1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
|
============================
LINUX KERNEL MEMORY BARRIERS
============================
By: David Howells <dhowells@redhat.com>
Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Contents:
(*) Abstract memory access model.
- Device operations.
- Guarantees.
(*) What are memory barriers?
- Varieties of memory barrier.
- What may not be assumed about memory barriers?
- Data dependency barriers.
- Control dependencies.
- SMP barrier pairing.
- Examples of memory barrier sequences.
- Read memory barriers vs load speculation.
- Transitivity
(*) Explicit kernel barriers.
- Compiler barrier.
- CPU memory barriers.
- MMIO write barrier.
(*) Implicit kernel memory barriers.
- Locking functions.
- Interrupt disabling functions.
- Sleep and wake-up functions.
- Miscellaneous functions.
(*) Inter-CPU locking barrier effects.
- Locks vs memory accesses.
- Locks vs I/O accesses.
(*) Where are memory barriers needed?
- Interprocessor interaction.
- Atomic operations.
- Accessing devices.
- Interrupts.
(*) Kernel I/O barrier effects.
(*) Assumed minimum execution ordering model.
(*) The effects of the cpu cache.
- Cache coherency.
- Cache coherency vs DMA.
- Cache coherency vs MMIO.
(*) The things CPUs get up to.
- And then there's the Alpha.
(*) Example uses.
- Circular buffers.
(*) References.
============================
ABSTRACT MEMORY ACCESS MODEL
============================
Consider the following abstract model of the system:
: :
: :
: :
+-------+ : +--------+ : +-------+
| | : | | : | |
| | : | | : | |
| CPU 1 |<----->| Memory |<----->| CPU 2 |
| | : | | : | |
| | : | | : | |
+-------+ : +--------+ : +-------+
^ : ^ : ^
| : | : |
| : | : |
| : v : |
| : +--------+ : |
| : | | : |
| : | | : |
+---------->| Device |<----------+
: | | :
: | | :
: +--------+ :
: :
Each CPU executes a program that generates memory access operations. In the
abstract CPU, memory operation ordering is very relaxed, and a CPU may actually
perform the memory operations in any order it likes, provided program causality
appears to be maintained. Similarly, the compiler may also arrange the
instructions it emits in any order it likes, provided it doesn't affect the
apparent operation of the program.
So in the above diagram, the effects of the memory operations performed by a
CPU are perceived by the rest of the system as the operations cross the
interface between the CPU and rest of the system (the dotted lines).
For example, consider the following sequence of events:
CPU 1 CPU 2
=============== ===============
{ A == 1; B == 2 }
A = 3; x = A;
B = 4; y = B;
The set of accesses as seen by the memory system in the middle can be arranged
in 24 different combinations:
STORE A=3, STORE B=4, x=LOAD A->3, y=LOAD B->4
STORE A=3, STORE B=4, y=LOAD B->4, x=LOAD A->3
STORE A=3, x=LOAD A->3, STORE B=4, y=LOAD B->4
STORE A=3, x=LOAD A->3, y=LOAD B->2, STORE B=4
STORE A=3, y=LOAD B->2, STORE B=4, x=LOAD A->3
STORE A=3, y=LOAD B->2, x=LOAD A->3, STORE B=4
STORE B=4, STORE A=3, x=LOAD A->3, y=LOAD B->4
STORE B=4, ...
...
and can thus result in four different combinations of values:
x == 1, y == 2
x == 1, y == 4
x == 3, y == 2
x == 3, y == 4
Furthermore, the stores committed by a CPU to the memory system may not be
perceived by the loads made by another CPU in the same order as the stores were
committed.
As a further example, consider this sequence of events:
CPU 1 CPU 2
=============== ===============
{ A == 1, B == 2, C = 3, P == &A, Q == &C }
B = 4; Q = P;
P = &B D = *Q;
There is an obvious data dependency here, as the value loaded into D depends on
the address retrieved from P by CPU 2. At the end of the sequence, any of the
following results are possible:
(Q == &A) and (D == 1)
(Q == &B) and (D == 2)
(Q == &B) and (D == 4)
Note that CPU 2 will never try and load C into D because the CPU will load P
into Q before issuing the load of *Q.
DEVICE OPERATIONS
-----------------
Some devices present their control interfaces as collections of memory
locations, but the order in which the control registers are accessed is very
important. For instance, imagine an ethernet card with a set of internal
registers that are accessed through an address port register (A) and a data
port register (D). To read internal register 5, the following code might then
be used:
*A = 5;
x = *D;
but this might show up as either of the following two sequences:
STORE *A = 5, x = LOAD *D
x = LOAD *D, STORE *A = 5
the second of which will almost certainly result in a malfunction, since it set
the address _after_ attempting to read the register.
GUARANTEES
----------
There are some minimal guarantees that may be expected of a CPU:
(*) On any given CPU, dependent memory accesses will be issued in order, with
respect to itself. This means that for:
ACCESS_ONCE(Q) = P; smp_read_barrier_depends(); D = ACCESS_ONCE(*Q);
the CPU will issue the following memory operations:
Q = LOAD P, D = LOAD *Q
and always in that order. On most systems, smp_read_barrier_depends()
does nothing, but it is required for DEC Alpha. The ACCESS_ONCE()
is required to prevent compiler mischief. Please note that you
should normally use something like rcu_dereference() instead of
open-coding smp_read_barrier_depends().
(*) Overlapping loads and stores within a particular CPU will appear to be
ordered within that CPU. This means that for:
a = ACCESS_ONCE(*X); ACCESS_ONCE(*X) = b;
the CPU will only issue the following sequence of memory operations:
a = LOAD *X, STORE *X = b
And for:
ACCESS_ONCE(*X) = c; d = ACCESS_ONCE(*X);
the CPU will only issue:
STORE *X = c, d = LOAD *X
(Loads and stores overlap if they are targeted at overlapping pieces of
memory).
And there are a number of things that _must_ or _must_not_ be assumed:
(*) It _must_not_ be assumed that the compiler will do what you want with
memory references that are not protected by ACCESS_ONCE(). Without
ACCESS_ONCE(), the compiler is within its rights to do all sorts
of "creative" transformations:
(-) Repeat the load, possibly getting a different value on the second
and subsequent loads. This is especially prone to happen when
register pressure is high.
(-) Merge adjacent loads and stores to the same location. The most
familiar example is the transformation from:
while (a)
do_something();
to something like:
if (a)
for (;;)
do_something();
Using ACCESS_ONCE() as follows prevents this sort of optimization:
while (ACCESS_ONCE(a))
do_something();
(-) "Store tearing", where a single store in the source code is split
into smaller stores in the object code. Note that gcc really
will do this on some architectures when storing certain constants.
It can be cheaper to do a series of immediate stores than to
form the constant in a register and then to store that register.
(-) "Load tearing", which splits loads in a manner analogous to
store tearing.
(*) It _must_not_ be assumed that independent loads and stores will be issued
in the order given. This means that for:
X = *A; Y = *B; *D = Z;
we may get any of the following sequences:
X = LOAD *A, Y = LOAD *B, STORE *D = Z
X = LOAD *A, STORE *D = Z, Y = LOAD *B
Y = LOAD *B, X = LOAD *A, STORE *D = Z
Y = LOAD *B, STORE *D = Z, X = LOAD *A
STORE *D = Z, X = LOAD *A, Y = LOAD *B
STORE *D = Z, Y = LOAD *B, X = LOAD *A
(*) It _must_ be assumed that overlapping memory accesses may be merged or
discarded. This means that for:
X = *A; Y = *(A + 4);
we may get any one of the following sequences:
X = LOAD *A; Y = LOAD *(A + 4);
Y = LOAD *(A + 4); X = LOAD *A;
{X, Y} = LOAD {*A, *(A + 4) };
And for:
*A = X; *(A + 4) = Y;
we may get any of:
STORE *A = X; STORE *(A + 4) = Y;
STORE *(A + 4) = Y; STORE *A = X;
STORE {*A, *(A + 4) } = {X, Y};
=========================
WHAT ARE MEMORY BARRIERS?
=========================
As can be seen above, independent memory operations are effectively performed
in random order, but this can be a problem for CPU-CPU interaction and for I/O.
What is required is some way of intervening to instruct the compiler and the
CPU to restrict the order.
Memory barriers are such interventions. They impose a perceived partial
ordering over the memory operations on either side of the barrier.
Such enforcement is important because the CPUs and other devices in a system
can use a variety of tricks to improve performance, including reordering,
deferral and combination of memory operations; speculative loads; speculative
branch prediction and various types of caching. Memory barriers are used to
override or suppress these tricks, allowing the code to sanely control the
interaction of multiple CPUs and/or devices.
VARIETIES OF MEMORY BARRIER
---------------------------
Memory barriers come in four basic varieties:
(1) Write (or store) memory barriers.
A write memory barrier gives a guarantee that all the STORE operations
specified before the barrier will appear to happen before all the STORE
operations specified after the barrier with respect to the other
components of the system.
A write barrier is a partial ordering on stores only; it is not required
to have any effect on loads.
A CPU can be viewed as committing a sequence of store operations to the
memory system as time progresses. All stores before a write barrier will
occur in the sequence _before_ all the stores after the write barrier.
[!] Note that write barriers should normally be paired with read or data
dependency barriers; see the "SMP barrier pairing" subsection.
(2) Data dependency barriers.
A data dependency barrier is a weaker form of read barrier. In the case
where two loads are performed such that the second depends on the result
of the first (eg: the first load retrieves the address to which the second
load will be directed), a data dependency barrier would be required to
make sure that the target of the second load is updated before the address
obtained by the first load is accessed.
A data dependency barrier is a partial ordering on interdependent loads
only; it is not required to have any effect on stores, independent loads
or overlapping loads.
As mentioned in (1), the other CPUs in the system can be viewed as
committing sequences of stores to the memory system that the CPU being
considered can then perceive. A data dependency barrier issued by the CPU
under consideration guarantees that for any load preceding it, if that
load touches one of a sequence of stores from another CPU, then by the
time the barrier completes, the effects of all the stores prior to that
touched by the load will be perceptible to any loads issued after the data
dependency barrier.
See the "Examples of memory barrier sequences" subsection for diagrams
showing the ordering constraints.
[!] Note that the first load really has to have a _data_ dependency and
not a control dependency. If the address for the second load is dependent
on the first load, but the dependency is through a conditional rather than
actually loading the address itself, then it's a _control_ dependency and
a full read barrier or better is required. See the "Control dependencies"
subsection for more information.
[!] Note that data dependency barriers should normally be paired with
write barriers; see the "SMP barrier pairing" subsection.
(3) Read (or load) memory barriers.
A read barrier is a data dependency barrier plus a guarantee that all the
LOAD operations specified before the barrier will appear to happen before
all the LOAD operations specified after the barrier with respect to the
other components of the system.
A read barrier is a partial ordering on loads only; it is not required to
have any effect on stores.
Read memory barriers imply data dependency barriers, and so can substitute
for them.
[!] Note that read barriers should normally be paired with write barriers;
see the "SMP barrier pairing" subsection.
(4) General memory barriers.
A general memory barrier gives a guarantee that all the LOAD and STORE
operations specified before the barrier will appear to happen before all
the LOAD and STORE operations specified after the barrier with respect to
the other components of the system.
A general memory barrier is a partial ordering over both loads and stores.
General memory barriers imply both read and write memory barriers, and so
can substitute for either.
And a couple of implicit varieties:
(5) LOCK operations.
This acts as a one-way permeable barrier. It guarantees that all memory
operations after the LOCK operation will appear to happen after the LOCK
operation with respect to the other components of the system.
Memory operations that occur before a LOCK operation may appear to happen
after it completes.
A LOCK operation should almost always be paired with an UNLOCK operation.
(6) UNLOCK operations.
This also acts as a one-way permeable barrier. It guarantees that all
memory operations before the UNLOCK operation will appear to happen before
the UNLOCK operation with respect to the other components of the system.
Memory operations that occur after an UNLOCK operation may appear to
happen before it completes.
LOCK and UNLOCK operations are guaranteed to appear with respect to each
other strictly in the order specified.
The use of LOCK and UNLOCK operations generally precludes the need for
other sorts of memory barrier (but note the exceptions mentioned in the
subsection "MMIO write barrier").
Memory barriers are only required where there's a possibility of interaction
between two CPUs or between a CPU and a device. If it can be guaranteed that
there won't be any such interaction in any particular piece of code, then
memory barriers are unnecessary in that piece of code.
Note that these are the _minimum_ guarantees. Different architectures may give
more substantial guarantees, but they may _not_ be relied upon outside of arch
specific code.
WHAT MAY NOT BE ASSUMED ABOUT MEMORY BARRIERS?
----------------------------------------------
There are certain things that the Linux kernel memory barriers do not guarantee:
(*) There is no guarantee that any of the memory accesses specified before a
memory barrier will be _complete_ by the completion of a memory barrier
instruction; the barrier can be considered to draw a line in that CPU's
access queue that accesses of the appropriate type may not cross.
(*) There is no guarantee that issuing a memory barrier on one CPU will have
any direct effect on another CPU or any other hardware in the system. The
indirect effect will be the order in which the second CPU sees the effects
of the first CPU's accesses occur, but see the next point:
(*) There is no guarantee that a CPU will see the correct order of effects
from a second CPU's accesses, even _if_ the second CPU uses a memory
barrier, unless the first CPU _also_ uses a matching memory barrier (see
the subsection on "SMP Barrier Pairing").
(*) There is no guarantee that some intervening piece of off-the-CPU
hardware[*] will not reorder the memory accesses. CPU cache coherency
mechanisms should propagate the indirect effects of a memory barrier
between CPUs, but might not do so in order.
[*] For information on bus mastering DMA and coherency please read:
Documentation/PCI/pci.txt
Documentation/DMA-API-HOWTO.txt
Documentation/DMA-API.txt
DATA DEPENDENCY BARRIERS
------------------------
The usage requirements of data dependency barriers are a little subtle, and
it's not always obvious that they're needed. To illustrate, consider the
following sequence of events:
CPU 1 CPU 2
=============== ===============
{ A == 1, B == 2, C = 3, P == &A, Q == &C }
B = 4;
<write barrier>
ACCESS_ONCE(P) = &B
Q = ACCESS_ONCE(P);
D = *Q;
There's a clear data dependency here, and it would seem that by the end of the
sequence, Q must be either &A or &B, and that:
(Q == &A) implies (D == 1)
(Q == &B) implies (D == 4)
But! CPU 2's perception of P may be updated _before_ its perception of B, thus
leading to the following situation:
(Q == &B) and (D == 2) ????
Whilst this may seem like a failure of coherency or causality maintenance, it
isn't, and this behaviour can be observed on certain real CPUs (such as the DEC
Alpha).
To deal with this, a data dependency barrier or better must be inserted
between the address load and the data load:
CPU 1 CPU 2
=============== ===============
{ A == 1, B == 2, C = 3, P == &A, Q == &C }
B = 4;
<write barrier>
ACCESS_ONCE(P) = &B
Q = ACCESS_ONCE(P);
<data dependency barrier>
D = *Q;
This enforces the occurrence of one of the two implications, and prevents the
third possibility from arising.
[!] Note that this extremely counterintuitive situation arises most easily on
machines with split caches, so that, for example, one cache bank processes
even-numbered cache lines and the other bank processes odd-numbered cache
lines. The pointer P might be stored in an odd-numbered cache line, and the
variable B might be stored in an even-numbered cache line. Then, if the
even-numbered bank of the reading CPU's cache is extremely busy while the
odd-numbered bank is idle, one can see the new value of the pointer P (&B),
but the old value of the variable B (2).
Another example of where data dependency barriers might be required is where a
number is read from memory and then used to calculate the index for an array
access:
CPU 1 CPU 2
=============== ===============
{ M[0] == 1, M[1] == 2, M[3] = 3, P == 0, Q == 3 }
M[1] = 4;
<write barrier>
ACCESS_ONCE(P) = 1
Q = ACCESS_ONCE(P);
<data dependency barrier>
D = M[Q];
The data dependency barrier is very important to the RCU system,
for example. See rcu_assign_pointer() and rcu_dereference() in
include/linux/rcupdate.h. This permits the current target of an RCU'd
pointer to be replaced with a new modified target, without the replacement
target appearing to be incompletely initialised.
See also the subsection on "Cache Coherency" for a more thorough example.
CONTROL DEPENDENCIES
--------------------
A control dependency requires a full read memory barrier, not simply a data
dependency barrier to make it work correctly. Consider the following bit of
code:
q = ACCESS_ONCE(a);
if (p) {
<data dependency barrier>
q = ACCESS_ONCE(b);
}
x = *q;
This will not have the desired effect because there is no actual data
dependency, but rather a control dependency that the CPU may short-circuit
by attempting to predict the outcome in advance, so that other CPUs see
the load from b as having happened before the load from a. In such a
case what's actually required is:
q = ACCESS_ONCE(a);
if (p) {
<read barrier>
q = ACCESS_ONCE(b);
}
x = *q;
SMP BARRIER PAIRING
-------------------
When dealing with CPU-CPU interactions, certain types of memory barrier should
always be paired. A lack of appropriate pairing is almost certainly an error.
A write barrier should always be paired with a data dependency barrier or read
barrier, though a general barrier would also be viable. Similarly a read
barrier or a data dependency barrier should always be paired with at least an
write barrier, though, again, a general barrier is viable:
CPU 1 CPU 2
=============== ===============
ACCESS_ONCE(a) = 1;
<write barrier>
ACCESS_ONCE(b) = 2; x = ACCESS_ONCE(b);
<read barrier>
y = ACCESS_ONCE(a);
Or:
CPU 1 CPU 2
=============== ===============================
a = 1;
<write barrier>
ACCESS_ONCE(b) = &a; x = ACCESS_ONCE(b);
<data dependency barrier>
y = *x;
Basically, the read barrier always has to be there, even though it can be of
the "weaker" type.
[!] Note that the stores before the write barrier would normally be expected to
match the loads after the read barrier or the data dependency barrier, and vice
versa:
CPU 1 CPU 2
=================== ===================
ACCESS_ONCE(a) = 1; }---- --->{ v = ACCESS_ONCE(c);
ACCESS_ONCE(b) = 2; } \ / { w = ACCESS_ONCE(d);
<write barrier> \ <read barrier>
ACCESS_ONCE(c) = 3; } / \ { x = ACCESS_ONCE(a);
ACCESS_ONCE(d) = 4; }---- --->{ y = ACCESS_ONCE(b);
EXAMPLES OF MEMORY BARRIER SEQUENCES
------------------------------------
Firstly, write barriers act as partial orderings on store operations.
Consider the following sequence of events:
CPU 1
=======================
STORE A = 1
STORE B = 2
STORE C = 3
<write barrier>
STORE D = 4
STORE E = 5
This sequence of events is committed to the memory coherence system in an order
that the rest of the system might perceive as the unordered set of { STORE A,
STORE B, STORE C } all occurring before the unordered set of { STORE D, STORE E
}:
+-------+ : :
| | +------+
| |------>| C=3 | } /\
| | : +------+ }----- \ -----> Events perceptible to
| | : | A=1 | } \/ the rest of the system
| | : +------+ }
| CPU 1 | : | B=2 | }
| | +------+ }
| | wwwwwwwwwwwwwwww } <--- At this point the write barrier
| | +------+ } requires all stores prior to the
| | : | E=5 | } barrier to be committed before
| | : +------+ } further stores may take place
| |------>| D=4 | }
| | +------+
+-------+ : :
|
| Sequence in which stores are committed to the
| memory system by CPU 1
V
Secondly, data dependency barriers act as partial orderings on data-dependent
loads. Consider the following sequence of events:
CPU 1 CPU 2
======================= =======================
{ B = 7; X = 9; Y = 8; C = &Y }
STORE A = 1
STORE B = 2
<write barrier>
STORE C = &B LOAD X
STORE D = 4 LOAD C (gets &B)
LOAD *C (reads B)
Without intervention, CPU 2 may perceive the events on CPU 1 in some
effectively random order, despite the write barrier issued by CPU 1:
+-------+ : : : :
| | +------+ +-------+ | Sequence of update
| |------>| B=2 |----- --->| Y->8 | | of perception on
| | : +------+ \ +-------+ | CPU 2
| CPU 1 | : | A=1 | \ --->| C->&Y | V
| | +------+ | +-------+
| | wwwwwwwwwwwwwwww | : :
| | +------+ | : :
| | : | C=&B |--- | : : +-------+
| | : +------+ \ | +-------+ | |
| |------>| D=4 | ----------->| C->&B |------>| |
| | +------+ | +-------+ | |
+-------+ : : | : : | |
| : : | |
| : : | CPU 2 |
| +-------+ | |
Apparently incorrect ---> | | B->7 |------>| |
perception of B (!) | +-------+ | |
| : : | |
| +-------+ | |
The load of X holds ---> \ | X->9 |------>| |
up the maintenance \ +-------+ | |
of coherence of B ----->| B->2 | +-------+
+-------+
: :
In the above example, CPU 2 perceives that B is 7, despite the load of *C
(which would be B) coming after the LOAD of C.
If, however, a data dependency barrier were to be placed between the load of C
and the load of *C (ie: B) on CPU 2:
CPU 1 CPU 2
======================= =======================
{ B = 7; X = 9; Y = 8; C = &Y }
STORE A = 1
STORE B = 2
<write barrier>
STORE C = &B LOAD X
STORE D = 4 LOAD C (gets &B)
<data dependency barrier>
LOAD *C (reads B)
then the following will occur:
+-------+ : : : :
| | +------+ +-------+
| |------>| B=2 |----- --->| Y->8 |
| | : +------+ \ +-------+
| CPU 1 | : | A=1 | \ --->| C->&Y |
| | +------+ | +-------+
| | wwwwwwwwwwwwwwww | : :
| | +------+ | : :
| | : | C=&B |--- | : : +-------+
| | : +------+ \ | +-------+ | |
| |------>| D=4 | ----------->| C->&B |------>| |
| | +------+ | +-------+ | |
+-------+ : : | : : | |
| : : | |
| : : | CPU 2 |
| +-------+ | |
| | X->9 |------>| |
| +-------+ | |
Makes sure all effects ---> \ ddddddddddddddddd | |
prior to the store of C \ +-------+ | |
are perceptible to ----->| B->2 |------>| |
subsequent loads +-------+ | |
: : +-------+
And thirdly, a read barrier acts as a partial order on loads. Consider the
following sequence of events:
CPU 1 CPU 2
======================= =======================
{ A = 0, B = 9 }
STORE A=1
<write barrier>
STORE B=2
LOAD B
LOAD A
Without intervention, CPU 2 may then choose to perceive the events on CPU 1 in
some effectively random order, despite the write barrier issued by CPU 1:
+-------+ : : : :
| | +------+ +-------+
| |------>| A=1 |------ --->| A->0 |
| | +------+ \ +-------+
| CPU 1 | wwwwwwwwwwwwwwww \ --->| B->9 |
| | +------+ | +-------+
| |------>| B=2 |--- | : :
| | +------+ \ | : : +-------+
+-------+ : : \ | +-------+ | |
---------->| B->2 |------>| |
| +-------+ | CPU 2 |
| | A->0 |------>| |
| +-------+ | |
| : : +-------+
\ : :
\ +-------+
---->| A->1 |
+-------+
: :
If, however, a read barrier were to be placed between the load of B and the
load of A on CPU 2:
CPU 1 CPU 2
======================= =======================
{ A = 0, B = 9 }
STORE A=1
<write barrier>
STORE B=2
LOAD B
<read barrier>
LOAD A
then the partial ordering imposed by CPU 1 will be perceived correctly by CPU
2:
+-------+ : : : :
| | +------+ +-------+
| |------>| A=1 |------ --->| A->0 |
| | +------+ \ +-------+
| CPU 1 | wwwwwwwwwwwwwwww \ --->| B->9 |
| | +------+ | +-------+
| |------>| B=2 |--- | : :
| | +------+ \ | : : +-------+
+-------+ : : \ | +-------+ | |
---------->| B->2 |------>| |
| +-------+ | CPU 2 |
| : : | |
| : : | |
At this point the read ----> \ rrrrrrrrrrrrrrrrr | |
barrier causes all effects \ +-------+ | |
prior to the storage of B ---->| A->1 |------>| |
to be perceptible to CPU 2 +-------+ | |
: : +-------+
To illustrate this more completely, consider what could happen if the code
contained a load of A either side of the read barrier:
CPU 1 CPU 2
======================= =======================
{ A = 0, B = 9 }
STORE A=1
<write barrier>
STORE B=2
LOAD B
LOAD A [first load of A]
<read barrier>
LOAD A [second load of A]
Even though the two loads of A both occur after the load of B, they may both
come up with different values:
+-------+ : : : :
| | +------+ +-------+
| |------>| A=1 |------ --->| A->0 |
| | +------+ \ +-------+
| CPU 1 | wwwwwwwwwwwwwwww \ --->| B->9 |
| | +------+ | +-------+
| |------>| B=2 |--- | : :
| | +------+ \ | : : +-------+
+-------+ : : \ | +-------+ | |
---------->| B->2 |------>| |
| +-------+ | CPU 2 |
| : : | |
| : : | |
| +-------+ | |
| | A->0 |------>| 1st |
| +-------+ | |
At this point the read ----> \ rrrrrrrrrrrrrrrrr | |
barrier causes all effects \ +-------+ | |
prior to the storage of B ---->| A->1 |------>| 2nd |
to be perceptible to CPU 2 +-------+ | |
: : +-------+
But it may be that the update to A from CPU 1 becomes perceptible to CPU 2
before the read barrier completes anyway:
+-------+ : : : :
| | +------+ +-------+
| |------>| A=1 |------ --->| A->0 |
| | +------+ \ +-------+
| CPU 1 | wwwwwwwwwwwwwwww \ --->| B->9 |
| | +------+ | +-------+
| |------>| B=2 |--- | : :
| | +------+ \ | : : +-------+
+-------+ : : \ | +-------+ | |
---------->| B->2 |------>| |
| +-------+ | CPU 2 |
| : : | |
\ : : | |
\ +-------+ | |
---->| A->1 |------>| 1st |
+-------+ | |
rrrrrrrrrrrrrrrrr | |
+-------+ | |
| A->1 |------>| 2nd |
+-------+ | |
: : +-------+
The guarantee is that the second load will always come up with A == 1 if the
load of B came up with B == 2. No such guarantee exists for the first load of
A; that may come up with either A == 0 or A == 1.
READ MEMORY BARRIERS VS LOAD SPECULATION
----------------------------------------
Many CPUs speculate with loads: that is they see that they will need to load an
item from memory, and they find a time where they're not using the bus for any
other loads, and so do the load in advance - even though they haven't actually
got to that point in the instruction execution flow yet. This permits the
actual load instruction to potentially complete immediately because the CPU
already has the value to hand.
It may turn out that the CPU didn't actually need the value - perhaps because a
branch circumvented the load - in which case it can discard the value or just
cache it for later use.
Consider:
CPU 1 CPU 2
======================= =======================
LOAD B
DIVIDE } Divide instructions generally
DIVIDE } take a long time to perform
LOAD A
Which might appear as this:
: : +-------+
+-------+ | |
--->| B->2 |------>| |
+-------+ | CPU 2 |
: :DIVIDE | |
+-------+ | |
The CPU being busy doing a ---> --->| A->0 |~~~~ | |
division speculates on the +-------+ ~ | |
LOAD of A : : ~ | |
: :DIVIDE | |
: : ~ | |
Once the divisions are complete --> : : ~-->| |
the CPU can then perform the : : | |
LOAD with immediate effect : : +-------+
Placing a read barrier or a data dependency barrier just before the second
load:
CPU 1 CPU 2
======================= =======================
LOAD B
DIVIDE
DIVIDE
<read barrier>
LOAD A
will force any value speculatively obtained to be reconsidered to an extent
dependent on the type of barrier used. If there was no change made to the
speculated memory location, then the speculated value will just be used:
: : +-------+
+-------+ | |
--->| B->2 |------>| |
+-------+ | CPU 2 |
: :DIVIDE | |
+-------+ | |
The CPU being busy doing a ---> --->| A->0 |~~~~ | |
division speculates on the +-------+ ~ | |
LOAD of A : : ~ | |
: :DIVIDE | |
: : ~ | |
: : ~ | |
rrrrrrrrrrrrrrrr~ | |
: : ~ | |
: : ~-->| |
: : | |
: : +-------+
but if there was an update or an invalidation from another CPU pending, then
the speculation will be cancelled and the value reloaded:
: : +-------+
+-------+ | |
--->| B->2 |------>| |
+-------+ | CPU 2 |
: :DIVIDE | |
+-------+ | |
The CPU being busy doing a ---> --->| A->0 |~~~~ | |
division speculates on the +-------+ ~ | |
LOAD of A : : ~ | |
: :DIVIDE | |
: : ~ | |
: : ~ | |
rrrrrrrrrrrrrrrrr | |
+-------+ | |
The speculation is discarded ---> --->| A->1 |------>| |
and an updated value is +-------+ | |
retrieved : : +-------+
TRANSITIVITY
------------
Transitivity is a deeply intuitive notion about ordering that is not
always provided by real computer systems. The following example
demonstrates transitivity (also called "cumulativity"):
CPU 1 CPU 2 CPU 3
======================= ======================= =======================
{ X = 0, Y = 0 }
STORE X=1 LOAD X STORE Y=1
<general barrier> <general barrier>
LOAD Y LOAD X
Suppose that CPU 2's load from X returns 1 and its load from Y returns 0.
This indicates that CPU 2's load from X in some sense follows CPU 1's
store to X and that CPU 2's load from Y in some sense preceded CPU 3's
store to Y. The question is then "Can CPU 3's load from X return 0?"
Because CPU 2's load from X in some sense came after CPU 1's store, it
is natural to expect that CPU 3's load from X must therefore return 1.
This expectation is an example of transitivity: if a load executing on
CPU A follows a load from the same variable executing on CPU B, then
CPU A's load must either return the same value that CPU B's load did,
or must return some later value.
In the Linux kernel, use of general memory barriers guarantees
transitivity. Therefore, in the above example, if CPU 2's load from X
returns 1 and its load from Y returns 0, then CPU 3's load from X must
also return 1.
However, transitivity is -not- guaranteed for read or write barriers.
For example, suppose that CPU 2's general barrier in the above example
is changed to a read barrier as shown below:
CPU 1 CPU 2 CPU 3
======================= ======================= =======================
{ X = 0, Y = 0 }
STORE X=1 LOAD X STORE Y=1
<read barrier> <general barrier>
LOAD Y LOAD X
This substitution destroys transitivity: in this example, it is perfectly
legal for CPU 2's load from X to return 1, its load from Y to return 0,
and CPU 3's load from X to return 0.
The key point is that although CPU 2's read barrier orders its pair
of loads, it does not guarantee to order CPU 1's store. Therefore, if
this example runs on a system where CPUs 1 and 2 share a store buffer
or a level of cache, CPU 2 might have early access to CPU 1's writes.
General barriers are therefore required to ensure that all CPUs agree
on the combined order of CPU 1's and CPU 2's accesses.
To reiterate, if your code requires transitivity, use general barriers
throughout.
========================
EXPLICIT KERNEL BARRIERS
========================
The Linux kernel has a variety of different barriers that act at different
levels:
(*) Compiler barrier.
(*) CPU memory barriers.
(*) MMIO write barrier.
COMPILER BARRIER
----------------
The Linux kernel has an explicit compiler barrier function that prevents the
compiler from moving the memory accesses either side of it to the other side:
barrier();
This is a general barrier - lesser varieties of compiler barrier do not exist.
The compiler barrier has no direct effect on the CPU, which may then reorder
things however it wishes.
CPU MEMORY BARRIERS
-------------------
The Linux kernel has eight basic CPU memory barriers:
TYPE MANDATORY SMP CONDITIONAL
=============== ======================= ===========================
GENERAL mb() smp_mb()
WRITE wmb() smp_wmb()
READ rmb() smp_rmb()
DATA DEPENDENCY read_barrier_depends() smp_read_barrier_depends()
All memory barriers except the data dependency barriers imply a compiler
barrier. Data dependencies do not impose any additional compiler ordering.
Aside: In the case of data dependencies, the compiler would be expected to
issue the loads in the correct order (eg. `a[b]` would have to load the value
of b before loading a[b]), however there is no guarantee in the C specification
that the compiler may not speculate the value of b (eg. is equal to 1) and load
a before b (eg. tmp = a[1]; if (b != 1) tmp = a[b]; ). There is also the
problem of a compiler reloading b after having loaded a[b], thus having a newer
copy of b than a[b]. A consensus has not yet been reached about these problems,
however the ACCESS_ONCE macro is a good place to start looking.
SMP memory barriers are reduced to compiler barriers on uniprocessor compiled
systems because it is assumed that a CPU will appear to be self-consistent,
and will order overlapping accesses correctly with respect to itself.
[!] Note that SMP memory barriers _must_ be used to control the ordering of
references to shared memory on SMP systems, though the use of locking instead
is sufficient.
Mandatory barriers should not be used to control SMP effects, since mandatory
barriers unnecessarily impose overhead on UP systems. They may, however, be
used to control MMIO effects on accesses through relaxed memory I/O windows.
These are required even on non-SMP systems as they affect the order in which
memory operations appear to a device by prohibiting both the compiler and the
CPU from reordering them.
There are some more advanced barrier functions:
(*) set_mb(var, value)
This assigns the value to the variable and then inserts a full memory
barrier after it, depending on the function. It isn't guaranteed to
insert anything more than a compiler barrier in a UP compilation.
(*) smp_mb__before_atomic_dec();
(*) smp_mb__after_atomic_dec();
(*) smp_mb__before_atomic_inc();
(*) smp_mb__after_atomic_inc();
These are for use with atomic add, subtract, increment and decrement
functions that don't return a value, especially when used for reference
counting. These functions do not imply memory barriers.
As an example, consider a piece of code that marks an object as being dead
and then decrements the object's reference count:
obj->dead = 1;
smp_mb__before_atomic_dec();
atomic_dec(&obj->ref_count);
This makes sure that the death mark on the object is perceived to be set
*before* the reference counter is decremented.
See Documentation/atomic_ops.txt for more information. See the "Atomic
operations" subsection for information on where to use these.
(*) smp_mb__before_clear_bit(void);
(*) smp_mb__after_clear_bit(void);
These are for use similar to the atomic inc/dec barriers. These are
typically used for bitwise unlocking operations, so care must be taken as
there are no implicit memory barriers here either.
Consider implementing an unlock operation of some nature by clearing a
locking bit. The clear_bit() would then need to be barriered like this:
smp_mb__before_clear_bit();
clear_bit( ... );
This prevents memory operations before the clear leaking to after it. See
the subsection on "Locking Functions" with reference to UNLOCK operation
implications.
See Documentation/atomic_ops.txt for more information. See the "Atomic
operations" subsection for information on where to use these.
MMIO WRITE BARRIER
------------------
The Linux kernel also has a special barrier for use with memory-mapped I/O
writes:
mmiowb();
This is a variation on the mandatory write barrier that causes writes to weakly
ordered I/O regions to be partially ordered. Its effects may go beyond the
CPU->Hardware interface and actually affect the hardware at some level.
See the subsection "Locks vs I/O accesses" for more information.
===============================
IMPLICIT KERNEL MEMORY BARRIERS
===============================
Some of the other functions in the linux kernel imply memory barriers, amongst
which are locking and scheduling functions.
This specification is a _minimum_ guarantee; any particular architecture may
provide more substantial guarantees, but these may not be relied upon outside
of arch specific code.
LOCKING FUNCTIONS
-----------------
The Linux kernel has a number of locking constructs:
(*) spin locks
(*) R/W spin locks
(*) mutexes
(*) semaphores
(*) R/W semaphores
(*) RCU
In all cases there are variants on "LOCK" operations and "UNLOCK" operations
for each construct. These operations all imply certain barriers:
(1) LOCK operation implication:
Memory operations issued after the LOCK will be completed after the LOCK
operation has completed.
Memory operations issued before the LOCK may be completed after the LOCK
operation has completed.
(2) UNLOCK operation implication:
Memory operations issued before the UNLOCK will be completed before the
UNLOCK operation has completed.
Memory operations issued after the UNLOCK may be completed before the
UNLOCK operation has completed.
(3) LOCK vs LOCK implication:
All LOCK operations issued before another LOCK operation will be completed
before that LOCK operation.
(4) LOCK vs UNLOCK implication:
All LOCK operations issued before an UNLOCK operation will be completed
before the UNLOCK operation.
All UNLOCK operations issued before a LOCK operation will be completed
before the LOCK operation.
(5) Failed conditional LOCK implication:
Certain variants of the LOCK operation may fail, either due to being
unable to get the lock immediately, or due to receiving an unblocked
signal whilst asleep waiting for the lock to become available. Failed
locks do not imply any sort of barrier.
Therefore, from (1), (2) and (4) an UNLOCK followed by an unconditional LOCK is
equivalent to a full barrier, but a LOCK followed by an UNLOCK is not.
[!] Note: one of the consequences of LOCKs and UNLOCKs being only one-way
barriers is that the effects of instructions outside of a critical section
may seep into the inside of the critical section.
A LOCK followed by an UNLOCK may not be assumed to be full memory barrier
because it is possible for an access preceding the LOCK to happen after the
LOCK, and an access following the UNLOCK to happen before the UNLOCK, and the
two accesses can themselves then cross:
*A = a;
LOCK
UNLOCK
*B = b;
may occur as:
LOCK, STORE *B, STORE *A, UNLOCK
Locks and semaphores may not provide any guarantee of ordering on UP compiled
systems, and so cannot be counted on in such a situation to actually achieve
anything at all - especially with respect to I/O accesses - unless combined
with interrupt disabling operations.
See also the section on "Inter-CPU locking barrier effects".
As an example, consider the following:
*A = a;
*B = b;
LOCK
*C = c;
*D = d;
UNLOCK
*E = e;
*F = f;
The following sequence of events is acceptable:
LOCK, {*F,*A}, *E, {*C,*D}, *B, UNLOCK
[+] Note that {*F,*A} indicates a combined access.
But none of the following are:
{*F,*A}, *B, LOCK, *C, *D, UNLOCK, *E
*A, *B, *C, LOCK, *D, UNLOCK, *E, *F
*A, *B, LOCK, *C, UNLOCK, *D, *E, *F
*B, LOCK, *C, *D, UNLOCK, {*F,*A}, *E
INTERRUPT DISABLING FUNCTIONS
-----------------------------
Functions that disable interrupts (LOCK equivalent) and enable interrupts
(UNLOCK equivalent) will act as compiler barriers only. So if memory or I/O
barriers are required in such a situation, they must be provided from some
other means.
SLEEP AND WAKE-UP FUNCTIONS
---------------------------
Sleeping and waking on an event flagged in global data can be viewed as an
interaction between two pieces of data: the task state of the task waiting for
the event and the global data used to indicate the event. To make sure that
these appear to happen in the right order, the primitives to begin the process
of going to sleep, and the primitives to initiate a wake up imply certain
barriers.
Firstly, the sleeper normally follows something like this sequence of events:
for (;;) {
set_current_state(TASK_UNINTERRUPTIBLE);
if (event_indicated)
break;
schedule();
}
A general memory barrier is interpolated automatically by set_current_state()
after it has altered the task state:
CPU 1
===============================
set_current_state();
set_mb();
STORE current->state
<general barrier>
LOAD event_indicated
set_current_state() may be wrapped by:
prepare_to_wait();
prepare_to_wait_exclusive();
which therefore also imply a general memory barrier after setting the state.
The whole sequence above is available in various canned forms, all of which
interpolate the memory barrier in the right place:
wait_event();
wait_event_interruptible();
wait_event_interruptible_exclusive();
wait_event_interruptible_timeout();
wait_event_killable();
wait_event_timeout();
wait_on_bit();
wait_on_bit_lock();
Secondly, code that performs a wake up normally follows something like this:
event_indicated = 1;
wake_up(&event_wait_queue);
or:
event_indicated = 1;
wake_up_process(event_daemon);
A write memory barrier is implied by wake_up() and co. if and only if they wake
something up. The barrier occurs before the task state is cleared, and so sits
between the STORE to indicate the event and the STORE to set TASK_RUNNING:
CPU 1 CPU 2
=============================== ===============================
set_current_state(); STORE event_indicated
set_mb(); wake_up();
STORE current->state <write barrier>
<general barrier> STORE current->state
LOAD event_indicated
The available waker functions include:
complete();
wake_up();
wake_up_all();
wake_up_bit();
wake_up_interruptible();
wake_up_interruptible_all();
wake_up_interruptible_nr();
wake_up_interruptible_poll();
wake_up_interruptible_sync();
wake_up_interruptible_sync_poll();
wake_up_locked();
wake_up_locked_poll();
wake_up_nr();
wake_up_poll();
wake_up_process();
[!] Note that the memory barriers implied by the sleeper and the waker do _not_
order multiple stores before the wake-up with respect to loads of those stored
values after the sleeper has called set_current_state(). For instance, if the
sleeper does:
set_current_state(TASK_INTERRUPTIBLE);
if (event_indicated)
break;
__set_current_state(TASK_RUNNING);
do_something(my_data);
and the waker does:
my_data = value;
event_indicated = 1;
wake_up(&event_wait_queue);
there's no guarantee that the change to event_indicated will be perceived by
the sleeper as coming after the change to my_data. In such a circumstance, the
code on both sides must interpolate its own memory barriers between the
separate data accesses. Thus the above sleeper ought to do:
set_current_state(TASK_INTERRUPTIBLE);
if (event_indicated) {
smp_rmb();
do_something(my_data);
}
and the waker should do:
my_data = value;
smp_wmb();
event_indicated = 1;
wake_up(&event_wait_queue);
MISCELLANEOUS FUNCTIONS
-----------------------
Other functions that imply barriers:
(*) schedule() and similar imply full memory barriers.
=================================
INTER-CPU LOCKING BARRIER EFFECTS
=================================
On SMP systems locking primitives give a more substantial form of barrier: one
that does affect memory access ordering on other CPUs, within the context of
conflict on any particular lock.
LOCKS VS MEMORY ACCESSES
------------------------
Consider the following: the system has a pair of spinlocks (M) and (Q), and
three CPUs; then should the following sequence of events occur:
CPU 1 CPU 2
=============================== ===============================
ACCESS_ONCE(*A) = a; ACCESS_ONCE(*E) = e;
LOCK M LOCK Q
ACCESS_ONCE(*B) = b; ACCESS_ONCE(*F) = f;
ACCESS_ONCE(*C) = c; ACCESS_ONCE(*G) = g;
UNLOCK M UNLOCK Q
ACCESS_ONCE(*D) = d; ACCESS_ONCE(*H) = h;
Then there is no guarantee as to what order CPU 3 will see the accesses to *A
through *H occur in, other than the constraints imposed by the separate locks
on the separate CPUs. It might, for example, see:
*E, LOCK M, LOCK Q, *G, *C, *F, *A, *B, UNLOCK Q, *D, *H, UNLOCK M
But it won't see any of:
*B, *C or *D preceding LOCK M
*A, *B or *C following UNLOCK M
*F, *G or *H preceding LOCK Q
*E, *F or *G following UNLOCK Q
However, if the following occurs:
CPU 1 CPU 2
=============================== ===============================
ACCESS_ONCE(*A) = a;
LOCK M [1]
ACCESS_ONCE(*B) = b;
ACCESS_ONCE(*C) = c;
UNLOCK M [1]
ACCESS_ONCE(*D) = d; ACCESS_ONCE(*E) = e;
LOCK M [2]
ACCESS_ONCE(*F) = f;
ACCESS_ONCE(*G) = g;
UNLOCK M [2]
ACCESS_ONCE(*H) = h;
CPU 3 might see:
*E, LOCK M [1], *C, *B, *A, UNLOCK M [1],
LOCK M [2], *H, *F, *G, UNLOCK M [2], *D
But assuming CPU 1 gets the lock first, CPU 3 won't see any of:
*B, *C, *D, *F, *G or *H preceding LOCK M [1]
*A, *B or *C following UNLOCK M [1]
*F, *G or *H preceding LOCK M [2]
*A, *B, *C, *E, *F or *G following UNLOCK M [2]
LOCKS VS I/O ACCESSES
---------------------
Under certain circumstances (especially involving NUMA), I/O accesses within
two spinlocked sections on two different CPUs may be seen as interleaved by the
PCI bridge, because the PCI bridge does not necessarily participate in the
cache-coherence protocol, and is therefore incapable of issuing the required
read memory barriers.
For example:
CPU 1 CPU 2
=============================== ===============================
spin_lock(Q)
writel(0, ADDR)
writel(1, DATA);
spin_unlock(Q);
spin_lock(Q);
writel(4, ADDR);
writel(5, DATA);
spin_unlock(Q);
may be seen by the PCI bridge as follows:
STORE *ADDR = 0, STORE *ADDR = 4, STORE *DATA = 1, STORE *DATA = 5
which would probably cause the hardware to malfunction.
What is necessary here is to intervene with an mmiowb() before dropping the
spinlock, for example:
CPU 1 CPU 2
=============================== ===============================
spin_lock(Q)
writel(0, ADDR)
writel(1, DATA);
mmiowb();
spin_unlock(Q);
spin_lock(Q);
writel(4, ADDR);
writel(5, DATA);
mmiowb();
spin_unlock(Q);
this will ensure that the two stores issued on CPU 1 appear at the PCI bridge
before either of the stores issued on CPU 2.
Furthermore, following a store by a load from the same device obviates the need
for the mmiowb(), because the load forces the store to complete before the load
is performed:
CPU 1 CPU 2
=============================== ===============================
spin_lock(Q)
writel(0, ADDR)
a = readl(DATA);
spin_unlock(Q);
spin_lock(Q);
writel(4, ADDR);
b = readl(DATA);
spin_unlock(Q);
See Documentation/DocBook/deviceiobook.tmpl for more information.
=================================
WHERE ARE MEMORY BARRIERS NEEDED?
=================================
Under normal operation, memory operation reordering is generally not going to
be a problem as a single-threaded linear piece of code will still appear to
work correctly, even if it's in an SMP kernel. There are, however, four
circumstances in which reordering definitely _could_ be a problem:
(*) Interprocessor interaction.
(*) Atomic operations.
(*) Accessing devices.
(*) Interrupts.
INTERPROCESSOR INTERACTION
--------------------------
When there's a system with more than one processor, more than one CPU in the
system may be working on the same data set at the same time. This can cause
synchronisation problems, and the usual way of dealing with them is to use
locks. Locks, however, are quite expensive, and so it may be preferable to
operate without the use of a lock if at all possible. In such a case
operations that affect both CPUs may have to be carefully ordered to prevent
a malfunction.
Consider, for example, the R/W semaphore slow path. Here a waiting process is
queued on the semaphore, by virtue of it having a piece of its stack linked to
the semaphore's list of waiting processes:
struct rw_semaphore {
...
spinlock_t lock;
struct list_head waiters;
};
struct rwsem_waiter {
struct list_head list;
struct task_struct *task;
};
To wake up a particular waiter, the up_read() or up_write() functions have to:
(1) read the next pointer from this waiter's record to know as to where the
next waiter record is;
(2) read the pointer to the waiter's task structure;
(3) clear the task pointer to tell the waiter it has been given the semaphore;
(4) call wake_up_process() on the task; and
(5) release the reference held on the waiter's task struct.
In other words, it has to perform this sequence of events:
LOAD waiter->list.next;
LOAD waiter->task;
STORE waiter->task;
CALL wakeup
RELEASE task
and if any of these steps occur out of order, then the whole thing may
malfunction.
Once it has queued itself and dropped the semaphore lock, the waiter does not
get the lock again; it instead just waits for its task pointer to be cleared
before proceeding. Since the record is on the waiter's stack, this means that
if the task pointer is cleared _before_ the next pointer in the list is read,
another CPU might start processing the waiter and might clobber the waiter's
stack before the up*() function has a chance to read the next pointer.
Consider then what might happen to the above sequence of events:
CPU 1 CPU 2
=============================== ===============================
down_xxx()
Queue waiter
Sleep
up_yyy()
LOAD waiter->task;
STORE waiter->task;
Woken up by other event
<preempt>
Resume processing
down_xxx() returns
call foo()
foo() clobbers *waiter
</preempt>
LOAD waiter->list.next;
--- OOPS ---
This could be dealt with using the semaphore lock, but then the down_xxx()
function has to needlessly get the spinlock again after being woken up.
The way to deal with this is to insert a general SMP memory barrier:
LOAD waiter->list.next;
LOAD waiter->task;
smp_mb();
STORE waiter->task;
CALL wakeup
RELEASE task
In this case, the barrier makes a guarantee that all memory accesses before the
barrier will appear to happen before all the memory accesses after the barrier
with respect to the other CPUs on the system. It does _not_ guarantee that all
the memory accesses before the barrier will be complete by the time the barrier
instruction itself is complete.
On a UP system - where this wouldn't be a problem - the smp_mb() is just a
compiler barrier, thus making sure the compiler emits the instructions in the
right order without actually intervening in the CPU. Since there's only one
CPU, that CPU's dependency ordering logic will take care of everything else.
ATOMIC OPERATIONS
-----------------
Whilst they are technically interprocessor interaction considerations, atomic
operations are noted specially as some of them imply full memory barriers and
some don't, but they're very heavily relied on as a group throughout the
kernel.
Any atomic operation that modifies some state in memory and returns information
about the state (old or new) implies an SMP-conditional general memory barrier
(smp_mb()) on each side of the actual operation (with the exception of
explicit lock operations, described later). These include:
xchg();
cmpxchg();
atomic_xchg();
atomic_cmpxchg();
atomic_inc_return();
atomic_dec_return();
atomic_add_return();
atomic_sub_return();
atomic_inc_and_test();
atomic_dec_and_test();
atomic_sub_and_test();
atomic_add_negative();
atomic_add_unless(); /* when succeeds (returns 1) */
test_and_set_bit();
test_and_clear_bit();
test_and_change_bit();
These are used for such things as implementing LOCK-class and UNLOCK-class
operations and adjusting reference counters towards object destruction, and as
such the implicit memory barrier effects are necessary.
The following operations are potential problems as they do _not_ imply memory
barriers, but might be used for implementing such things as UNLOCK-class
operations:
atomic_set();
set_bit();
clear_bit();
change_bit();
With these the appropriate explicit memory barrier should be used if necessary
(smp_mb__before_clear_bit() for instance).
The following also do _not_ imply memory barriers, and so may require explicit
memory barriers under some circumstances (smp_mb__before_atomic_dec() for
instance):
atomic_add();
atomic_sub();
atomic_inc();
atomic_dec();
If they're used for statistics generation, then they probably don't need memory
barriers, unless there's a coupling between statistical data.
If they're used for reference counting on an object to control its lifetime,
they probably don't need memory barriers because either the reference count
will be adjusted inside a locked section, or the caller will already hold
sufficient references to make the lock, and thus a memory barrier unnecessary.
If they're used for constructing a lock of some description, then they probably
do need memory barriers as a lock primitive generally has to do things in a
specific order.
Basically, each usage case has to be carefully considered as to whether memory
barriers are needed or not.
The following operations are special locking primitives:
test_and_set_bit_lock();
clear_bit_unlock();
__clear_bit_unlock();
These implement LOCK-class and UNLOCK-class operations. These should be used in
preference to other operations when implementing locking primitives, because
their implementations can be optimised on many architectures.
[!] Note that special memory barrier primitives are available for these
situations because on some CPUs the atomic instructions used imply full memory
barriers, and so barrier instructions are superfluous in conjunction with them,
and in such cases the special barrier primitives will be no-ops.
See Documentation/atomic_ops.txt for more information.
ACCESSING DEVICES
-----------------
Many devices can be memory mapped, and so appear to the CPU as if they're just
a set of memory locations. To control such a device, the driver usually has to
make the right memory accesses in exactly the right order.
However, having a clever CPU or a clever compiler creates a potential problem
in that the carefully sequenced accesses in the driver code won't reach the
device in the requisite order if the CPU or the compiler thinks it is more
efficient to reorder, combine or merge accesses - something that would cause
the device to malfunction.
Inside of the Linux kernel, I/O should be done through the appropriate accessor
routines - such as inb() or writel() - which know how to make such accesses
appropriately sequential. Whilst this, for the most part, renders the explicit
use of memory barriers unnecessary, there are a couple of situations where they
might be needed:
(1) On some systems, I/O stores are not strongly ordered across all CPUs, and
so for _all_ general drivers locks should be used and mmiowb() must be
issued prior to unlocking the critical section.
(2) If the accessor functions are used to refer to an I/O memory window with
relaxed memory access properties, then _mandatory_ memory barriers are
required to enforce ordering.
See Documentation/DocBook/deviceiobook.tmpl for more information.
INTERRUPTS
----------
A driver may be interrupted by its own interrupt service routine, and thus the
two parts of the driver may interfere with each other's attempts to control or
access the device.
This may be alleviated - at least in part - by disabling local interrupts (a
form of locking), such that the critical operations are all contained within
the interrupt-disabled section in the driver. Whilst the driver's interrupt
routine is executing, the driver's core may not run on the same CPU, and its
interrupt is not permitted to happen again until the current interrupt has been
handled, thus the interrupt handler does not need to lock against that.
However, consider a driver that was talking to an ethernet card that sports an
address register and a data register. If that driver's core talks to the card
under interrupt-disablement and then the driver's interrupt handler is invoked:
LOCAL IRQ DISABLE
writew(ADDR, 3);
writew(DATA, y);
LOCAL IRQ ENABLE
<interrupt>
writew(ADDR, 4);
q = readw(DATA);
</interrupt>
The store to the data register might happen after the second store to the
address register if ordering rules are sufficiently relaxed:
STORE *ADDR = 3, STORE *ADDR = 4, STORE *DATA = y, q = LOAD *DATA
If ordering rules are relaxed, it must be assumed that accesses done inside an
interrupt disabled section may leak outside of it and may interleave with
accesses performed in an interrupt - and vice versa - unless implicit or
explicit barriers are used.
Normally this won't be a problem because the I/O accesses done inside such
sections will include synchronous load operations on strictly ordered I/O
registers that form implicit I/O barriers. If this isn't sufficient then an
mmiowb() may need to be used explicitly.
A similar situation may occur between an interrupt routine and two routines
running on separate CPUs that communicate with each other. If such a case is
likely, then interrupt-disabling locks should be used to guarantee ordering.
==========================
KERNEL I/O BARRIER EFFECTS
==========================
When accessing I/O memory, drivers should use the appropriate accessor
functions:
(*) inX(), outX():
These are intended to talk to I/O space rather than memory space, but
that's primarily a CPU-specific concept. The i386 and x86_64 processors do
indeed have special I/O space access cycles and instructions, but many
CPUs don't have such a concept.
The PCI bus, amongst others, defines an I/O space concept which - on such
CPUs as i386 and x86_64 - readily maps to the CPU's concept of I/O
space. However, it may also be mapped as a virtual I/O space in the CPU's
memory map, particularly on those CPUs that don't support alternate I/O
spaces.
Accesses to this space may be fully synchronous (as on i386), but
intermediary bridges (such as the PCI host bridge) may not fully honour
that.
They are guaranteed to be fully ordered with respect to each other.
They are not guaranteed to be fully ordered with respect to other types of
memory and I/O operation.
(*) readX(), writeX():
Whether these are guaranteed to be fully ordered and uncombined with
respect to each other on the issuing CPU depends on the characteristics
defined for the memory window through which they're accessing. On later
i386 architecture machines, for example, this is controlled by way of the
MTRR registers.
Ordinarily, these will be guaranteed to be fully ordered and uncombined,
provided they're not accessing a prefetchable device.
However, intermediary hardware (such as a PCI bridge) may indulge in
deferral if it so wishes; to flush a store, a load from the same location
is preferred[*], but a load from the same device or from configuration
space should suffice for PCI.
[*] NOTE! attempting to load from the same location as was written to may
cause a malfunction - consider the 16550 Rx/Tx serial registers for
example.
Used with prefetchable I/O memory, an mmiowb() barrier may be required to
force stores to be ordered.
Please refer to the PCI specification for more information on interactions
between PCI transactions.
(*) readX_relaxed()
These are similar to readX(), but are not guaranteed to be ordered in any
way. Be aware that there is no I/O read barrier available.
(*) ioreadX(), iowriteX()
These will perform appropriately for the type of access they're actually
doing, be it inX()/outX() or readX()/writeX().
========================================
ASSUMED MINIMUM EXECUTION ORDERING MODEL
========================================
It has to be assumed that the conceptual CPU is weakly-ordered but that it will
maintain the appearance of program causality with respect to itself. Some CPUs
(such as i386 or x86_64) are more constrained than others (such as powerpc or
frv), and so the most relaxed case (namely DEC Alpha) must be assumed outside
of arch-specific code.
This means that it must be considered that the CPU will execute its instruction
stream in any order it feels like - or even in parallel - provided that if an
instruction in the stream depends on an earlier instruction, then that
earlier instruction must be sufficiently complete[*] before the later
instruction may proceed; in other words: provided that the appearance of
causality is maintained.
[*] Some instructions have more than one effect - such as changing the
condition codes, changing registers or changing memory - and different
instructions may depend on different effects.
A CPU may also discard any instruction sequence that winds up having no
ultimate effect. For example, if two adjacent instructions both load an
immediate value into the same register, the first may be discarded.
Similarly, it has to be assumed that compiler might reorder the instruction
stream in any way it sees fit, again provided the appearance of causality is
maintained.
============================
THE EFFECTS OF THE CPU CACHE
============================
The way cached memory operations are perceived across the system is affected to
a certain extent by the caches that lie between CPUs and memory, and by the
memory coherence system that maintains the consistency of state in the system.
As far as the way a CPU interacts with another part of the system through the
caches goes, the memory system has to include the CPU's caches, and memory
barriers for the most part act at the interface between the CPU and its cache
(memory barriers logically act on the dotted line in the following diagram):
<--- CPU ---> : <----------- Memory ----------->
:
+--------+ +--------+ : +--------+ +-----------+
| | | | : | | | | +--------+
| CPU | | Memory | : | CPU | | | | |
| Core |--->| Access |----->| Cache |<-->| | | |
| | | Queue | : | | | |--->| Memory |
| | | | : | | | | | |
+--------+ +--------+ : +--------+ | | | |
: | Cache | +--------+
: | Coherency |
: | Mechanism | +--------+
+--------+ +--------+ : +--------+ | | | |
| | | | : | | | | | |
| CPU | | Memory | : | CPU | | |--->| Device |
| Core |--->| Access |----->| Cache |<-->| | | |
| | | Queue | : | | | | | |
| | | | : | | | | +--------+
+--------+ +--------+ : +--------+ +-----------+
:
:
Although any particular load or store may not actually appear outside of the
CPU that issued it since it may have been satisfied within the CPU's own cache,
it will still appear as if the full memory access had taken place as far as the
other CPUs are concerned since the cache coherency mechanisms will migrate the
cacheline over to the accessing CPU and propagate the effects upon conflict.
The CPU core may execute instructions in any order it deems fit, provided the
expected program causality appears to be maintained. Some of the instructions
generate load and store operations which then go into the queue of memory
accesses to be performed. The core may place these in the queue in any order
it wishes, and continue execution until it is forced to wait for an instruction
to complete.
What memory barriers are concerned with is controlling the order in which
accesses cross from the CPU side of things to the memory side of things, and
the order in which the effects are perceived to happen by the other observers
in the system.
[!] Memory barriers are _not_ needed within a given CPU, as CPUs always see
their own loads and stores as if they had happened in program order.
[!] MMIO or other device accesses may bypass the cache system. This depends on
the properties of the memory window through which devices are accessed and/or
the use of any special device communication instructions the CPU may have.
CACHE COHERENCY
---------------
Life isn't quite as simple as it may appear above, however: for while the
caches are expected to be coherent, there's no guarantee that that coherency
will be ordered. This means that whilst changes made on one CPU will
eventually become visible on all CPUs, there's no guarantee that they will
become apparent in the same order on those other CPUs.
Consider dealing with a system that has a pair of CPUs (1 & 2), each of which
has a pair of parallel data caches (CPU 1 has A/B, and CPU 2 has C/D):
:
: +--------+
: +---------+ | |
+--------+ : +--->| Cache A |<------->| |
| | : | +---------+ | |
| CPU 1 |<---+ | |
| | : | +---------+ | |
+--------+ : +--->| Cache B |<------->| |
: +---------+ | |
: | Memory |
: +---------+ | System |
+--------+ : +--->| Cache C |<------->| |
| | : | +---------+ | |
| CPU 2 |<---+ | |
| | : | +---------+ | |
+--------+ : +--->| Cache D |<------->| |
: +---------+ | |
: +--------+
:
Imagine the system has the following properties:
(*) an odd-numbered cache line may be in cache A, cache C or it may still be
resident in memory;
(*) an even-numbered cache line may be in cache B, cache D or it may still be
resident in memory;
(*) whilst the CPU core is interrogating one cache, the other cache may be
making use of the bus to access the rest of the system - perhaps to
displace a dirty cacheline or to do a speculative load;
(*) each cache has a queue of operations that need to be applied to that cache
to maintain coherency with the rest of the system;
(*) the coherency queue is not flushed by normal loads to lines already
present in the cache, even though the contents of the queue may
potentially affect those loads.
Imagine, then, that two writes are made on the first CPU, with a write barrier
between them to guarantee that they will appear to reach that CPU's caches in
the requisite order:
CPU 1 CPU 2 COMMENT
=============== =============== =======================================
u == 0, v == 1 and p == &u, q == &u
v = 2;
smp_wmb(); Make sure change to v is visible before
change to p
<A:modify v=2> v is now in cache A exclusively
p = &v;
<B:modify p=&v> p is now in cache B exclusively
The write memory barrier forces the other CPUs in the system to perceive that
the local CPU's caches have apparently been updated in the correct order. But
now imagine that the second CPU wants to read those values:
CPU 1 CPU 2 COMMENT
=============== =============== =======================================
...
q = p;
x = *q;
The above pair of reads may then fail to happen in the expected order, as the
cacheline holding p may get updated in one of the second CPU's caches whilst
the update to the cacheline holding v is delayed in the other of the second
CPU's caches by some other cache event:
CPU 1 CPU 2 COMMENT
=============== =============== =======================================
u == 0, v == 1 and p == &u, q == &u
v = 2;
smp_wmb();
<A:modify v=2> <C:busy>
<C:queue v=2>
p = &v; q = p;
<D:request p>
<B:modify p=&v> <D:commit p=&v>
<D:read p>
x = *q;
<C:read *q> Reads from v before v updated in cache
<C:unbusy>
<C:commit v=2>
Basically, whilst both cachelines will be updated on CPU 2 eventually, there's
no guarantee that, without intervention, the order of update will be the same
as that committed on CPU 1.
To intervene, we need to interpolate a data dependency barrier or a read
barrier between the loads. This will force the cache to commit its coherency
queue before processing any further requests:
CPU 1 CPU 2 COMMENT
=============== =============== =======================================
u == 0, v == 1 and p == &u, q == &u
v = 2;
smp_wmb();
<A:modify v=2> <C:busy>
<C:queue v=2>
p = &v; q = p;
<D:request p>
<B:modify p=&v> <D:commit p=&v>
<D:read p>
smp_read_barrier_depends()
<C:unbusy>
<C:commit v=2>
x = *q;
<C:read *q> Reads from v after v updated in cache
This sort of problem can be encountered on DEC Alpha processors as they have a
split cache that improves performance by making better use of the data bus.
Whilst most CPUs do imply a data dependency barrier on the read when a memory
access depends on a read, not all do, so it may not be relied on.
Other CPUs may also have split caches, but must coordinate between the various
cachelets for normal memory accesses. The semantics of the Alpha removes the
need for coordination in the absence of memory barriers.
CACHE COHERENCY VS DMA
----------------------
Not all systems maintain cache coherency with respect to devices doing DMA. In
such cases, a device attempting DMA may obtain stale data from RAM because
dirty cache lines may be resident in the caches of various CPUs, and may not
have been written back to RAM yet. To deal with this, the appropriate part of
the kernel must flush the overlapping bits of cache on each CPU (and maybe
invalidate them as well).
In addition, the data DMA'd to RAM by a device may be overwritten by dirty
cache lines being written back to RAM from a CPU's cache after the device has
installed its own data, or cache lines present in the CPU's cache may simply
obscure the fact that RAM has been updated, until at such time as the cacheline
is discarded from the CPU's cache and reloaded. To deal with this, the
appropriate part of the kernel must invalidate the overlapping bits of the
cache on each CPU.
See Documentation/cachetlb.txt for more information on cache management.
CACHE COHERENCY VS MMIO
-----------------------
Memory mapped I/O usually takes place through memory locations that are part of
a window in the CPU's memory space that has different properties assigned than
the usual RAM directed window.
Amongst these properties is usually the fact that such accesses bypass the
caching entirely and go directly to the device buses. This means MMIO accesses
may, in effect, overtake accesses to cached memory that were emitted earlier.
A memory barrier isn't sufficient in such a case, but rather the cache must be
flushed between the cached memory write and the MMIO access if the two are in
any way dependent.
=========================
THE THINGS CPUS GET UP TO
=========================
A programmer might take it for granted that the CPU will perform memory
operations in exactly the order specified, so that if the CPU is, for example,
given the following piece of code to execute:
a = ACCESS_ONCE(*A);
ACCESS_ONCE(*B) = b;
c = ACCESS_ONCE(*C);
d = ACCESS_ONCE(*D);
ACCESS_ONCE(*E) = e;
they would then expect that the CPU will complete the memory operation for each
instruction before moving on to the next one, leading to a definite sequence of
operations as seen by external observers in the system:
LOAD *A, STORE *B, LOAD *C, LOAD *D, STORE *E.
Reality is, of course, much messier. With many CPUs and compilers, the above
assumption doesn't hold because:
(*) loads are more likely to need to be completed immediately to permit
execution progress, whereas stores can often be deferred without a
problem;
(*) loads may be done speculatively, and the result discarded should it prove
to have been unnecessary;
(*) loads may be done speculatively, leading to the result having been fetched
at the wrong time in the expected sequence of events;
(*) the order of the memory accesses may be rearranged to promote better use
of the CPU buses and caches;
(*) loads and stores may be combined to improve performance when talking to
memory or I/O hardware that can do batched accesses of adjacent locations,
thus cutting down on transaction setup costs (memory and PCI devices may
both be able to do this); and
(*) the CPU's data cache may affect the ordering, and whilst cache-coherency
mechanisms may alleviate this - once the store has actually hit the cache
- there's no guarantee that the coherency management will be propagated in
order to other CPUs.
So what another CPU, say, might actually observe from the above piece of code
is:
LOAD *A, ..., LOAD {*C,*D}, STORE *E, STORE *B
(Where "LOAD {*C,*D}" is a combined load)
However, it is guaranteed that a CPU will be self-consistent: it will see its
_own_ accesses appear to be correctly ordered, without the need for a memory
barrier. For instance with the following code:
U = ACCESS_ONCE(*A);
ACCESS_ONCE(*A) = V;
ACCESS_ONCE(*A) = W;
X = ACCESS_ONCE(*A);
ACCESS_ONCE(*A) = Y;
Z = ACCESS_ONCE(*A);
and assuming no intervention by an external influence, it can be assumed that
the final result will appear to be:
U == the original value of *A
X == W
Z == Y
*A == Y
The code above may cause the CPU to generate the full sequence of memory
accesses:
U=LOAD *A, STORE *A=V, STORE *A=W, X=LOAD *A, STORE *A=Y, Z=LOAD *A
in that order, but, without intervention, the sequence may have almost any
combination of elements combined or discarded, provided the program's view of
the world remains consistent. Note that ACCESS_ONCE() is -not- optional
in the above example, as there are architectures where a given CPU might
interchange successive loads to the same location. On such architectures,
ACCESS_ONCE() does whatever is necessary to prevent this, for example, on
Itanium the volatile casts used by ACCESS_ONCE() cause GCC to emit the
special ld.acq and st.rel instructions that prevent such reordering.
The compiler may also combine, discard or defer elements of the sequence before
the CPU even sees them.
For instance:
*A = V;
*A = W;
may be reduced to:
*A = W;
since, without either a write barrier or an ACCESS_ONCE(), it can be
assumed that the effect of the storage of V to *A is lost. Similarly:
*A = Y;
Z = *A;
may, without a memory barrier or an ACCESS_ONCE(), be reduced to:
*A = Y;
Z = Y;
and the LOAD operation never appear outside of the CPU.
AND THEN THERE'S THE ALPHA
--------------------------
The DEC Alpha CPU is one of the most relaxed CPUs there is. Not only that,
some versions of the Alpha CPU have a split data cache, permitting them to have
two semantically-related cache lines updated at separate times. This is where
the data dependency barrier really becomes necessary as this synchronises both
caches with the memory coherence system, thus making it seem like pointer
changes vs new data occur in the right order.
The Alpha defines the Linux kernel's memory barrier model.
See the subsection on "Cache Coherency" above.
============
EXAMPLE USES
============
CIRCULAR BUFFERS
----------------
Memory barriers can be used to implement circular buffering without the need
of a lock to serialise the producer with the consumer. See:
Documentation/circular-buffers.txt
for details.
==========
REFERENCES
==========
Alpha AXP Architecture Reference Manual, Second Edition (Sites & Witek,
Digital Press)
Chapter 5.2: Physical Address Space Characteristics
Chapter 5.4: Caches and Write Buffers
Chapter 5.5: Data Sharing
Chapter 5.6: Read/Write Ordering
AMD64 Architecture Programmer's Manual Volume 2: System Programming
Chapter 7.1: Memory-Access Ordering
Chapter 7.4: Buffering and Combining Memory Writes
IA-32 Intel Architecture Software Developer's Manual, Volume 3:
System Programming Guide
Chapter 7.1: Locked Atomic Operations
Chapter 7.2: Memory Ordering
Chapter 7.4: Serializing Instructions
The SPARC Architecture Manual, Version 9
Chapter 8: Memory Models
Appendix D: Formal Specification of the Memory Models
Appendix J: Programming with the Memory Models
UltraSPARC Programmer Reference Manual
Chapter 5: Memory Accesses and Cacheability
Chapter 15: Sparc-V9 Memory Models
UltraSPARC III Cu User's Manual
Chapter 9: Memory Models
UltraSPARC IIIi Processor User's Manual
Chapter 8: Memory Models
UltraSPARC Architecture 2005
Chapter 9: Memory
Appendix D: Formal Specifications of the Memory Models
UltraSPARC T1 Supplement to the UltraSPARC Architecture 2005
Chapter 8: Memory Models
Appendix F: Caches and Cache Coherency
Solaris Internals, Core Kernel Architecture, p63-68:
Chapter 3.3: Hardware Considerations for Locks and
Synchronization
Unix Systems for Modern Architectures, Symmetric Multiprocessing and Caching
for Kernel Programmers:
Chapter 13: Other Memory Models
Intel Itanium Architecture Software Developer's Manual: Volume 1:
Section 2.6: Speculation
Section 4.4: Memory Access
|