/* SPDX-License-Identifier: GPL-2.0 */ /* * Linux Socket Filter Data Structures */ #ifndef __LINUX_FILTER_H__ #define __LINUX_FILTER_H__ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include struct sk_buff; struct sock; struct seccomp_data; struct bpf_prog_aux; struct xdp_rxq_info; struct xdp_buff; struct sock_reuseport; struct ctl_table; struct ctl_table_header; /* ArgX, context and stack frame pointer register positions. Note, * Arg1, Arg2, Arg3, etc are used as argument mappings of function * calls in BPF_CALL instruction. */ #define BPF_REG_ARG1 BPF_REG_1 #define BPF_REG_ARG2 BPF_REG_2 #define BPF_REG_ARG3 BPF_REG_3 #define BPF_REG_ARG4 BPF_REG_4 #define BPF_REG_ARG5 BPF_REG_5 #define BPF_REG_CTX BPF_REG_6 #define BPF_REG_FP BPF_REG_10 /* Additional register mappings for converted user programs. */ #define BPF_REG_A BPF_REG_0 #define BPF_REG_X BPF_REG_7 #define BPF_REG_TMP BPF_REG_2 /* scratch reg */ #define BPF_REG_D BPF_REG_8 /* data, callee-saved */ #define BPF_REG_H BPF_REG_9 /* hlen, callee-saved */ /* Kernel hidden auxiliary/helper register. */ #define BPF_REG_AX MAX_BPF_REG #define MAX_BPF_EXT_REG (MAX_BPF_REG + 1) #define MAX_BPF_JIT_REG MAX_BPF_EXT_REG /* unused opcode to mark special call to bpf_tail_call() helper */ #define BPF_TAIL_CALL 0xf0 /* unused opcode to mark special load instruction. Same as BPF_ABS */ #define BPF_PROBE_MEM 0x20 /* unused opcode to mark special ldsx instruction. Same as BPF_IND */ #define BPF_PROBE_MEMSX 0x40 /* unused opcode to mark special load instruction. Same as BPF_MSH */ #define BPF_PROBE_MEM32 0xa0 /* unused opcode to mark special atomic instruction */ #define BPF_PROBE_ATOMIC 0xe0 /* unused opcode to mark call to interpreter with arguments */ #define BPF_CALL_ARGS 0xe0 /* unused opcode to mark speculation barrier for mitigating * Speculative Store Bypass */ #define BPF_NOSPEC 0xc0 /* As per nm, we expose JITed images as text (code) section for * kallsyms. That way, tools like perf can find it to match * addresses. */ #define BPF_SYM_ELF_TYPE 't' /* BPF program can access up to 512 bytes of stack space. */ #define MAX_BPF_STACK 512 /* Helper macros for filter block array initializers. */ /* ALU ops on registers, bpf_add|sub|...: dst_reg += src_reg */ #define BPF_ALU64_REG_OFF(OP, DST, SRC, OFF) \ ((struct bpf_insn) { \ .code = BPF_ALU64 | BPF_OP(OP) | BPF_X, \ .dst_reg = DST, \ .src_reg = SRC, \ .off = OFF, \ .imm = 0 }) #define BPF_ALU64_REG(OP, DST, SRC) \ BPF_ALU64_REG_OFF(OP, DST, SRC, 0) #define BPF_ALU32_REG_OFF(OP, DST, SRC, OFF) \ ((struct bpf_insn) { \ .code = BPF_ALU | BPF_OP(OP) | BPF_X, \ .dst_reg = DST, \ .src_reg = SRC, \ .off = OFF, \ .imm = 0 }) #define BPF_ALU32_REG(OP, DST, SRC) \ BPF_ALU32_REG_OFF(OP, DST, SRC, 0) /* ALU ops on immediates, bpf_add|sub|...: dst_reg += imm32 */ #define BPF_ALU64_IMM_OFF(OP, DST, IMM, OFF) \ ((struct bpf_insn) { \ .code = BPF_ALU64 | BPF_OP(OP) | BPF_K, \ .dst_reg = DST, \ .src_reg = 0, \ .off = OFF, \ .imm = IMM }) #define BPF_ALU64_IMM(OP, DST, IMM) \ BPF_ALU64_IMM_OFF(OP, DST, IMM, 0) #define BPF_ALU32_IMM_OFF(OP, DST, IMM, OFF) \ ((struct bpf_insn) { \ .code = BPF_ALU | BPF_OP(OP) | BPF_K, \ .dst_reg = DST, \ .src_reg = 0, \ .off = OFF, \ .imm = IMM }) #define BPF_ALU32_IMM(OP, DST, IMM) \ BPF_ALU32_IMM_OFF(OP, DST, IMM, 0) /* Endianess conversion, cpu_to_{l,b}e(), {l,b}e_to_cpu() */ #define BPF_ENDIAN(TYPE, DST, LEN) \ ((struct bpf_insn) { \ .code = BPF_ALU | BPF_END | BPF_SRC(TYPE), \ .dst_reg = DST, \ .src_reg = 0, \ .off = 0, \ .imm = LEN }) /* Byte Swap, bswap16/32/64 */ #define BPF_BSWAP(DST, LEN) \ ((struct bpf_insn) { \ .code = BPF_ALU64 | BPF_END | BPF_SRC(BPF_TO_LE), \ .dst_reg = DST, \ .src_reg = 0, \ .off = 0, \ .imm = LEN }) /* Short form of mov, dst_reg = src_reg */ #define BPF_MOV64_REG(DST, SRC) \ ((struct bpf_insn) { \ .code = BPF_ALU64 | BPF_MOV | BPF_X, \ .dst_reg = DST, \ .src_reg = SRC, \ .off = 0, \ .imm = 0 }) #define BPF_MOV32_REG(DST, SRC) \ ((struct bpf_insn) { \ .code = BPF_ALU | BPF_MOV | BPF_X, \ .dst_reg = DST, \ .src_reg = SRC, \ .off = 0, \ .imm = 0 }) /* Special (internal-only) form of mov, used to resolve per-CPU addrs: * dst_reg = src_reg + * BPF_ADDR_PERCPU is used as a special insn->off value. */ #define BPF_ADDR_PERCPU (-1) #define BPF_MOV64_PERCPU_REG(DST, SRC) \ ((struct bpf_insn) { \ .code = BPF_ALU64 | BPF_MOV | BPF_X, \ .dst_reg = DST, \ .src_reg = SRC, \ .off = BPF_ADDR_PERCPU, \ .imm = 0 }) static inline bool insn_is_mov_percpu_addr(const struct bpf_insn *insn) { return insn->code == (BPF_ALU64 | BPF_MOV | BPF_X) && insn->off == BPF_ADDR_PERCPU; } /* Short form of mov, dst_reg = imm32 */ #define BPF_MOV64_IMM(DST, IMM) \ ((struct bpf_insn) { \ .code = BPF_ALU64 | BPF_MOV | BPF_K, \ .dst_reg = DST, \ .src_reg = 0, \ .off = 0, \ .imm = IMM }) #define BPF_MOV32_IMM(DST, IMM) \ ((struct bpf_insn) { \ .code = BPF_ALU | BPF_MOV | BPF_K, \ .dst_reg = DST, \ .src_reg = 0, \ .off = 0, \ .imm = IMM }) /* Short form of movsx, dst_reg = (s8,s16,s32)src_reg */ #define BPF_MOVSX64_REG(DST, SRC, OFF) \ ((struct bpf_insn) { \ .code = BPF_ALU64 | BPF_MOV | BPF_X, \ .dst_reg = DST, \ .src_reg = SRC, \ .off = OFF, \ .imm = 0 }) #define BPF_MOVSX32_REG(DST, SRC, OFF) \ ((struct bpf_insn) { \ .code = BPF_ALU | BPF_MOV | BPF_X, \ .dst_reg = DST, \ .src_reg = SRC, \ .off = OFF, \ .imm = 0 }) /* Special form of mov32, used for doing explicit zero extension on dst. */ #define BPF_ZEXT_REG(DST) \ ((struct bpf_insn) { \ .code = BPF_ALU | BPF_MOV | BPF_X, \ .dst_reg = DST, \ .src_reg = DST, \ .off = 0, \ .imm = 1 }) static inline bool insn_is_zext(const struct bpf_insn *insn) { return insn->code == (BPF_ALU | BPF_MOV | BPF_X) && insn->imm == 1; } /* addr_space_cast from as(0) to as(1) is for converting bpf arena pointers * to pointers in user vma. */ static inline bool insn_is_cast_user(const struct bpf_insn *insn) { return insn->code == (BPF_ALU64 | BPF_MOV | BPF_X) && insn->off == BPF_ADDR_SPACE_CAST && insn->imm == 1U << 16; } /* BPF_LD_IMM64 macro encodes single 'load 64-bit immediate' insn */ #define BPF_LD_IMM64(DST, IMM) \ BPF_LD_IMM64_RAW(DST, 0, IMM) #define BPF_LD_IMM64_RAW(DST, SRC, IMM) \ ((struct bpf_insn) { \ .code = BPF_LD | BPF_DW | BPF_IMM, \ .dst_reg = DST, \ .src_reg = SRC, \ .off = 0, \ .imm = (__u32) (IMM) }), \ ((struct bpf_insn) { \ .code = 0, /* zero is reserved opcode */ \ .dst_reg = 0, \ .src_reg = 0, \ .off = 0, \ .imm = ((__u64) (IMM)) >> 32 }) /* pseudo BPF_LD_IMM64 insn used to refer to process-local map_fd */ #define BPF_LD_MAP_FD(DST, MAP_FD) \ BPF_LD_IMM64_RAW(DST, BPF_PSEUDO_MAP_FD, MAP_FD) /* Short form of mov based on type, BPF_X: dst_reg = src_reg, BPF_K: dst_reg = imm32 */ #define BPF_MOV64_RAW(TYPE, DST, SRC, IMM) \ ((struct bpf_insn) { \ .code = BPF_ALU64 | BPF_MOV | BPF_SRC(TYPE), \ .dst_reg = DST, \ .src_reg = SRC, \ .off = 0, \ .imm = IMM }) #define BPF_MOV32_RAW(TYPE, DST, SRC, IMM) \ ((struct bpf_insn) { \ .code = BPF_ALU | BPF_MOV | BPF_SRC(TYPE), \ .dst_reg = DST, \ .src_reg = SRC, \ .off = 0, \ .imm = IMM }) /* Direct packet access, R0 = *(uint *) (skb->data + imm32) */ #define BPF_LD_ABS(SIZE, IMM) \ ((struct bpf_insn) { \ .code = BPF_LD | BPF_SIZE(SIZE) | BPF_ABS, \ .dst_reg = 0, \ .src_reg = 0, \ .off = 0, \ .imm = IMM }) /* Indirect packet access, R0 = *(uint *) (skb->data + src_reg + imm32) */ #define BPF_LD_IND(SIZE, SRC, IMM) \ ((struct bpf_insn) { \ .code = BPF_LD | BPF_SIZE(SIZE) | BPF_IND, \ .dst_reg = 0, \ .src_reg = SRC, \ .off = 0, \ .imm = IMM }) /* Memory load, dst_reg = *(uint *) (src_reg + off16) */ #define BPF_LDX_MEM(SIZE, DST, SRC, OFF) \ ((struct bpf_insn) { \ .code = BPF_LDX | BPF_SIZE(SIZE) | BPF_MEM, \ .dst_reg = DST, \ .src_reg = SRC, \ .off = OFF, \ .imm = 0 }) /* Memory load, dst_reg = *(signed size *) (src_reg + off16) */ #define BPF_LDX_MEMSX(SIZE, DST, SRC, OFF) \ ((struct bpf_insn) { \ .code = BPF_LDX | BPF_SIZE(SIZE) | BPF_MEMSX, \ .dst_reg = DST, \ .src_reg = SRC, \ .off = OFF, \ .imm = 0 }) /* Memory store, *(uint *) (dst_reg + off16) = src_reg */ #define BPF_STX_MEM(SIZE, DST, SRC, OFF) \ ((struct bpf_insn) { \ .code = BPF_STX | BPF_SIZE(SIZE) | BPF_MEM, \ .dst_reg = DST, \ .src_reg = SRC, \ .off = OFF, \ .imm = 0 }) /* * Atomic operations: * * BPF_ADD *(uint *) (dst_reg + off16) += src_reg * BPF_AND *(uint *) (dst_reg + off16) &= src_reg * BPF_OR *(uint *) (dst_reg + off16) |= src_reg * BPF_XOR *(uint *) (dst_reg + off16) ^= src_reg * BPF_ADD | BPF_FETCH src_reg = atomic_fetch_add(dst_reg + off16, src_reg); * BPF_AND | BPF_FETCH src_reg = atomic_fetch_and(dst_reg + off16, src_reg); * BPF_OR | BPF_FETCH src_reg = atomic_fetch_or(dst_reg + off16, src_reg); * BPF_XOR | BPF_FETCH src_reg = atomic_fetch_xor(dst_reg + off16, src_reg); * BPF_XCHG src_reg = atomic_xchg(dst_reg + off16, src_reg) * BPF_CMPXCHG r0 = atomic_cmpxchg(dst_reg + off16, r0, src_reg) */ #define BPF_ATOMIC_OP(SIZE, OP, DST, SRC, OFF) \ ((struct bpf_insn) { \ .code = BPF_STX | BPF_SIZE(SIZE) | BPF_ATOMIC, \ .dst_reg = DST, \ .src_reg = SRC, \ .off = OFF, \ .imm = OP }) /* Legacy alias */ #define BPF_STX_XADD(SIZE, DST, SRC, OFF) BPF_ATOMIC_OP(SIZE, BPF_ADD, DST, SRC, OFF) /* Memory store, *(uint *) (dst_reg + off16) = imm32 */ #define BPF_ST_MEM(SIZE, DST, OFF, IMM) \ ((struct bpf_insn) { \ .code = BPF_ST | BPF_SIZE(SIZE) | BPF_MEM, \ .dst_reg = DST, \ .src_reg = 0, \ .off = OFF, \ .imm = IMM }) /* Conditional jumps against registers, if (dst_reg 'op' src_reg) goto pc + off16 */ #define BPF_JMP_REG(OP, DST, SRC, OFF) \ ((struct bpf_insn) { \ .code = BPF_JMP | BPF_OP(OP) | BPF_X, \ .dst_reg = DST, \ .src_reg = SRC, \ .off = OFF, \ .imm = 0 }) /* Conditional jumps against immediates, if (dst_reg 'op' imm32) goto pc + off16 */ #define BPF_JMP_IMM(OP, DST, IMM, OFF) \ ((struct bpf_insn) { \ .code = BPF_JMP | BPF_OP(OP) | BPF_K, \ .dst_reg = DST, \ .src_reg = 0, \ .off = OFF, \ .imm = IMM }) /* Like BPF_JMP_REG, but with 32-bit wide operands for comparison. */ #define BPF_JMP32_REG(OP, DST, SRC, OFF) \ ((struct bpf_insn) { \ .code = BPF_JMP32 | BPF_OP(OP) | BPF_X, \ .dst_reg = DST, \ .src_reg = SRC, \ .off = OFF, \ .imm = 0 }) /* Like BPF_JMP_IMM, but with 32-bit wide operands for comparison. */ #define BPF_JMP32_IMM(OP, DST, IMM, OFF) \ ((struct bpf_insn) { \ .code = BPF_JMP32 | BPF_OP(OP) | BPF_K, \ .dst_reg = DST, \ .src_reg = 0, \ .off = OFF, \ .imm = IMM }) /* Unconditional jumps, goto pc + off16 */ #define BPF_JMP_A(OFF) \ ((struct bpf_insn) { \ .code = BPF_JMP | BPF_JA, \ .dst_reg = 0, \ .src_reg = 0, \ .off = OFF, \ .imm = 0 }) /* Unconditional jumps, gotol pc + imm32 */ #define BPF_JMP32_A(IMM) \ ((struct bpf_insn) { \ .code = BPF_JMP32 | BPF_JA, \ .dst_reg = 0, \ .src_reg = 0, \ .off = 0, \ .imm = IMM }) /* Relative call */ #define BPF_CALL_REL(TGT) \ ((struct bpf_insn) { \ .code = BPF_JMP | BPF_CALL, \ .dst_reg = 0, \ .src_reg = BPF_PSEUDO_CALL, \ .off = 0, \ .imm = TGT }) /* Convert function address to BPF immediate */ #define BPF_CALL_IMM(x) ((void *)(x) - (void *)__bpf_call_base) #define BPF_EMIT_CALL(FUNC) \ ((struct bpf_insn) { \ .code = BPF_JMP | BPF_CALL, \ .dst_reg = 0, \ .src_reg = 0, \ .off = 0, \ .imm = BPF_CALL_IMM(FUNC) }) /* Raw code statement block */ #define BPF_RAW_INSN(CODE, DST, SRC, OFF, IMM) \ ((struct bpf_insn) { \ .code = CODE, \ .dst_reg = DST, \ .src_reg = SRC, \ .off = OFF, \ .imm = IMM }) /* Program exit */ #define BPF_EXIT_INSN() \ ((struct bpf_insn) { \ .code = BPF_JMP | BPF_EXIT, \ .dst_reg = 0, \ .src_reg = 0, \ .off = 0, \ .imm = 0 }) /* Speculation barrier */ #define BPF_ST_NOSPEC() \ ((struct bpf_insn) { \ .code = BPF_ST | BPF_NOSPEC, \ .dst_reg = 0, \ .src_reg = 0, \ .off = 0, \ .imm = 0 }) /* Internal classic blocks for direct assignment */ #define __BPF_STMT(CODE, K) \ ((struct sock_filter) BPF_STMT(CODE, K)) #define __BPF_JUMP(CODE, K, JT, JF) \ ((struct sock_filter) BPF_JUMP(CODE, K, JT, JF)) #define bytes_to_bpf_size(bytes) \ ({ \ int bpf_size = -EINVAL; \ \ if (bytes == sizeof(u8)) \ bpf_size = BPF_B; \ else if (bytes == sizeof(u16)) \ bpf_size = BPF_H; \ else if (bytes == sizeof(u32)) \ bpf_size = BPF_W; \ else if (bytes == sizeof(u64)) \ bpf_size = BPF_DW; \ \ bpf_size; \ }) #define bpf_size_to_bytes(bpf_size) \ ({ \ int bytes = -EINVAL; \ \ if (bpf_size == BPF_B) \ bytes = sizeof(u8); \ else if (bpf_size == BPF_H) \ bytes = sizeof(u16); \ else if (bpf_size == BPF_W) \ bytes = sizeof(u32); \ else if (bpf_size == BPF_DW) \ bytes = sizeof(u64); \ \ bytes; \ }) #define BPF_SIZEOF(type) \ ({ \ const int __size = bytes_to_bpf_size(sizeof(type)); \ BUILD_BUG_ON(__size < 0); \ __size; \ }) #define BPF_FIELD_SIZEOF(type, field) \ ({ \ const int __size = bytes_to_bpf_size(sizeof_field(type, field)); \ BUILD_BUG_ON(__size < 0); \ __size; \ }) #define BPF_LDST_BYTES(insn) \ ({ \ const int __size = bpf_size_to_bytes(BPF_SIZE((insn)->code)); \ WARN_ON(__size < 0); \ __size; \ }) #define __BPF_MAP_0(m, v, ...) v #define __BPF_MAP_1(m, v, t, a, ...) m(t, a) #define __BPF_MAP_2(m, v, t, a, ...) m(t, a), __BPF_MAP_1(m, v, __VA_ARGS__) #define __BPF_MAP_3(m, v, t, a, ...) m(t, a), __BPF_MAP_2(m, v, __VA_ARGS__) #define __BPF_MAP_4(m, v, t, a, ...) m(t, a), __BPF_MAP_3(m, v, __VA_ARGS__) #define __BPF_MAP_5(m, v, t, a, ...) m(t, a), __BPF_MAP_4(m, v, __VA_ARGS__) #define __BPF_REG_0(...) __BPF_PAD(5) #define __BPF_REG_1(...) __BPF_MAP(1, __VA_ARGS__), __BPF_PAD(4) #define __BPF_REG_2(...) __BPF_MAP(2, __VA_ARGS__), __BPF_PAD(3) #define __BPF_REG_3(...) __BPF_MAP(3, __VA_ARGS__), __BPF_PAD(2) #define __BPF_REG_4(...) __BPF_MAP(4, __VA_ARGS__), __BPF_PAD(1) #define __BPF_REG_5(...) __BPF_MAP(5, __VA_ARGS__) #define __BPF_MAP(n, ...) __BPF_MAP_##n(__VA_ARGS__) #define __BPF_REG(n, ...) __BPF_REG_##n(__VA_ARGS__) #define __BPF_CAST(t, a) \ (__force t) \ (__force \ typeof(__builtin_choose_expr(sizeof(t) == sizeof(unsigned long), \ (unsigned long)0, (t)0))) a #define __BPF_V void #define __BPF_N #define __BPF_DECL_ARGS(t, a) t a #define __BPF_DECL_REGS(t, a) u64 a #define __BPF_PAD(n) \ __BPF_MAP(n, __BPF_DECL_ARGS, __BPF_N, u64, __ur_1, u64, __ur_2, \ u64, __ur_3, u64, __ur_4, u64, __ur_5) #define BPF_CALL_x(x, attr, name, ...) \ static __always_inline \ u64 ____##name(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__)); \ typedef u64 (*btf_##name)(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__)); \ attr u64 name(__BPF_REG(x, __BPF_DECL_REGS, __BPF_N, __VA_ARGS__)); \ attr u64 name(__BPF_REG(x, __BPF_DECL_REGS, __BPF_N, __VA_ARGS__)) \ { \ return ((btf_##name)____##name)(__BPF_MAP(x,__BPF_CAST,__BPF_N,__VA_ARGS__));\ } \ static __always_inline \ u64 ____##name(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__)) #define __NOATTR #define BPF_CALL_0(name, ...) BPF_CALL_x(0, __NOATTR, name, __VA_ARGS__) #define BPF_CALL_1(name, ...) BPF_CALL_x(1, __NOATTR, name, __VA_ARGS__) #define BPF_CALL_2(name, ...) BPF_CALL_x(2, __NOATTR, name, __VA_ARGS__) #define BPF_CALL_3(name, ...) BPF_CALL_x(3, __NOATTR, name, __VA_ARGS__) #define BPF_CALL_4(name, ...) BPF_CALL_x(4, __NOATTR, name, __VA_ARGS__) #define BPF_CALL_5(name, ...) BPF_CALL_x(5, __NOATTR, name, __VA_ARGS__) #define NOTRACE_BPF_CALL_1(name, ...) BPF_CALL_x(1, notrace, name, __VA_ARGS__) #define bpf_ctx_range(TYPE, MEMBER) \ offsetof(TYPE, MEMBER) ... offsetofend(TYPE, MEMBER) - 1 #define bpf_ctx_range_till(TYPE, MEMBER1, MEMBER2) \ offsetof(TYPE, MEMBER1) ... offsetofend(TYPE, MEMBER2) - 1 #if BITS_PER_LONG == 64 # define bpf_ctx_range_ptr(TYPE, MEMBER) \ offsetof(TYPE, MEMBER) ... offsetofend(TYPE, MEMBER) - 1 #else # define bpf_ctx_range_ptr(TYPE, MEMBER) \ offsetof(TYPE, MEMBER) ... offsetof(TYPE, MEMBER) + 8 - 1 #endif /* BITS_PER_LONG == 64 */ #define bpf_target_off(TYPE, MEMBER, SIZE, PTR_SIZE) \ ({ \ BUILD_BUG_ON(sizeof_field(TYPE, MEMBER) != (SIZE)); \ *(PTR_SIZE) = (SIZE); \ offsetof(TYPE, MEMBER); \ }) /* A struct sock_filter is architecture independent. */ struct compat_sock_fprog { u16 len; compat_uptr_t filter; /* struct sock_filter * */ }; struct sock_fprog_kern { u16 len; struct sock_filter *filter; }; /* Some arches need doubleword alignment for their instructions and/or data */ #define BPF_IMAGE_ALIGNMENT 8 struct bpf_binary_header { u32 size; u8 image[] __aligned(BPF_IMAGE_ALIGNMENT); }; struct bpf_prog_stats { u64_stats_t cnt; u64_stats_t nsecs; u64_stats_t misses; struct u64_stats_sync syncp; } __aligned(2 * sizeof(u64)); struct sk_filter { refcount_t refcnt; struct rcu_head rcu; struct bpf_prog *prog; }; DECLARE_STATIC_KEY_FALSE(bpf_stats_enabled_key); extern struct mutex nf_conn_btf_access_lock; extern int (*nfct_btf_struct_access)(struct bpf_verifier_log *log, const struct bpf_reg_state *reg, int off, int size); typedef unsigned int (*bpf_dispatcher_fn)(const void *ctx, const struct bpf_insn *insnsi, unsigned int (*bpf_func)(const void *, const struct bpf_insn *)); static __always_inline u32 __bpf_prog_run(const struct bpf_prog *prog, const void *ctx, bpf_dispatcher_fn dfunc) { u32 ret; cant_migrate(); if (static_branch_unlikely(&bpf_stats_enabled_key)) { struct bpf_prog_stats *stats; u64 duration, start = sched_clock(); unsigned long flags; ret = dfunc(ctx, prog->insnsi, prog->bpf_func); duration = sched_clock() - start; stats = this_cpu_ptr(prog->stats); flags = u64_stats_update_begin_irqsave(&stats->syncp); u64_stats_inc(&stats->cnt); u64_stats_add(&stats->nsecs, duration); u64_stats_update_end_irqrestore(&stats->syncp, flags); } else { ret = dfunc(ctx, prog->insnsi, prog->bpf_func); } return ret; } static __always_inline u32 bpf_prog_run(const struct bpf_prog *prog, const void *ctx) { return __bpf_prog_run(prog, ctx, bpf_dispatcher_nop_func); } /* * Use in preemptible and therefore migratable context to make sure that * the execution of the BPF program runs on one CPU. * * This uses migrate_disable/enable() explicitly to document that the * invocation of a BPF program does not require reentrancy protection * against a BPF program which is invoked from a preempting task. */ static inline u32 bpf_prog_run_pin_on_cpu(const struct bpf_prog *prog, const void *ctx) { u32 ret; migrate_disable(); ret = bpf_prog_run(prog, ctx); migrate_enable(); return ret; } #define BPF_SKB_CB_LEN QDISC_CB_PRIV_LEN struct bpf_skb_data_end { struct qdisc_skb_cb qdisc_cb; void *data_meta; void *data_end; }; struct bpf_nh_params { u32 nh_family; union { u32 ipv4_nh; struct in6_addr ipv6_nh; }; }; /* flags for bpf_redirect_info kern_flags */ #define BPF_RI_F_RF_NO_DIRECT BIT(0) /* no napi_direct on return_frame */ #define BPF_RI_F_RI_INIT BIT(1) #define BPF_RI_F_CPU_MAP_INIT BIT(2) #define BPF_RI_F_DEV_MAP_INIT BIT(3) #define BPF_RI_F_XSK_MAP_INIT BIT(4) struct bpf_redirect_info { u64 tgt_index; void *tgt_value; struct bpf_map *map; u32 flags; u32 map_id; enum bpf_map_type map_type; struct bpf_nh_params nh; u32 kern_flags; }; struct bpf_net_context { struct bpf_redirect_info ri; struct list_head cpu_map_flush_list; struct list_head dev_map_flush_list; struct list_head xskmap_map_flush_list; }; static inline struct bpf_net_context *bpf_net_ctx_set(struct bpf_net_context *bpf_net_ctx) { struct task_struct *tsk = current; if (tsk->bpf_net_context != NULL) return NULL; bpf_net_ctx->ri.kern_flags = 0; tsk->bpf_net_context = bpf_net_ctx; return bpf_net_ctx; } static inline void bpf_net_ctx_clear(struct bpf_net_context *bpf_net_ctx) { if (bpf_net_ctx) current->bpf_net_context = NULL; } static inline struct bpf_net_context *bpf_net_ctx_get(void) { return current->bpf_net_context; } static inline struct bpf_redirect_info *bpf_net_ctx_get_ri(void) { struct bpf_net_context *bpf_net_ctx = bpf_net_ctx_get(); if (!(bpf_net_ctx->ri.kern_flags & BPF_RI_F_RI_INIT)) { memset(&bpf_net_ctx->ri, 0, offsetof(struct bpf_net_context, ri.nh)); bpf_net_ctx->ri.kern_flags |= BPF_RI_F_RI_INIT; } return &bpf_net_ctx->ri; } static inline struct list_head *bpf_net_ctx_get_cpu_map_flush_list(void) { struct bpf_net_context *bpf_net_ctx = bpf_net_ctx_get(); if (!(bpf_net_ctx->ri.kern_flags & BPF_RI_F_CPU_MAP_INIT)) { INIT_LIST_HEAD(&bpf_net_ctx->cpu_map_flush_list); bpf_net_ctx->ri.kern_flags |= BPF_RI_F_CPU_MAP_INIT; } return &bpf_net_ctx->cpu_map_flush_list; } static inline struct list_head *bpf_net_ctx_get_dev_flush_list(void) { struct bpf_net_context *bpf_net_ctx = bpf_net_ctx_get(); if (!(bpf_net_ctx->ri.kern_flags & BPF_RI_F_DEV_MAP_INIT)) { INIT_LIST_HEAD(&bpf_net_ctx->dev_map_flush_list); bpf_net_ctx->ri.kern_flags |= BPF_RI_F_DEV_MAP_INIT; } return &bpf_net_ctx->dev_map_flush_list; } static inline struct list_head *bpf_net_ctx_get_xskmap_flush_list(void) { struct bpf_net_context *bpf_net_ctx = bpf_net_ctx_get(); if (!(bpf_net_ctx->ri.kern_flags & BPF_RI_F_XSK_MAP_INIT)) { INIT_LIST_HEAD(&bpf_net_ctx->xskmap_map_flush_list); bpf_net_ctx->ri.kern_flags |= BPF_RI_F_XSK_MAP_INIT; } return &bpf_net_ctx->xskmap_map_flush_list; } static inline void bpf_net_ctx_get_all_used_flush_lists(struct list_head **lh_map, struct list_head **lh_dev, struct list_head **lh_xsk) { struct bpf_net_context *bpf_net_ctx = bpf_net_ctx_get(); u32 kern_flags = bpf_net_ctx->ri.kern_flags; struct list_head *lh; *lh_map = *lh_dev = *lh_xsk = NULL; if (!IS_ENABLED(CONFIG_BPF_SYSCALL)) return; lh = &bpf_net_ctx->dev_map_flush_list; if (kern_flags & BPF_RI_F_DEV_MAP_INIT && !list_empty(lh)) *lh_dev = lh; lh = &bpf_net_ctx->cpu_map_flush_list; if (kern_flags & BPF_RI_F_CPU_MAP_INIT && !list_empty(lh)) *lh_map = lh; lh = &bpf_net_ctx->xskmap_map_flush_list; if (IS_ENABLED(CONFIG_XDP_SOCKETS) && kern_flags & BPF_RI_F_XSK_MAP_INIT && !list_empty(lh)) *lh_xsk = lh; } /* Compute the linear packet data range [data, data_end) which * will be accessed by various program types (cls_bpf, act_bpf, * lwt, ...). Subsystems allowing direct data access must (!) * ensure that cb[] area can be written to when BPF program is * invoked (otherwise cb[] save/restore is necessary). */ static inline void bpf_compute_data_pointers(struct sk_buff *skb) { struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb; BUILD_BUG_ON(sizeof(*cb) > sizeof_field(struct sk_buff, cb)); cb->data_meta = skb->data - skb_metadata_len(skb); cb->data_end = skb->data + skb_headlen(skb); } /* Similar to bpf_compute_data_pointers(), except that save orginal * data in cb->data and cb->meta_data for restore. */ static inline void bpf_compute_and_save_data_end( struct sk_buff *skb, void **saved_data_end) { struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb; *saved_data_end = cb->data_end; cb->data_end = skb->data + skb_headlen(skb); } /* Restore data saved by bpf_compute_and_save_data_end(). */ static inline void bpf_restore_data_end( struct sk_buff *skb, void *saved_data_end) { struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb; cb->data_end = saved_data_end; } static inline u8 *bpf_skb_cb(const struct sk_buff *skb) { /* eBPF programs may read/write skb->cb[] area to transfer meta * data between tail calls. Since this also needs to work with * tc, that scratch memory is mapped to qdisc_skb_cb's data area. * * In some socket filter cases, the cb unfortunately needs to be * saved/restored so that protocol specific skb->cb[] data won't * be lost. In any case, due to unpriviledged eBPF programs * attached to sockets, we need to clear the bpf_skb_cb() area * to not leak previous contents to user space. */ BUILD_BUG_ON(sizeof_field(struct __sk_buff, cb) != BPF_SKB_CB_LEN); BUILD_BUG_ON(sizeof_field(struct __sk_buff, cb) != sizeof_field(struct qdisc_skb_cb, data)); return qdisc_skb_cb(skb)->data; } /* Must be invoked with migration disabled */ static inline u32 __bpf_prog_run_save_cb(const struct bpf_prog *prog, const void *ctx) { const struct sk_buff *skb = ctx; u8 *cb_data = bpf_skb_cb(skb); u8 cb_saved[BPF_SKB_CB_LEN]; u32 res; if (unlikely(prog->cb_access)) { memcpy(cb_saved, cb_data, sizeof(cb_saved)); memset(cb_data, 0, sizeof(cb_saved)); } res = bpf_prog_run(prog, skb); if (unlikely(prog->cb_access)) memcpy(cb_data, cb_saved, sizeof(cb_saved)); return res; } static inline u32 bpf_prog_run_save_cb(const struct bpf_prog *prog, struct sk_buff *skb) { u32 res; migrate_disable(); res = __bpf_prog_run_save_cb(prog, skb); migrate_enable(); return res; } static inline u32 bpf_prog_run_clear_cb(const struct bpf_prog *prog, struct sk_buff *skb) { u8 *cb_data = bpf_skb_cb(skb); u32 res; if (unlikely(prog->cb_access)) memset(cb_data, 0, BPF_SKB_CB_LEN); res = bpf_prog_run_pin_on_cpu(prog, skb); return res; } DECLARE_BPF_DISPATCHER(xdp) DECLARE_STATIC_KEY_FALSE(bpf_master_redirect_enabled_key); u32 xdp_master_redirect(struct xdp_buff *xdp); void bpf_prog_change_xdp(struct bpf_prog *prev_prog, struct bpf_prog *prog); static inline u32 bpf_prog_insn_size(const struct bpf_prog *prog) { return prog->len * sizeof(struct bpf_insn); } static inline u32 bpf_prog_tag_scratch_size(const struct bpf_prog *prog) { return round_up(bpf_prog_insn_size(prog) + sizeof(__be64) + 1, SHA1_BLOCK_SIZE); } static inline unsigned int bpf_prog_size(unsigned int proglen) { return max(sizeof(struct bpf_prog), offsetof(struct bpf_prog, insns[proglen])); } static inline bool bpf_prog_was_classic(const struct bpf_prog *prog) { /* When classic BPF programs have been loaded and the arch * does not have a classic BPF JIT (anymore), they have been * converted via bpf_migrate_filter() to eBPF and thus always * have an unspec program type. */ return prog->type == BPF_PROG_TYPE_UNSPEC; } static inline u32 bpf_ctx_off_adjust_machine(u32 size) { const u32 size_machine = sizeof(unsigned long); if (size > size_machine && size % size_machine == 0) size = size_machine; return size; } static inline bool bpf_ctx_narrow_access_ok(u32 off, u32 size, u32 size_default) { return size <= size_default && (size & (size - 1)) == 0; } static inline u8 bpf_ctx_narrow_access_offset(u32 off, u32 size, u32 size_default) { u8 access_off = off & (size_default - 1); #ifdef __LITTLE_ENDIAN return access_off; #else return size_default - (access_off + size); #endif } #define bpf_ctx_wide_access_ok(off, size, type, field) \ (size == sizeof(__u64) && \ off >= offsetof(type, field) && \ off + sizeof(__u64) <= offsetofend(type, field) && \ off % sizeof(__u64) == 0) #define bpf_classic_proglen(fprog) (fprog->len * sizeof(fprog->filter[0])) static inline int __must_check bpf_prog_lock_ro(struct bpf_prog *fp) { #ifndef CONFIG_BPF_JIT_ALWAYS_ON if (!fp->jited) { set_vm_flush_reset_perms(fp); return set_memory_ro((unsigned long)fp, fp->pages); } #endif return 0; } static inline int __must_check bpf_jit_binary_lock_ro(struct bpf_binary_header *hdr) { set_vm_flush_reset_perms(hdr); return set_memory_rox((unsigned long)hdr, hdr->size >> PAGE_SHIFT); } int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb, unsigned int cap); static inline int sk_filter(struct sock *sk, struct sk_buff *skb) { return sk_filter_trim_cap(sk, skb, 1); } struct bpf_prog *bpf_prog_select_runtime(struct bpf_prog *fp, int *err); void bpf_prog_free(struct bpf_prog *fp); bool bpf_opcode_in_insntable(u8 code); void bpf_prog_fill_jited_linfo(struct bpf_prog *prog, const u32 *insn_to_jit_off); int bpf_prog_alloc_jited_linfo(struct bpf_prog *prog); void bpf_prog_jit_attempt_done(struct bpf_prog *prog); struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags); struct bpf_prog *bpf_prog_alloc_no_stats(unsigned int size, gfp_t gfp_extra_flags); struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size, gfp_t gfp_extra_flags); void __bpf_prog_free(struct bpf_prog *fp); static inline void bpf_prog_unlock_free(struct bpf_prog *fp) { __bpf_prog_free(fp); } typedef int (*bpf_aux_classic_check_t)(struct sock_filter *filter, unsigned int flen); int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog); int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog, bpf_aux_classic_check_t trans, bool save_orig); void bpf_prog_destroy(struct bpf_prog *fp); int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk); int sk_attach_bpf(u32 ufd, struct sock *sk); int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk); int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk); void sk_reuseport_prog_free(struct bpf_prog *prog); int sk_detach_filter(struct sock *sk); int sk_get_filter(struct sock *sk, sockptr_t optval, unsigned int len); bool sk_filter_charge(struct sock *sk, struct sk_filter *fp); void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp); u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5); #define __bpf_call_base_args \ ((u64 (*)(u64, u64, u64, u64, u64, const struct bpf_insn *)) \ (void *)__bpf_call_base) struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog); void bpf_jit_compile(struct bpf_prog *prog); bool bpf_jit_needs_zext(void); bool bpf_jit_inlines_helper_call(s32 imm); bool bpf_jit_supports_subprog_tailcalls(void); bool bpf_jit_supports_percpu_insn(void); bool bpf_jit_supports_kfunc_call(void); bool bpf_jit_supports_far_kfunc_call(void); bool bpf_jit_supports_exceptions(void); bool bpf_jit_supports_ptr_xchg(void); bool bpf_jit_supports_arena(void); bool bpf_jit_supports_insn(struct bpf_insn *insn, bool in_arena); u64 bpf_arch_uaddress_limit(void); void arch_bpf_stack_walk(bool (*consume_fn)(void *cookie, u64 ip, u64 sp, u64 bp), void *cookie); bool bpf_helper_changes_pkt_data(void *func); static inline bool bpf_dump_raw_ok(const struct cred *cred) { /* Reconstruction of call-sites is dependent on kallsyms, * thus make dump the same restriction. */ return kallsyms_show_value(cred); } struct bpf_prog *bpf_patch_insn_single(struct bpf_prog *prog, u32 off, const struct bpf_insn *patch, u32 len); int bpf_remove_insns(struct bpf_prog *prog, u32 off, u32 cnt); static inline bool xdp_return_frame_no_direct(void) { struct bpf_redirect_info *ri = bpf_net_ctx_get_ri(); return ri->kern_flags & BPF_RI_F_RF_NO_DIRECT; } static inline void xdp_set_return_frame_no_direct(void) { struct bpf_redirect_info *ri = bpf_net_ctx_get_ri(); ri->kern_flags |= BPF_RI_F_RF_NO_DIRECT; } static inline void xdp_clear_return_frame_no_direct(void) { struct bpf_redirect_info *ri = bpf_net_ctx_get_ri(); ri->kern_flags &= ~BPF_RI_F_RF_NO_DIRECT; } static inline int xdp_ok_fwd_dev(const struct net_device *fwd, unsigned int pktlen) { unsigned int len; if (unlikely(!(fwd->flags & IFF_UP))) return -ENETDOWN; len = fwd->mtu + fwd->hard_header_len + VLAN_HLEN; if (pktlen > len) return -EMSGSIZE; return 0; } /* The pair of xdp_do_redirect and xdp_do_flush MUST be called in the * same cpu context. Further for best results no more than a single map * for the do_redirect/do_flush pair should be used. This limitation is * because we only track one map and force a flush when the map changes. * This does not appear to be a real limitation for existing software. */ int xdp_do_generic_redirect(struct net_device *dev, struct sk_buff *skb, struct xdp_buff *xdp, struct bpf_prog *prog); int xdp_do_redirect(struct net_device *dev, struct xdp_buff *xdp, struct bpf_prog *prog); int xdp_do_redirect_frame(struct net_device *dev, struct xdp_buff *xdp, struct xdp_frame *xdpf, struct bpf_prog *prog); void xdp_do_flush(void); void bpf_warn_invalid_xdp_action(struct net_device *dev, struct bpf_prog *prog, u32 act); #ifdef CONFIG_INET struct sock *bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk, struct bpf_prog *prog, struct sk_buff *skb, struct sock *migrating_sk, u32 hash); #else static inline struct sock * bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk, struct bpf_prog *prog, struct sk_buff *skb, struct sock *migrating_sk, u32 hash) { return NULL; } #endif #ifdef CONFIG_BPF_JIT extern int bpf_jit_enable; extern int bpf_jit_harden; extern int bpf_jit_kallsyms; extern long bpf_jit_limit; extern long bpf_jit_limit_max; typedef void (*bpf_jit_fill_hole_t)(void *area, unsigned int size); void bpf_jit_fill_hole_with_zero(void *area, unsigned int size); struct bpf_binary_header * bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr, unsigned int alignment, bpf_jit_fill_hole_t bpf_fill_ill_insns); void bpf_jit_binary_free(struct bpf_binary_header *hdr); u64 bpf_jit_alloc_exec_limit(void); void *bpf_jit_alloc_exec(unsigned long size); void bpf_jit_free_exec(void *addr); void bpf_jit_free(struct bpf_prog *fp); struct bpf_binary_header * bpf_jit_binary_pack_hdr(const struct bpf_prog *fp); void *bpf_prog_pack_alloc(u32 size, bpf_jit_fill_hole_t bpf_fill_ill_insns); void bpf_prog_pack_free(void *ptr, u32 size); static inline bool bpf_prog_kallsyms_verify_off(const struct bpf_prog *fp) { return list_empty(&fp->aux->ksym.lnode) || fp->aux->ksym.lnode.prev == LIST_POISON2; } struct bpf_binary_header * bpf_jit_binary_pack_alloc(unsigned int proglen, u8 **ro_image, unsigned int alignment, struct bpf_binary_header **rw_hdr, u8 **rw_image, bpf_jit_fill_hole_t bpf_fill_ill_insns); int bpf_jit_binary_pack_finalize(struct bpf_binary_header *ro_header, struct bpf_binary_header *rw_header); void bpf_jit_binary_pack_free(struct bpf_binary_header *ro_header, struct bpf_binary_header *rw_header); int bpf_jit_add_poke_descriptor(struct bpf_prog *prog, struct bpf_jit_poke_descriptor *poke); int bpf_jit_get_func_addr(const struct bpf_prog *prog, const struct bpf_insn *insn, bool extra_pass, u64 *func_addr, bool *func_addr_fixed); struct bpf_prog *bpf_jit_blind_constants(struct bpf_prog *fp); void bpf_jit_prog_release_other(struct bpf_prog *fp, struct bpf_prog *fp_other); static inline void bpf_jit_dump(unsigned int flen, unsigned int proglen, u32 pass, void *image) { pr_err("flen=%u proglen=%u pass=%u image=%pK from=%s pid=%d\n", flen, proglen, pass, image, current->comm, task_pid_nr(current)); if (image) print_hex_dump(KERN_ERR, "JIT code: ", DUMP_PREFIX_OFFSET, 16, 1, image, proglen, false); } static inline bool bpf_jit_is_ebpf(void) { # ifdef CONFIG_HAVE_EBPF_JIT return true; # else return false; # endif } static inline bool ebpf_jit_enabled(void) { return bpf_jit_enable && bpf_jit_is_ebpf(); } static inline bool bpf_prog_ebpf_jited(const struct bpf_prog *fp) { return fp->jited && bpf_jit_is_ebpf(); } static inline bool bpf_jit_blinding_enabled(struct bpf_prog *prog) { /* These are the prerequisites, should someone ever have the * idea to call blinding outside of them, we make sure to * bail out. */ if (!bpf_jit_is_ebpf()) return false; if (!prog->jit_requested) return false; if (!bpf_jit_harden) return false; if (bpf_jit_harden == 1 && bpf_token_capable(prog->aux->token, CAP_BPF)) return false; return true; } static inline bool bpf_jit_kallsyms_enabled(void) { /* There are a couple of corner cases where kallsyms should * not be enabled f.e. on hardening. */ if (bpf_jit_harden) return false; if (!bpf_jit_kallsyms) return false; if (bpf_jit_kallsyms == 1) return true; return false; } int __bpf_address_lookup(unsigned long addr, unsigned long *size, unsigned long *off, char *sym); bool is_bpf_text_address(unsigned long addr); int bpf_get_kallsym(unsigned int symnum, unsigned long *value, char *type, char *sym); struct bpf_prog *bpf_prog_ksym_find(unsigned long addr); static inline int bpf_address_lookup(unsigned long addr, unsigned long *size, unsigned long *off, char **modname, char *sym) { int ret = __bpf_address_lookup(addr, size, off, sym); if (ret && modname) *modname = NULL; return ret; } void bpf_prog_kallsyms_add(struct bpf_prog *fp); void bpf_prog_kallsyms_del(struct bpf_prog *fp); #else /* CONFIG_BPF_JIT */ static inline bool ebpf_jit_enabled(void) { return false; } static inline bool bpf_jit_blinding_enabled(struct bpf_prog *prog) { return false; } static inline bool bpf_prog_ebpf_jited(const struct bpf_prog *fp) { return false; } static inline int bpf_jit_add_poke_descriptor(struct bpf_prog *prog, struct bpf_jit_poke_descriptor *poke) { return -ENOTSUPP; } static inline void bpf_jit_free(struct bpf_prog *fp) { bpf_prog_unlock_free(fp); } static inline bool bpf_jit_kallsyms_enabled(void) { return false; } static inline int __bpf_address_lookup(unsigned long addr, unsigned long *size, unsigned long *off, char *sym) { return 0; } static inline bool is_bpf_text_address(unsigned long addr) { return false; } static inline int bpf_get_kallsym(unsigned int symnum, unsigned long *value, char *type, char *sym) { return -ERANGE; } static inline struct bpf_prog *bpf_prog_ksym_find(unsigned long addr) { return NULL; } static inline int bpf_address_lookup(unsigned long addr, unsigned long *size, unsigned long *off, char **modname, char *sym) { return 0; } static inline void bpf_prog_kallsyms_add(struct bpf_prog *fp) { } static inline void bpf_prog_kallsyms_del(struct bpf_prog *fp) { } #endif /* CONFIG_BPF_JIT */ void bpf_prog_kallsyms_del_all(struct bpf_prog *fp); #define BPF_ANC BIT(15) static inline bool bpf_needs_clear_a(const struct sock_filter *first) { switch (first->code) { case BPF_RET | BPF_K: case BPF_LD | BPF_W | BPF_LEN: return false; case BPF_LD | BPF_W | BPF_ABS: case BPF_LD | BPF_H | BPF_ABS: case BPF_LD | BPF_B | BPF_ABS: if (first->k == SKF_AD_OFF + SKF_AD_ALU_XOR_X) return true; return false; default: return true; } } static inline u16 bpf_anc_helper(const struct sock_filter *ftest) { BUG_ON(ftest->code & BPF_ANC); switch (ftest->code) { case BPF_LD | BPF_W | BPF_ABS: case BPF_LD | BPF_H | BPF_ABS: case BPF_LD | BPF_B | BPF_ABS: #define BPF_ANCILLARY(CODE) case SKF_AD_OFF + SKF_AD_##CODE: \ return BPF_ANC | SKF_AD_##CODE switch (ftest->k) { BPF_ANCILLARY(PROTOCOL); BPF_ANCILLARY(PKTTYPE); BPF_ANCILLARY(IFINDEX); BPF_ANCILLARY(NLATTR); BPF_ANCILLARY(NLATTR_NEST); BPF_ANCILLARY(MARK); BPF_ANCILLARY(QUEUE); BPF_ANCILLARY(HATYPE); BPF_ANCILLARY(RXHASH); BPF_ANCILLARY(CPU); BPF_ANCILLARY(ALU_XOR_X); BPF_ANCILLARY(VLAN_TAG); BPF_ANCILLARY(VLAN_TAG_PRESENT); BPF_ANCILLARY(PAY_OFFSET); BPF_ANCILLARY(RANDOM); BPF_ANCILLARY(VLAN_TPID); } fallthrough; default: return ftest->code; } } void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb, int k, unsigned int size); static inline int bpf_tell_extensions(void) { return SKF_AD_MAX; } struct bpf_sock_addr_kern { struct sock *sk; struct sockaddr *uaddr; /* Temporary "register" to make indirect stores to nested structures * defined above. We need three registers to make such a store, but * only two (src and dst) are available at convert_ctx_access time */ u64 tmp_reg; void *t_ctx; /* Attach type specific context. */ u32 uaddrlen; }; struct bpf_sock_ops_kern { struct sock *sk; union { u32 args[4]; u32 reply; u32 replylong[4]; }; struct sk_buff *syn_skb; struct sk_buff *skb; void *skb_data_end; u8 op; u8 is_fullsock; u8 remaining_opt_len; u64 temp; /* temp and everything after is not * initialized to 0 before calling * the BPF program. New fields that * should be initialized to 0 should * be inserted before temp. * temp is scratch storage used by * sock_ops_convert_ctx_access * as temporary storage of a register. */ }; struct bpf_sysctl_kern { struct ctl_table_header *head; const struct ctl_table *table; void *cur_val; size_t cur_len; void *new_val; size_t new_len; int new_updated; int write; loff_t *ppos; /* Temporary "register" for indirect stores to ppos. */ u64 tmp_reg; }; #define BPF_SOCKOPT_KERN_BUF_SIZE 32 struct bpf_sockopt_buf { u8 data[BPF_SOCKOPT_KERN_BUF_SIZE]; }; struct bpf_sockopt_kern { struct sock *sk; u8 *optval; u8 *optval_end; s32 level; s32 optname; s32 optlen; /* for retval in struct bpf_cg_run_ctx */ struct task_struct *current_task; /* Temporary "register" for indirect stores to ppos. */ u64 tmp_reg; }; int copy_bpf_fprog_from_user(struct sock_fprog *dst, sockptr_t src, int len); struct bpf_sk_lookup_kern { u16 family; u16 protocol; __be16 sport; u16 dport; struct { __be32 saddr; __be32 daddr; } v4; struct { const struct in6_addr *saddr; const struct in6_addr *daddr; } v6; struct sock *selected_sk; u32 ingress_ifindex; bool no_reuseport; }; extern struct static_key_false bpf_sk_lookup_enabled; /* Runners for BPF_SK_LOOKUP programs to invoke on socket lookup. * * Allowed return values for a BPF SK_LOOKUP program are SK_PASS and * SK_DROP. Their meaning is as follows: * * SK_PASS && ctx.selected_sk != NULL: use selected_sk as lookup result * SK_PASS && ctx.selected_sk == NULL: continue to htable-based socket lookup * SK_DROP : terminate lookup with -ECONNREFUSED * * This macro aggregates return values and selected sockets from * multiple BPF programs according to following rules in order: * * 1. If any program returned SK_PASS and a non-NULL ctx.selected_sk, * macro result is SK_PASS and last ctx.selected_sk is used. * 2. If any program returned SK_DROP return value, * macro result is SK_DROP. * 3. Otherwise result is SK_PASS and ctx.selected_sk is NULL. * * Caller must ensure that the prog array is non-NULL, and that the * array as well as the programs it contains remain valid. */ #define BPF_PROG_SK_LOOKUP_RUN_ARRAY(array, ctx, func) \ ({ \ struct bpf_sk_lookup_kern *_ctx = &(ctx); \ struct bpf_prog_array_item *_item; \ struct sock *_selected_sk = NULL; \ bool _no_reuseport = false; \ struct bpf_prog *_prog; \ bool _all_pass = true; \ u32 _ret; \ \ migrate_disable(); \ _item = &(array)->items[0]; \ while ((_prog = READ_ONCE(_item->prog))) { \ /* restore most recent selection */ \ _ctx->selected_sk = _selected_sk; \ _ctx->no_reuseport = _no_reuseport; \ \ _ret = func(_prog, _ctx); \ if (_ret == SK_PASS && _ctx->selected_sk) { \ /* remember last non-NULL socket */ \ _selected_sk = _ctx->selected_sk; \ _no_reuseport = _ctx->no_reuseport; \ } else if (_ret == SK_DROP && _all_pass) { \ _all_pass = false; \ } \ _item++; \ } \ _ctx->selected_sk = _selected_sk; \ _ctx->no_reuseport = _no_reuseport; \ migrate_enable(); \ _all_pass || _selected_sk ? SK_PASS : SK_DROP; \ }) static inline bool bpf_sk_lookup_run_v4(const struct net *net, int protocol, const __be32 saddr, const __be16 sport, const __be32 daddr, const u16 dport, const int ifindex, struct sock **psk) { struct bpf_prog_array *run_array; struct sock *selected_sk = NULL; bool no_reuseport = false; rcu_read_lock(); run_array = rcu_dereference(net->bpf.run_array[NETNS_BPF_SK_LOOKUP]); if (run_array) { struct bpf_sk_lookup_kern ctx = { .family = AF_INET, .protocol = protocol, .v4.saddr = saddr, .v4.daddr = daddr, .sport = sport, .dport = dport, .ingress_ifindex = ifindex, }; u32 act; act = BPF_PROG_SK_LOOKUP_RUN_ARRAY(run_array, ctx, bpf_prog_run); if (act == SK_PASS) { selected_sk = ctx.selected_sk; no_reuseport = ctx.no_reuseport; } else { selected_sk = ERR_PTR(-ECONNREFUSED); } } rcu_read_unlock(); *psk = selected_sk; return no_reuseport; } #if IS_ENABLED(CONFIG_IPV6) static inline bool bpf_sk_lookup_run_v6(const struct net *net, int protocol, const struct in6_addr *saddr, const __be16 sport, const struct in6_addr *daddr, const u16 dport, const int ifindex, struct sock **psk) { struct bpf_prog_array *run_array; struct sock *selected_sk = NULL; bool no_reuseport = false; rcu_read_lock(); run_array = rcu_dereference(net->bpf.run_array[NETNS_BPF_SK_LOOKUP]); if (run_array) { struct bpf_sk_lookup_kern ctx = { .family = AF_INET6, .protocol = protocol, .v6.saddr = saddr, .v6.daddr = daddr, .sport = sport, .dport = dport, .ingress_ifindex = ifindex, }; u32 act; act = BPF_PROG_SK_LOOKUP_RUN_ARRAY(run_array, ctx, bpf_prog_run); if (act == SK_PASS) { selected_sk = ctx.selected_sk; no_reuseport = ctx.no_reuseport; } else { selected_sk = ERR_PTR(-ECONNREFUSED); } } rcu_read_unlock(); *psk = selected_sk; return no_reuseport; } #endif /* IS_ENABLED(CONFIG_IPV6) */ static __always_inline long __bpf_xdp_redirect_map(struct bpf_map *map, u64 index, u64 flags, const u64 flag_mask, void *lookup_elem(struct bpf_map *map, u32 key)) { struct bpf_redirect_info *ri = bpf_net_ctx_get_ri(); const u64 action_mask = XDP_ABORTED | XDP_DROP | XDP_PASS | XDP_TX; /* Lower bits of the flags are used as return code on lookup failure */ if (unlikely(flags & ~(action_mask | flag_mask))) return XDP_ABORTED; ri->tgt_value = lookup_elem(map, index); if (unlikely(!ri->tgt_value) && !(flags & BPF_F_BROADCAST)) { /* If the lookup fails we want to clear out the state in the * redirect_info struct completely, so that if an eBPF program * performs multiple lookups, the last one always takes * precedence. */ ri->map_id = INT_MAX; /* Valid map id idr range: [1,INT_MAX[ */ ri->map_type = BPF_MAP_TYPE_UNSPEC; return flags & action_mask; } ri->tgt_index = index; ri->map_id = map->id; ri->map_type = map->map_type; if (flags & BPF_F_BROADCAST) { WRITE_ONCE(ri->map, map); ri->flags = flags; } else { WRITE_ONCE(ri->map, NULL); ri->flags = 0; } return XDP_REDIRECT; } #ifdef CONFIG_NET int __bpf_skb_load_bytes(const struct sk_buff *skb, u32 offset, void *to, u32 len); int __bpf_skb_store_bytes(struct sk_buff *skb, u32 offset, const void *from, u32 len, u64 flags); int __bpf_xdp_load_bytes(struct xdp_buff *xdp, u32 offset, void *buf, u32 len); int __bpf_xdp_store_bytes(struct xdp_buff *xdp, u32 offset, void *buf, u32 len); void *bpf_xdp_pointer(struct xdp_buff *xdp, u32 offset, u32 len); void bpf_xdp_copy_buf(struct xdp_buff *xdp, unsigned long off, void *buf, unsigned long len, bool flush); #else /* CONFIG_NET */ static inline int __bpf_skb_load_bytes(const struct sk_buff *skb, u32 offset, void *to, u32 len) { return -EOPNOTSUPP; } static inline int __bpf_skb_store_bytes(struct sk_buff *skb, u32 offset, const void *from, u32 len, u64 flags) { return -EOPNOTSUPP; } static inline int __bpf_xdp_load_bytes(struct xdp_buff *xdp, u32 offset, void *buf, u32 len) { return -EOPNOTSUPP; } static inline int __bpf_xdp_store_bytes(struct xdp_buff *xdp, u32 offset, void *buf, u32 len) { return -EOPNOTSUPP; } static inline void *bpf_xdp_pointer(struct xdp_buff *xdp, u32 offset, u32 len) { return NULL; } static inline void bpf_xdp_copy_buf(struct xdp_buff *xdp, unsigned long off, void *buf, unsigned long len, bool flush) { } #endif /* CONFIG_NET */ #endif /* __LINUX_FILTER_H__ */