1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
|
/* SPDX-License-Identifier: GPL-2.0-only */
/*
* Low-level CPU initialisation
* Based on arch/arm/kernel/head.S
*
* Copyright (C) 1994-2002 Russell King
* Copyright (C) 2003-2012 ARM Ltd.
* Authors: Catalin Marinas <catalin.marinas@arm.com>
* Will Deacon <will.deacon@arm.com>
*/
#include <linux/linkage.h>
#include <linux/init.h>
#include <linux/pgtable.h>
#include <asm/asm_pointer_auth.h>
#include <asm/assembler.h>
#include <asm/boot.h>
#include <asm/ptrace.h>
#include <asm/asm-offsets.h>
#include <asm/cache.h>
#include <asm/cputype.h>
#include <asm/el2_setup.h>
#include <asm/elf.h>
#include <asm/image.h>
#include <asm/kernel-pgtable.h>
#include <asm/kvm_arm.h>
#include <asm/memory.h>
#include <asm/pgtable-hwdef.h>
#include <asm/page.h>
#include <asm/scs.h>
#include <asm/smp.h>
#include <asm/sysreg.h>
#include <asm/thread_info.h>
#include <asm/virt.h>
#include "efi-header.S"
#define __PHYS_OFFSET KERNEL_START
#if (PAGE_OFFSET & 0x1fffff) != 0
#error PAGE_OFFSET must be at least 2MB aligned
#endif
/*
* Kernel startup entry point.
* ---------------------------
*
* The requirements are:
* MMU = off, D-cache = off, I-cache = on or off,
* x0 = physical address to the FDT blob.
*
* This code is mostly position independent so you call this at
* __pa(PAGE_OFFSET).
*
* Note that the callee-saved registers are used for storing variables
* that are useful before the MMU is enabled. The allocations are described
* in the entry routines.
*/
__HEAD
/*
* DO NOT MODIFY. Image header expected by Linux boot-loaders.
*/
efi_signature_nop // special NOP to identity as PE/COFF executable
b primary_entry // branch to kernel start, magic
.quad 0 // Image load offset from start of RAM, little-endian
le64sym _kernel_size_le // Effective size of kernel image, little-endian
le64sym _kernel_flags_le // Informative flags, little-endian
.quad 0 // reserved
.quad 0 // reserved
.quad 0 // reserved
.ascii ARM64_IMAGE_MAGIC // Magic number
.long .Lpe_header_offset // Offset to the PE header.
__EFI_PE_HEADER
__INIT
/*
* The following callee saved general purpose registers are used on the
* primary lowlevel boot path:
*
* Register Scope Purpose
* x21 primary_entry() .. start_kernel() FDT pointer passed at boot in x0
* x23 primary_entry() .. start_kernel() physical misalignment/KASLR offset
* x28 __create_page_tables() callee preserved temp register
* x19/x20 __primary_switch() callee preserved temp registers
* x24 __primary_switch() .. relocate_kernel() current RELR displacement
*/
SYM_CODE_START(primary_entry)
bl preserve_boot_args
bl init_kernel_el // w0=cpu_boot_mode
adrp x23, __PHYS_OFFSET
and x23, x23, MIN_KIMG_ALIGN - 1 // KASLR offset, defaults to 0
bl set_cpu_boot_mode_flag
bl __create_page_tables
/*
* The following calls CPU setup code, see arch/arm64/mm/proc.S for
* details.
* On return, the CPU will be ready for the MMU to be turned on and
* the TCR will have been set.
*/
bl __cpu_setup // initialise processor
b __primary_switch
SYM_CODE_END(primary_entry)
/*
* Preserve the arguments passed by the bootloader in x0 .. x3
*/
SYM_CODE_START_LOCAL(preserve_boot_args)
mov x21, x0 // x21=FDT
adr_l x0, boot_args // record the contents of
stp x21, x1, [x0] // x0 .. x3 at kernel entry
stp x2, x3, [x0, #16]
dmb sy // needed before dc ivac with
// MMU off
mov x1, #0x20 // 4 x 8 bytes
b __inval_dcache_area // tail call
SYM_CODE_END(preserve_boot_args)
/*
* Macro to create a table entry to the next page.
*
* tbl: page table address
* virt: virtual address
* shift: #imm page table shift
* ptrs: #imm pointers per table page
*
* Preserves: virt
* Corrupts: ptrs, tmp1, tmp2
* Returns: tbl -> next level table page address
*/
.macro create_table_entry, tbl, virt, shift, ptrs, tmp1, tmp2
add \tmp1, \tbl, #PAGE_SIZE
phys_to_pte \tmp2, \tmp1
orr \tmp2, \tmp2, #PMD_TYPE_TABLE // address of next table and entry type
lsr \tmp1, \virt, #\shift
sub \ptrs, \ptrs, #1
and \tmp1, \tmp1, \ptrs // table index
str \tmp2, [\tbl, \tmp1, lsl #3]
add \tbl, \tbl, #PAGE_SIZE // next level table page
.endm
/*
* Macro to populate page table entries, these entries can be pointers to the next level
* or last level entries pointing to physical memory.
*
* tbl: page table address
* rtbl: pointer to page table or physical memory
* index: start index to write
* eindex: end index to write - [index, eindex] written to
* flags: flags for pagetable entry to or in
* inc: increment to rtbl between each entry
* tmp1: temporary variable
*
* Preserves: tbl, eindex, flags, inc
* Corrupts: index, tmp1
* Returns: rtbl
*/
.macro populate_entries, tbl, rtbl, index, eindex, flags, inc, tmp1
.Lpe\@: phys_to_pte \tmp1, \rtbl
orr \tmp1, \tmp1, \flags // tmp1 = table entry
str \tmp1, [\tbl, \index, lsl #3]
add \rtbl, \rtbl, \inc // rtbl = pa next level
add \index, \index, #1
cmp \index, \eindex
b.ls .Lpe\@
.endm
/*
* Compute indices of table entries from virtual address range. If multiple entries
* were needed in the previous page table level then the next page table level is assumed
* to be composed of multiple pages. (This effectively scales the end index).
*
* vstart: virtual address of start of range
* vend: virtual address of end of range
* shift: shift used to transform virtual address into index
* ptrs: number of entries in page table
* istart: index in table corresponding to vstart
* iend: index in table corresponding to vend
* count: On entry: how many extra entries were required in previous level, scales
* our end index.
* On exit: returns how many extra entries required for next page table level
*
* Preserves: vstart, vend, shift, ptrs
* Returns: istart, iend, count
*/
.macro compute_indices, vstart, vend, shift, ptrs, istart, iend, count
lsr \iend, \vend, \shift
mov \istart, \ptrs
sub \istart, \istart, #1
and \iend, \iend, \istart // iend = (vend >> shift) & (ptrs - 1)
mov \istart, \ptrs
mul \istart, \istart, \count
add \iend, \iend, \istart // iend += (count - 1) * ptrs
// our entries span multiple tables
lsr \istart, \vstart, \shift
mov \count, \ptrs
sub \count, \count, #1
and \istart, \istart, \count
sub \count, \iend, \istart
.endm
/*
* Map memory for specified virtual address range. Each level of page table needed supports
* multiple entries. If a level requires n entries the next page table level is assumed to be
* formed from n pages.
*
* tbl: location of page table
* rtbl: address to be used for first level page table entry (typically tbl + PAGE_SIZE)
* vstart: start address to map
* vend: end address to map - we map [vstart, vend]
* flags: flags to use to map last level entries
* phys: physical address corresponding to vstart - physical memory is contiguous
* pgds: the number of pgd entries
*
* Temporaries: istart, iend, tmp, count, sv - these need to be different registers
* Preserves: vstart, vend, flags
* Corrupts: tbl, rtbl, istart, iend, tmp, count, sv
*/
.macro map_memory, tbl, rtbl, vstart, vend, flags, phys, pgds, istart, iend, tmp, count, sv
add \rtbl, \tbl, #PAGE_SIZE
mov \sv, \rtbl
mov \count, #0
compute_indices \vstart, \vend, #PGDIR_SHIFT, \pgds, \istart, \iend, \count
populate_entries \tbl, \rtbl, \istart, \iend, #PMD_TYPE_TABLE, #PAGE_SIZE, \tmp
mov \tbl, \sv
mov \sv, \rtbl
#if SWAPPER_PGTABLE_LEVELS > 3
compute_indices \vstart, \vend, #PUD_SHIFT, #PTRS_PER_PUD, \istart, \iend, \count
populate_entries \tbl, \rtbl, \istart, \iend, #PMD_TYPE_TABLE, #PAGE_SIZE, \tmp
mov \tbl, \sv
mov \sv, \rtbl
#endif
#if SWAPPER_PGTABLE_LEVELS > 2
compute_indices \vstart, \vend, #SWAPPER_TABLE_SHIFT, #PTRS_PER_PMD, \istart, \iend, \count
populate_entries \tbl, \rtbl, \istart, \iend, #PMD_TYPE_TABLE, #PAGE_SIZE, \tmp
mov \tbl, \sv
#endif
compute_indices \vstart, \vend, #SWAPPER_BLOCK_SHIFT, #PTRS_PER_PTE, \istart, \iend, \count
bic \count, \phys, #SWAPPER_BLOCK_SIZE - 1
populate_entries \tbl, \count, \istart, \iend, \flags, #SWAPPER_BLOCK_SIZE, \tmp
.endm
/*
* Setup the initial page tables. We only setup the barest amount which is
* required to get the kernel running. The following sections are required:
* - identity mapping to enable the MMU (low address, TTBR0)
* - first few MB of the kernel linear mapping to jump to once the MMU has
* been enabled
*/
SYM_FUNC_START_LOCAL(__create_page_tables)
mov x28, lr
/*
* Invalidate the init page tables to avoid potential dirty cache lines
* being evicted. Other page tables are allocated in rodata as part of
* the kernel image, and thus are clean to the PoC per the boot
* protocol.
*/
adrp x0, init_pg_dir
adrp x1, init_pg_end
sub x1, x1, x0
bl __inval_dcache_area
/*
* Clear the init page tables.
*/
adrp x0, init_pg_dir
adrp x1, init_pg_end
sub x1, x1, x0
1: stp xzr, xzr, [x0], #16
stp xzr, xzr, [x0], #16
stp xzr, xzr, [x0], #16
stp xzr, xzr, [x0], #16
subs x1, x1, #64
b.ne 1b
mov x7, SWAPPER_MM_MMUFLAGS
/*
* Create the identity mapping.
*/
adrp x0, idmap_pg_dir
adrp x3, __idmap_text_start // __pa(__idmap_text_start)
#ifdef CONFIG_ARM64_VA_BITS_52
mrs_s x6, SYS_ID_AA64MMFR2_EL1
and x6, x6, #(0xf << ID_AA64MMFR2_LVA_SHIFT)
mov x5, #52
cbnz x6, 1f
#endif
mov x5, #VA_BITS_MIN
1:
adr_l x6, vabits_actual
str x5, [x6]
dmb sy
dc ivac, x6 // Invalidate potentially stale cache line
/*
* VA_BITS may be too small to allow for an ID mapping to be created
* that covers system RAM if that is located sufficiently high in the
* physical address space. So for the ID map, use an extended virtual
* range in that case, and configure an additional translation level
* if needed.
*
* Calculate the maximum allowed value for TCR_EL1.T0SZ so that the
* entire ID map region can be mapped. As T0SZ == (64 - #bits used),
* this number conveniently equals the number of leading zeroes in
* the physical address of __idmap_text_end.
*/
adrp x5, __idmap_text_end
clz x5, x5
cmp x5, TCR_T0SZ(VA_BITS_MIN) // default T0SZ small enough?
b.ge 1f // .. then skip VA range extension
adr_l x6, idmap_t0sz
str x5, [x6]
dmb sy
dc ivac, x6 // Invalidate potentially stale cache line
#if (VA_BITS < 48)
#define EXTRA_SHIFT (PGDIR_SHIFT + PAGE_SHIFT - 3)
#define EXTRA_PTRS (1 << (PHYS_MASK_SHIFT - EXTRA_SHIFT))
/*
* If VA_BITS < 48, we have to configure an additional table level.
* First, we have to verify our assumption that the current value of
* VA_BITS was chosen such that all translation levels are fully
* utilised, and that lowering T0SZ will always result in an additional
* translation level to be configured.
*/
#if VA_BITS != EXTRA_SHIFT
#error "Mismatch between VA_BITS and page size/number of translation levels"
#endif
mov x4, EXTRA_PTRS
create_table_entry x0, x3, EXTRA_SHIFT, x4, x5, x6
#else
/*
* If VA_BITS == 48, we don't have to configure an additional
* translation level, but the top-level table has more entries.
*/
mov x4, #1 << (PHYS_MASK_SHIFT - PGDIR_SHIFT)
str_l x4, idmap_ptrs_per_pgd, x5
#endif
1:
ldr_l x4, idmap_ptrs_per_pgd
mov x5, x3 // __pa(__idmap_text_start)
adr_l x6, __idmap_text_end // __pa(__idmap_text_end)
map_memory x0, x1, x3, x6, x7, x3, x4, x10, x11, x12, x13, x14
/*
* Map the kernel image (starting with PHYS_OFFSET).
*/
adrp x0, init_pg_dir
mov_q x5, KIMAGE_VADDR // compile time __va(_text)
add x5, x5, x23 // add KASLR displacement
mov x4, PTRS_PER_PGD
adrp x6, _end // runtime __pa(_end)
adrp x3, _text // runtime __pa(_text)
sub x6, x6, x3 // _end - _text
add x6, x6, x5 // runtime __va(_end)
map_memory x0, x1, x5, x6, x7, x3, x4, x10, x11, x12, x13, x14
/*
* Since the page tables have been populated with non-cacheable
* accesses (MMU disabled), invalidate those tables again to
* remove any speculatively loaded cache lines.
*/
dmb sy
adrp x0, idmap_pg_dir
adrp x1, idmap_pg_end
sub x1, x1, x0
bl __inval_dcache_area
adrp x0, init_pg_dir
adrp x1, init_pg_end
sub x1, x1, x0
bl __inval_dcache_area
ret x28
SYM_FUNC_END(__create_page_tables)
/*
* The following fragment of code is executed with the MMU enabled.
*
* x0 = __PHYS_OFFSET
*/
SYM_FUNC_START_LOCAL(__primary_switched)
adrp x4, init_thread_union
add sp, x4, #THREAD_SIZE
adr_l x5, init_task
msr sp_el0, x5 // Save thread_info
adr_l x8, vectors // load VBAR_EL1 with virtual
msr vbar_el1, x8 // vector table address
isb
stp xzr, x30, [sp, #-16]!
mov x29, sp
#ifdef CONFIG_SHADOW_CALL_STACK
adr_l scs_sp, init_shadow_call_stack // Set shadow call stack
#endif
str_l x21, __fdt_pointer, x5 // Save FDT pointer
ldr_l x4, kimage_vaddr // Save the offset between
sub x4, x4, x0 // the kernel virtual and
str_l x4, kimage_voffset, x5 // physical mappings
// Clear BSS
adr_l x0, __bss_start
mov x1, xzr
adr_l x2, __bss_stop
sub x2, x2, x0
bl __pi_memset
dsb ishst // Make zero page visible to PTW
#if defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS)
bl kasan_early_init
#endif
mov x0, x21 // pass FDT address in x0
bl early_fdt_map // Try mapping the FDT early
bl init_feature_override // Parse cpu feature overrides
#ifdef CONFIG_RANDOMIZE_BASE
tst x23, ~(MIN_KIMG_ALIGN - 1) // already running randomized?
b.ne 0f
bl kaslr_early_init // parse FDT for KASLR options
cbz x0, 0f // KASLR disabled? just proceed
orr x23, x23, x0 // record KASLR offset
ldp x29, x30, [sp], #16 // we must enable KASLR, return
ret // to __primary_switch()
0:
#endif
bl switch_to_vhe // Prefer VHE if possible
add sp, sp, #16
mov x29, #0
mov x30, #0
b start_kernel
SYM_FUNC_END(__primary_switched)
.pushsection ".rodata", "a"
SYM_DATA_START(kimage_vaddr)
.quad _text
SYM_DATA_END(kimage_vaddr)
EXPORT_SYMBOL(kimage_vaddr)
.popsection
/*
* end early head section, begin head code that is also used for
* hotplug and needs to have the same protections as the text region
*/
.section ".idmap.text","awx"
/*
* Starting from EL2 or EL1, configure the CPU to execute at the highest
* reachable EL supported by the kernel in a chosen default state. If dropping
* from EL2 to EL1, configure EL2 before configuring EL1.
*
* Since we cannot always rely on ERET synchronizing writes to sysregs (e.g. if
* SCTLR_ELx.EOS is clear), we place an ISB prior to ERET.
*
* Returns either BOOT_CPU_MODE_EL1 or BOOT_CPU_MODE_EL2 in w0 if
* booted in EL1 or EL2 respectively.
*/
SYM_FUNC_START(init_kernel_el)
mov_q x0, INIT_SCTLR_EL1_MMU_OFF
msr sctlr_el1, x0
mrs x0, CurrentEL
cmp x0, #CurrentEL_EL2
b.eq init_el2
SYM_INNER_LABEL(init_el1, SYM_L_LOCAL)
isb
mov_q x0, INIT_PSTATE_EL1
msr spsr_el1, x0
msr elr_el1, lr
mov w0, #BOOT_CPU_MODE_EL1
eret
SYM_INNER_LABEL(init_el2, SYM_L_LOCAL)
mov_q x0, HCR_HOST_NVHE_FLAGS
msr hcr_el2, x0
isb
init_el2_state
/* Hypervisor stub */
adr_l x0, __hyp_stub_vectors
msr vbar_el2, x0
isb
msr elr_el2, lr
mov w0, #BOOT_CPU_MODE_EL2
eret
SYM_FUNC_END(init_kernel_el)
/*
* Sets the __boot_cpu_mode flag depending on the CPU boot mode passed
* in w0. See arch/arm64/include/asm/virt.h for more info.
*/
SYM_FUNC_START_LOCAL(set_cpu_boot_mode_flag)
adr_l x1, __boot_cpu_mode
cmp w0, #BOOT_CPU_MODE_EL2
b.ne 1f
add x1, x1, #4
1: str w0, [x1] // This CPU has booted in EL1
dmb sy
dc ivac, x1 // Invalidate potentially stale cache line
ret
SYM_FUNC_END(set_cpu_boot_mode_flag)
/*
* These values are written with the MMU off, but read with the MMU on.
* Writers will invalidate the corresponding address, discarding up to a
* 'Cache Writeback Granule' (CWG) worth of data. The linker script ensures
* sufficient alignment that the CWG doesn't overlap another section.
*/
.pushsection ".mmuoff.data.write", "aw"
/*
* We need to find out the CPU boot mode long after boot, so we need to
* store it in a writable variable.
*
* This is not in .bss, because we set it sufficiently early that the boot-time
* zeroing of .bss would clobber it.
*/
SYM_DATA_START(__boot_cpu_mode)
.long BOOT_CPU_MODE_EL2
.long BOOT_CPU_MODE_EL1
SYM_DATA_END(__boot_cpu_mode)
/*
* The booting CPU updates the failed status @__early_cpu_boot_status,
* with MMU turned off.
*/
SYM_DATA_START(__early_cpu_boot_status)
.quad 0
SYM_DATA_END(__early_cpu_boot_status)
.popsection
/*
* This provides a "holding pen" for platforms to hold all secondary
* cores are held until we're ready for them to initialise.
*/
SYM_FUNC_START(secondary_holding_pen)
bl init_kernel_el // w0=cpu_boot_mode
bl set_cpu_boot_mode_flag
mrs x0, mpidr_el1
mov_q x1, MPIDR_HWID_BITMASK
and x0, x0, x1
adr_l x3, secondary_holding_pen_release
pen: ldr x4, [x3]
cmp x4, x0
b.eq secondary_startup
wfe
b pen
SYM_FUNC_END(secondary_holding_pen)
/*
* Secondary entry point that jumps straight into the kernel. Only to
* be used where CPUs are brought online dynamically by the kernel.
*/
SYM_FUNC_START(secondary_entry)
bl init_kernel_el // w0=cpu_boot_mode
bl set_cpu_boot_mode_flag
b secondary_startup
SYM_FUNC_END(secondary_entry)
SYM_FUNC_START_LOCAL(secondary_startup)
/*
* Common entry point for secondary CPUs.
*/
bl switch_to_vhe
bl __cpu_secondary_check52bitva
bl __cpu_setup // initialise processor
adrp x1, swapper_pg_dir
bl __enable_mmu
ldr x8, =__secondary_switched
br x8
SYM_FUNC_END(secondary_startup)
SYM_FUNC_START_LOCAL(__secondary_switched)
adr_l x5, vectors
msr vbar_el1, x5
isb
adr_l x0, secondary_data
ldr x1, [x0, #CPU_BOOT_STACK] // get secondary_data.stack
cbz x1, __secondary_too_slow
mov sp, x1
ldr x2, [x0, #CPU_BOOT_TASK]
cbz x2, __secondary_too_slow
msr sp_el0, x2
scs_load x2, x3
mov x29, #0
mov x30, #0
#ifdef CONFIG_ARM64_PTR_AUTH
ptrauth_keys_init_cpu x2, x3, x4, x5
#endif
b secondary_start_kernel
SYM_FUNC_END(__secondary_switched)
SYM_FUNC_START_LOCAL(__secondary_too_slow)
wfe
wfi
b __secondary_too_slow
SYM_FUNC_END(__secondary_too_slow)
/*
* The booting CPU updates the failed status @__early_cpu_boot_status,
* with MMU turned off.
*
* update_early_cpu_boot_status tmp, status
* - Corrupts tmp1, tmp2
* - Writes 'status' to __early_cpu_boot_status and makes sure
* it is committed to memory.
*/
.macro update_early_cpu_boot_status status, tmp1, tmp2
mov \tmp2, #\status
adr_l \tmp1, __early_cpu_boot_status
str \tmp2, [\tmp1]
dmb sy
dc ivac, \tmp1 // Invalidate potentially stale cache line
.endm
/*
* Enable the MMU.
*
* x0 = SCTLR_EL1 value for turning on the MMU.
* x1 = TTBR1_EL1 value
*
* Returns to the caller via x30/lr. This requires the caller to be covered
* by the .idmap.text section.
*
* Checks if the selected granule size is supported by the CPU.
* If it isn't, park the CPU
*/
SYM_FUNC_START(__enable_mmu)
mrs x2, ID_AA64MMFR0_EL1
ubfx x2, x2, #ID_AA64MMFR0_TGRAN_SHIFT, 4
cmp x2, #ID_AA64MMFR0_TGRAN_SUPPORTED_MIN
b.lt __no_granule_support
cmp x2, #ID_AA64MMFR0_TGRAN_SUPPORTED_MAX
b.gt __no_granule_support
update_early_cpu_boot_status 0, x2, x3
adrp x2, idmap_pg_dir
phys_to_ttbr x1, x1
phys_to_ttbr x2, x2
msr ttbr0_el1, x2 // load TTBR0
offset_ttbr1 x1, x3
msr ttbr1_el1, x1 // load TTBR1
isb
set_sctlr_el1 x0
ret
SYM_FUNC_END(__enable_mmu)
SYM_FUNC_START(__cpu_secondary_check52bitva)
#ifdef CONFIG_ARM64_VA_BITS_52
ldr_l x0, vabits_actual
cmp x0, #52
b.ne 2f
mrs_s x0, SYS_ID_AA64MMFR2_EL1
and x0, x0, #(0xf << ID_AA64MMFR2_LVA_SHIFT)
cbnz x0, 2f
update_early_cpu_boot_status \
CPU_STUCK_IN_KERNEL | CPU_STUCK_REASON_52_BIT_VA, x0, x1
1: wfe
wfi
b 1b
#endif
2: ret
SYM_FUNC_END(__cpu_secondary_check52bitva)
SYM_FUNC_START_LOCAL(__no_granule_support)
/* Indicate that this CPU can't boot and is stuck in the kernel */
update_early_cpu_boot_status \
CPU_STUCK_IN_KERNEL | CPU_STUCK_REASON_NO_GRAN, x1, x2
1:
wfe
wfi
b 1b
SYM_FUNC_END(__no_granule_support)
#ifdef CONFIG_RELOCATABLE
SYM_FUNC_START_LOCAL(__relocate_kernel)
/*
* Iterate over each entry in the relocation table, and apply the
* relocations in place.
*/
ldr w9, =__rela_offset // offset to reloc table
ldr w10, =__rela_size // size of reloc table
mov_q x11, KIMAGE_VADDR // default virtual offset
add x11, x11, x23 // actual virtual offset
add x9, x9, x11 // __va(.rela)
add x10, x9, x10 // __va(.rela) + sizeof(.rela)
0: cmp x9, x10
b.hs 1f
ldp x12, x13, [x9], #24
ldr x14, [x9, #-8]
cmp w13, #R_AARCH64_RELATIVE
b.ne 0b
add x14, x14, x23 // relocate
str x14, [x12, x23]
b 0b
1:
#ifdef CONFIG_RELR
/*
* Apply RELR relocations.
*
* RELR is a compressed format for storing relative relocations. The
* encoded sequence of entries looks like:
* [ AAAAAAAA BBBBBBB1 BBBBBBB1 ... AAAAAAAA BBBBBB1 ... ]
*
* i.e. start with an address, followed by any number of bitmaps. The
* address entry encodes 1 relocation. The subsequent bitmap entries
* encode up to 63 relocations each, at subsequent offsets following
* the last address entry.
*
* The bitmap entries must have 1 in the least significant bit. The
* assumption here is that an address cannot have 1 in lsb. Odd
* addresses are not supported. Any odd addresses are stored in the RELA
* section, which is handled above.
*
* Excluding the least significant bit in the bitmap, each non-zero
* bit in the bitmap represents a relocation to be applied to
* a corresponding machine word that follows the base address
* word. The second least significant bit represents the machine
* word immediately following the initial address, and each bit
* that follows represents the next word, in linear order. As such,
* a single bitmap can encode up to 63 relocations in a 64-bit object.
*
* In this implementation we store the address of the next RELR table
* entry in x9, the address being relocated by the current address or
* bitmap entry in x13 and the address being relocated by the current
* bit in x14.
*
* Because addends are stored in place in the binary, RELR relocations
* cannot be applied idempotently. We use x24 to keep track of the
* currently applied displacement so that we can correctly relocate if
* __relocate_kernel is called twice with non-zero displacements (i.e.
* if there is both a physical misalignment and a KASLR displacement).
*/
ldr w9, =__relr_offset // offset to reloc table
ldr w10, =__relr_size // size of reloc table
add x9, x9, x11 // __va(.relr)
add x10, x9, x10 // __va(.relr) + sizeof(.relr)
sub x15, x23, x24 // delta from previous offset
cbz x15, 7f // nothing to do if unchanged
mov x24, x23 // save new offset
2: cmp x9, x10
b.hs 7f
ldr x11, [x9], #8
tbnz x11, #0, 3f // branch to handle bitmaps
add x13, x11, x23
ldr x12, [x13] // relocate address entry
add x12, x12, x15
str x12, [x13], #8 // adjust to start of bitmap
b 2b
3: mov x14, x13
4: lsr x11, x11, #1
cbz x11, 6f
tbz x11, #0, 5f // skip bit if not set
ldr x12, [x14] // relocate bit
add x12, x12, x15
str x12, [x14]
5: add x14, x14, #8 // move to next bit's address
b 4b
6: /*
* Move to the next bitmap's address. 8 is the word size, and 63 is the
* number of significant bits in a bitmap entry.
*/
add x13, x13, #(8 * 63)
b 2b
7:
#endif
ret
SYM_FUNC_END(__relocate_kernel)
#endif
SYM_FUNC_START_LOCAL(__primary_switch)
#ifdef CONFIG_RANDOMIZE_BASE
mov x19, x0 // preserve new SCTLR_EL1 value
mrs x20, sctlr_el1 // preserve old SCTLR_EL1 value
#endif
adrp x1, init_pg_dir
bl __enable_mmu
#ifdef CONFIG_RELOCATABLE
#ifdef CONFIG_RELR
mov x24, #0 // no RELR displacement yet
#endif
bl __relocate_kernel
#ifdef CONFIG_RANDOMIZE_BASE
ldr x8, =__primary_switched
adrp x0, __PHYS_OFFSET
blr x8
/*
* If we return here, we have a KASLR displacement in x23 which we need
* to take into account by discarding the current kernel mapping and
* creating a new one.
*/
pre_disable_mmu_workaround
msr sctlr_el1, x20 // disable the MMU
isb
bl __create_page_tables // recreate kernel mapping
tlbi vmalle1 // Remove any stale TLB entries
dsb nsh
isb
set_sctlr_el1 x19 // re-enable the MMU
bl __relocate_kernel
#endif
#endif
ldr x8, =__primary_switched
adrp x0, __PHYS_OFFSET
br x8
SYM_FUNC_END(__primary_switch)
|