/* * Tick related global functions */ #ifndef _LINUX_TICK_H #define _LINUX_TICK_H #include #include #include #include #include #include #ifdef CONFIG_GENERIC_CLOCKEVENTS extern void __init tick_init(void); /* Should be core only, but ARM BL switcher requires it */ extern void tick_suspend_local(void); /* Should be core only, but XEN resume magic and ARM BL switcher require it */ extern void tick_resume_local(void); extern void tick_handover_do_timer(void); extern void tick_cleanup_dead_cpu(int cpu); #else /* CONFIG_GENERIC_CLOCKEVENTS */ static inline void tick_init(void) { } static inline void tick_suspend_local(void) { } static inline void tick_resume_local(void) { } static inline void tick_handover_do_timer(void) { } static inline void tick_cleanup_dead_cpu(int cpu) { } #endif /* !CONFIG_GENERIC_CLOCKEVENTS */ #if defined(CONFIG_GENERIC_CLOCKEVENTS) && defined(CONFIG_SUSPEND) extern void tick_freeze(void); extern void tick_unfreeze(void); #else static inline void tick_freeze(void) { } static inline void tick_unfreeze(void) { } #endif #ifdef CONFIG_TICK_ONESHOT extern void tick_irq_enter(void); # ifndef arch_needs_cpu # define arch_needs_cpu() (0) # endif # else static inline void tick_irq_enter(void) { } #endif #if defined(CONFIG_GENERIC_CLOCKEVENTS_BROADCAST) && defined(CONFIG_TICK_ONESHOT) extern void hotplug_cpu__broadcast_tick_pull(int dead_cpu); #else static inline void hotplug_cpu__broadcast_tick_pull(int dead_cpu) { } #endif enum tick_broadcast_mode { TICK_BROADCAST_OFF, TICK_BROADCAST_ON, TICK_BROADCAST_FORCE, }; enum tick_broadcast_state { TICK_BROADCAST_EXIT, TICK_BROADCAST_ENTER, }; #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST extern void tick_broadcast_control(enum tick_broadcast_mode mode); #else static inline void tick_broadcast_control(enum tick_broadcast_mode mode) { } #endif /* BROADCAST */ #ifdef CONFIG_GENERIC_CLOCKEVENTS extern int tick_broadcast_oneshot_control(enum tick_broadcast_state state); #else static inline int tick_broadcast_oneshot_control(enum tick_broadcast_state state) { return 0; } #endif static inline void tick_broadcast_enable(void) { tick_broadcast_control(TICK_BROADCAST_ON); } static inline void tick_broadcast_disable(void) { tick_broadcast_control(TICK_BROADCAST_OFF); } static inline void tick_broadcast_force(void) { tick_broadcast_control(TICK_BROADCAST_FORCE); } static inline int tick_broadcast_enter(void) { return tick_broadcast_oneshot_control(TICK_BROADCAST_ENTER); } static inline void tick_broadcast_exit(void) { tick_broadcast_oneshot_control(TICK_BROADCAST_EXIT); } #ifdef CONFIG_NO_HZ_COMMON extern int tick_nohz_tick_stopped(void); extern void tick_nohz_idle_enter(void); extern void tick_nohz_idle_exit(void); extern void tick_nohz_irq_exit(void); extern ktime_t tick_nohz_get_sleep_length(void); extern u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time); extern u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time); #else /* !CONFIG_NO_HZ_COMMON */ static inline int tick_nohz_tick_stopped(void) { return 0; } static inline void tick_nohz_idle_enter(void) { } static inline void tick_nohz_idle_exit(void) { } static inline ktime_t tick_nohz_get_sleep_length(void) { ktime_t len = { .tv64 = NSEC_PER_SEC/HZ }; return len; } static inline u64 get_cpu_idle_time_us(int cpu, u64 *unused) { return -1; } static inline u64 get_cpu_iowait_time_us(int cpu, u64 *unused) { return -1; } #endif /* !CONFIG_NO_HZ_COMMON */ #ifdef CONFIG_NO_HZ_FULL extern bool tick_nohz_full_running; extern cpumask_var_t tick_nohz_full_mask; extern cpumask_var_t housekeeping_mask; static inline bool tick_nohz_full_enabled(void) { if (!context_tracking_is_enabled()) return false; return tick_nohz_full_running; } static inline bool tick_nohz_full_cpu(int cpu) { if (!tick_nohz_full_enabled()) return false; return cpumask_test_cpu(cpu, tick_nohz_full_mask); } static inline void tick_nohz_full_add_cpus_to(struct cpumask *mask) { if (tick_nohz_full_enabled()) cpumask_or(mask, mask, tick_nohz_full_mask); } extern void tick_nohz_full_kick(void); extern void tick_nohz_full_kick_cpu(int cpu); extern void tick_nohz_full_kick_all(void); extern void __tick_nohz_task_switch(struct task_struct *tsk); #else static inline bool tick_nohz_full_enabled(void) { return false; } static inline bool tick_nohz_full_cpu(int cpu) { return false; } static inline void tick_nohz_full_add_cpus_to(struct cpumask *mask) { } static inline void tick_nohz_full_kick_cpu(int cpu) { } static inline void tick_nohz_full_kick(void) { } static inline void tick_nohz_full_kick_all(void) { } static inline void __tick_nohz_task_switch(struct task_struct *tsk) { } #endif static inline const struct cpumask *housekeeping_cpumask(void) { #ifdef CONFIG_NO_HZ_FULL if (tick_nohz_full_enabled()) return housekeeping_mask; #endif return cpu_possible_mask; } static inline bool is_housekeeping_cpu(int cpu) { #ifdef CONFIG_NO_HZ_FULL if (tick_nohz_full_enabled()) return cpumask_test_cpu(cpu, housekeeping_mask); #endif return true; } static inline void housekeeping_affine(struct task_struct *t) { #ifdef CONFIG_NO_HZ_FULL if (tick_nohz_full_enabled()) set_cpus_allowed_ptr(t, housekeeping_mask); #endif } static inline void tick_nohz_task_switch(struct task_struct *tsk) { if (tick_nohz_full_enabled()) __tick_nohz_task_switch(tsk); } #endif