// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) 2007 Oracle. All rights reserved. * Copyright (C) 2022 Christoph Hellwig. */ #include #include "bio.h" #include "ctree.h" #include "volumes.h" #include "raid56.h" #include "async-thread.h" #include "dev-replace.h" #include "zoned.h" #include "file-item.h" #include "raid-stripe-tree.h" static struct bio_set btrfs_bioset; static struct bio_set btrfs_clone_bioset; static struct bio_set btrfs_repair_bioset; static mempool_t btrfs_failed_bio_pool; struct btrfs_failed_bio { struct btrfs_bio *bbio; int num_copies; atomic_t repair_count; }; /* Is this a data path I/O that needs storage layer checksum and repair? */ static inline bool is_data_bbio(struct btrfs_bio *bbio) { return bbio->inode && is_data_inode(&bbio->inode->vfs_inode); } static bool bbio_has_ordered_extent(struct btrfs_bio *bbio) { return is_data_bbio(bbio) && btrfs_op(&bbio->bio) == BTRFS_MAP_WRITE; } /* * Initialize a btrfs_bio structure. This skips the embedded bio itself as it * is already initialized by the block layer. */ void btrfs_bio_init(struct btrfs_bio *bbio, struct btrfs_fs_info *fs_info, btrfs_bio_end_io_t end_io, void *private) { memset(bbio, 0, offsetof(struct btrfs_bio, bio)); bbio->fs_info = fs_info; bbio->end_io = end_io; bbio->private = private; atomic_set(&bbio->pending_ios, 1); } /* * Allocate a btrfs_bio structure. The btrfs_bio is the main I/O container for * btrfs, and is used for all I/O submitted through btrfs_submit_bio. * * Just like the underlying bio_alloc_bioset it will not fail as it is backed by * a mempool. */ struct btrfs_bio *btrfs_bio_alloc(unsigned int nr_vecs, blk_opf_t opf, struct btrfs_fs_info *fs_info, btrfs_bio_end_io_t end_io, void *private) { struct btrfs_bio *bbio; struct bio *bio; bio = bio_alloc_bioset(NULL, nr_vecs, opf, GFP_NOFS, &btrfs_bioset); bbio = btrfs_bio(bio); btrfs_bio_init(bbio, fs_info, end_io, private); return bbio; } static struct btrfs_bio *btrfs_split_bio(struct btrfs_fs_info *fs_info, struct btrfs_bio *orig_bbio, u64 map_length, bool use_append) { struct btrfs_bio *bbio; struct bio *bio; if (use_append) { unsigned int nr_segs; bio = bio_split_rw(&orig_bbio->bio, &fs_info->limits, &nr_segs, &btrfs_clone_bioset, map_length); } else { bio = bio_split(&orig_bbio->bio, map_length >> SECTOR_SHIFT, GFP_NOFS, &btrfs_clone_bioset); } bbio = btrfs_bio(bio); btrfs_bio_init(bbio, fs_info, NULL, orig_bbio); bbio->inode = orig_bbio->inode; bbio->file_offset = orig_bbio->file_offset; orig_bbio->file_offset += map_length; if (bbio_has_ordered_extent(bbio)) { refcount_inc(&orig_bbio->ordered->refs); bbio->ordered = orig_bbio->ordered; } atomic_inc(&orig_bbio->pending_ios); return bbio; } /* Free a bio that was never submitted to the underlying device. */ static void btrfs_cleanup_bio(struct btrfs_bio *bbio) { if (bbio_has_ordered_extent(bbio)) btrfs_put_ordered_extent(bbio->ordered); bio_put(&bbio->bio); } static void __btrfs_bio_end_io(struct btrfs_bio *bbio) { if (bbio_has_ordered_extent(bbio)) { struct btrfs_ordered_extent *ordered = bbio->ordered; bbio->end_io(bbio); btrfs_put_ordered_extent(ordered); } else { bbio->end_io(bbio); } } void btrfs_bio_end_io(struct btrfs_bio *bbio, blk_status_t status) { bbio->bio.bi_status = status; __btrfs_bio_end_io(bbio); } static void btrfs_orig_write_end_io(struct bio *bio); static void btrfs_bbio_propagate_error(struct btrfs_bio *bbio, struct btrfs_bio *orig_bbio) { /* * For writes we tolerate nr_mirrors - 1 write failures, so we can't * just blindly propagate a write failure here. Instead increment the * error count in the original I/O context so that it is guaranteed to * be larger than the error tolerance. */ if (bbio->bio.bi_end_io == &btrfs_orig_write_end_io) { struct btrfs_io_stripe *orig_stripe = orig_bbio->bio.bi_private; struct btrfs_io_context *orig_bioc = orig_stripe->bioc; atomic_add(orig_bioc->max_errors, &orig_bioc->error); } else { orig_bbio->bio.bi_status = bbio->bio.bi_status; } } static void btrfs_orig_bbio_end_io(struct btrfs_bio *bbio) { if (bbio->bio.bi_pool == &btrfs_clone_bioset) { struct btrfs_bio *orig_bbio = bbio->private; if (bbio->bio.bi_status) btrfs_bbio_propagate_error(bbio, orig_bbio); btrfs_cleanup_bio(bbio); bbio = orig_bbio; } if (atomic_dec_and_test(&bbio->pending_ios)) __btrfs_bio_end_io(bbio); } static int next_repair_mirror(struct btrfs_failed_bio *fbio, int cur_mirror) { if (cur_mirror == fbio->num_copies) return cur_mirror + 1 - fbio->num_copies; return cur_mirror + 1; } static int prev_repair_mirror(struct btrfs_failed_bio *fbio, int cur_mirror) { if (cur_mirror == 1) return fbio->num_copies; return cur_mirror - 1; } static void btrfs_repair_done(struct btrfs_failed_bio *fbio) { if (atomic_dec_and_test(&fbio->repair_count)) { btrfs_orig_bbio_end_io(fbio->bbio); mempool_free(fbio, &btrfs_failed_bio_pool); } } static void btrfs_end_repair_bio(struct btrfs_bio *repair_bbio, struct btrfs_device *dev) { struct btrfs_failed_bio *fbio = repair_bbio->private; struct btrfs_inode *inode = repair_bbio->inode; struct btrfs_fs_info *fs_info = inode->root->fs_info; struct bio_vec *bv = bio_first_bvec_all(&repair_bbio->bio); int mirror = repair_bbio->mirror_num; /* * We can only trigger this for data bio, which doesn't support larger * folios yet. */ ASSERT(folio_order(page_folio(bv->bv_page)) == 0); if (repair_bbio->bio.bi_status || !btrfs_data_csum_ok(repair_bbio, dev, 0, bv)) { bio_reset(&repair_bbio->bio, NULL, REQ_OP_READ); repair_bbio->bio.bi_iter = repair_bbio->saved_iter; mirror = next_repair_mirror(fbio, mirror); if (mirror == fbio->bbio->mirror_num) { btrfs_debug(fs_info, "no mirror left"); fbio->bbio->bio.bi_status = BLK_STS_IOERR; goto done; } btrfs_submit_bio(repair_bbio, mirror); return; } do { mirror = prev_repair_mirror(fbio, mirror); btrfs_repair_io_failure(fs_info, btrfs_ino(inode), repair_bbio->file_offset, fs_info->sectorsize, repair_bbio->saved_iter.bi_sector << SECTOR_SHIFT, page_folio(bv->bv_page), bv->bv_offset, mirror); } while (mirror != fbio->bbio->mirror_num); done: btrfs_repair_done(fbio); bio_put(&repair_bbio->bio); } /* * Try to kick off a repair read to the next available mirror for a bad sector. * * This primarily tries to recover good data to serve the actual read request, * but also tries to write the good data back to the bad mirror(s) when a * read succeeded to restore the redundancy. */ static struct btrfs_failed_bio *repair_one_sector(struct btrfs_bio *failed_bbio, u32 bio_offset, struct bio_vec *bv, struct btrfs_failed_bio *fbio) { struct btrfs_inode *inode = failed_bbio->inode; struct btrfs_fs_info *fs_info = inode->root->fs_info; const u32 sectorsize = fs_info->sectorsize; const u64 logical = (failed_bbio->saved_iter.bi_sector << SECTOR_SHIFT); struct btrfs_bio *repair_bbio; struct bio *repair_bio; int num_copies; int mirror; btrfs_debug(fs_info, "repair read error: read error at %llu", failed_bbio->file_offset + bio_offset); num_copies = btrfs_num_copies(fs_info, logical, sectorsize); if (num_copies == 1) { btrfs_debug(fs_info, "no copy to repair from"); failed_bbio->bio.bi_status = BLK_STS_IOERR; return fbio; } if (!fbio) { fbio = mempool_alloc(&btrfs_failed_bio_pool, GFP_NOFS); fbio->bbio = failed_bbio; fbio->num_copies = num_copies; atomic_set(&fbio->repair_count, 1); } atomic_inc(&fbio->repair_count); repair_bio = bio_alloc_bioset(NULL, 1, REQ_OP_READ, GFP_NOFS, &btrfs_repair_bioset); repair_bio->bi_iter.bi_sector = failed_bbio->saved_iter.bi_sector; __bio_add_page(repair_bio, bv->bv_page, bv->bv_len, bv->bv_offset); repair_bbio = btrfs_bio(repair_bio); btrfs_bio_init(repair_bbio, fs_info, NULL, fbio); repair_bbio->inode = failed_bbio->inode; repair_bbio->file_offset = failed_bbio->file_offset + bio_offset; mirror = next_repair_mirror(fbio, failed_bbio->mirror_num); btrfs_debug(fs_info, "submitting repair read to mirror %d", mirror); btrfs_submit_bio(repair_bbio, mirror); return fbio; } static void btrfs_check_read_bio(struct btrfs_bio *bbio, struct btrfs_device *dev) { struct btrfs_inode *inode = bbio->inode; struct btrfs_fs_info *fs_info = inode->root->fs_info; u32 sectorsize = fs_info->sectorsize; struct bvec_iter *iter = &bbio->saved_iter; blk_status_t status = bbio->bio.bi_status; struct btrfs_failed_bio *fbio = NULL; u32 offset = 0; /* Read-repair requires the inode field to be set by the submitter. */ ASSERT(inode); /* * Hand off repair bios to the repair code as there is no upper level * submitter for them. */ if (bbio->bio.bi_pool == &btrfs_repair_bioset) { btrfs_end_repair_bio(bbio, dev); return; } /* Clear the I/O error. A failed repair will reset it. */ bbio->bio.bi_status = BLK_STS_OK; while (iter->bi_size) { struct bio_vec bv = bio_iter_iovec(&bbio->bio, *iter); bv.bv_len = min(bv.bv_len, sectorsize); if (status || !btrfs_data_csum_ok(bbio, dev, offset, &bv)) fbio = repair_one_sector(bbio, offset, &bv, fbio); bio_advance_iter_single(&bbio->bio, iter, sectorsize); offset += sectorsize; } if (bbio->csum != bbio->csum_inline) kfree(bbio->csum); if (fbio) btrfs_repair_done(fbio); else btrfs_orig_bbio_end_io(bbio); } static void btrfs_log_dev_io_error(struct bio *bio, struct btrfs_device *dev) { if (!dev || !dev->bdev) return; if (bio->bi_status != BLK_STS_IOERR && bio->bi_status != BLK_STS_TARGET) return; if (btrfs_op(bio) == BTRFS_MAP_WRITE) btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS); else if (!(bio->bi_opf & REQ_RAHEAD)) btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS); if (bio->bi_opf & REQ_PREFLUSH) btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_FLUSH_ERRS); } static struct workqueue_struct *btrfs_end_io_wq(struct btrfs_fs_info *fs_info, struct bio *bio) { if (bio->bi_opf & REQ_META) return fs_info->endio_meta_workers; return fs_info->endio_workers; } static void btrfs_end_bio_work(struct work_struct *work) { struct btrfs_bio *bbio = container_of(work, struct btrfs_bio, end_io_work); /* Metadata reads are checked and repaired by the submitter. */ if (is_data_bbio(bbio)) btrfs_check_read_bio(bbio, bbio->bio.bi_private); else btrfs_orig_bbio_end_io(bbio); } static void btrfs_simple_end_io(struct bio *bio) { struct btrfs_bio *bbio = btrfs_bio(bio); struct btrfs_device *dev = bio->bi_private; struct btrfs_fs_info *fs_info = bbio->fs_info; btrfs_bio_counter_dec(fs_info); if (bio->bi_status) btrfs_log_dev_io_error(bio, dev); if (bio_op(bio) == REQ_OP_READ) { INIT_WORK(&bbio->end_io_work, btrfs_end_bio_work); queue_work(btrfs_end_io_wq(fs_info, bio), &bbio->end_io_work); } else { if (bio_op(bio) == REQ_OP_ZONE_APPEND && !bio->bi_status) btrfs_record_physical_zoned(bbio); btrfs_orig_bbio_end_io(bbio); } } static void btrfs_raid56_end_io(struct bio *bio) { struct btrfs_io_context *bioc = bio->bi_private; struct btrfs_bio *bbio = btrfs_bio(bio); btrfs_bio_counter_dec(bioc->fs_info); bbio->mirror_num = bioc->mirror_num; if (bio_op(bio) == REQ_OP_READ && is_data_bbio(bbio)) btrfs_check_read_bio(bbio, NULL); else btrfs_orig_bbio_end_io(bbio); btrfs_put_bioc(bioc); } static void btrfs_orig_write_end_io(struct bio *bio) { struct btrfs_io_stripe *stripe = bio->bi_private; struct btrfs_io_context *bioc = stripe->bioc; struct btrfs_bio *bbio = btrfs_bio(bio); btrfs_bio_counter_dec(bioc->fs_info); if (bio->bi_status) { atomic_inc(&bioc->error); btrfs_log_dev_io_error(bio, stripe->dev); } /* * Only send an error to the higher layers if it is beyond the tolerance * threshold. */ if (atomic_read(&bioc->error) > bioc->max_errors) bio->bi_status = BLK_STS_IOERR; else bio->bi_status = BLK_STS_OK; if (bio_op(bio) == REQ_OP_ZONE_APPEND && !bio->bi_status) stripe->physical = bio->bi_iter.bi_sector << SECTOR_SHIFT; btrfs_orig_bbio_end_io(bbio); btrfs_put_bioc(bioc); } static void btrfs_clone_write_end_io(struct bio *bio) { struct btrfs_io_stripe *stripe = bio->bi_private; if (bio->bi_status) { atomic_inc(&stripe->bioc->error); btrfs_log_dev_io_error(bio, stripe->dev); } else if (bio_op(bio) == REQ_OP_ZONE_APPEND) { stripe->physical = bio->bi_iter.bi_sector << SECTOR_SHIFT; } /* Pass on control to the original bio this one was cloned from */ bio_endio(stripe->bioc->orig_bio); bio_put(bio); } static void btrfs_submit_dev_bio(struct btrfs_device *dev, struct bio *bio) { if (!dev || !dev->bdev || test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) || (btrfs_op(bio) == BTRFS_MAP_WRITE && !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))) { bio_io_error(bio); return; } bio_set_dev(bio, dev->bdev); /* * For zone append writing, bi_sector must point the beginning of the * zone */ if (bio_op(bio) == REQ_OP_ZONE_APPEND) { u64 physical = bio->bi_iter.bi_sector << SECTOR_SHIFT; u64 zone_start = round_down(physical, dev->fs_info->zone_size); ASSERT(btrfs_dev_is_sequential(dev, physical)); bio->bi_iter.bi_sector = zone_start >> SECTOR_SHIFT; } btrfs_debug_in_rcu(dev->fs_info, "%s: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u", __func__, bio_op(bio), bio->bi_opf, bio->bi_iter.bi_sector, (unsigned long)dev->bdev->bd_dev, btrfs_dev_name(dev), dev->devid, bio->bi_iter.bi_size); if (bio->bi_opf & REQ_BTRFS_CGROUP_PUNT) blkcg_punt_bio_submit(bio); else submit_bio(bio); } static void btrfs_submit_mirrored_bio(struct btrfs_io_context *bioc, int dev_nr) { struct bio *orig_bio = bioc->orig_bio, *bio; ASSERT(bio_op(orig_bio) != REQ_OP_READ); /* Reuse the bio embedded into the btrfs_bio for the last mirror */ if (dev_nr == bioc->num_stripes - 1) { bio = orig_bio; bio->bi_end_io = btrfs_orig_write_end_io; } else { bio = bio_alloc_clone(NULL, orig_bio, GFP_NOFS, &fs_bio_set); bio_inc_remaining(orig_bio); bio->bi_end_io = btrfs_clone_write_end_io; } bio->bi_private = &bioc->stripes[dev_nr]; bio->bi_iter.bi_sector = bioc->stripes[dev_nr].physical >> SECTOR_SHIFT; bioc->stripes[dev_nr].bioc = bioc; bioc->size = bio->bi_iter.bi_size; btrfs_submit_dev_bio(bioc->stripes[dev_nr].dev, bio); } static void __btrfs_submit_bio(struct bio *bio, struct btrfs_io_context *bioc, struct btrfs_io_stripe *smap, int mirror_num) { if (!bioc) { /* Single mirror read/write fast path. */ btrfs_bio(bio)->mirror_num = mirror_num; bio->bi_iter.bi_sector = smap->physical >> SECTOR_SHIFT; if (bio_op(bio) != REQ_OP_READ) btrfs_bio(bio)->orig_physical = smap->physical; bio->bi_private = smap->dev; bio->bi_end_io = btrfs_simple_end_io; btrfs_submit_dev_bio(smap->dev, bio); } else if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) { /* Parity RAID write or read recovery. */ bio->bi_private = bioc; bio->bi_end_io = btrfs_raid56_end_io; if (bio_op(bio) == REQ_OP_READ) raid56_parity_recover(bio, bioc, mirror_num); else raid56_parity_write(bio, bioc); } else { /* Write to multiple mirrors. */ int total_devs = bioc->num_stripes; bioc->orig_bio = bio; for (int dev_nr = 0; dev_nr < total_devs; dev_nr++) btrfs_submit_mirrored_bio(bioc, dev_nr); } } static blk_status_t btrfs_bio_csum(struct btrfs_bio *bbio) { if (bbio->bio.bi_opf & REQ_META) return btree_csum_one_bio(bbio); return btrfs_csum_one_bio(bbio); } /* * Async submit bios are used to offload expensive checksumming onto the worker * threads. */ struct async_submit_bio { struct btrfs_bio *bbio; struct btrfs_io_context *bioc; struct btrfs_io_stripe smap; int mirror_num; struct btrfs_work work; }; /* * In order to insert checksums into the metadata in large chunks, we wait * until bio submission time. All the pages in the bio are checksummed and * sums are attached onto the ordered extent record. * * At IO completion time the csums attached on the ordered extent record are * inserted into the btree. */ static void run_one_async_start(struct btrfs_work *work) { struct async_submit_bio *async = container_of(work, struct async_submit_bio, work); blk_status_t ret; ret = btrfs_bio_csum(async->bbio); if (ret) async->bbio->bio.bi_status = ret; } /* * In order to insert checksums into the metadata in large chunks, we wait * until bio submission time. All the pages in the bio are checksummed and * sums are attached onto the ordered extent record. * * At IO completion time the csums attached on the ordered extent record are * inserted into the tree. * * If called with @do_free == true, then it will free the work struct. */ static void run_one_async_done(struct btrfs_work *work, bool do_free) { struct async_submit_bio *async = container_of(work, struct async_submit_bio, work); struct bio *bio = &async->bbio->bio; if (do_free) { kfree(container_of(work, struct async_submit_bio, work)); return; } /* If an error occurred we just want to clean up the bio and move on. */ if (bio->bi_status) { btrfs_orig_bbio_end_io(async->bbio); return; } /* * All of the bios that pass through here are from async helpers. * Use REQ_BTRFS_CGROUP_PUNT to issue them from the owning cgroup's * context. This changes nothing when cgroups aren't in use. */ bio->bi_opf |= REQ_BTRFS_CGROUP_PUNT; __btrfs_submit_bio(bio, async->bioc, &async->smap, async->mirror_num); } static bool should_async_write(struct btrfs_bio *bbio) { /* Submit synchronously if the checksum implementation is fast. */ if (test_bit(BTRFS_FS_CSUM_IMPL_FAST, &bbio->fs_info->flags)) return false; /* * Try to defer the submission to a workqueue to parallelize the * checksum calculation unless the I/O is issued synchronously. */ if (op_is_sync(bbio->bio.bi_opf)) return false; /* Zoned devices require I/O to be submitted in order. */ if ((bbio->bio.bi_opf & REQ_META) && btrfs_is_zoned(bbio->fs_info)) return false; return true; } /* * Submit bio to an async queue. * * Return true if the work has been successfully submitted, else false. */ static bool btrfs_wq_submit_bio(struct btrfs_bio *bbio, struct btrfs_io_context *bioc, struct btrfs_io_stripe *smap, int mirror_num) { struct btrfs_fs_info *fs_info = bbio->fs_info; struct async_submit_bio *async; async = kmalloc(sizeof(*async), GFP_NOFS); if (!async) return false; async->bbio = bbio; async->bioc = bioc; async->smap = *smap; async->mirror_num = mirror_num; btrfs_init_work(&async->work, run_one_async_start, run_one_async_done); btrfs_queue_work(fs_info->workers, &async->work); return true; } static bool btrfs_submit_chunk(struct btrfs_bio *bbio, int mirror_num) { struct btrfs_inode *inode = bbio->inode; struct btrfs_fs_info *fs_info = bbio->fs_info; struct btrfs_bio *orig_bbio = bbio; struct bio *bio = &bbio->bio; u64 logical = bio->bi_iter.bi_sector << SECTOR_SHIFT; u64 length = bio->bi_iter.bi_size; u64 map_length = length; bool use_append = btrfs_use_zone_append(bbio); struct btrfs_io_context *bioc = NULL; struct btrfs_io_stripe smap; blk_status_t ret; int error; smap.is_scrub = !bbio->inode; btrfs_bio_counter_inc_blocked(fs_info); error = btrfs_map_block(fs_info, btrfs_op(bio), logical, &map_length, &bioc, &smap, &mirror_num); if (error) { ret = errno_to_blk_status(error); goto fail; } map_length = min(map_length, length); if (use_append) map_length = min(map_length, fs_info->max_zone_append_size); if (map_length < length) { bbio = btrfs_split_bio(fs_info, bbio, map_length, use_append); bio = &bbio->bio; } /* * Save the iter for the end_io handler and preload the checksums for * data reads. */ if (bio_op(bio) == REQ_OP_READ && is_data_bbio(bbio)) { bbio->saved_iter = bio->bi_iter; ret = btrfs_lookup_bio_sums(bbio); if (ret) goto fail_put_bio; } if (btrfs_op(bio) == BTRFS_MAP_WRITE) { if (use_append) { bio->bi_opf &= ~REQ_OP_WRITE; bio->bi_opf |= REQ_OP_ZONE_APPEND; } if (is_data_bbio(bbio) && bioc && btrfs_need_stripe_tree_update(bioc->fs_info, bioc->map_type)) { /* * No locking for the list update, as we only add to * the list in the I/O submission path, and list * iteration only happens in the completion path, which * can't happen until after the last submission. */ btrfs_get_bioc(bioc); list_add_tail(&bioc->rst_ordered_entry, &bbio->ordered->bioc_list); } /* * Csum items for reloc roots have already been cloned at this * point, so they are handled as part of the no-checksum case. */ if (inode && !(inode->flags & BTRFS_INODE_NODATASUM) && !test_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state) && !btrfs_is_data_reloc_root(inode->root)) { if (should_async_write(bbio) && btrfs_wq_submit_bio(bbio, bioc, &smap, mirror_num)) goto done; ret = btrfs_bio_csum(bbio); if (ret) goto fail_put_bio; } else if (use_append) { ret = btrfs_alloc_dummy_sum(bbio); if (ret) goto fail_put_bio; } } __btrfs_submit_bio(bio, bioc, &smap, mirror_num); done: return map_length == length; fail_put_bio: if (map_length < length) btrfs_cleanup_bio(bbio); fail: btrfs_bio_counter_dec(fs_info); btrfs_bio_end_io(orig_bbio, ret); /* Do not submit another chunk */ return true; } void btrfs_submit_bio(struct btrfs_bio *bbio, int mirror_num) { /* If bbio->inode is not populated, its file_offset must be 0. */ ASSERT(bbio->inode || bbio->file_offset == 0); while (!btrfs_submit_chunk(bbio, mirror_num)) ; } /* * Submit a repair write. * * This bypasses btrfs_submit_bio deliberately, as that writes all copies in a * RAID setup. Here we only want to write the one bad copy, so we do the * mapping ourselves and submit the bio directly. * * The I/O is issued synchronously to block the repair read completion from * freeing the bio. */ int btrfs_repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start, u64 length, u64 logical, struct folio *folio, unsigned int folio_offset, int mirror_num) { struct btrfs_io_stripe smap = { 0 }; struct bio_vec bvec; struct bio bio; int ret = 0; ASSERT(!(fs_info->sb->s_flags & SB_RDONLY)); BUG_ON(!mirror_num); if (btrfs_repair_one_zone(fs_info, logical)) return 0; /* * Avoid races with device replace and make sure our bioc has devices * associated to its stripes that don't go away while we are doing the * read repair operation. */ btrfs_bio_counter_inc_blocked(fs_info); ret = btrfs_map_repair_block(fs_info, &smap, logical, length, mirror_num); if (ret < 0) goto out_counter_dec; if (!smap.dev->bdev || !test_bit(BTRFS_DEV_STATE_WRITEABLE, &smap.dev->dev_state)) { ret = -EIO; goto out_counter_dec; } bio_init(&bio, smap.dev->bdev, &bvec, 1, REQ_OP_WRITE | REQ_SYNC); bio.bi_iter.bi_sector = smap.physical >> SECTOR_SHIFT; ret = bio_add_folio(&bio, folio, length, folio_offset); ASSERT(ret); ret = submit_bio_wait(&bio); if (ret) { /* try to remap that extent elsewhere? */ btrfs_dev_stat_inc_and_print(smap.dev, BTRFS_DEV_STAT_WRITE_ERRS); goto out_bio_uninit; } btrfs_info_rl_in_rcu(fs_info, "read error corrected: ino %llu off %llu (dev %s sector %llu)", ino, start, btrfs_dev_name(smap.dev), smap.physical >> SECTOR_SHIFT); ret = 0; out_bio_uninit: bio_uninit(&bio); out_counter_dec: btrfs_bio_counter_dec(fs_info); return ret; } /* * Submit a btrfs_bio based repair write. * * If @dev_replace is true, the write would be submitted to dev-replace target. */ void btrfs_submit_repair_write(struct btrfs_bio *bbio, int mirror_num, bool dev_replace) { struct btrfs_fs_info *fs_info = bbio->fs_info; u64 logical = bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT; u64 length = bbio->bio.bi_iter.bi_size; struct btrfs_io_stripe smap = { 0 }; int ret; ASSERT(fs_info); ASSERT(mirror_num > 0); ASSERT(btrfs_op(&bbio->bio) == BTRFS_MAP_WRITE); ASSERT(!bbio->inode); btrfs_bio_counter_inc_blocked(fs_info); ret = btrfs_map_repair_block(fs_info, &smap, logical, length, mirror_num); if (ret < 0) goto fail; if (dev_replace) { ASSERT(smap.dev == fs_info->dev_replace.srcdev); smap.dev = fs_info->dev_replace.tgtdev; } __btrfs_submit_bio(&bbio->bio, NULL, &smap, mirror_num); return; fail: btrfs_bio_counter_dec(fs_info); btrfs_bio_end_io(bbio, errno_to_blk_status(ret)); } int __init btrfs_bioset_init(void) { if (bioset_init(&btrfs_bioset, BIO_POOL_SIZE, offsetof(struct btrfs_bio, bio), BIOSET_NEED_BVECS)) return -ENOMEM; if (bioset_init(&btrfs_clone_bioset, BIO_POOL_SIZE, offsetof(struct btrfs_bio, bio), 0)) goto out_free_bioset; if (bioset_init(&btrfs_repair_bioset, BIO_POOL_SIZE, offsetof(struct btrfs_bio, bio), BIOSET_NEED_BVECS)) goto out_free_clone_bioset; if (mempool_init_kmalloc_pool(&btrfs_failed_bio_pool, BIO_POOL_SIZE, sizeof(struct btrfs_failed_bio))) goto out_free_repair_bioset; return 0; out_free_repair_bioset: bioset_exit(&btrfs_repair_bioset); out_free_clone_bioset: bioset_exit(&btrfs_clone_bioset); out_free_bioset: bioset_exit(&btrfs_bioset); return -ENOMEM; } void __cold btrfs_bioset_exit(void) { mempool_exit(&btrfs_failed_bio_pool); bioset_exit(&btrfs_repair_bioset); bioset_exit(&btrfs_clone_bioset); bioset_exit(&btrfs_bioset); }