No key to check in one of the tree blocks */
	if (!nr_left || !nr_right)
		return false;

	if (level) {
		btrfs_node_key_to_cpu(left, &left_last, nr_left - 1);
		btrfs_node_key_to_cpu(right, &right_first, 0);
	} else {
		btrfs_item_key_to_cpu(left, &left_last, nr_left - 1);
		btrfs_item_key_to_cpu(right, &right_first, 0);
	}

	if (unlikely(btrfs_comp_cpu_keys(&left_last, &right_first) >= 0)) {
		btrfs_crit(left->fs_info, "left extent buffer:");
		btrfs_print_tree(left, false);
		btrfs_crit(left->fs_info, "right extent buffer:");
		btrfs_print_tree(right, false);
		btrfs_crit(left->fs_info,
"bad key order, sibling blocks, left last (%llu %u %llu) right first (%llu %u %llu)",
			   left_last.objectid, left_last.type,
			   left_last.offset, right_first.objectid,
			   right_first.type, right_first.offset);
		return true;
	}
	return false;
}

/*
 * try to push data from one node into the next node left in the
 * tree.
 *
 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
 * error, and > 0 if there was no room in the left hand block.
 */
static int push_node_left(struct btrfs_trans_handle *trans,
			  struct extent_buffer *dst,
			  struct extent_buffer *src, int empty)
{
	struct btrfs_fs_info *fs_info = trans->fs_info;
	int push_items = 0;
	int src_nritems;
	int dst_nritems;
	int ret = 0;

	src_nritems = btrfs_header_nritems(src);
	dst_nritems = btrfs_header_nritems(dst);
	push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
	WARN_ON(btrfs_header_generation(src) != trans->transid);
	WARN_ON(btrfs_header_generation(dst) != trans->transid);

	if (!empty && src_nritems <= 8)
		return 1;

	if (push_items <= 0)
		return 1;

	if (empty) {
		push_items = min(src_nritems, push_items);
		if (push_items < src_nritems) {
			/* leave at least 8 pointers in the node if
			 * we aren't going to empty it
			 */
			if (src_nritems - push_items < 8) {
				if (push_items <= 8)
					return 1;
				push_items -= 8;
			}
		}
	} else
		push_items = min(src_nritems - 8, push_items);

	/* dst is the left eb, src is the middle eb */
	if (check_sibling_keys(dst, src)) {
		ret = -EUCLEAN;
		btrfs_abort_transaction(trans, ret);
		return ret;
	}
	ret = btrfs_tree_mod_log_eb_copy(dst, src, dst_nritems, 0, push_items);
	if (ret) {
		btrfs_abort_transaction(trans, ret);
		return ret;
	}
	copy_extent_buffer(dst, src,
			   btrfs_node_key_ptr_offset(dst, dst_nritems),
			   btrfs_node_key_ptr_offset(src, 0),
			   push_items * sizeof(struct btrfs_key_ptr));

	if (push_items < src_nritems) {
		/*
		 * btrfs_tree_mod_log_eb_copy handles logging the move, so we
		 * don't need to do an explicit tree mod log operation for it.
		 */
		memmove_extent_buffer(src, btrfs_node_key_ptr_offset(src, 0),
				      btrfs_node_key_ptr_offset(src, push_items),
				      (src_nritems - push_items) *
				      sizeof(struct btrfs_key_ptr));
	}
	btrfs_set_header_nritems(src, src_nritems - push_items);
	btrfs_set_header_nritems(dst, dst_nritems + push_items);
	btrfs_mark_buffer_dirty(src);
	btrfs_mark_buffer_dirty(dst);

	return ret;
}

/*
 * try to push data from one node into the next node right in the
 * tree.
 *
 * returns 0 if some ptrs were pushed, < 0 if there was some horrible
 * error, and > 0 if there was no room in the right hand block.
 *
 * this will  only push up to 1/2 the contents of the left node over
 */
static int balance_node_right(struct btrfs_trans_handle *trans,
			      struct extent_buffer *dst,
			      struct extent_buffer *src)
{
	struct btrfs_fs_info *fs_info = trans->fs_info;
	int push_items = 0;
	int max_push;
	int src_nritems;
	int dst_nritems;
	int ret = 0;

	WARN_ON(btrfs_header_generation(src) != trans->transid);
	WARN_ON(btrfs_header_generation(dst) != trans->transid);

	src_nritems = btrfs_header_nritems(src);
	dst_nritems = btrfs_header_nritems(dst);
	push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
	if (push_items <= 0)
		return 1;

	if (src_nritems < 4)
		return 1;

	max_push = src_nritems / 2 + 1;
	/* don't try to empty the node */
	if (max_push >= src_nritems)
		return 1;

	if (max_push < push_items)
		push_items = max_push;

	/* dst is the right eb, src is the middle eb */
	if (check_sibling_keys(src, dst)) {
		ret = -EUCLEAN;
		btrfs_abort_transaction(trans, ret);
		return ret;
	}

	/*
	 * btrfs_tree_mod_log_eb_copy handles logging the move, so we don't
	 * need to do an explicit tree mod log operation for it.
	 */
	memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(dst, push_items),
				      btrfs_node_key_ptr_offset(dst, 0),
				      (dst_nritems) *
				      sizeof(struct btrfs_key_ptr));

	ret = btrfs_tree_mod_log_eb_copy(dst, src, 0, src_nritems - push_items,
					 push_items);
	if (ret) {
		btrfs_abort_transaction(trans, ret);
		return ret;
	}
	copy_extent_buffer(dst, src,
			   btrfs_node_key_ptr_offset(dst, 0),
			   btrfs_node_key_ptr_offset(src, src_nritems - push_items),
			   push_items * sizeof(struct btrfs_key_ptr));

	btrfs_set_header_nritems(src, src_nritems - push_items);
	btrfs_set_header_nritems(dst, dst_nritems + push_items);

	btrfs_mark_buffer_dirty(src);
	btrfs_mark_buffer_dirty(dst);

	return ret;
}

/*
 * helper function to insert a new root level in the tree.
 * A new node is allocated, and a single item is inserted to
 * point to the existing root
 *
 * returns zero on success or < 0 on failure.
 */
static noinline int insert_new_root(struct btrfs_trans_handle *trans,
			   struct btrfs_root *root,
			   struct btrfs_path *path, int level)
{
	struct btrfs_fs_info *fs_info = root->fs_info;
	u64 lower_gen;
	struct extent_buffer *lower;
	struct extent_buffer *c;
	struct extent_buffer *old;
	struct btrfs_disk_key lower_key;
	int ret;

	BUG_ON(path->nodes[level]);
	BUG_ON(path->nodes[level-1] != root->node);

	lower = path->nodes[level-1];
	if (level == 1)
		btrfs_item_key(lower, &lower_key, 0);
	else
		btrfs_node_key(lower, &lower_key, 0);

	c = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
				   &lower_key, level, root->node->start, 0,
				   BTRFS_NESTING_NEW_ROOT);
	if (IS_ERR(c))
		return PTR_ERR(c);

	root_add_used(root, fs_info->nodesize);

	btrfs_set_header_nritems(c, 1);
	btrfs_set_node_key(c, &lower_key, 0);
	btrfs_set_node_blockptr(c, 0, lower->start);
	lower_gen = btrfs_header_generation(lower);
	WARN_ON(lower_gen != trans->transid);

	btrfs_set_node_ptr_generation(c, 0, lower_gen);

	btrfs_mark_buffer_dirty(c);

	old = root->node;
	ret = btrfs_tree_mod_log_insert_root(root->node, c, false);
	BUG_ON(ret < 0);
	rcu_assign_pointer(root->node, c);

	/* the super has an extra ref to root->node */
	free_extent_buffer(old);

	add_root_to_dirty_list(root);
	atomic_inc(&c->refs);
	path->nodes[level] = c;
	path->locks[level] = BTRFS_WRITE_LOCK;
	path->slots[level] = 0;
	return 0;
}

/*
 * worker function to insert a single pointer in a node.
 * the node should have enough room for the pointer already
 *
 * slot and level indicate where you want the key to go, and
 * blocknr is the block the key points to.
 */
static void insert_ptr(struct btrfs_trans_handle *trans,
		       struct btrfs_path *path,
		       struct btrfs_disk_key *key, u64 bytenr,
		       int slot, int level)
{
	struct extent_buffer *lower;
	int nritems;
	int ret;

	BUG_ON(!path->nodes[level]);
	btrfs_assert_tree_write_locked(path->nodes[level]);
	lower = path->nodes[level];
	nritems = btrfs_header_nritems(lower);
	BUG_ON(slot > nritems);
	BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(trans->fs_info));
	if (slot != nritems) {
		if (level) {
			ret = btrfs_tree_mod_log_insert_move(lower, slot + 1,
					slot, nritems - slot);
			BUG_ON(ret < 0);
		}
		memmove_extent_buffer(lower,
			      btrfs_node_key_ptr_offset(lower, slot + 1),
			      btrfs_node_key_ptr_offset(lower, slot),
			      (nritems - slot) * sizeof(struct btrfs_key_ptr));
	}
	if (level) {
		ret = btrfs_tree_mod_log_insert_key(lower, slot,
						    BTRFS_MOD_LOG_KEY_ADD);
		BUG_ON(ret < 0);
	}
	btrfs_set_node_key(lower, key, slot);
	btrfs_set_node_blockptr(lower, slot, bytenr);
	WARN_ON(trans->transid == 0);
	btrfs_set_node_ptr_generation(lower, slot, trans->transid);
	btrfs_set_header_nritems(lower, nritems + 1);
	btrfs_mark_buffer_dirty(lower);
}

/*
 * split the node at the specified level in path in two.
 * The path is corrected to point to the appropriate node after the split
 *
 * Before splitting this tries to make some room in the node by pushing
 * left and right, if either one works, it returns right away.
 *
 * returns 0 on success and < 0 on failure
 */
static noinline int split_node(struct btrfs_trans_handle *trans,
			       struct btrfs_root *root,
			       struct btrfs_path *path, int level)
{
	struct btrfs_fs_info *fs_info = root->fs_info;
	struct extent_buffer *c;
	struct extent_buffer *split;
	struct btrfs_disk_key disk_key;
	int mid;
	int ret;
	u32 c_nritems;

	c = path->nodes[level];
	WARN_ON(btrfs_header_generation(c) != trans->transid);
	if (c == root->node) {
		/*
		 * trying to split the root, lets make a new one
		 *
		 * tree mod log: We don't log_removal old root in
		 * insert_new_root, because that root buffer will be kept as a
		 * normal node. We are going to log removal of half of the
		 * elements below with btrfs_tree_mod_log_eb_copy(). We're
		 * holding a tree lock on the buffer, which is why we cannot
		 * race with other tree_mod_log users.
		 */
		ret = insert_new_root(trans, root, path, level + 1);
		if (ret)
			return ret;
	} else {
		ret = push_nodes_for_insert(trans, root, path, level);
		c = path->nodes[level];
		if (!ret && btrfs_header_nritems(c) <
		    BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3)
			return 0;
		if (ret < 0)
			return ret;
	}

	c_nritems = btrfs_header_nritems(c);
	mid = (c_nritems + 1) / 2;
	btrfs_node_key(c, &disk_key, mid);

	split = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
				       &disk_key, level, c->start, 0,
				       BTRFS_NESTING_SPLIT);
	if (IS_ERR(split))
		return PTR_ERR(split);

	root_add_used(root, fs_info->nodesize);
	ASSERT(btrfs_header_level(c) == level);

	ret = btrfs_tree_mod_log_eb_copy(split, c, 0, mid, c_nritems - mid);
	if (ret) {
		btrfs_abort_transaction(trans, ret);
		return ret;
	}
	copy_extent_buffer(split, c,
			   btrfs_node_key_ptr_offset(split, 0),
			   btrfs_node_key_ptr_offset(c, mid),
			   (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
	btrfs_set_header_nritems(split, c_nritems - mid);
	btrfs_set_header_nritems(c, mid);

	btrfs_mark_buffer_dirty(c);
	btrfs_mark_buffer_dirty(split);

	insert_ptr(trans, path, &disk_key, split->start,
		   path->slots[level + 1] + 1, level + 1);

	if (path->slots[level] >= mid) {
		path->slots[level] -= mid;
		btrfs_tree_unlock(c);
		free_extent_buffer(c);
		path->nodes[level] = split;
		path->slots[level + 1] += 1;
	} else {
		btrfs_tree_unlock(split);
		free_extent_buffer(split);
	}
	return 0;
}

/*
 * how many bytes are required to store the items in a leaf.  start
 * and nr indicate which items in the leaf to check.  This totals up the
 * space used both by the item structs and the item data
 */
static int leaf_space_used(const struct extent_buffer *l, int start, int nr)
{
	int data_len;
	int nritems = btrfs_header_nritems(l);
	int end = min(nritems, start + nr) - 1;

	if (!nr)
		return 0;
	data_len = btrfs_item_offset(l, start) + btrfs_item_size(l, start);
	data_len = data_len - btrfs_item_offset(l, end);
	data_len += sizeof(struct btrfs_item) * nr;
	WARN_ON(data_len < 0);
	return data_len;
}

/*
 * The space between the end of the leaf items and
 * the start of the leaf data.  IOW, how much room
 * the leaf has left for both items and data
 */
int btrfs_leaf_free_space(const struct extent_buffer *leaf)
{
	struct btrfs_fs_info *fs_info = leaf->fs_info;
	int nritems = btrfs_header_nritems(leaf);
	int ret;

	ret = BTRFS_LEAF_DATA_SIZE(fs_info) - leaf_space_used(leaf, 0, nritems);
	if (ret < 0) {
		btrfs_crit(fs_info,
			   "leaf free space ret %d, leaf data size %lu, used %d nritems %d",
			   ret,
			   (unsigned long) BTRFS_LEAF_DATA_SIZE(fs_info),
			   leaf_space_used(leaf, 0, nritems), nritems);
	}
	return ret;
}

/*
 * min slot controls the lowest index we're willing to push to the
 * right.  We'll push up to and including min_slot, but no lower
 */
static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
				      struct btrfs_path *path,
				      int data_size, int empty,
				      struct extent_buffer *right,
				      int free_space, u32 left_nritems,
				      u32 min_slot)
{
	struct btrfs_fs_info *fs_info = right->fs_info;
	struct extent_buffer *left = path->nodes[0];
	struct extent_buffer *upper = path->nodes[1];
	struct btrfs_map_token token;
	struct btrfs_disk_key disk_key;
	int slot;
	u32 i;
	int push_space = 0;
	int push_items = 0;
	u32 nr;
	u32 right_nritems;
	u32 data_end;
	u32 this_item_size;

	if (empty)
		nr = 0;
	else
		nr = max_t(u32, 1, min_slot);

	if (path->slots[0] >= left_nritems)
		push_space += data_size;

	slot = path->slots[1];
	i = left_nritems - 1;
	while (i >= nr) {
		if (!empty && push_items > 0) {
			if (path->slots[0] > i)
				break;
			if (path->slots[0] == i) {
				int space = btrfs_leaf_free_space(left);

				if (space + push_space * 2 > free_space)
					break;
			}
		}

		if (path->slots[0] == i)
			push_space += data_size;

		this_item_size = btrfs_item_size(left, i);
		if (this_item_size + sizeof(struct btrfs_item) +
		    push_space > free_space)
			break;

		push_items++;
		push_space += this_item_size + sizeof(struct btrfs_item);
		if (i == 0)
			break;
		i--;
	}

	if (push_items == 0)
		goto out_unlock;

	WARN_ON(!empty && push_items == left_nritems);

	/* push left to right */
	right_nritems = btrfs_header_nritems(right);

	push_space = btrfs_item_data_end(left, left_nritems - push_items);
	push_space -= leaf_data_end(left);

	/* make room in the right data area */
	data_end = leaf_data_end(right);
	memmove_leaf_data(right, data_end - push_space, data_end,
			  BTRFS_LEAF_DATA_SIZE(fs_info) - data_end);

	/* copy from the left data area */
	copy_leaf_data(right, left, BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
		       leaf_data_end(left), push_space);

	memmove_leaf_items(right, push_items, 0, right_nritems);

	/* copy the items from left to right */
	copy_leaf_items(right, left, 0, left_nritems - push_items, push_items);

	/* update the item pointers */
	btrfs_init_map_token(&token, right);
	right_nritems += push_items;
	btrfs_set_header_nritems(right, right_nritems);
	push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
	for (i = 0; i < right_nritems; i++) {
		push_space -= btrfs_token_item_size(&token, i);
		btrfs_set_token_item_offset(&token, i, push_space);
	}

	left_nritems -= push_items;
	btrfs_set_header_nritems(left, left_nritems);

	if (left_nritems)
		btrfs_mark_buffer_dirty(left);
	else
		btrfs_clear_buffer_dirty(trans, left);

	btrfs_mark_buffer_dirty(right);

	btrfs_item_key(right, &disk_key, 0);
	btrfs_set_node_key(upper, &disk_key, slot + 1);
	btrfs_mark_buffer_dirty(upper);

	/* then fixup the leaf pointer in the path */
	if (path->slots[0] >= left_nritems) {
		path->slots[0] -= left_nritems;
		if (btrfs_header_nritems(path->nodes[0]) == 0)
			btrfs_clear_buffer_dirty(trans, path->nodes[0]);
		btrfs_tree_unlock(path->nodes[0]);
		free_extent_buffer(path->nodes[0]);
		path->nodes[0] = right;
		path->slots[1] += 1;
	} else {
		btrfs_tree_unlock(right);
		free_extent_buffer(right);
	}
	return 0;

out_unlock:
	btrfs_tree_unlock(right);
	free_extent_buffer(right);
	return 1;
}

/*
 * push some data in the path leaf to the right, trying to free up at
 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
 *
 * returns 1 if the push failed because the other node didn't have enough
 * room, 0 if everything worked out and < 0 if there were major errors.
 *
 * this will push starting from min_slot to the end of the leaf.  It won't
 * push any slot lower than min_slot
 */
static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
			   *root, struct btrfs_path *path,
			   int min_data_size, int data_size,
			   int empty, u32 min_slot)
{
	struct extent_buffer *left = path->nodes[0];
	struct extent_buffer *right;
	struct extent_buffer *upper;
	int slot;
	int free_space;
	u32 left_nritems;
	int ret;

	if (!path->nodes[1])
		return 1;

	slot = path->slots[1];
	upper = path->nodes[1];
	if (slot >= btrfs_header_nritems(upper) - 1)
		return 1;

	btrfs_assert_tree_write_locked(path->nodes[1]);

	right = btrfs_read_node_slot(upper, slot + 1);
	if (IS_ERR(right))
		return PTR_ERR(right);

	__btrfs_tree_lock(right, BTRFS_NESTING_RIGHT);

	free_space = btrfs_leaf_free_space(right);
	if (free_space < data_size)
		goto out_unlock;

	ret = btrfs_cow_block(trans, root, right, upper,
			      slot + 1, &right, BTRFS_NESTING_RIGHT_COW);
	if (ret)
		goto out_unlock;

	left_nritems = btrfs_header_nritems(left);
	if (left_nritems == 0)
		goto out_unlock;

	if (check_sibling_keys(left, right)) {
		ret = -EUCLEAN;
		btrfs_abort_transaction(trans, ret);
		btrfs_tree_unlock(right);
		free_extent_buffer(right);
		return ret;
	}
	if (path->slots[0] == left_nritems && !empty) {
		/* Key greater than all keys in the leaf, right neighbor has
		 * enough room for it and we're not emptying our leaf to delete
		 * it, therefore use right neighbor to insert the new item and
		 * no need to touch/dirty our left leaf. */
		btrfs_tree_unlock(left);
		free_extent_buffer(left);
		path->nodes[0] = right;
		path->slots[0] = 0;
		path->slots[1]++;
		return 0;
	}

	return __push_leaf_right(trans, path, min_data_size, empty, right,
				 free_space, left_nritems, min_slot);
out_unlock:
	btrfs_tree_unlock(right);
	free_extent_buffer(right);
	return 1;
}

/*
 * push some data in the path leaf to the left, trying to free up at
 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
 *
 * max_slot can put a limit on how far into the leaf we'll push items.  The
 * item at 'max_slot' won't be touched.  Use (u32)-1 to make us do all the
 * items
 */
static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
				     struct btrfs_path *path, int data_size,
				     int empty, struct extent_buffer *left,
				     int free_space, u32 right_nritems,
				     u32 max_slot)
{
	struct btrfs_fs_info *fs_info = left->fs_info;
	struct btrfs_disk_key disk_key;
	struct extent_buffer *right = path->nodes[0];
	int i;
	int push_space = 0;
	int push_items = 0;
	u32 old_left_nritems;
	u32 nr;
	int ret = 0;
	u32 this_item_size;
	u32 old_left_item_size;
	struct btrfs_map_token token;

	if (empty)
		nr = min(right_nritems, max_slot);
	else
		nr = min(right_nritems - 1, max_slot);

	for (i = 0; i < nr; i++) {
		if (!empty && push_items > 0) {
			if (path->slots[0] < i)
				break;
			if (path->slots[0] == i) {
				int space = btrfs_leaf_free_space(right);

				if (space + push_space * 2 > free_space)
					break;
			}
		}

		if (path->slots[0] == i)
			push_space += data_size;

		this_item_size = btrfs_item_size(right, i);
		if (this_item_size + sizeof(struct btrfs_item) + push_space >
		    free_space)
			break;

		push_items++;
		push_space += this_item_size + sizeof(struct btrfs_item);
	}

	if (push_items == 0) {
		ret = 1;
		goto out;
	}
	WARN_ON(!empty && push_items == btrfs_header_nritems(right));

	/* push data from right to left */
	copy_leaf_items(left, right, btrfs_header_nritems(left), 0, push_items);

	push_space = BTRFS_LEAF_DATA_SIZE(fs_info) -
		     btrfs_item_offset(right, push_items - 1);

	copy_leaf_data(left, right, leaf_data_end(left) - push_space,
		       btrfs_item_offset(right, push_items - 1), push_space);
	old_left_nritems = btrfs_header_nritems(left);
	BUG_ON(old_left_nritems <= 0);

	btrfs_init_map_token(&token, left);
	old_left_item_size = btrfs_item_offset(left, old_left_nritems - 1);
	for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
		u32 ioff;

		ioff = btrfs_token_item_offset(&token, i);
		btrfs_set_token_item_offset(&token, i,
		      ioff - (BTRFS_LEAF_DATA_SIZE(fs_info) - old_left_item_size));
	}
	btrfs_set_header_nritems(left, old_left_nritems + push_items);

	/* fixup right node */
	if (push_items > right_nritems)
		WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
		       right_nritems);

	if (push_items < right_nritems) {
		push_space = btrfs_item_offset(right, push_items - 1) -
						  leaf_data_end(right);
		memmove_leaf_data(right,
				  BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
				  leaf_data_end(right), push_space);

		memmove_leaf_items(right, 0, push_items,
				   btrfs_header_nritems(right) - push_items);
	}

	btrfs_init_map_token(&token, right);
	right_nritems -= push_items;
	btrfs_set_header_nritems(right, right_nritems);
	push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
	for (i = 0; i < right_nritems; i++) {
		push_space = push_space - btrfs_token_item_size(&token, i);
		btrfs_set_token_item_offset(&token, i, push_space);
	}

	btrfs_mark_buffer_dirty(left);
	if (right_nritems)
		btrfs_mark_buffer_dirty(right);
	else
		btrfs_clear_buffer_dirty(trans, right);

	btrfs_item_key(right, &disk_key, 0);
	fixup_low_keys(path, &disk_key, 1);

	/* then fixup the leaf pointer in the path */
	if (path->slots[0] < push_items) {
		path->slots[0] += old_left_nritems;
		btrfs_tree_unlock(path->nodes[0]);
		free_extent_buffer(path->nodes[0]);
		path->nodes[0] = left;
		path->slots[1] -= 1;
	} else {
		btrfs_tree_unlock(left);
		free_extent_buffer(left);
		path->slots[0] -= push_items;
	}
	BUG_ON(path->slots[0] < 0);
	return ret;
out:
	btrfs_tree_unlock(left);
	free_extent_buffer(left);
	return ret;
}

/*
 * push some data in the path leaf to the left, trying to free up at
 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
 *
 * max_slot can put a limit on how far into the leaf we'll push items.  The
 * item at 'max_slot' won't be touched.  Use (u32)-1 to make us push all the
 * items
 */
static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
			  *root, struct btrfs_path *path, int min_data_size,
			  int data_size, int empty, u32 max_slot)
{
	struct extent_buffer *right = path->nodes[0];
	struct extent_buffer *left;
	int slot;
	int free_space;
	u32 right_nritems;
	int ret = 0;

	slot = path->slots[1];
	if (slot == 0)
		return 1;
	if (!path->nodes[1])
		return 1;

	right_nritems = btrfs_header_nritems(right);
	if (right_nritems == 0)
		return 1;

	btrfs_assert_tree_write_locked(path->nodes[1]);

	left = btrfs_read_node_slot(path->nodes[1], slot - 1);
	if (IS_ERR(left))
		return PTR_ERR(left);

	__btrfs_tree_lock(left, BTRFS_NESTING_LEFT);

	free_space = btrfs_leaf_free_space(left);
	if (free_space < data_size) {
		ret = 1;
		goto out;
	}

	ret = btrfs_cow_block(trans, root, left,
			      path->nodes[1], slot - 1, &left,
			      BTRFS_NESTING_LEFT_COW);
	if (ret) {
		/* we hit -ENOSPC, but it isn't fatal here */
		if (ret == -ENOSPC)
			ret = 1;
		goto out;
	}

	if (check_sibling_keys(left, right)) {
		ret = -EUCLEAN;
		btrfs_abort_transaction(trans, ret);
		goto out;
	}
	return __push_leaf_left(trans, path, min_data_size, empty, left,
				free_space, right_nritems, max_slot);
out:
	btrfs_tree_unlock(left);
	free_extent_buffer(left);
	return ret;
}

/*
 * split the path's leaf in two, making sure there is at least data_size
 * available for the resulting leaf level of the path.
 */
static noinline void copy_for_split(struct btrfs_trans_handle *trans,
				    struct btrfs_path *path,
				    struct extent_buffer *l,
				    struct extent_buffer *right,
				    int slot, int mid, int nritems)
{
	struct btrfs_fs_info *fs_info = trans->fs_info;
	int data_copy_size;
	int rt_data_off;
	int i;
	struct btrfs_disk_key disk_key;
	struct btrfs_map_token token;

	nritems = nritems - mid;
	btrfs_set_header_nritems(right, nritems);
	data_copy_size = btrfs_item_data_end(l, mid) - leaf_data_end(l);

	copy_leaf_items(right, l, 0, mid, nritems);

	copy_leaf_data(right, l, BTRFS_LEAF_DATA_SIZE(fs_info) - data_copy_size,
		       leaf_data_end(l), data_copy_size);

	rt_data_off = BTRFS_LEAF_DATA_SIZE(fs_info) - btrfs_item_data_end(l, mid);

	btrfs_init_map_token(&token, right);
	for (i = 0; i < nritems; i++) {
		u32 ioff;

		ioff = btrfs_token_item_offset(&token, i);
		btrfs_set_token_item_offset(&token, i, ioff + rt_data_off);
	}

	btrfs_set_header_nritems(l, mid);
	btrfs_item_key(right, &disk_key, 0);
	insert_ptr(trans, path, &disk_key, right->start, path->slots[1] + 1, 1);

	btrfs_mark_buffer_dirty(right);
	btrfs_mark_buffer_dirty(l);
	BUG_ON(path->slots[0] != slot);

	if (mid <= slot) {
		btrfs_tree_unlock(path->nodes[0]);
		free_extent_buffer(path->nodes[0]);
		path->nodes[0] = right;
		path->slots[0] -= mid;
		path->slots[1] += 1;
	} else {
		btrfs_tree_unlock(right);
		free_extent_buffer(right);
	}

	BUG_ON(path->slots[0] < 0);
}

/*
 * double splits happen when we need to insert a big item in the middle
 * of a leaf.  A double split can leave us with 3 mostly empty leaves:
 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
 *          A                 B                 C
 *
 * We avoid this by trying to push the items on either side of our target
 * into the adjacent leaves.  If all goes well we can avoid the double split
 * completely.
 */
static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
					  struct btrfs_root *root,
					  struct btrfs_path *path,
					  int data_size)
{
	int ret;
	int progress = 0;
	int slot;
	u32 nritems;
	int space_needed = data_size;

	slot = path->slots[0];
	if (slot < btrfs_header_nritems(path->nodes[0]))
		space_needed -= btrfs_leaf_free_space(path->nodes[0]);

	/*
	 * try to push all the items after our slot into the
	 * right leaf
	 */
	ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot);
	if (ret < 0)
		return ret;

	if (ret == 0)
		progress++;

	nritems = btrfs_header_nritems(path->nodes[0]);
	/*
	 * our goal is to get our slot at the start or end of a leaf.  If
	 * we've done so we're done
	 */
	if (path->slots[0] == 0 || path->slots[0] == nritems)
		return 0;

	if (btrfs_leaf_free_space(path->nodes[0]) >= data_size)
		return 0;

	/* try to push all the items before our slot into the next leaf */
	slot = path->slots[0];
	space_needed = data_size;
	if (slot > 0)
		space_needed -= btrfs_leaf_free_space(path->nodes[0]);
	ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot);
	if (ret < 0)
		return ret;

	if (ret == 0)
		progress++;

	if (progress)
		return 0;
	return 1;
}

/*
 * split the path's leaf in two, making sure there is at least data_size
 * available for the resulting leaf level of the path.
 *
 * returns 0 if all went well and < 0 on failure.
 */
static noinline int split_leaf(struct btrfs_trans_handle *trans,
			       struct btrfs_root *root,
			       const struct btrfs_key *ins_key,
			       struct btrfs_path *path, int data_size,
			       int extend)
{
	struct btrfs_disk_key disk_key;
	struct extent_buffer *l;
	u32 nritems;
	int mid;
	int slot;
	struct extent_buffer *right;
	struct btrfs_fs_info *fs_info = root->fs_info;
	int ret = 0;
	int wret;
	int split;
	int num_doubles = 0;
	int tried_avoid_double = 0;

	l = path->nodes[0];
	slot = path->slots[0];
	if (extend && data_size + btrfs_item_size(l, slot) +
	    sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(fs_info))
		return -EOVERFLOW;

	/* first try to make some room by pushing left and right */
	if (data_size && path->nodes[1]) {
		int space_needed = data_size;

		if (slot < btrfs_header_nritems(l))
			space_needed -= btrfs_leaf_free_space(l);

		wret = push_leaf_right(trans, root, path, space_needed,
				       space_needed, 0, 0);
		if (wret < 0)
			return wret;
		if (wret) {
			space_needed = data_size;
			if (slot > 0)
				space_needed -= btrfs_leaf_free_space(l);
			wret = push_leaf_left(trans, root, path, space_needed,
					      space_needed, 0, (u32)-1);
			if (wret < 0)
				return wret;
		}
		l = path->nodes[0];

		/* did the pushes work? */
		if (btrfs_leaf_free_space(l) >= data_size)
			return 0;
	}

	if (!path->nodes[1]) {
		ret = insert_new_root(trans, root, path, 1);
		if (ret)
			return ret;
	}
again:
	split = 1;
	l = path->nodes[0];
	slot = path->slots[0];
	nritems = btrfs_header_nritems(l);
	mid = (nritems + 1) / 2;

	if (mid <= slot) {
		if (nritems == 1 ||
		    leaf_space_used(l, mid, nritems - mid) + data_size >
			BTRFS_LEAF_DATA_SIZE(fs_info)) {
			if (slot >= nritems) {
				split = 0;
			} else {
				mid = slot;
				if (mid != nritems &&
				    leaf_space_used(l, mid, nritems - mid) +
				    data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
					if (data_size && !tried_avoid_double)
						goto push_for_double;
					split = 2;
				}
			}
		}
	} else {
		if (leaf_space_used(l, 0, mid) + data_size >
			BTRFS_LEAF_DATA_SIZE(fs_info)) {
			if (!extend && data_size && slot == 0) {
				split = 0;
			} else if ((extend || !data_size) && slot == 0) {
				mid = 1;
			} else {
				mid = slot;
				if (mid != nritems &&
				    leaf_space_used(l, mid, nritems - mid) +
				    data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
					if (data_size && !tried_avoid_double)
						goto push_for_double;
					split = 2;
				}
			}
		}
	}

	if (split == 0)
		btrfs_cpu_key_to_disk(&disk_key, ins_key);
	else
		btrfs_item_key(l, &disk_key, mid);

	/*
	 * We have to about BTRFS_NESTING_NEW_ROOT here if we've done a double
	 * split, because we're only allowed to have MAX_LOCKDEP_SUBCLASSES
	 * subclasses, which is 8 at the time of this patch, and we've maxed it
	 * out.  In the future we could add a
	 * BTRFS_NESTING_SPLIT_THE_SPLITTENING if we need to, but for now just
	 * use BTRFS_NESTING_NEW_ROOT.
	 */
	right = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
				       &disk_key, 0, l->start, 0,
				       num_doubles ? BTRFS_NESTING_NEW_ROOT :
				       BTRFS_NESTING_SPLIT);
	if (IS_ERR(right))
		return PTR_ERR(right);

	root_add_used(root, fs_info->nodesize);

	if (split == 0) {
		if (mid <= slot) {
			btrfs_set_header_nritems(right, 0);
			insert_ptr(trans, path, &disk_key,
				   right->start, path->slots[1] + 1, 1);
			btrfs_tree_unlock(path->nodes[0]);
			free_extent_buffer(path->nodes[0]);
			path->nodes[0] = right;
			path->slots[0] = 0;
			path->slots[1] += 1;
		} else {
			btrfs_set_header_nritems(right, 0);
			insert_ptr(trans, path, &disk_key,
				   right->start, path->slots[1], 1);
			btrfs_tree_unlock(path->nodes[0]);
			free_extent_buffer(path->nodes[0]);
			path->nodes[0] = right;
			path->slots[0] = 0;
			if (path->slots[1] == 0)
				fixup_low_keys(path, &disk_key, 1);
		}
		/*
		 * We create a new leaf 'right' for the required ins_len and
		 * we'll do btrfs_mark_buffer_dirty() on this leaf after copying
		 * the content of ins_len to 'right'.
		 */
		return ret;
	}

	copy_for_split(trans, path, l, right, slot, mid, nritems);

	if (split == 2) {
		BUG_ON(num_doubles != 0);
		num_doubles++;
		goto again;
	}

	return 0;

push_for_double:
	push_for_double_split(trans, root, path, data_size);
	tried_avoid_double = 1;
	if (btrfs_leaf_free_space(path->nodes[0]) >= data_size)
		return 0;
	goto again;
}

static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
					 struct btrfs_root *root,
					 struct btrfs_path *path, int ins_len)
{
	struct btrfs_key key;
	struct extent_buffer *leaf;
	struct btrfs_file_extent_item *fi;
	u64 extent_len = 0;
	u32 item_size;
	int ret;

	leaf = path->nodes[0];
	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);

	BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
	       key.type != BTRFS_EXTENT_CSUM_KEY);

	if (btrfs_leaf_free_space(leaf) >= ins_len)
		return 0;

	item_size = btrfs_item_size(leaf, path->slots[0]);
	if (key.type == BTRFS_EXTENT_DATA_KEY) {
		fi = btrfs_item_ptr(leaf, path->slots[0],
				    struct btrfs_file_extent_item);
		extent_len = btrfs_file_extent_num_bytes(leaf, fi);
	}
	btrfs_release_path(path);

	path->keep_locks = 1;
	path->search_for_split = 1;
	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
	path->search_for_split = 0;
	if (ret > 0)
		ret = -EAGAIN;
	if (ret < 0)
		goto err;

	ret = -EAGAIN;
	leaf = path->nodes[0];
	/* if our item isn't there, return now */
	if (item_size != btrfs_item_size(leaf, path->slots[0]))
		goto err;

	/* the leaf has  changed, it now has room.  return now */
	if (btrfs_leaf_free_space(path->nodes[0]) >= ins_len)
		goto err;

	if (key.type == BTRFS_EXTENT_DATA_KEY) {
		fi = btrfs_item_ptr(leaf, path->slots[0],
				    struct btrfs_file_extent_item);
		if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
			goto err;
	}

	ret = split_leaf(trans, root, &key, path, ins_len, 1);
	if (ret)
		goto err;

	path->keep_locks = 0;
	btrfs_unlock_up_safe(path, 1);
	return 0;
err:
	path->keep_locks = 0;
	return ret;
}

static noinline int split_item(struct btrfs_path *path,
			       const struct btrfs_key *new_key,
			       unsigned long split_offset)
{
	struct extent_buffer *leaf;
	int orig_slot, slot;
	char *buf;
	u32 nritems;
	u32 item_size;
	u32 orig_offset;
	struct btrfs_disk_key disk_key;

	leaf = path->nodes[0];
	BUG_ON(btrfs_leaf_free_space(leaf) < sizeof(struct btrfs_item));

	orig_slot = path->slots[0];
	orig_offset = btrfs_item_offset(leaf, path->slots[0]);
	item_size = btrfs_item_size(leaf, path->slots[0]);

	buf = kmalloc(item_size, GFP_NOFS);
	if (!buf)
		return -ENOMEM;

	read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
			    path->slots[0]), item_size);

	slot = path->slots[0] + 1;
	nritems = btrfs_header_nritems(leaf);
	if (slot != nritems) {
		/* shift the items */
		memmove_leaf_items(leaf, slot + 1, slot, nritems - slot);
	}

	btrfs_cpu_key_to_disk(&disk_key, new_key);
	btrfs_set_item_key(leaf, &disk_key, slot);

	btrfs_set_item_offset(leaf, slot, orig_offset);
	btrfs_set_item_size(leaf, slot, item_size - split_offset);

	btrfs_set_item_offset(leaf, orig_slot,
				 orig_offset + item_size - split_offset);
	btrfs_set_item_size(leaf, orig_slot, split_offset);

	btrfs_set_header_nritems(leaf, nritems + 1);

	/* write the data for the start of the original item */
	write_extent_buffer(leaf, buf,
			    btrfs_item_ptr_offset(leaf, path->slots[0]),
			    split_offset);

	/* write the data for the new item */
	write_extent_buffer(leaf, buf + split_offset,
			    btrfs_item_ptr_offset(leaf, slot),
			    item_size - split_offset);
	btrfs_mark_buffer_dirty(leaf);

	BUG_ON(btrfs_leaf_free_space(leaf) < 0);
	kfree(buf);
	return 0;
}

/*
 * This function splits a single item into two items,
 * giving 'new_key' to the new item and splitting the
 * old one at split_offset (from the start of the item).
 *
 * The path may be released by this operation.  After
 * the split, the path is pointing to the old item.  The
 * new item is going to be in the same node as the old one.
 *
 * Note, the item being split must be smaller enough to live alone on
 * a tree block with room for one extra struct btrfs_item
 *
 * This allows us to split the item in place, keeping a lock on the
 * leaf the entire time.
 */
int btrfs_split_item(struct btrfs_trans_handle *trans,
		     struct btrfs_root *root,
		     struct btrfs_path *path,
		     const struct btrfs_key *new_key,
		     unsigned long split_offset)
{
	int ret;
	ret = setup_leaf_for_split(trans, root, path,
				   sizeof(struct btrfs_item));
	if (ret)
		return ret;

	ret = split_item(path, new_key, split_offset);
	return ret;
}

/*
 * make the item pointed to by the path smaller.  new_size indicates
 * how small to make it, and from_end tells us if we just chop bytes
 * off the end of the item or if we shift the item to chop bytes off
 * the front.
 */
void btrfs_truncate_item(struct btrfs_path *path, u32 new_size, int from_end)
{
	int slot;
	struct extent_buffer *leaf;
	u32 nritems;
	unsigned int data_end;
	unsigned int old_data_start;
	unsigned int old_size;
	unsigned int size_diff;
	int i;
	struct btrfs_map_token token;

	leaf = path->nodes[0];
	slot = path->slots[0];

	old_size = btrfs_item_size(leaf, slot);
	if (old_size == new_size)
		return;

	nritems = btrfs_header_nritems(leaf);
	data_end = leaf_data_end(leaf);

	old_data_start = btrfs_item_offset(leaf, slot);

	size_diff = old_size - new_size;

	BUG_ON(slot < 0);
	BUG_ON(slot >= nritems);

	/*
	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
	 */
	/* first correct the data pointers */
	btrfs_init_map_token(&token, leaf);
	for (i = slot; i < nritems; i++) {
		u32 ioff;

		ioff = btrfs_token_item_offset(&token, i);
		btrfs_set_token_item_offset(&token, i, ioff + size_diff);
	}

	/* shift the data */
	if (from_end) {
		memmove_leaf_data(leaf, data_end + size_diff, data_end,
				  old_data_start + new_size - data_end);
	} else {
		struct btrfs_disk_key disk_key;
		u64 offset;

		btrfs_item_key(leaf, &disk_key, slot);

		if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
			unsigned long ptr;
			struct btrfs_file_extent_item *fi;

			fi = btrfs_item_ptr(leaf, slot,
					    struct btrfs_file_extent_item);
			fi = (struct btrfs_file_extent_item *)(
			     (unsigned long)fi - size_diff);

			if (btrfs_file_extent_type(leaf, fi) ==
			    BTRFS_FILE_EXTENT_INLINE) {
				ptr = btrfs_item_ptr_offset(leaf, slot);
				memmove_extent_buffer(leaf, ptr,
				      (unsigned long)fi,
				      BTRFS_FILE_EXTENT_INLINE_DATA_START);
			}
		}

		memmove_leaf_data(leaf, data_end + size_diff, data_end,
				  old_data_start - data_end);

		offset = btrfs_disk_key_offset(&disk_key);
		btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
		btrfs_set_item_key(leaf, &disk_key, slot);
		if (slot == 0)
			fixup_low_keys(path, &disk_key, 1);
	}

	btrfs_set_item_size(leaf, slot, new_size);
	btrfs_mark_buffer_dirty(leaf);

	if (btrfs_leaf_free_space(leaf) < 0) {
		btrfs_print_leaf(leaf);
		BUG();
	}
}

/*
 * make the item pointed to by the path bigger, data_size is the added size.
 */
void btrfs_extend_item(struct btrfs_path *path, u32 data_size)
{
	int slot;
	struct extent_buffer *leaf;
	u32 nritems;
	unsigned int data_end;
	unsigned int old_data;
	unsigned int old_size;
	int i;
	struct btrfs_map_token token;

	leaf = path->nodes[0];

	nritems = btrfs_header_nritems(leaf);
	data_end = leaf_data_end(leaf);

	if (btrfs_leaf_free_space(leaf) < data_size) {
		btrfs_print_leaf(leaf);
		BUG();
	}
	slot = path->slots[0];
	old_data = btrfs_item_data_end(leaf, slot);

	BUG_ON(slot < 0);
	if (slot >= nritems) {
		btrfs_print_leaf(leaf);
		btrfs_crit(leaf->fs_info, "slot %d too large, nritems %d",
			   slot, nritems);
		BUG();
	}

	/*
	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
	 */
	/* first correct the data pointers */
	btrfs_init_map_token(&token, leaf);
	for (i = slot; i < nritems; i++) {
		u32 ioff;

		ioff = btrfs_token_item_offset(&token, i);
		btrfs_set_token_item_offset(&token, i, ioff - data_size);
	}

	/* shift the data */
	memmove_leaf_data(leaf, data_end - data_size, data_end,
			  old_data - data_end);

	data_end = old_data;
	old_size = btrfs_item_size(leaf, slot);
	btrfs_set_item_size(leaf, slot, old_size + data_size);
	btrfs_mark_buffer_dirty(leaf);

	if (btrfs_leaf_free_space(leaf) < 0) {
		btrfs_print_leaf(leaf);
		BUG();
	}
}

/*
 * Make space in the node before inserting one or more items.
 *
 * @root:	root we are inserting items to
 * @path:	points to the leaf/slot where we are going to insert new items
 * @batch:      information about the batch of items to insert
 *
 * Main purpose is to save stack depth by doing the bulk of the work in a
 * function that doesn't call btrfs_search_slot
 */
static void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
				   const struct btrfs_item_batch *batch)
{
	struct btrfs_fs_info *fs_info = root->fs_info;
	int i;
	u32 nritems;
	unsigned int data_end;
	struct btrfs_disk_key disk_key;
	struct extent_buffer *leaf;
	int slot;
	struct btrfs_map_token token;
	u32 total_size;

	/*
	 * Before anything else, update keys in the parent and other ancestors
	 * if needed, then release the write locks on them, so that other tasks
	 * can use them while we modify the leaf.
	 */
	if (path->slots[0] == 0) {
		btrfs_cpu_key_to_disk(&disk_key, &batch->keys[0]);
		fixup_low_keys(path, &disk_key, 1);
	}
	btrfs_unlock_up_safe(path, 1);

	leaf = path->nodes[0];
	slot = path->slots[0];

	nritems = btrfs_header_nritems(leaf);
	data_end = leaf_data_end(leaf);
	total_size = batch->total_data_size + (batch->nr * sizeof(struct btrfs_item));

	if (btrfs_leaf_free_space(leaf) < total_size) {
		btrfs_print_leaf(leaf);
		btrfs_crit(fs_info, "not enough freespace need %u have %d",
			   total_size, btrfs_leaf_free_space(leaf));
		BUG();
	}

	btrfs_init_map_token(&token, leaf);
	if (slot != nritems) {
		unsigned int old_data = btrfs_item_data_end(leaf, slot);

		if (old_data < data_end) {
			btrfs_print_leaf(leaf);
			btrfs_crit(fs_info,
		"item at slot %d with data offset %u beyond data end of leaf %u",
				   slot, old_data, data_end);
			BUG();
		}
		/*
		 * item0..itemN ... dataN.offset..dataN.size .. data0.size
		 */
		/* first correct the data pointers */
		for (i = slot; i < nritems; i++) {
			u32 ioff;

			ioff = btrfs_token_item_offset(&token, i);
			btrfs_set_token_item_offset(&token, i,
						       ioff - batch->total_data_size);
		}
		/* shift the items */
		memmove_leaf_items(leaf, slot + batch->nr, slot, nritems - slot);

		/* shift the data */
		memmove_leaf_data(leaf, data_end - batch->total_data_size,
				  data_end, old_data - data_end);
		data_end = old_data;
	}

	/* setup the item for the new data */
	for (i = 0; i < batch->nr; i++) {
		btrfs_cpu_key_to_disk(&disk_key, &batch->keys[i]);
		btrfs_set_item_key(leaf, &disk_key, slot + i);
		data_end -= batch->data_sizes[i];
		btrfs_set_token_item_offset(&token, slot + i, data_end);
		btrfs_set_token_item_size(&token, slot + i, batch->data_sizes[i]);
	}

	btrfs_set_header_nritems(leaf, nritems + batch->nr);
	btrfs_mark_buffer_dirty(leaf);

	if (btrfs_leaf_free_space(leaf) < 0) {
		btrfs_print_leaf(leaf);
		BUG();
	}
}

/*
 * Insert a new item into a leaf.
 *
 * @root:      The root of the btree.
 * @path:      A path pointing to the target leaf and slot.
 * @key:       The key of the new item.
 * @data_size: The size of the data associated with the new key.
 */
void btrfs_setup_item_for_insert(struct btrfs_root *root,
				 struct btrfs_path *path,
				 const struct btrfs_key *key,
				 u32 data_size)
{
	struct btrfs_item_batch batch;

	batch.keys = key;
	batch.data_sizes = &data_size;
	batch.total_data_size = data_size;
	batch.nr = 1;

	setup_items_for_insert(root, path, &batch);
}

/*
 * Given a key and some data, insert items into the tree.
 * This does all the path init required, making room in the tree if needed.
 */
int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
			    struct btrfs_root *root,
			    struct btrfs_path *path,
			    const struct btrfs_item_batch *batch)
{
	int ret = 0;
	int slot;
	u32 total_size;

	total_size = batch->total_data_size + (batch->nr * sizeof(struct btrfs_item));
	ret = btrfs_search_slot(trans, root, &batch->keys[0], path, total_size, 1);
	if (ret == 0)
		return -EEXIST;
	if (ret < 0)
		return ret;

	slot = path->slots[0];
	BUG_ON(slot < 0);

	setup_items_for_insert(root, path, batch);
	return 0;
}

/*
 * Given a key and some data, insert an item into the tree.
 * This does all the path init required, making room in the tree if needed.
 */
int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
		      const struct btrfs_key *cpu_key, void *data,
		      u32 data_size)
{
	int ret = 0;
	struct btrfs_path *path;
	struct extent_buffer *leaf;
	unsigned long ptr;

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;
	ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
	if (!ret) {
		leaf = path->nodes[0];
		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
		write_extent_buffer(leaf, data, ptr, data_size);
		btrfs_mark_buffer_dirty(leaf);
	}
	btrfs_free_path(path);
	return ret;
}

/*
 * This function duplicates an item, giving 'new_key' to the new item.
 * It guarantees both items live in the same tree leaf and the new item is
 * contiguous with the original item.
 *
 * This allows us to split a file extent in place, keeping a lock on the leaf
 * the entire time.
 */
int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
			 struct btrfs_root *root,
			 struct btrfs_path *path,
			 const struct btrfs_key *new_key)
{
	struct extent_buffer *leaf;
	int ret;
	u32 item_size;

	leaf = path->nodes[0];
	item_size = btrfs_item_size(leaf, path->slots[0]);
	ret = setup_leaf_for_split(trans, root, path,
				   item_size + sizeof(struct btrfs_item));
	if (ret)
		return ret;

	path->slots[0]++;
	btrfs_setup_item_for_insert(root, path, new_key, item_size);
	leaf = path->nodes[0];
	memcpy_extent_buffer(leaf,
			     btrfs_item_ptr_offset(leaf, path->slots[0]),
			     btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
			     item_size);
	return 0;
}

/*
 * delete the pointer from a given node.
 *
 * the tree should have been previously balanced so the deletion does not
 * empty a node.
 *
 * This is exported for use inside btrfs-progs, don't un-export it.
 */
void btrfs_del_ptr(struct btrfs_root *root, struct btrfs_path *path, int level,
		   int slot)
{
	struct extent_buffer *parent = path->nodes[level];
	u32 nritems;
	int ret;

	nritems = btrfs_header_nritems(parent);
	if (slot != nritems - 1) {
		if (level) {
			ret = btrfs_tree_mod_log_insert_move(parent, slot,
					slot + 1, nritems - slot - 1);
			BUG_ON(ret < 0);
		}
		memmove_extent_buffer(parent,
			      btrfs_node_key_ptr_offset(parent, slot),
			      btrfs_node_key_ptr_offset(parent, slot + 1),
			      sizeof(struct btrfs_key_ptr) *
			      (nritems - slot - 1));
	} else if (level) {
		ret = btrfs_tree_mod_log_insert_key(parent, slot,
						    BTRFS_MOD_LOG_KEY_REMOVE);
		BUG_ON(ret < 0);
	}

	nritems--;
	btrfs_set_header_nritems(parent, nritems);
	if (nritems == 0 && parent == root->node) {
		BUG_ON(btrfs_header_level(root->node) != 1);
		/* just turn the root into a leaf and break */
		btrfs_set_header_level(root->node, 0);
	} else if (slot == 0) {
		struct btrfs_disk_key disk_key;

		btrfs_node_key(parent, &disk_key, 0);
		fixup_low_keys(path, &disk_key, level + 1);
	}
	btrfs_mark_buffer_dirty(parent);
}

/*
 * a helper function to delete the leaf pointed to by path->slots[1] and
 * path->nodes[1].
 *
 * This deletes the pointer in path->nodes[1] and frees the leaf
 * block extent.  zero is returned if it all worked out, < 0 otherwise.
 *
 * The path must have already been setup for deleting the leaf, including
 * all the proper balancing.  path->nodes[1] must be locked.
 */
static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
				    struct btrfs_root *root,
				    struct btrfs_path *path,
				    struct extent_buffer *leaf)
{
	WARN_ON(btrfs_header_generation(leaf) != trans->transid);
	btrfs_del_ptr(root, path, 1, path->slots[1]);

	/*
	 * btrfs_free_extent is expensive, we want to make sure we
	 * aren't holding any locks when we call it
	 */
	btrfs_unlock_up_safe(path, 0);

	root_sub_used(root, leaf->len);

	atomic_inc(&leaf->refs);
	btrfs_free_tree_block(trans, btrfs_root_id(root), leaf, 0, 1);
	free_extent_buffer_stale(leaf);
}
/*
 * delete the item at the leaf level in path.  If that empties
 * the leaf, remove it from the tree
 */
int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
		    struct btrfs_path *path, int slot, int nr)
{
	struct btrfs_fs_info *fs_info = root->fs_info;
	struct extent_buffer *leaf;
	int ret = 0;
	int wret;
	u32 nritems;

	leaf = path->nodes[0];
	nritems = btrfs_header_nritems(leaf);

	if (slot + nr != nritems) {
		const u32 last_off = btrfs_item_offset(leaf, slot + nr - 1);
		const int data_end = leaf_data_end(leaf);
		struct btrfs_map_token token;
		u32 dsize = 0;
		int i;

		for (i = 0; i < nr; i++)
			dsize += btrfs_item_size(leaf, slot + i);

		memmove_leaf_data(leaf, data_end + dsize, data_end,
				  last_off - data_end);

		btrfs_init_map_token(&token, leaf);
		for (i = slot + nr; i < nritems; i++) {
			u32 ioff;

			ioff = btrfs_token_item_offset(&token, i);
			btrfs_set_token_item_offset(&token, i, ioff + dsize);
		}

		memmove_leaf_items(leaf, slot, slot + nr, nritems - slot - nr);
	}
	btrfs_set_header_nritems(leaf, nritems - nr);
	nritems -= nr;

	/* delete the leaf if we've emptied it */
	if (nritems == 0) {
		if (leaf == root->node) {
			btrfs_set_header_level(leaf, 0);
		} else {
			btrfs_clear_buffer_dirty(trans, leaf);
			btrfs_del_leaf(trans, root, path, leaf);
		}
	} else {
		int used = leaf_space_used(leaf, 0, nritems);
		if (slot == 0) {
			struct btrfs_disk_key disk_key;

			btrfs_item_key(leaf, &disk_key, 0);
			fixup_low_keys(path, &disk_key, 1);
		}

		/*
		 * Try to delete the leaf if it is mostly empty. We do this by
		 * trying to move all its items into its left and right neighbours.
		 * If we can't move all the items, then we don't delete it - it's
		 * not ideal, but future insertions might fill the leaf with more
		 * items, or items from other leaves might be moved later into our
		 * leaf due to deletions on those leaves.
		 */
		if (used < BTRFS_LEAF_DATA_SIZE(fs_info) / 3) {
			u32 min_push_space;

			/* push_leaf_left fixes the path.
			 * make sure the path still points to our leaf
			 * for possible call to btrfs_del_ptr below
			 */
			slot = path->slots[1];
			atomic_inc(&leaf->refs);
			/*
			 * We want to be able to at least push one item to the
			 * left neighbour leaf, and that's the first item.
			 */
			min_push_space = sizeof(struct btrfs_item) +
				btrfs_item_size(leaf, 0);
			wret = push_leaf_left(trans, root, path, 0,
					      min_push_space, 1, (u32)-1);
			if (wret < 0 && wret != -ENOSPC)
				ret = wret;

			if (path->nodes[0] == leaf &&
			    btrfs_header_nritems(leaf)) {
				/*
				 * If we were not able to push all items from our
				 * leaf to its left neighbour, then attempt to
				 * either push all the remaining items to the
				 * right neighbour or none. There's no advantage
				 * in pushing only some items, instead of all, as
				 * it's pointless to end up with a leaf having
				 * too few items while the neighbours can be full
				 * or nearly full.
				 */
				nritems = btrfs_header_nritems(leaf);
				min_push_space = leaf_space_used(leaf, 0, nritems);
				wret = push_leaf_right(trans, root, path, 0,
						       min_push_space, 1, 0);
				if (wret < 0 && wret != -ENOSPC)
					ret = wret;
			}

			if (btrfs_header_nritems(leaf) == 0) {
				path->slots[1] = slot;
				btrfs_del_leaf(trans, root, path, leaf);
				free_extent_buffer(leaf);
				ret = 0;
			} else {
				/* if we're still in the path, make sure
				 * we're dirty.  Otherwise, one of the
				 * push_leaf functions must have already
				 * dirtied this buffer
				 */
				if (path->nodes[0] == leaf)
					btrfs_mark_buffer_dirty(leaf);
				free_extent_buffer(leaf);
			}
		} else {
			btrfs_mark_buffer_dirty(leaf);
		}
	}
	return ret;
}

/*
 * A helper function to walk down the tree starting at min_key, and looking
 * for nodes or leaves that are have a minimum transaction id.
 * This is used by the btree defrag code, and tree logging
 *
 * This does not cow, but it does stuff the starting key it finds back
 * into min_key, so you can call btrfs_search_slot with cow=1 on the
 * key and get a writable path.
 *
 * This honors path->lowest_level to prevent descent past a given level
 * of the tree.
 *
 * min_trans indicates the oldest transaction that you are interested
 * in walking through.  Any nodes or leaves older than min_trans are
 * skipped over (without reading them).
 *
 * returns zero if something useful was found, < 0 on error and 1 if there
 * was nothing in the tree that matched the search criteria.
 */
int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
			 struct btrfs_path *path,
			 u64 min_trans)
{
	struct extent_buffer *cur;
	struct btrfs_key found_key;
	int slot;
	int sret;
	u32 nritems;
	int level;
	int ret = 1;
	int keep_locks = path->keep_locks;

	ASSERT(!path->nowait);
	path->keep_locks = 1;
again:
	cur = btrfs_read_lock_root_node(root);
	level = btrfs_header_level(cur);
	WARN_ON(path->nodes[level]);
	path->nodes[level] = cur;
	path->locks[level] = BTRFS_READ_LOCK;

	if (btrfs_header_generation(cur) < min_trans) {
		ret = 1;
		goto out;
	}
	while (1) {
		nritems = btrfs_header_nritems(cur);
		level = btrfs_header_level(cur);
		sret = btrfs_bin_search(cur, 0, min_key, &slot);
		if (sret < 0) {
			ret = sret;
			goto out;
		}

		/* at the lowest level, we're done, setup the path and exit */
		if (level == path->lowest_level) {
			if (slot >= nritems)
				goto find_next_key;
			ret = 0;
			path->slots[level] = slot;
			btrfs_item_key_to_cpu(cur, &found_key, slot);
			goto out;
		}
		if (sret && slot > 0)
			slot--;
		/*
		 * check this node pointer against the min_trans parameters.
		 * If it is too old, skip to the next one.
		 */
		while (slot < nritems) {
			u64 gen;

			gen = btrfs_node_ptr_generation(cur, slot);
			if (gen < min_trans) {
				slot++;
				continue;
			}
			break;
		}
find_next_key:
		/*
		 * we didn't find a candidate key in this node, walk forward
		 * and find another one
		 */
		if (slot >= nritems) {
			path->slots[level] = slot;
			sret = btrfs_find_next_key(root, path, min_key, level,
						  min_trans);
			if (sret == 0) {
				btrfs_release_path(path);
				goto again;
			} else {
				goto out;
			}
		}
		/* save our key for returning back */
		btrfs_node_key_to_cpu(cur, &found_key, slot);
		path->slots[level] = slot;
		if (level == path->lowest_level) {
			ret = 0;
			goto out;
		}
		cur = btrfs_read_node_slot(cur, slot);
		if (IS_ERR(cur)) {
			ret = PTR_ERR(cur);
			goto out;
		}

		btrfs_tree_read_lock(cur);

		path->locks[level - 1] = BTRFS_READ_LOCK;
		path->nodes[level - 1] = cur;
		unlock_up(path, level, 1, 0, NULL);
	}
out:
	path->keep_locks = keep_locks;
	if (ret == 0) {
		btrfs_unlock_up_safe(path, path->lowest_level + 1);
		memcpy(min_key, &found_key, sizeof(found_key));
	}
	return ret;
}

/*
 * this is similar to btrfs_next_leaf, but does not try to preserve
 * and fixup the path.  It looks for and returns the next key in the
 * tree based on the current path and the min_trans parameters.
 *
 * 0 is returned if another key is found, < 0 if there are any errors
 * and 1 is returned if there are no higher keys in the tree
 *
 * path->keep_locks should be set to 1 on the search made before
 * calling this function.
 */
int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
			struct btrfs_key *key, int level, u64 min_trans)
{
	int slot;
	struct extent_buffer *c;

	WARN_ON(!path->keep_locks && !path->skip_locking);
	while (level < BTRFS_MAX_LEVEL) {
		if (!path->nodes[level])
			return 1;

		slot = path->slots[level] + 1;
		c = path->nodes[level];
next:
		if (slot >= btrfs_header_nritems(c)) {
			int ret;
			int orig_lowest;
			struct btrfs_key cur_key;
			if (level + 1 >= BTRFS_MAX_LEVEL ||
			    !path->nodes[level + 1])
				return 1;

			if (path->locks[level + 1] || path->skip_locking) {
				level++;
				continue;
			}

			slot = btrfs_header_nritems(c) - 1;
			if (level == 0)
				btrfs_item_key_to_cpu(c, &cur_key, slot);
			else
				btrfs_node_key_to_cpu(c, &cur_key, slot);

			orig_lowest = path->lowest_level;
			btrfs_release_path(path);
			path->lowest_level = level;
			ret = btrfs_search_slot(NULL, root, &cur_key, path,
						0, 0);
			path->lowest_level = orig_lowest;
			if (ret < 0)
				return ret;

			c = path->nodes[level];
			slot = path->slots[level];
			if (ret == 0)
				slot++;
			goto next;
		}

		if (level == 0)
			btrfs_item_key_to_cpu(c, key, slot);
		else {
			u64 gen = btrfs_node_ptr_generation(c, slot);

			if (gen < min_trans) {
				slot++;
				goto next;
			}
			btrfs_node_key_to_cpu(c, key, slot);
		}
		return 0;
	}
	return 1;
}

int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
			u64 time_seq)
{
	int slot;
	int level;
	struct extent_buffer *c;
	struct extent_buffer *next;
	struct btrfs_fs_info *fs_info = root->fs_info;
	struct btrfs_key key;
	bool need_commit_sem = false;
	u32 nritems;
	int ret;
	int i;

	/*
	 * The nowait semantics are used only for write paths, where we don't
	 * use the tree mod log and sequence numbers.
	 */
	if (time_seq)
		ASSERT(!path->nowait);

	nritems = btrfs_header_nritems(path->nodes[0]);
	if (nritems == 0)
		return 1;

	btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
again:
	level = 1;
	next = NULL;
	btrfs_release_path(path);

	path->keep_locks = 1;

	if (time_seq) {
		ret = btrfs_search_old_slot(root, &key, path, time_seq);
	} else {
		if (path->need_commit_sem) {
			path->need_commit_sem = 0;
			need_commit_sem = true;
			if (path->nowait) {
				if (!down_read_trylock(&fs_info->commit_root_sem)) {
					ret = -EAGAIN;
					goto done;
				}
			} else {
				down_read(&fs_info->commit_root_sem);
			}
		}
		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
	}
	path->keep_locks = 0;

	if (ret < 0)
		goto done;

	nritems = btrfs_header_nritems(path->nodes[0]);
	/*
	 * by releasing the path above we dropped all our locks.  A balance
	 * could have added more items next to the key that used to be
	 * at the very end of the block.  So, check again here and
	 * advance the path if there are now more items available.
	 */
	if (nritems > 0 && path->slots[0] < nritems - 1) {
		if (ret == 0)
			path->slots[0]++;
		ret = 0;
		goto done;
	}
	/*
	 * So the above check misses one case:
	 * - after releasing the path above, someone has removed the item that
	 *   used to be at the very end of the block, and balance between leafs
	 *   gets another one with bigger key.offset to replace it.
	 *
	 * This one should be returned as well, or we can get leaf corruption
	 * later(esp. in __btrfs_drop_extents()).
	 *
	 * And a bit more explanation about this check,
	 * with ret > 0, the key isn't found, the path points to the slot
	 * where it should be inserted, so the path->slots[0] item must be the
	 * bigger one.
	 */
	if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) {
		ret = 0;
		goto done;
	}

	while (level < BTRFS_MAX_LEVEL) {
		if (!path->nodes[level]) {
			ret = 1;
			goto done;
		}

		slot = path->slots[level] + 1;
		c = path->nodes[level];
		if (slot >= btrfs_header_nritems(c)) {
			level++;
			if (level == BTRFS_MAX_LEVEL) {
				ret = 1;
				goto done;
			}
			continue;
		}


		/*
		 * Our current level is where we're going to start from, and to
		 * make sure lockdep doesn't complain we need to drop our locks
		 * and nodes from 0 to our current level.
		 */
		for (i = 0; i < level; i++) {
			if (path->locks[level]) {
				btrfs_tree_read_unlock(path->nodes[i]);
				path->locks[i] = 0;
			}
			free_extent_buffer(path->nodes[i]);
			path->nodes[i] = NULL;
		}

		next = c;
		ret = read_block_for_search(root, path, &next, level,
					    slot, &key);
		if (ret == -EAGAIN && !path->nowait)
			goto again;

		if (ret < 0) {
			btrfs_release_path(path);
			goto done;
		}

		if (!path->skip_locking) {
			ret = btrfs_try_tree_read_lock(next);
			if (!ret && path->nowait) {
				ret = -EAGAIN;
				goto done;
			}
			if (!ret && time_seq) {
				/*
				 * If we don't get the lock, we may be racing
				 * with push_leaf_left, holding that lock while
				 * itself waiting for the leaf we've currently
				 * locked. To solve this situation, we give up
				 * on our lock and cycle.
				 */
				free_extent_buffer(next);
				btrfs_release_path(path);
				cond_resched();
				goto again;
			}
			if (!ret)
				btrfs_tree_read_lock(next);
		}
		break;
	}
	path->slots[level] = slot;
	while (1) {
		level--;
		path->nodes[level] = next;
		path->slots[level] = 0;
		if (!path->skip_locking)
			path->locks[level] = BTRFS_READ_LOCK;
		if (!level)
			break;

		ret = read_block_for_search(root, path, &next, level,
					    0, &key);
		if (ret == -EAGAIN && !path->nowait)
			goto again;

		if (ret < 0) {
			btrfs_release_path(path);
			goto done;
		}

		if (!path->skip_locking) {
			if (path->nowait) {
				if (!btrfs_try_tree_read_lock(next)) {
					ret = -EAGAIN;
					goto done;
				}
			} else {
				btrfs_tree_read_lock(next);
			}
		}
	}
	ret = 0;
done:
	unlock_up(path, 0, 1, 0, NULL);
	if (need_commit_sem) {
		int ret2;

		path->need_commit_sem = 1;
		ret2 = finish_need_commit_sem_search(path);
		up_read(&fs_info->commit_root_sem);
		if (ret2)
			ret = ret2;
	}

	return ret;
}

int btrfs_next_old_item(struct btrfs_root *root, struct btrfs_path *path, u64 time_seq)
{
	path->slots[0]++;
	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0]))
		return btrfs_next_old_leaf(root, path, time_seq);
	return 0;
}

/*
 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
 * searching until it gets past min_objectid or finds an item of 'type'
 *
 * returns 0 if something is found, 1 if nothing was found and < 0 on error
 */
int btrfs_previous_item(struct btrfs_root *root,
			struct btrfs_path *path, u64 min_objectid,
			int type)
{
	struct btrfs_key found_key;
	struct extent_buffer *leaf;
	u32 nritems;
	int ret;

	while (1) {
		if (path->slots[0] == 0) {
			ret = btrfs_prev_leaf(root, path);
			if (ret != 0)
				return ret;
		} else {
			path->slots[0]--;
		}
		leaf = path->nodes[0];
		nritems = btrfs_header_nritems(leaf);
		if (nritems == 0)
			return 1;
		if (path->slots[0] == nritems)
			path->slots[0]--;

		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
		if (found_key.objectid < min_objectid)
			break;
		if (found_key.type == type)
			return 0;
		if (found_key.objectid == min_objectid &&
		    found_key.type < type)
			break;
	}
	return 1;
}

/*
 * search in extent tree to find a previous Metadata/Data extent item with
 * min objecitd.
 *
 * returns 0 if something is found, 1 if nothing was found and < 0 on error
 */
int btrfs_previous_extent_item(struct btrfs_root *root,
			struct btrfs_path *path, u64 min_objectid)
{
	struct btrfs_key found_key;
	struct extent_buffer *leaf;
	u32 nritems;
	int ret;

	while (1) {
		if (path->slots[0] == 0) {
			ret = btrfs_prev_leaf(root, path);
			if (ret != 0)
				return ret;
		} else {
			path->slots[0]--;
		}
		leaf = path->nodes[0];
		nritems = btrfs_header_nritems(leaf);
		if (nritems == 0)
			return 1;
		if (path->slots[0] == nritems)
			path->slots[0]--;

		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
		if (found_key.objectid < min_objectid)
			break;
		if (found_key.type == BTRFS_EXTENT_ITEM_KEY ||
		    found_key.type == BTRFS_METADATA_ITEM_KEY)
			return 0;
		if (found_key.objectid == min_objectid &&
		    found_key.type < BTRFS_EXTENT_ITEM_KEY)
			break;
	}
	return 1;
}

int __init btrfs_ctree_init(void)
{
	btrfs_path_cachep = kmem_cache_create("btrfs_path",
			sizeof(struct btrfs_path), 0,
			SLAB_MEM_SPREAD, NULL);
	if (!btrfs_path_cachep)
		return -ENOMEM;
	return 0;
}

void __cold btrfs_ctree_exit(void)
{
	kmem_cache_destroy(btrfs_path_cachep);
}