1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
|
#include <linux/linkage.h>
#include <linux/errno.h>
#include <linux/signal.h>
#include <linux/sched.h>
#include <linux/ioport.h>
#include <linux/interrupt.h>
#include <linux/timex.h>
#include <linux/random.h>
#include <linux/kprobes.h>
#include <linux/init.h>
#include <linux/kernel_stat.h>
#include <linux/device.h>
#include <linux/bitops.h>
#include <linux/acpi.h>
#include <linux/io.h>
#include <linux/delay.h>
#include <linux/atomic.h>
#include <asm/timer.h>
#include <asm/hw_irq.h>
#include <asm/pgtable.h>
#include <asm/desc.h>
#include <asm/apic.h>
#include <asm/setup.h>
#include <asm/i8259.h>
#include <asm/traps.h>
#include <asm/prom.h>
/*
* ISA PIC or low IO-APIC triggered (INTA-cycle or APIC) interrupts:
* (these are usually mapped to vectors 0x30-0x3f)
*/
/*
* The IO-APIC gives us many more interrupt sources. Most of these
* are unused but an SMP system is supposed to have enough memory ...
* sometimes (mostly wrt. hw bugs) we get corrupted vectors all
* across the spectrum, so we really want to be prepared to get all
* of these. Plus, more powerful systems might have more than 64
* IO-APIC registers.
*
* (these are usually mapped into the 0x30-0xff vector range)
*/
/*
* IRQ2 is cascade interrupt to second interrupt controller
*/
static struct irqaction irq2 = {
.handler = no_action,
.name = "cascade",
.flags = IRQF_NO_THREAD,
};
DEFINE_PER_CPU(vector_irq_t, vector_irq) = {
[0 ... NR_VECTORS - 1] = VECTOR_UNUSED,
};
void __init init_ISA_irqs(void)
{
struct irq_chip *chip = legacy_pic->chip;
int i;
#if defined(CONFIG_X86_64) || defined(CONFIG_X86_LOCAL_APIC)
init_bsp_APIC();
#endif
legacy_pic->init(0);
for (i = 0; i < nr_legacy_irqs(); i++)
irq_set_chip_and_handler(i, chip, handle_level_irq);
}
void __init init_IRQ(void)
{
int i;
/*
* On cpu 0, Assign ISA_IRQ_VECTOR(irq) to IRQ 0..15.
* If these IRQ's are handled by legacy interrupt-controllers like PIC,
* then this configuration will likely be static after the boot. If
* these IRQ's are handled by more mordern controllers like IO-APIC,
* then this vector space can be freed and re-used dynamically as the
* irq's migrate etc.
*/
for (i = 0; i < nr_legacy_irqs(); i++)
per_cpu(vector_irq, 0)[ISA_IRQ_VECTOR(i)] = irq_to_desc(i);
x86_init.irqs.intr_init();
}
static void __init smp_intr_init(void)
{
#ifdef CONFIG_SMP
/*
* The reschedule interrupt is a CPU-to-CPU reschedule-helper
* IPI, driven by wakeup.
*/
alloc_intr_gate(RESCHEDULE_VECTOR, reschedule_interrupt);
/* IPI for generic function call */
alloc_intr_gate(CALL_FUNCTION_VECTOR, call_function_interrupt);
/* IPI for generic single function call */
alloc_intr_gate(CALL_FUNCTION_SINGLE_VECTOR,
call_function_single_interrupt);
/* Low priority IPI to cleanup after moving an irq */
set_intr_gate(IRQ_MOVE_CLEANUP_VECTOR, irq_move_cleanup_interrupt);
set_bit(IRQ_MOVE_CLEANUP_VECTOR, used_vectors);
/* IPI used for rebooting/stopping */
alloc_intr_gate(REBOOT_VECTOR, reboot_interrupt);
#endif /* CONFIG_SMP */
}
static void __init apic_intr_init(void)
{
smp_intr_init();
#ifdef CONFIG_X86_THERMAL_VECTOR
alloc_intr_gate(THERMAL_APIC_VECTOR, thermal_interrupt);
#endif
#ifdef CONFIG_X86_MCE_THRESHOLD
alloc_intr_gate(THRESHOLD_APIC_VECTOR, threshold_interrupt);
#endif
#ifdef CONFIG_X86_MCE_AMD
alloc_intr_gate(DEFERRED_ERROR_VECTOR, deferred_error_interrupt);
#endif
#ifdef CONFIG_X86_LOCAL_APIC
/* self generated IPI for local APIC timer */
alloc_intr_gate(LOCAL_TIMER_VECTOR, apic_timer_interrupt);
/* IPI for X86 platform specific use */
alloc_intr_gate(X86_PLATFORM_IPI_VECTOR, x86_platform_ipi);
#ifdef CONFIG_HAVE_KVM
/* IPI for KVM to deliver posted interrupt */
alloc_intr_gate(POSTED_INTR_VECTOR, kvm_posted_intr_ipi);
/* IPI for KVM to deliver interrupt to wake up tasks */
alloc_intr_gate(POSTED_INTR_WAKEUP_VECTOR, kvm_posted_intr_wakeup_ipi);
/* IPI for KVM to deliver nested posted interrupt */
alloc_intr_gate(POSTED_INTR_NESTED_VECTOR, kvm_posted_intr_nested_ipi);
#endif
/* IPI vectors for APIC spurious and error interrupts */
alloc_intr_gate(SPURIOUS_APIC_VECTOR, spurious_interrupt);
alloc_intr_gate(ERROR_APIC_VECTOR, error_interrupt);
/* IRQ work interrupts: */
# ifdef CONFIG_IRQ_WORK
alloc_intr_gate(IRQ_WORK_VECTOR, irq_work_interrupt);
# endif
#endif
}
void __init native_init_IRQ(void)
{
int i;
/* Execute any quirks before the call gates are initialised: */
x86_init.irqs.pre_vector_init();
apic_intr_init();
/*
* Cover the whole vector space, no vector can escape
* us. (some of these will be overridden and become
* 'special' SMP interrupts)
*/
i = FIRST_EXTERNAL_VECTOR;
#ifndef CONFIG_X86_LOCAL_APIC
#define first_system_vector NR_VECTORS
#endif
for_each_clear_bit_from(i, used_vectors, first_system_vector) {
/* IA32_SYSCALL_VECTOR could be used in trap_init already. */
set_intr_gate(i, irq_entries_start +
8 * (i - FIRST_EXTERNAL_VECTOR));
}
#ifdef CONFIG_X86_LOCAL_APIC
for_each_clear_bit_from(i, used_vectors, NR_VECTORS)
set_intr_gate(i, spurious_interrupt);
#endif
if (!acpi_ioapic && !of_ioapic && nr_legacy_irqs())
setup_irq(2, &irq2);
irq_ctx_init(smp_processor_id());
}
|