1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
|
// SPDX-License-Identifier: GPL-2.0
/* Copyright (c) 2012-2018, The Linux Foundation. All rights reserved.
* Copyright (C) 2018-2021 Linaro Ltd.
*/
#include <linux/types.h>
#include <linux/atomic.h>
#include <linux/bitfield.h>
#include <linux/device.h>
#include <linux/bug.h>
#include <linux/io.h>
#include <linux/firmware.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/of_address.h>
#include <linux/pm_runtime.h>
#include <linux/qcom_scm.h>
#include <linux/soc/qcom/mdt_loader.h>
#include "ipa.h"
#include "ipa_power.h"
#include "ipa_data.h"
#include "ipa_endpoint.h"
#include "ipa_resource.h"
#include "ipa_cmd.h"
#include "ipa_reg.h"
#include "ipa_mem.h"
#include "ipa_table.h"
#include "ipa_smp2p.h"
#include "ipa_modem.h"
#include "ipa_uc.h"
#include "ipa_interrupt.h"
#include "gsi_trans.h"
#include "ipa_sysfs.h"
/**
* DOC: The IP Accelerator
*
* This driver supports the Qualcomm IP Accelerator (IPA), which is a
* networking component found in many Qualcomm SoCs. The IPA is connected
* to the application processor (AP), but is also connected (and partially
* controlled by) other "execution environments" (EEs), such as a modem.
*
* The IPA is the conduit between the AP and the modem that carries network
* traffic. This driver presents a network interface representing the
* connection of the modem to external (e.g. LTE) networks.
*
* The IPA provides protocol checksum calculation, offloading this work
* from the AP. The IPA offers additional functionality, including routing,
* filtering, and NAT support, but that more advanced functionality is not
* currently supported. Despite that, some resources--including routing
* tables and filter tables--are defined in this driver because they must
* be initialized even when the advanced hardware features are not used.
*
* There are two distinct layers that implement the IPA hardware, and this
* is reflected in the organization of the driver. The generic software
* interface (GSI) is an integral component of the IPA, providing a
* well-defined communication layer between the AP subsystem and the IPA
* core. The GSI implements a set of "channels" used for communication
* between the AP and the IPA.
*
* The IPA layer uses GSI channels to implement its "endpoints". And while
* a GSI channel carries data between the AP and the IPA, a pair of IPA
* endpoints is used to carry traffic between two EEs. Specifically, the main
* modem network interface is implemented by two pairs of endpoints: a TX
* endpoint on the AP coupled with an RX endpoint on the modem; and another
* RX endpoint on the AP receiving data from a TX endpoint on the modem.
*/
/* The name of the GSI firmware file relative to /lib/firmware */
#define IPA_FW_PATH_DEFAULT "ipa_fws.mdt"
#define IPA_PAS_ID 15
/* Shift of 19.2 MHz timestamp to achieve lower resolution timestamps */
#define DPL_TIMESTAMP_SHIFT 14 /* ~1.172 kHz, ~853 usec per tick */
#define TAG_TIMESTAMP_SHIFT 14
#define NAT_TIMESTAMP_SHIFT 24 /* ~1.144 Hz, ~874 msec per tick */
/* Divider for 19.2 MHz crystal oscillator clock to get common timer clock */
#define IPA_XO_CLOCK_DIVIDER 192 /* 1 is subtracted where used */
/**
* ipa_setup() - Set up IPA hardware
* @ipa: IPA pointer
*
* Perform initialization that requires issuing immediate commands on
* the command TX endpoint. If the modem is doing GSI firmware load
* and initialization, this function will be called when an SMP2P
* interrupt has been signaled by the modem. Otherwise it will be
* called from ipa_probe() after GSI firmware has been successfully
* loaded, authenticated, and started by Trust Zone.
*/
int ipa_setup(struct ipa *ipa)
{
struct ipa_endpoint *exception_endpoint;
struct ipa_endpoint *command_endpoint;
struct device *dev = &ipa->pdev->dev;
int ret;
ret = gsi_setup(&ipa->gsi);
if (ret)
return ret;
ret = ipa_power_setup(ipa);
if (ret)
goto err_gsi_teardown;
ipa_endpoint_setup(ipa);
/* We need to use the AP command TX endpoint to perform other
* initialization, so we enable first.
*/
command_endpoint = ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX];
ret = ipa_endpoint_enable_one(command_endpoint);
if (ret)
goto err_endpoint_teardown;
ret = ipa_mem_setup(ipa); /* No matching teardown required */
if (ret)
goto err_command_disable;
ret = ipa_table_setup(ipa); /* No matching teardown required */
if (ret)
goto err_command_disable;
/* Enable the exception handling endpoint, and tell the hardware
* to use it by default.
*/
exception_endpoint = ipa->name_map[IPA_ENDPOINT_AP_LAN_RX];
ret = ipa_endpoint_enable_one(exception_endpoint);
if (ret)
goto err_command_disable;
ipa_endpoint_default_route_set(ipa, exception_endpoint->endpoint_id);
/* We're all set. Now prepare for communication with the modem */
ret = ipa_qmi_setup(ipa);
if (ret)
goto err_default_route_clear;
ipa->setup_complete = true;
dev_info(dev, "IPA driver setup completed successfully\n");
return 0;
err_default_route_clear:
ipa_endpoint_default_route_clear(ipa);
ipa_endpoint_disable_one(exception_endpoint);
err_command_disable:
ipa_endpoint_disable_one(command_endpoint);
err_endpoint_teardown:
ipa_endpoint_teardown(ipa);
ipa_power_teardown(ipa);
err_gsi_teardown:
gsi_teardown(&ipa->gsi);
return ret;
}
/**
* ipa_teardown() - Inverse of ipa_setup()
* @ipa: IPA pointer
*/
static void ipa_teardown(struct ipa *ipa)
{
struct ipa_endpoint *exception_endpoint;
struct ipa_endpoint *command_endpoint;
/* We're going to tear everything down, as if setup never completed */
ipa->setup_complete = false;
ipa_qmi_teardown(ipa);
ipa_endpoint_default_route_clear(ipa);
exception_endpoint = ipa->name_map[IPA_ENDPOINT_AP_LAN_RX];
ipa_endpoint_disable_one(exception_endpoint);
command_endpoint = ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX];
ipa_endpoint_disable_one(command_endpoint);
ipa_endpoint_teardown(ipa);
ipa_power_teardown(ipa);
gsi_teardown(&ipa->gsi);
}
/* Configure bus access behavior for IPA components */
static void ipa_hardware_config_comp(struct ipa *ipa)
{
u32 val;
/* Nothing to configure prior to IPA v4.0 */
if (ipa->version < IPA_VERSION_4_0)
return;
val = ioread32(ipa->reg_virt + IPA_REG_COMP_CFG_OFFSET);
if (ipa->version == IPA_VERSION_4_0) {
val &= ~IPA_QMB_SELECT_CONS_EN_FMASK;
val &= ~IPA_QMB_SELECT_PROD_EN_FMASK;
val &= ~IPA_QMB_SELECT_GLOBAL_EN_FMASK;
} else if (ipa->version < IPA_VERSION_4_5) {
val |= GSI_MULTI_AXI_MASTERS_DIS_FMASK;
} else {
/* For IPA v4.5 IPA_FULL_FLUSH_WAIT_RSC_CLOSE_EN is 0 */
}
val |= GSI_MULTI_INORDER_RD_DIS_FMASK;
val |= GSI_MULTI_INORDER_WR_DIS_FMASK;
iowrite32(val, ipa->reg_virt + IPA_REG_COMP_CFG_OFFSET);
}
/* Configure DDR and (possibly) PCIe max read/write QSB values */
static void
ipa_hardware_config_qsb(struct ipa *ipa, const struct ipa_data *data)
{
const struct ipa_qsb_data *data0;
const struct ipa_qsb_data *data1;
u32 val;
/* QMB 0 represents DDR; QMB 1 (if present) represents PCIe */
data0 = &data->qsb_data[IPA_QSB_MASTER_DDR];
if (data->qsb_count > 1)
data1 = &data->qsb_data[IPA_QSB_MASTER_PCIE];
/* Max outstanding write accesses for QSB masters */
val = u32_encode_bits(data0->max_writes, GEN_QMB_0_MAX_WRITES_FMASK);
if (data->qsb_count > 1)
val |= u32_encode_bits(data1->max_writes,
GEN_QMB_1_MAX_WRITES_FMASK);
iowrite32(val, ipa->reg_virt + IPA_REG_QSB_MAX_WRITES_OFFSET);
/* Max outstanding read accesses for QSB masters */
val = u32_encode_bits(data0->max_reads, GEN_QMB_0_MAX_READS_FMASK);
if (ipa->version >= IPA_VERSION_4_0)
val |= u32_encode_bits(data0->max_reads_beats,
GEN_QMB_0_MAX_READS_BEATS_FMASK);
if (data->qsb_count > 1) {
val |= u32_encode_bits(data1->max_reads,
GEN_QMB_1_MAX_READS_FMASK);
if (ipa->version >= IPA_VERSION_4_0)
val |= u32_encode_bits(data1->max_reads_beats,
GEN_QMB_1_MAX_READS_BEATS_FMASK);
}
iowrite32(val, ipa->reg_virt + IPA_REG_QSB_MAX_READS_OFFSET);
}
/* The internal inactivity timer clock is used for the aggregation timer */
#define TIMER_FREQUENCY 32000 /* 32 KHz inactivity timer clock */
/* Compute the value to use in the COUNTER_CFG register AGGR_GRANULARITY
* field to represent the given number of microseconds. The value is one
* less than the number of timer ticks in the requested period. 0 is not
* a valid granularity value (so for example @usec must be at least 16 for
* a TIMER_FREQUENCY of 32000).
*/
static __always_inline u32 ipa_aggr_granularity_val(u32 usec)
{
return DIV_ROUND_CLOSEST(usec * TIMER_FREQUENCY, USEC_PER_SEC) - 1;
}
/* IPA uses unified Qtime starting at IPA v4.5, implementing various
* timestamps and timers independent of the IPA core clock rate. The
* Qtimer is based on a 56-bit timestamp incremented at each tick of
* a 19.2 MHz SoC crystal oscillator (XO clock).
*
* For IPA timestamps (tag, NAT, data path logging) a lower resolution
* timestamp is achieved by shifting the Qtimer timestamp value right
* some number of bits to produce the low-order bits of the coarser
* granularity timestamp.
*
* For timers, a common timer clock is derived from the XO clock using
* a divider (we use 192, to produce a 100kHz timer clock). From
* this common clock, three "pulse generators" are used to produce
* timer ticks at a configurable frequency. IPA timers (such as
* those used for aggregation or head-of-line block handling) now
* define their period based on one of these pulse generators.
*/
static void ipa_qtime_config(struct ipa *ipa)
{
u32 val;
/* Timer clock divider must be disabled when we change the rate */
iowrite32(0, ipa->reg_virt + IPA_REG_TIMERS_XO_CLK_DIV_CFG_OFFSET);
/* Set DPL time stamp resolution to use Qtime (instead of 1 msec) */
val = u32_encode_bits(DPL_TIMESTAMP_SHIFT, DPL_TIMESTAMP_LSB_FMASK);
val |= u32_encode_bits(1, DPL_TIMESTAMP_SEL_FMASK);
/* Configure tag and NAT Qtime timestamp resolution as well */
val |= u32_encode_bits(TAG_TIMESTAMP_SHIFT, TAG_TIMESTAMP_LSB_FMASK);
val |= u32_encode_bits(NAT_TIMESTAMP_SHIFT, NAT_TIMESTAMP_LSB_FMASK);
iowrite32(val, ipa->reg_virt + IPA_REG_QTIME_TIMESTAMP_CFG_OFFSET);
/* Set granularity of pulse generators used for other timers */
val = u32_encode_bits(IPA_GRAN_100_US, GRAN_0_FMASK);
val |= u32_encode_bits(IPA_GRAN_1_MS, GRAN_1_FMASK);
val |= u32_encode_bits(IPA_GRAN_1_MS, GRAN_2_FMASK);
iowrite32(val, ipa->reg_virt + IPA_REG_TIMERS_PULSE_GRAN_CFG_OFFSET);
/* Actual divider is 1 more than value supplied here */
val = u32_encode_bits(IPA_XO_CLOCK_DIVIDER - 1, DIV_VALUE_FMASK);
iowrite32(val, ipa->reg_virt + IPA_REG_TIMERS_XO_CLK_DIV_CFG_OFFSET);
/* Divider value is set; re-enable the common timer clock divider */
val |= u32_encode_bits(1, DIV_ENABLE_FMASK);
iowrite32(val, ipa->reg_virt + IPA_REG_TIMERS_XO_CLK_DIV_CFG_OFFSET);
}
static void ipa_idle_indication_cfg(struct ipa *ipa,
u32 enter_idle_debounce_thresh,
bool const_non_idle_enable)
{
u32 offset;
u32 val;
val = u32_encode_bits(enter_idle_debounce_thresh,
ENTER_IDLE_DEBOUNCE_THRESH_FMASK);
if (const_non_idle_enable)
val |= CONST_NON_IDLE_ENABLE_FMASK;
offset = ipa_reg_idle_indication_cfg_offset(ipa->version);
iowrite32(val, ipa->reg_virt + offset);
}
/**
* ipa_hardware_dcd_config() - Enable dynamic clock division on IPA
* @ipa: IPA pointer
*
* Configures when the IPA signals it is idle to the global clock
* controller, which can respond by scaling down the clock to save
* power.
*/
static void ipa_hardware_dcd_config(struct ipa *ipa)
{
/* Recommended values for IPA 3.5 and later according to IPA HPG */
ipa_idle_indication_cfg(ipa, 256, false);
}
static void ipa_hardware_dcd_deconfig(struct ipa *ipa)
{
/* Power-on reset values */
ipa_idle_indication_cfg(ipa, 0, true);
}
/**
* ipa_hardware_config() - Primitive hardware initialization
* @ipa: IPA pointer
* @data: IPA configuration data
*/
static void ipa_hardware_config(struct ipa *ipa, const struct ipa_data *data)
{
enum ipa_version version = ipa->version;
u32 granularity;
u32 val;
/* IPA v4.5+ has no backward compatibility register */
if (version < IPA_VERSION_4_5) {
val = data->backward_compat;
iowrite32(val, ipa->reg_virt + IPA_REG_BCR_OFFSET);
}
/* Implement some hardware workarounds */
if (version >= IPA_VERSION_4_0 && version < IPA_VERSION_4_5) {
/* Disable PA mask to allow HOLB drop */
val = ioread32(ipa->reg_virt + IPA_REG_TX_CFG_OFFSET);
val &= ~PA_MASK_EN_FMASK;
iowrite32(val, ipa->reg_virt + IPA_REG_TX_CFG_OFFSET);
/* Enable open global clocks in the CLKON configuration */
val = GLOBAL_FMASK | GLOBAL_2X_CLK_FMASK;
} else if (version == IPA_VERSION_3_1) {
val = MISC_FMASK; /* Disable MISC clock gating */
} else {
val = 0; /* No CLKON configuration needed */
}
if (val)
iowrite32(val, ipa->reg_virt + IPA_REG_CLKON_CFG_OFFSET);
ipa_hardware_config_comp(ipa);
/* Configure system bus limits */
ipa_hardware_config_qsb(ipa, data);
if (version < IPA_VERSION_4_5) {
/* Configure aggregation timer granularity */
granularity = ipa_aggr_granularity_val(IPA_AGGR_GRANULARITY);
val = u32_encode_bits(granularity, AGGR_GRANULARITY_FMASK);
iowrite32(val, ipa->reg_virt + IPA_REG_COUNTER_CFG_OFFSET);
} else {
ipa_qtime_config(ipa);
}
/* IPA v4.2 does not support hashed tables, so disable them */
if (version == IPA_VERSION_4_2) {
u32 offset = ipa_reg_filt_rout_hash_en_offset(version);
iowrite32(0, ipa->reg_virt + offset);
}
/* Enable dynamic clock division */
ipa_hardware_dcd_config(ipa);
}
/**
* ipa_hardware_deconfig() - Inverse of ipa_hardware_config()
* @ipa: IPA pointer
*
* This restores the power-on reset values (even if they aren't different)
*/
static void ipa_hardware_deconfig(struct ipa *ipa)
{
/* Mostly we just leave things as we set them. */
ipa_hardware_dcd_deconfig(ipa);
}
/**
* ipa_config() - Configure IPA hardware
* @ipa: IPA pointer
* @data: IPA configuration data
*
* Perform initialization requiring IPA power to be enabled.
*/
static int ipa_config(struct ipa *ipa, const struct ipa_data *data)
{
int ret;
ipa_hardware_config(ipa, data);
ret = ipa_mem_config(ipa);
if (ret)
goto err_hardware_deconfig;
ipa->interrupt = ipa_interrupt_config(ipa);
if (IS_ERR(ipa->interrupt)) {
ret = PTR_ERR(ipa->interrupt);
ipa->interrupt = NULL;
goto err_mem_deconfig;
}
ipa_uc_config(ipa);
ret = ipa_endpoint_config(ipa);
if (ret)
goto err_uc_deconfig;
ipa_table_config(ipa); /* No deconfig required */
/* Assign resource limitation to each group; no deconfig required */
ret = ipa_resource_config(ipa, data->resource_data);
if (ret)
goto err_endpoint_deconfig;
ret = ipa_modem_config(ipa);
if (ret)
goto err_endpoint_deconfig;
return 0;
err_endpoint_deconfig:
ipa_endpoint_deconfig(ipa);
err_uc_deconfig:
ipa_uc_deconfig(ipa);
ipa_interrupt_deconfig(ipa->interrupt);
ipa->interrupt = NULL;
err_mem_deconfig:
ipa_mem_deconfig(ipa);
err_hardware_deconfig:
ipa_hardware_deconfig(ipa);
return ret;
}
/**
* ipa_deconfig() - Inverse of ipa_config()
* @ipa: IPA pointer
*/
static void ipa_deconfig(struct ipa *ipa)
{
ipa_modem_deconfig(ipa);
ipa_endpoint_deconfig(ipa);
ipa_uc_deconfig(ipa);
ipa_interrupt_deconfig(ipa->interrupt);
ipa->interrupt = NULL;
ipa_mem_deconfig(ipa);
ipa_hardware_deconfig(ipa);
}
static int ipa_firmware_load(struct device *dev)
{
const struct firmware *fw;
struct device_node *node;
struct resource res;
phys_addr_t phys;
const char *path;
ssize_t size;
void *virt;
int ret;
node = of_parse_phandle(dev->of_node, "memory-region", 0);
if (!node) {
dev_err(dev, "DT error getting \"memory-region\" property\n");
return -EINVAL;
}
ret = of_address_to_resource(node, 0, &res);
of_node_put(node);
if (ret) {
dev_err(dev, "error %d getting \"memory-region\" resource\n",
ret);
return ret;
}
/* Use name from DTB if specified; use default for *any* error */
ret = of_property_read_string(dev->of_node, "firmware-name", &path);
if (ret) {
dev_dbg(dev, "error %d getting \"firmware-name\" resource\n",
ret);
path = IPA_FW_PATH_DEFAULT;
}
ret = request_firmware(&fw, path, dev);
if (ret) {
dev_err(dev, "error %d requesting \"%s\"\n", ret, path);
return ret;
}
phys = res.start;
size = (size_t)resource_size(&res);
virt = memremap(phys, size, MEMREMAP_WC);
if (!virt) {
dev_err(dev, "unable to remap firmware memory\n");
ret = -ENOMEM;
goto out_release_firmware;
}
ret = qcom_mdt_load(dev, fw, path, IPA_PAS_ID, virt, phys, size, NULL);
if (ret)
dev_err(dev, "error %d loading \"%s\"\n", ret, path);
else if ((ret = qcom_scm_pas_auth_and_reset(IPA_PAS_ID)))
dev_err(dev, "error %d authenticating \"%s\"\n", ret, path);
memunmap(virt);
out_release_firmware:
release_firmware(fw);
return ret;
}
static const struct of_device_id ipa_match[] = {
{
.compatible = "qcom,msm8998-ipa",
.data = &ipa_data_v3_1,
},
{
.compatible = "qcom,sdm845-ipa",
.data = &ipa_data_v3_5_1,
},
{
.compatible = "qcom,sc7180-ipa",
.data = &ipa_data_v4_2,
},
{
.compatible = "qcom,sdx55-ipa",
.data = &ipa_data_v4_5,
},
{
.compatible = "qcom,sm8350-ipa",
.data = &ipa_data_v4_9,
},
{
.compatible = "qcom,sc7280-ipa",
.data = &ipa_data_v4_11,
},
{ },
};
MODULE_DEVICE_TABLE(of, ipa_match);
/* Check things that can be validated at build time. This just
* groups these things BUILD_BUG_ON() calls don't clutter the rest
* of the code.
* */
static void ipa_validate_build(void)
{
/* At one time we assumed a 64-bit build, allowing some do_div()
* calls to be replaced by simple division or modulo operations.
* We currently only perform divide and modulo operations on u32,
* u16, or size_t objects, and of those only size_t has any chance
* of being a 64-bit value. (It should be guaranteed 32 bits wide
* on a 32-bit build, but there is no harm in verifying that.)
*/
BUILD_BUG_ON(!IS_ENABLED(CONFIG_64BIT) && sizeof(size_t) != 4);
/* Code assumes the EE ID for the AP is 0 (zeroed structure field) */
BUILD_BUG_ON(GSI_EE_AP != 0);
/* There's no point if we have no channels or event rings */
BUILD_BUG_ON(!GSI_CHANNEL_COUNT_MAX);
BUILD_BUG_ON(!GSI_EVT_RING_COUNT_MAX);
/* GSI hardware design limits */
BUILD_BUG_ON(GSI_CHANNEL_COUNT_MAX > 32);
BUILD_BUG_ON(GSI_EVT_RING_COUNT_MAX > 31);
/* The number of TREs in a transaction is limited by the channel's
* TLV FIFO size. A transaction structure uses 8-bit fields
* to represents the number of TREs it has allocated and used.
*/
BUILD_BUG_ON(GSI_TLV_MAX > U8_MAX);
/* This is used as a divisor */
BUILD_BUG_ON(!IPA_AGGR_GRANULARITY);
/* Aggregation granularity value can't be 0, and must fit */
BUILD_BUG_ON(!ipa_aggr_granularity_val(IPA_AGGR_GRANULARITY));
BUILD_BUG_ON(ipa_aggr_granularity_val(IPA_AGGR_GRANULARITY) >
field_max(AGGR_GRANULARITY_FMASK));
}
static bool ipa_version_valid(enum ipa_version version)
{
switch (version) {
case IPA_VERSION_3_0:
case IPA_VERSION_3_1:
case IPA_VERSION_3_5:
case IPA_VERSION_3_5_1:
case IPA_VERSION_4_0:
case IPA_VERSION_4_1:
case IPA_VERSION_4_2:
case IPA_VERSION_4_5:
case IPA_VERSION_4_7:
case IPA_VERSION_4_9:
case IPA_VERSION_4_11:
return true;
default:
return false;
}
}
/**
* ipa_probe() - IPA platform driver probe function
* @pdev: Platform device pointer
*
* Return: 0 if successful, or a negative error code (possibly
* EPROBE_DEFER)
*
* This is the main entry point for the IPA driver. Initialization proceeds
* in several stages:
* - The "init" stage involves activities that can be initialized without
* access to the IPA hardware.
* - The "config" stage requires IPA power to be active so IPA registers
* can be accessed, but does not require the use of IPA immediate commands.
* - The "setup" stage uses IPA immediate commands, and so requires the GSI
* layer to be initialized.
*
* A Boolean Device Tree "modem-init" property determines whether GSI
* initialization will be performed by the AP (Trust Zone) or the modem.
* If the AP does GSI initialization, the setup phase is entered after
* this has completed successfully. Otherwise the modem initializes
* the GSI layer and signals it has finished by sending an SMP2P interrupt
* to the AP; this triggers the start if IPA setup.
*/
static int ipa_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
const struct ipa_data *data;
struct ipa_power *power;
bool modem_init;
struct ipa *ipa;
int ret;
ipa_validate_build();
/* Get configuration data early; needed for power initialization */
data = of_device_get_match_data(dev);
if (!data) {
dev_err(dev, "matched hardware not supported\n");
return -ENODEV;
}
if (!ipa_version_valid(data->version)) {
dev_err(dev, "invalid IPA version\n");
return -EINVAL;
}
/* If we need Trust Zone, make sure it's available */
modem_init = of_property_read_bool(dev->of_node, "modem-init");
if (!modem_init)
if (!qcom_scm_is_available())
return -EPROBE_DEFER;
/* The clock and interconnects might not be ready when we're
* probed, so might return -EPROBE_DEFER.
*/
power = ipa_power_init(dev, data->power_data);
if (IS_ERR(power))
return PTR_ERR(power);
/* No more EPROBE_DEFER. Allocate and initialize the IPA structure */
ipa = kzalloc(sizeof(*ipa), GFP_KERNEL);
if (!ipa) {
ret = -ENOMEM;
goto err_power_exit;
}
ipa->pdev = pdev;
dev_set_drvdata(dev, ipa);
ipa->power = power;
ipa->version = data->version;
init_completion(&ipa->completion);
ret = ipa_reg_init(ipa);
if (ret)
goto err_kfree_ipa;
ret = ipa_mem_init(ipa, data->mem_data);
if (ret)
goto err_reg_exit;
ret = gsi_init(&ipa->gsi, pdev, ipa->version, data->endpoint_count,
data->endpoint_data);
if (ret)
goto err_mem_exit;
/* Result is a non-zero mask of endpoints that support filtering */
ipa->filter_map = ipa_endpoint_init(ipa, data->endpoint_count,
data->endpoint_data);
if (!ipa->filter_map) {
ret = -EINVAL;
goto err_gsi_exit;
}
ret = ipa_table_init(ipa);
if (ret)
goto err_endpoint_exit;
ret = ipa_modem_init(ipa, modem_init);
if (ret)
goto err_table_exit;
/* Power needs to be active for config and setup */
ret = pm_runtime_get_sync(dev);
if (WARN_ON(ret < 0))
goto err_power_put;
ret = ipa_config(ipa, data);
if (ret)
goto err_power_put;
dev_info(dev, "IPA driver initialized");
/* If the modem is doing early initialization, it will trigger a
* call to ipa_setup() when it has finished. In that case we're
* done here.
*/
if (modem_init)
goto done;
/* Otherwise we need to load the firmware and have Trust Zone validate
* and install it. If that succeeds we can proceed with setup.
*/
ret = ipa_firmware_load(dev);
if (ret)
goto err_deconfig;
ret = ipa_setup(ipa);
if (ret)
goto err_deconfig;
done:
pm_runtime_mark_last_busy(dev);
(void)pm_runtime_put_autosuspend(dev);
return 0;
err_deconfig:
ipa_deconfig(ipa);
err_power_put:
pm_runtime_put_noidle(dev);
ipa_modem_exit(ipa);
err_table_exit:
ipa_table_exit(ipa);
err_endpoint_exit:
ipa_endpoint_exit(ipa);
err_gsi_exit:
gsi_exit(&ipa->gsi);
err_mem_exit:
ipa_mem_exit(ipa);
err_reg_exit:
ipa_reg_exit(ipa);
err_kfree_ipa:
kfree(ipa);
err_power_exit:
ipa_power_exit(power);
return ret;
}
static int ipa_remove(struct platform_device *pdev)
{
struct ipa *ipa = dev_get_drvdata(&pdev->dev);
struct ipa_power *power = ipa->power;
struct device *dev = &pdev->dev;
int ret;
/* Prevent the modem from triggering a call to ipa_setup(). This
* also ensures a modem-initiated setup that's underway completes.
*/
ipa_smp2p_irq_disable_setup(ipa);
ret = pm_runtime_get_sync(dev);
if (WARN_ON(ret < 0))
goto out_power_put;
if (ipa->setup_complete) {
ret = ipa_modem_stop(ipa);
/* If starting or stopping is in progress, try once more */
if (ret == -EBUSY) {
usleep_range(USEC_PER_MSEC, 2 * USEC_PER_MSEC);
ret = ipa_modem_stop(ipa);
}
if (ret)
return ret;
ipa_teardown(ipa);
}
ipa_deconfig(ipa);
out_power_put:
pm_runtime_put_noidle(dev);
ipa_modem_exit(ipa);
ipa_table_exit(ipa);
ipa_endpoint_exit(ipa);
gsi_exit(&ipa->gsi);
ipa_mem_exit(ipa);
ipa_reg_exit(ipa);
kfree(ipa);
ipa_power_exit(power);
return 0;
}
static void ipa_shutdown(struct platform_device *pdev)
{
int ret;
ret = ipa_remove(pdev);
if (ret)
dev_err(&pdev->dev, "shutdown: remove returned %d\n", ret);
}
static const struct attribute_group *ipa_attribute_groups[] = {
&ipa_attribute_group,
&ipa_feature_attribute_group,
&ipa_modem_attribute_group,
NULL,
};
static struct platform_driver ipa_driver = {
.probe = ipa_probe,
.remove = ipa_remove,
.shutdown = ipa_shutdown,
.driver = {
.name = "ipa",
.pm = &ipa_pm_ops,
.of_match_table = ipa_match,
.dev_groups = ipa_attribute_groups,
},
};
module_platform_driver(ipa_driver);
MODULE_LICENSE("GPL v2");
MODULE_DESCRIPTION("Qualcomm IP Accelerator device driver");
|