// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) 2010 Kent Overstreet * * Code for managing the extent btree and dynamically updating the writeback * dirty sector count. */ #include "bcachefs.h" #include "bkey_methods.h" #include "btree_cache.h" #include "btree_gc.h" #include "btree_io.h" #include "btree_iter.h" #include "buckets.h" #include "checksum.h" #include "compress.h" #include "debug.h" #include "disk_groups.h" #include "error.h" #include "extents.h" #include "inode.h" #include "journal.h" #include "replicas.h" #include "super.h" #include "super-io.h" #include "trace.h" #include "util.h" static unsigned bch2_crc_field_size_max[] = { [BCH_EXTENT_ENTRY_crc32] = CRC32_SIZE_MAX, [BCH_EXTENT_ENTRY_crc64] = CRC64_SIZE_MAX, [BCH_EXTENT_ENTRY_crc128] = CRC128_SIZE_MAX, }; static void bch2_extent_crc_pack(union bch_extent_crc *, struct bch_extent_crc_unpacked, enum bch_extent_entry_type); struct bch_dev_io_failures *bch2_dev_io_failures(struct bch_io_failures *f, unsigned dev) { struct bch_dev_io_failures *i; for (i = f->devs; i < f->devs + f->nr; i++) if (i->dev == dev) return i; return NULL; } void bch2_mark_io_failure(struct bch_io_failures *failed, struct extent_ptr_decoded *p) { struct bch_dev_io_failures *f = bch2_dev_io_failures(failed, p->ptr.dev); if (!f) { BUG_ON(failed->nr >= ARRAY_SIZE(failed->devs)); f = &failed->devs[failed->nr++]; f->dev = p->ptr.dev; f->idx = p->idx; f->nr_failed = 1; f->nr_retries = 0; } else if (p->idx != f->idx) { f->idx = p->idx; f->nr_failed = 1; f->nr_retries = 0; } else { f->nr_failed++; } } static inline u64 dev_latency(struct bch_fs *c, unsigned dev) { struct bch_dev *ca = bch2_dev_rcu(c, dev); return ca ? atomic64_read(&ca->cur_latency[READ]) : S64_MAX; } /* * returns true if p1 is better than p2: */ static inline bool ptr_better(struct bch_fs *c, const struct extent_ptr_decoded p1, const struct extent_ptr_decoded p2) { if (likely(!p1.idx && !p2.idx)) { u64 l1 = dev_latency(c, p1.ptr.dev); u64 l2 = dev_latency(c, p2.ptr.dev); /* Pick at random, biased in favor of the faster device: */ return bch2_rand_range(l1 + l2) > l1; } if (bch2_force_reconstruct_read) return p1.idx > p2.idx; return p1.idx < p2.idx; } /* * This picks a non-stale pointer, preferably from a device other than @avoid. * Avoid can be NULL, meaning pick any. If there are no non-stale pointers to * other devices, it will still pick a pointer from avoid. */ int bch2_bkey_pick_read_device(struct bch_fs *c, struct bkey_s_c k, struct bch_io_failures *failed, struct extent_ptr_decoded *pick) { struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); const union bch_extent_entry *entry; struct extent_ptr_decoded p; struct bch_dev_io_failures *f; int ret = 0; if (k.k->type == KEY_TYPE_error) return -BCH_ERR_key_type_error; rcu_read_lock(); bkey_for_each_ptr_decode(k.k, ptrs, p, entry) { /* * Unwritten extent: no need to actually read, treat it as a * hole and return 0s: */ if (p.ptr.unwritten) { ret = 0; break; } /* * If there are any dirty pointers it's an error if we can't * read: */ if (!ret && !p.ptr.cached) ret = -BCH_ERR_no_device_to_read_from; struct bch_dev *ca = bch2_dev_rcu(c, p.ptr.dev); if (p.ptr.cached && (!ca || dev_ptr_stale_rcu(ca, &p.ptr))) continue; f = failed ? bch2_dev_io_failures(failed, p.ptr.dev) : NULL; if (f) p.idx = f->nr_failed < f->nr_retries ? f->idx : f->idx + 1; if (!p.idx && (!ca || !bch2_dev_is_readable(ca))) p.idx++; if (!p.idx && p.has_ec && bch2_force_reconstruct_read) p.idx++; if (p.idx > (unsigned) p.has_ec) continue; if (ret > 0 && !ptr_better(c, p, *pick)) continue; *pick = p; ret = 1; } rcu_read_unlock(); return ret; } /* KEY_TYPE_btree_ptr: */ int bch2_btree_ptr_validate(struct bch_fs *c, struct bkey_s_c k, enum bch_validate_flags flags) { int ret = 0; bkey_fsck_err_on(bkey_val_u64s(k.k) > BCH_REPLICAS_MAX, c, btree_ptr_val_too_big, "value too big (%zu > %u)", bkey_val_u64s(k.k), BCH_REPLICAS_MAX); ret = bch2_bkey_ptrs_validate(c, k, flags); fsck_err: return ret; } void bch2_btree_ptr_to_text(struct printbuf *out, struct bch_fs *c, struct bkey_s_c k) { bch2_bkey_ptrs_to_text(out, c, k); } int bch2_btree_ptr_v2_validate(struct bch_fs *c, struct bkey_s_c k, enum bch_validate_flags flags) { struct bkey_s_c_btree_ptr_v2 bp = bkey_s_c_to_btree_ptr_v2(k); int ret = 0; bkey_fsck_err_on(bkey_val_u64s(k.k) > BKEY_BTREE_PTR_VAL_U64s_MAX, c, btree_ptr_v2_val_too_big, "value too big (%zu > %zu)", bkey_val_u64s(k.k), BKEY_BTREE_PTR_VAL_U64s_MAX); bkey_fsck_err_on(bpos_ge(bp.v->min_key, bp.k->p), c, btree_ptr_v2_min_key_bad, "min_key > key"); if (flags & BCH_VALIDATE_write) bkey_fsck_err_on(!bp.v->sectors_written, c, btree_ptr_v2_written_0, "sectors_written == 0"); ret = bch2_bkey_ptrs_validate(c, k, flags); fsck_err: return ret; } void bch2_btree_ptr_v2_to_text(struct printbuf *out, struct bch_fs *c, struct bkey_s_c k) { struct bkey_s_c_btree_ptr_v2 bp = bkey_s_c_to_btree_ptr_v2(k); prt_printf(out, "seq %llx written %u min_key %s", le64_to_cpu(bp.v->seq), le16_to_cpu(bp.v->sectors_written), BTREE_PTR_RANGE_UPDATED(bp.v) ? "R " : ""); bch2_bpos_to_text(out, bp.v->min_key); prt_printf(out, " "); bch2_bkey_ptrs_to_text(out, c, k); } void bch2_btree_ptr_v2_compat(enum btree_id btree_id, unsigned version, unsigned big_endian, int write, struct bkey_s k) { struct bkey_s_btree_ptr_v2 bp = bkey_s_to_btree_ptr_v2(k); compat_bpos(0, btree_id, version, big_endian, write, &bp.v->min_key); if (version < bcachefs_metadata_version_inode_btree_change && btree_id_is_extents(btree_id) && !bkey_eq(bp.v->min_key, POS_MIN)) bp.v->min_key = write ? bpos_nosnap_predecessor(bp.v->min_key) : bpos_nosnap_successor(bp.v->min_key); } /* KEY_TYPE_extent: */ bool bch2_extent_merge(struct bch_fs *c, struct bkey_s l, struct bkey_s_c r) { struct bkey_ptrs l_ptrs = bch2_bkey_ptrs(l); struct bkey_ptrs_c r_ptrs = bch2_bkey_ptrs_c(r); union bch_extent_entry *en_l; const union bch_extent_entry *en_r; struct extent_ptr_decoded lp, rp; bool use_right_ptr; en_l = l_ptrs.start; en_r = r_ptrs.start; while (en_l < l_ptrs.end && en_r < r_ptrs.end) { if (extent_entry_type(en_l) != extent_entry_type(en_r)) return false; en_l = extent_entry_next(en_l); en_r = extent_entry_next(en_r); } if (en_l < l_ptrs.end || en_r < r_ptrs.end) return false; en_l = l_ptrs.start; en_r = r_ptrs.start; lp.crc = bch2_extent_crc_unpack(l.k, NULL); rp.crc = bch2_extent_crc_unpack(r.k, NULL); while (__bkey_ptr_next_decode(l.k, l_ptrs.end, lp, en_l) && __bkey_ptr_next_decode(r.k, r_ptrs.end, rp, en_r)) { if (lp.ptr.offset + lp.crc.offset + lp.crc.live_size != rp.ptr.offset + rp.crc.offset || lp.ptr.dev != rp.ptr.dev || lp.ptr.gen != rp.ptr.gen || lp.ptr.unwritten != rp.ptr.unwritten || lp.has_ec != rp.has_ec) return false; /* Extents may not straddle buckets: */ rcu_read_lock(); struct bch_dev *ca = bch2_dev_rcu(c, lp.ptr.dev); bool same_bucket = ca && PTR_BUCKET_NR(ca, &lp.ptr) == PTR_BUCKET_NR(ca, &rp.ptr); rcu_read_unlock(); if (!same_bucket) return false; if (lp.has_ec != rp.has_ec || (lp.has_ec && (lp.ec.block != rp.ec.block || lp.ec.redundancy != rp.ec.redundancy || lp.ec.idx != rp.ec.idx))) return false; if (lp.crc.compression_type != rp.crc.compression_type || lp.crc.nonce != rp.crc.nonce) return false; if (lp.crc.offset + lp.crc.live_size + rp.crc.live_size <= lp.crc.uncompressed_size) { /* can use left extent's crc entry */ } else if (lp.crc.live_size <= rp.crc.offset) { /* can use right extent's crc entry */ } else { /* check if checksums can be merged: */ if (lp.crc.csum_type != rp.crc.csum_type || lp.crc.nonce != rp.crc.nonce || crc_is_compressed(lp.crc) || !bch2_checksum_mergeable(lp.crc.csum_type)) return false; if (lp.crc.offset + lp.crc.live_size != lp.crc.compressed_size || rp.crc.offset) return false; if (lp.crc.csum_type && lp.crc.uncompressed_size + rp.crc.uncompressed_size > (c->opts.encoded_extent_max >> 9)) return false; } en_l = extent_entry_next(en_l); en_r = extent_entry_next(en_r); } en_l = l_ptrs.start; en_r = r_ptrs.start; while (en_l < l_ptrs.end && en_r < r_ptrs.end) { if (extent_entry_is_crc(en_l)) { struct bch_extent_crc_unpacked crc_l = bch2_extent_crc_unpack(l.k, entry_to_crc(en_l)); struct bch_extent_crc_unpacked crc_r = bch2_extent_crc_unpack(r.k, entry_to_crc(en_r)); if (crc_l.uncompressed_size + crc_r.uncompressed_size > bch2_crc_field_size_max[extent_entry_type(en_l)]) return false; } en_l = extent_entry_next(en_l); en_r = extent_entry_next(en_r); } use_right_ptr = false; en_l = l_ptrs.start; en_r = r_ptrs.start; while (en_l < l_ptrs.end) { if (extent_entry_type(en_l) == BCH_EXTENT_ENTRY_ptr && use_right_ptr) en_l->ptr = en_r->ptr; if (extent_entry_is_crc(en_l)) { struct bch_extent_crc_unpacked crc_l = bch2_extent_crc_unpack(l.k, entry_to_crc(en_l)); struct bch_extent_crc_unpacked crc_r = bch2_extent_crc_unpack(r.k, entry_to_crc(en_r)); use_right_ptr = false; if (crc_l.offset + crc_l.live_size + crc_r.live_size <= crc_l.uncompressed_size) { /* can use left extent's crc entry */ } else if (crc_l.live_size <= crc_r.offset) { /* can use right extent's crc entry */ crc_r.offset -= crc_l.live_size; bch2_extent_crc_pack(entry_to_crc(en_l), crc_r, extent_entry_type(en_l)); use_right_ptr = true; } else { crc_l.csum = bch2_checksum_merge(crc_l.csum_type, crc_l.csum, crc_r.csum, crc_r.uncompressed_size << 9); crc_l.uncompressed_size += crc_r.uncompressed_size; crc_l.compressed_size += crc_r.compressed_size; bch2_extent_crc_pack(entry_to_crc(en_l), crc_l, extent_entry_type(en_l)); } } en_l = extent_entry_next(en_l); en_r = extent_entry_next(en_r); } bch2_key_resize(l.k, l.k->size + r.k->size); return true; } /* KEY_TYPE_reservation: */ int bch2_reservation_validate(struct bch_fs *c, struct bkey_s_c k, enum bch_validate_flags flags) { struct bkey_s_c_reservation r = bkey_s_c_to_reservation(k); int ret = 0; bkey_fsck_err_on(!r.v->nr_replicas || r.v->nr_replicas > BCH_REPLICAS_MAX, c, reservation_key_nr_replicas_invalid, "invalid nr_replicas (%u)", r.v->nr_replicas); fsck_err: return ret; } void bch2_reservation_to_text(struct printbuf *out, struct bch_fs *c, struct bkey_s_c k) { struct bkey_s_c_reservation r = bkey_s_c_to_reservation(k); prt_printf(out, "generation %u replicas %u", le32_to_cpu(r.v->generation), r.v->nr_replicas); } bool bch2_reservation_merge(struct bch_fs *c, struct bkey_s _l, struct bkey_s_c _r) { struct bkey_s_reservation l = bkey_s_to_reservation(_l); struct bkey_s_c_reservation r = bkey_s_c_to_reservation(_r); if (l.v->generation != r.v->generation || l.v->nr_replicas != r.v->nr_replicas) return false; bch2_key_resize(l.k, l.k->size + r.k->size); return true; } /* Extent checksum entries: */ /* returns true if not equal */ static inline bool bch2_crc_unpacked_cmp(struct bch_extent_crc_unpacked l, struct bch_extent_crc_unpacked r) { return (l.csum_type != r.csum_type || l.compression_type != r.compression_type || l.compressed_size != r.compressed_size || l.uncompressed_size != r.uncompressed_size || l.offset != r.offset || l.live_size != r.live_size || l.nonce != r.nonce || bch2_crc_cmp(l.csum, r.csum)); } static inline bool can_narrow_crc(struct bch_extent_crc_unpacked u, struct bch_extent_crc_unpacked n) { return !crc_is_compressed(u) && u.csum_type && u.uncompressed_size > u.live_size && bch2_csum_type_is_encryption(u.csum_type) == bch2_csum_type_is_encryption(n.csum_type); } bool bch2_can_narrow_extent_crcs(struct bkey_s_c k, struct bch_extent_crc_unpacked n) { struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); struct bch_extent_crc_unpacked crc; const union bch_extent_entry *i; if (!n.csum_type) return false; bkey_for_each_crc(k.k, ptrs, crc, i) if (can_narrow_crc(crc, n)) return true; return false; } /* * We're writing another replica for this extent, so while we've got the data in * memory we'll be computing a new checksum for the currently live data. * * If there are other replicas we aren't moving, and they are checksummed but * not compressed, we can modify them to point to only the data that is * currently live (so that readers won't have to bounce) while we've got the * checksum we need: */ bool bch2_bkey_narrow_crcs(struct bkey_i *k, struct bch_extent_crc_unpacked n) { struct bkey_ptrs ptrs = bch2_bkey_ptrs(bkey_i_to_s(k)); struct bch_extent_crc_unpacked u; struct extent_ptr_decoded p; union bch_extent_entry *i; bool ret = false; /* Find a checksum entry that covers only live data: */ if (!n.csum_type) { bkey_for_each_crc(&k->k, ptrs, u, i) if (!crc_is_compressed(u) && u.csum_type && u.live_size == u.uncompressed_size) { n = u; goto found; } return false; } found: BUG_ON(crc_is_compressed(n)); BUG_ON(n.offset); BUG_ON(n.live_size != k->k.size); restart_narrow_pointers: ptrs = bch2_bkey_ptrs(bkey_i_to_s(k)); bkey_for_each_ptr_decode(&k->k, ptrs, p, i) if (can_narrow_crc(p.crc, n)) { bch2_bkey_drop_ptr_noerror(bkey_i_to_s(k), &i->ptr); p.ptr.offset += p.crc.offset; p.crc = n; bch2_extent_ptr_decoded_append(k, &p); ret = true; goto restart_narrow_pointers; } return ret; } static void bch2_extent_crc_pack(union bch_extent_crc *dst, struct bch_extent_crc_unpacked src, enum bch_extent_entry_type type) { #define set_common_fields(_dst, _src) \ _dst.type = 1 << type; \ _dst.csum_type = _src.csum_type, \ _dst.compression_type = _src.compression_type, \ _dst._compressed_size = _src.compressed_size - 1, \ _dst._uncompressed_size = _src.uncompressed_size - 1, \ _dst.offset = _src.offset switch (type) { case BCH_EXTENT_ENTRY_crc32: set_common_fields(dst->crc32, src); dst->crc32.csum = (u32 __force) *((__le32 *) &src.csum.lo); break; case BCH_EXTENT_ENTRY_crc64: set_common_fields(dst->crc64, src); dst->crc64.nonce = src.nonce; dst->crc64.csum_lo = (u64 __force) src.csum.lo; dst->crc64.csum_hi = (u64 __force) *((__le16 *) &src.csum.hi); break; case BCH_EXTENT_ENTRY_crc128: set_common_fields(dst->crc128, src); dst->crc128.nonce = src.nonce; dst->crc128.csum = src.csum; break; default: BUG(); } #undef set_common_fields } void bch2_extent_crc_append(struct bkey_i *k, struct bch_extent_crc_unpacked new) { struct bkey_ptrs ptrs = bch2_bkey_ptrs(bkey_i_to_s(k)); union bch_extent_crc *crc = (void *) ptrs.end; enum bch_extent_entry_type type; if (bch_crc_bytes[new.csum_type] <= 4 && new.uncompressed_size <= CRC32_SIZE_MAX && new.nonce <= CRC32_NONCE_MAX) type = BCH_EXTENT_ENTRY_crc32; else if (bch_crc_bytes[new.csum_type] <= 10 && new.uncompressed_size <= CRC64_SIZE_MAX && new.nonce <= CRC64_NONCE_MAX) type = BCH_EXTENT_ENTRY_crc64; else if (bch_crc_bytes[new.csum_type] <= 16 && new.uncompressed_size <= CRC128_SIZE_MAX && new.nonce <= CRC128_NONCE_MAX) type = BCH_EXTENT_ENTRY_crc128; else BUG(); bch2_extent_crc_pack(crc, new, type); k->k.u64s += extent_entry_u64s(ptrs.end); EBUG_ON(bkey_val_u64s(&k->k) > BKEY_EXTENT_VAL_U64s_MAX); } /* Generic code for keys with pointers: */ unsigned bch2_bkey_nr_ptrs(struct bkey_s_c k) { return bch2_bkey_devs(k).nr; } unsigned bch2_bkey_nr_ptrs_allocated(struct bkey_s_c k) { return k.k->type == KEY_TYPE_reservation ? bkey_s_c_to_reservation(k).v->nr_replicas : bch2_bkey_dirty_devs(k).nr; } unsigned bch2_bkey_nr_ptrs_fully_allocated(struct bkey_s_c k) { unsigned ret = 0; if (k.k->type == KEY_TYPE_reservation) { ret = bkey_s_c_to_reservation(k).v->nr_replicas; } else { struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); const union bch_extent_entry *entry; struct extent_ptr_decoded p; bkey_for_each_ptr_decode(k.k, ptrs, p, entry) ret += !p.ptr.cached && !crc_is_compressed(p.crc); } return ret; } unsigned bch2_bkey_sectors_compressed(struct bkey_s_c k) { struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); const union bch_extent_entry *entry; struct extent_ptr_decoded p; unsigned ret = 0; bkey_for_each_ptr_decode(k.k, ptrs, p, entry) if (!p.ptr.cached && crc_is_compressed(p.crc)) ret += p.crc.compressed_size; return ret; } bool bch2_bkey_is_incompressible(struct bkey_s_c k) { struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); const union bch_extent_entry *entry; struct bch_extent_crc_unpacked crc; bkey_for_each_crc(k.k, ptrs, crc, entry) if (crc.compression_type == BCH_COMPRESSION_TYPE_incompressible) return true; return false; } unsigned bch2_bkey_replicas(struct bch_fs *c, struct bkey_s_c k) { struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); const union bch_extent_entry *entry; struct extent_ptr_decoded p = { 0 }; unsigned replicas = 0; bkey_for_each_ptr_decode(k.k, ptrs, p, entry) { if (p.ptr.cached) continue; if (p.has_ec) replicas += p.ec.redundancy; replicas++; } return replicas; } static inline unsigned __extent_ptr_durability(struct bch_dev *ca, struct extent_ptr_decoded *p) { if (p->ptr.cached) return 0; return p->has_ec ? p->ec.redundancy + 1 : ca->mi.durability; } unsigned bch2_extent_ptr_desired_durability(struct bch_fs *c, struct extent_ptr_decoded *p) { struct bch_dev *ca = bch2_dev_rcu(c, p->ptr.dev); return ca ? __extent_ptr_durability(ca, p) : 0; } unsigned bch2_extent_ptr_durability(struct bch_fs *c, struct extent_ptr_decoded *p) { struct bch_dev *ca = bch2_dev_rcu(c, p->ptr.dev); if (!ca || ca->mi.state == BCH_MEMBER_STATE_failed) return 0; return __extent_ptr_durability(ca, p); } unsigned bch2_bkey_durability(struct bch_fs *c, struct bkey_s_c k) { struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); const union bch_extent_entry *entry; struct extent_ptr_decoded p; unsigned durability = 0; rcu_read_lock(); bkey_for_each_ptr_decode(k.k, ptrs, p, entry) durability += bch2_extent_ptr_durability(c, &p); rcu_read_unlock(); return durability; } static unsigned bch2_bkey_durability_safe(struct bch_fs *c, struct bkey_s_c k) { struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); const union bch_extent_entry *entry; struct extent_ptr_decoded p; unsigned durability = 0; rcu_read_lock(); bkey_for_each_ptr_decode(k.k, ptrs, p, entry) if (p.ptr.dev < c->sb.nr_devices && c->devs[p.ptr.dev]) durability += bch2_extent_ptr_durability(c, &p); rcu_read_unlock(); return durability; } void bch2_bkey_extent_entry_drop(struct bkey_i *k, union bch_extent_entry *entry) { union bch_extent_entry *end = bkey_val_end(bkey_i_to_s(k)); union bch_extent_entry *next = extent_entry_next(entry); memmove_u64s(entry, next, (u64 *) end - (u64 *) next); k->k.u64s -= extent_entry_u64s(entry); } void bch2_extent_ptr_decoded_append(struct bkey_i *k, struct extent_ptr_decoded *p) { struct bkey_ptrs ptrs = bch2_bkey_ptrs(bkey_i_to_s(k)); struct bch_extent_crc_unpacked crc = bch2_extent_crc_unpack(&k->k, NULL); union bch_extent_entry *pos; if (!bch2_crc_unpacked_cmp(crc, p->crc)) { pos = ptrs.start; goto found; } bkey_for_each_crc(&k->k, ptrs, crc, pos) if (!bch2_crc_unpacked_cmp(crc, p->crc)) { pos = extent_entry_next(pos); goto found; } bch2_extent_crc_append(k, p->crc); pos = bkey_val_end(bkey_i_to_s(k)); found: p->ptr.type = 1 << BCH_EXTENT_ENTRY_ptr; __extent_entry_insert(k, pos, to_entry(&p->ptr)); if (p->has_ec) { p->ec.type = 1 << BCH_EXTENT_ENTRY_stripe_ptr; __extent_entry_insert(k, pos, to_entry(&p->ec)); } } static union bch_extent_entry *extent_entry_prev(struct bkey_ptrs ptrs, union bch_extent_entry *entry) { union bch_extent_entry *i = ptrs.start; if (i == entry) return NULL; while (extent_entry_next(i) != entry) i = extent_entry_next(i); return i; } /* * Returns pointer to the next entry after the one being dropped: */ void bch2_bkey_drop_ptr_noerror(struct bkey_s k, struct bch_extent_ptr *ptr) { struct bkey_ptrs ptrs = bch2_bkey_ptrs(k); union bch_extent_entry *entry = to_entry(ptr), *next; bool drop_crc = true; if (k.k->type == KEY_TYPE_stripe) { ptr->dev = BCH_SB_MEMBER_INVALID; return; } EBUG_ON(ptr < &ptrs.start->ptr || ptr >= &ptrs.end->ptr); EBUG_ON(ptr->type != 1 << BCH_EXTENT_ENTRY_ptr); for (next = extent_entry_next(entry); next != ptrs.end; next = extent_entry_next(next)) { if (extent_entry_is_crc(next)) { break; } else if (extent_entry_is_ptr(next)) { drop_crc = false; break; } } extent_entry_drop(k, entry); while ((entry = extent_entry_prev(ptrs, entry))) { if (extent_entry_is_ptr(entry)) break; if ((extent_entry_is_crc(entry) && drop_crc) || extent_entry_is_stripe_ptr(entry)) extent_entry_drop(k, entry); } } void bch2_bkey_drop_ptr(struct bkey_s k, struct bch_extent_ptr *ptr) { if (k.k->type != KEY_TYPE_stripe) { struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k.s_c); const union bch_extent_entry *entry; struct extent_ptr_decoded p; bkey_for_each_ptr_decode(k.k, ptrs, p, entry) if (p.ptr.dev == ptr->dev && p.has_ec) { ptr->dev = BCH_SB_MEMBER_INVALID; return; } } bool have_dirty = bch2_bkey_dirty_devs(k.s_c).nr; bch2_bkey_drop_ptr_noerror(k, ptr); /* * If we deleted all the dirty pointers and there's still cached * pointers, we could set the cached pointers to dirty if they're not * stale - but to do that correctly we'd need to grab an open_bucket * reference so that we don't race with bucket reuse: */ if (have_dirty && !bch2_bkey_dirty_devs(k.s_c).nr) { k.k->type = KEY_TYPE_error; set_bkey_val_u64s(k.k, 0); } else if (!bch2_bkey_nr_ptrs(k.s_c)) { k.k->type = KEY_TYPE_deleted; set_bkey_val_u64s(k.k, 0); } } void bch2_bkey_drop_device(struct bkey_s k, unsigned dev) { bch2_bkey_drop_ptrs(k, ptr, ptr->dev == dev); } void bch2_bkey_drop_device_noerror(struct bkey_s k, unsigned dev) { bch2_bkey_drop_ptrs_noerror(k, ptr, ptr->dev == dev); } const struct bch_extent_ptr *bch2_bkey_has_device_c(struct bkey_s_c k, unsigned dev) { struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); bkey_for_each_ptr(ptrs, ptr) if (ptr->dev == dev) return ptr; return NULL; } bool bch2_bkey_has_target(struct bch_fs *c, struct bkey_s_c k, unsigned target) { struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); struct bch_dev *ca; bool ret = false; rcu_read_lock(); bkey_for_each_ptr(ptrs, ptr) if (bch2_dev_in_target(c, ptr->dev, target) && (ca = bch2_dev_rcu(c, ptr->dev)) && (!ptr->cached || !dev_ptr_stale_rcu(ca, ptr))) { ret = true; break; } rcu_read_unlock(); return ret; } bool bch2_bkey_matches_ptr(struct bch_fs *c, struct bkey_s_c k, struct bch_extent_ptr m, u64 offset) { struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); const union bch_extent_entry *entry; struct extent_ptr_decoded p; bkey_for_each_ptr_decode(k.k, ptrs, p, entry) if (p.ptr.dev == m.dev && p.ptr.gen == m.gen && (s64) p.ptr.offset + p.crc.offset - bkey_start_offset(k.k) == (s64) m.offset - offset) return true; return false; } /* * Returns true if two extents refer to the same data: */ bool bch2_extents_match(struct bkey_s_c k1, struct bkey_s_c k2) { if (k1.k->type != k2.k->type) return false; if (bkey_extent_is_direct_data(k1.k)) { struct bkey_ptrs_c ptrs1 = bch2_bkey_ptrs_c(k1); struct bkey_ptrs_c ptrs2 = bch2_bkey_ptrs_c(k2); const union bch_extent_entry *entry1, *entry2; struct extent_ptr_decoded p1, p2; if (bkey_extent_is_unwritten(k1) != bkey_extent_is_unwritten(k2)) return false; bkey_for_each_ptr_decode(k1.k, ptrs1, p1, entry1) bkey_for_each_ptr_decode(k2.k, ptrs2, p2, entry2) if (p1.ptr.dev == p2.ptr.dev && p1.ptr.gen == p2.ptr.gen && /* * This checks that the two pointers point * to the same region on disk - adjusting * for the difference in where the extents * start, since one may have been trimmed: */ (s64) p1.ptr.offset + p1.crc.offset - bkey_start_offset(k1.k) == (s64) p2.ptr.offset + p2.crc.offset - bkey_start_offset(k2.k) && /* * This additionally checks that the * extents overlap on disk, since the * previous check may trigger spuriously * when one extent is immediately partially * overwritten with another extent (so that * on disk they are adjacent) and * compression is in use: */ ((p1.ptr.offset >= p2.ptr.offset && p1.ptr.offset < p2.ptr.offset + p2.crc.compressed_size) || (p2.ptr.offset >= p1.ptr.offset && p2.ptr.offset < p1.ptr.offset + p1.crc.compressed_size))) return true; return false; } else { /* KEY_TYPE_deleted, etc. */ return true; } } struct bch_extent_ptr * bch2_extent_has_ptr(struct bkey_s_c k1, struct extent_ptr_decoded p1, struct bkey_s k2) { struct bkey_ptrs ptrs2 = bch2_bkey_ptrs(k2); union bch_extent_entry *entry2; struct extent_ptr_decoded p2; bkey_for_each_ptr_decode(k2.k, ptrs2, p2, entry2) if (p1.ptr.dev == p2.ptr.dev && p1.ptr.gen == p2.ptr.gen && (s64) p1.ptr.offset + p1.crc.offset - bkey_start_offset(k1.k) == (s64) p2.ptr.offset + p2.crc.offset - bkey_start_offset(k2.k)) return &entry2->ptr; return NULL; } void bch2_extent_ptr_set_cached(struct bkey_s k, struct bch_extent_ptr *ptr) { struct bkey_ptrs ptrs = bch2_bkey_ptrs(k); union bch_extent_entry *entry; union bch_extent_entry *ec = NULL; bkey_extent_entry_for_each(ptrs, entry) { if (&entry->ptr == ptr) { ptr->cached = true; if (ec) extent_entry_drop(k, ec); return; } if (extent_entry_is_stripe_ptr(entry)) ec = entry; else if (extent_entry_is_ptr(entry)) ec = NULL; } BUG(); } /* * bch_extent_normalize - clean up an extent, dropping stale pointers etc. * * Returns true if @k should be dropped entirely * * For existing keys, only called when btree nodes are being rewritten, not when * they're merely being compacted/resorted in memory. */ bool bch2_extent_normalize(struct bch_fs *c, struct bkey_s k) { struct bch_dev *ca; rcu_read_lock(); bch2_bkey_drop_ptrs(k, ptr, ptr->cached && (ca = bch2_dev_rcu(c, ptr->dev)) && dev_ptr_stale_rcu(ca, ptr) > 0); rcu_read_unlock(); return bkey_deleted(k.k); } void bch2_extent_ptr_to_text(struct printbuf *out, struct bch_fs *c, const struct bch_extent_ptr *ptr) { out->atomic++; rcu_read_lock(); struct bch_dev *ca = bch2_dev_rcu_noerror(c, ptr->dev); if (!ca) { prt_printf(out, "ptr: %u:%llu gen %u%s", ptr->dev, (u64) ptr->offset, ptr->gen, ptr->cached ? " cached" : ""); } else { u32 offset; u64 b = sector_to_bucket_and_offset(ca, ptr->offset, &offset); prt_printf(out, "ptr: %u:%llu:%u gen %u", ptr->dev, b, offset, ptr->gen); if (ca->mi.durability != 1) prt_printf(out, " d=%u", ca->mi.durability); if (ptr->cached) prt_str(out, " cached"); if (ptr->unwritten) prt_str(out, " unwritten"); int stale = dev_ptr_stale_rcu(ca, ptr); if (stale > 0) prt_printf(out, " stale"); else if (stale) prt_printf(out, " invalid"); } rcu_read_unlock(); --out->atomic; } void bch2_extent_crc_unpacked_to_text(struct printbuf *out, struct bch_extent_crc_unpacked *crc) { prt_printf(out, "crc: c_size %u size %u offset %u nonce %u csum ", crc->compressed_size, crc->uncompressed_size, crc->offset, crc->nonce); bch2_prt_csum_type(out, crc->csum_type); prt_printf(out, " %0llx:%0llx ", crc->csum.hi, crc->csum.lo); prt_str(out, " compress "); bch2_prt_compression_type(out, crc->compression_type); } void bch2_bkey_ptrs_to_text(struct printbuf *out, struct bch_fs *c, struct bkey_s_c k) { struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); const union bch_extent_entry *entry; bool first = true; if (c) prt_printf(out, "durability: %u ", bch2_bkey_durability_safe(c, k)); bkey_extent_entry_for_each(ptrs, entry) { if (!first) prt_printf(out, " "); switch (__extent_entry_type(entry)) { case BCH_EXTENT_ENTRY_ptr: bch2_extent_ptr_to_text(out, c, entry_to_ptr(entry)); break; case BCH_EXTENT_ENTRY_crc32: case BCH_EXTENT_ENTRY_crc64: case BCH_EXTENT_ENTRY_crc128: { struct bch_extent_crc_unpacked crc = bch2_extent_crc_unpack(k.k, entry_to_crc(entry)); bch2_extent_crc_unpacked_to_text(out, &crc); break; } case BCH_EXTENT_ENTRY_stripe_ptr: { const struct bch_extent_stripe_ptr *ec = &entry->stripe_ptr; prt_printf(out, "ec: idx %llu block %u", (u64) ec->idx, ec->block); break; } case BCH_EXTENT_ENTRY_rebalance: { const struct bch_extent_rebalance *r = &entry->rebalance; prt_str(out, "rebalance: target "); if (c) bch2_target_to_text(out, c, r->target); else prt_printf(out, "%u", r->target); prt_str(out, " compression "); bch2_compression_opt_to_text(out, r->compression); break; } default: prt_printf(out, "(invalid extent entry %.16llx)", *((u64 *) entry)); return; } first = false; } } static int extent_ptr_validate(struct bch_fs *c, struct bkey_s_c k, enum bch_validate_flags flags, const struct bch_extent_ptr *ptr, unsigned size_ondisk, bool metadata) { int ret = 0; /* bad pointers are repaired by check_fix_ptrs(): */ rcu_read_lock(); struct bch_dev *ca = bch2_dev_rcu_noerror(c, ptr->dev); if (!ca) { rcu_read_unlock(); return 0; } u32 bucket_offset; u64 bucket = sector_to_bucket_and_offset(ca, ptr->offset, &bucket_offset); unsigned first_bucket = ca->mi.first_bucket; u64 nbuckets = ca->mi.nbuckets; unsigned bucket_size = ca->mi.bucket_size; rcu_read_unlock(); struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); bkey_for_each_ptr(ptrs, ptr2) bkey_fsck_err_on(ptr != ptr2 && ptr->dev == ptr2->dev, c, ptr_to_duplicate_device, "multiple pointers to same device (%u)", ptr->dev); bkey_fsck_err_on(bucket >= nbuckets, c, ptr_after_last_bucket, "pointer past last bucket (%llu > %llu)", bucket, nbuckets); bkey_fsck_err_on(bucket < first_bucket, c, ptr_before_first_bucket, "pointer before first bucket (%llu < %u)", bucket, first_bucket); bkey_fsck_err_on(bucket_offset + size_ondisk > bucket_size, c, ptr_spans_multiple_buckets, "pointer spans multiple buckets (%u + %u > %u)", bucket_offset, size_ondisk, bucket_size); fsck_err: return ret; } int bch2_bkey_ptrs_validate(struct bch_fs *c, struct bkey_s_c k, enum bch_validate_flags flags) { struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); const union bch_extent_entry *entry; struct bch_extent_crc_unpacked crc; unsigned size_ondisk = k.k->size; unsigned nonce = UINT_MAX; unsigned nr_ptrs = 0; bool have_written = false, have_unwritten = false, have_ec = false, crc_since_last_ptr = false; int ret = 0; if (bkey_is_btree_ptr(k.k)) size_ondisk = btree_sectors(c); bkey_extent_entry_for_each(ptrs, entry) { bkey_fsck_err_on(__extent_entry_type(entry) >= BCH_EXTENT_ENTRY_MAX, c, extent_ptrs_invalid_entry, "invalid extent entry type (got %u, max %u)", __extent_entry_type(entry), BCH_EXTENT_ENTRY_MAX); bkey_fsck_err_on(bkey_is_btree_ptr(k.k) && !extent_entry_is_ptr(entry), c, btree_ptr_has_non_ptr, "has non ptr field"); switch (extent_entry_type(entry)) { case BCH_EXTENT_ENTRY_ptr: ret = extent_ptr_validate(c, k, flags, &entry->ptr, size_ondisk, false); if (ret) return ret; bkey_fsck_err_on(entry->ptr.cached && have_ec, c, ptr_cached_and_erasure_coded, "cached, erasure coded ptr"); if (!entry->ptr.unwritten) have_written = true; else have_unwritten = true; have_ec = false; crc_since_last_ptr = false; nr_ptrs++; break; case BCH_EXTENT_ENTRY_crc32: case BCH_EXTENT_ENTRY_crc64: case BCH_EXTENT_ENTRY_crc128: crc = bch2_extent_crc_unpack(k.k, entry_to_crc(entry)); bkey_fsck_err_on(crc.offset + crc.live_size > crc.uncompressed_size, c, ptr_crc_uncompressed_size_too_small, "checksum offset + key size > uncompressed size"); bkey_fsck_err_on(!bch2_checksum_type_valid(c, crc.csum_type), c, ptr_crc_csum_type_unknown, "invalid checksum type"); bkey_fsck_err_on(crc.compression_type >= BCH_COMPRESSION_TYPE_NR, c, ptr_crc_compression_type_unknown, "invalid compression type"); if (bch2_csum_type_is_encryption(crc.csum_type)) { if (nonce == UINT_MAX) nonce = crc.offset + crc.nonce; else if (nonce != crc.offset + crc.nonce) bkey_fsck_err(c, ptr_crc_nonce_mismatch, "incorrect nonce"); } bkey_fsck_err_on(crc_since_last_ptr, c, ptr_crc_redundant, "redundant crc entry"); crc_since_last_ptr = true; bkey_fsck_err_on(crc_is_encoded(crc) && (crc.uncompressed_size > c->opts.encoded_extent_max >> 9) && (flags & (BCH_VALIDATE_write|BCH_VALIDATE_commit)), c, ptr_crc_uncompressed_size_too_big, "too large encoded extent"); size_ondisk = crc.compressed_size; break; case BCH_EXTENT_ENTRY_stripe_ptr: bkey_fsck_err_on(have_ec, c, ptr_stripe_redundant, "redundant stripe entry"); have_ec = true; break; case BCH_EXTENT_ENTRY_rebalance: { /* * this shouldn't be a fsck error, for forward * compatibility; the rebalance code should just refetch * the compression opt if it's unknown */ #if 0 const struct bch_extent_rebalance *r = &entry->rebalance; if (!bch2_compression_opt_valid(r->compression)) { struct bch_compression_opt opt = __bch2_compression_decode(r->compression); prt_printf(err, "invalid compression opt %u:%u", opt.type, opt.level); return -BCH_ERR_invalid_bkey; } #endif break; } } } bkey_fsck_err_on(!nr_ptrs, c, extent_ptrs_no_ptrs, "no ptrs"); bkey_fsck_err_on(nr_ptrs > BCH_BKEY_PTRS_MAX, c, extent_ptrs_too_many_ptrs, "too many ptrs: %u > %u", nr_ptrs, BCH_BKEY_PTRS_MAX); bkey_fsck_err_on(have_written && have_unwritten, c, extent_ptrs_written_and_unwritten, "extent with unwritten and written ptrs"); bkey_fsck_err_on(k.k->type != KEY_TYPE_extent && have_unwritten, c, extent_ptrs_unwritten, "has unwritten ptrs"); bkey_fsck_err_on(crc_since_last_ptr, c, extent_ptrs_redundant_crc, "redundant crc entry"); bkey_fsck_err_on(have_ec, c, extent_ptrs_redundant_stripe, "redundant stripe entry"); fsck_err: return ret; } void bch2_ptr_swab(struct bkey_s k) { struct bkey_ptrs ptrs = bch2_bkey_ptrs(k); union bch_extent_entry *entry; u64 *d; for (d = (u64 *) ptrs.start; d != (u64 *) ptrs.end; d++) *d = swab64(*d); for (entry = ptrs.start; entry < ptrs.end; entry = extent_entry_next(entry)) { switch (extent_entry_type(entry)) { case BCH_EXTENT_ENTRY_ptr: break; case BCH_EXTENT_ENTRY_crc32: entry->crc32.csum = swab32(entry->crc32.csum); break; case BCH_EXTENT_ENTRY_crc64: entry->crc64.csum_hi = swab16(entry->crc64.csum_hi); entry->crc64.csum_lo = swab64(entry->crc64.csum_lo); break; case BCH_EXTENT_ENTRY_crc128: entry->crc128.csum.hi = (__force __le64) swab64((__force u64) entry->crc128.csum.hi); entry->crc128.csum.lo = (__force __le64) swab64((__force u64) entry->crc128.csum.lo); break; case BCH_EXTENT_ENTRY_stripe_ptr: break; case BCH_EXTENT_ENTRY_rebalance: break; } } } const struct bch_extent_rebalance *bch2_bkey_rebalance_opts(struct bkey_s_c k) { struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); const union bch_extent_entry *entry; bkey_extent_entry_for_each(ptrs, entry) if (__extent_entry_type(entry) == BCH_EXTENT_ENTRY_rebalance) return &entry->rebalance; return NULL; } unsigned bch2_bkey_ptrs_need_rebalance(struct bch_fs *c, struct bkey_s_c k, unsigned target, unsigned compression) { struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); unsigned rewrite_ptrs = 0; if (compression) { unsigned compression_type = bch2_compression_opt_to_type(compression); const union bch_extent_entry *entry; struct extent_ptr_decoded p; unsigned i = 0; bkey_for_each_ptr_decode(k.k, ptrs, p, entry) { if (p.crc.compression_type == BCH_COMPRESSION_TYPE_incompressible || p.ptr.unwritten) { rewrite_ptrs = 0; goto incompressible; } if (!p.ptr.cached && p.crc.compression_type != compression_type) rewrite_ptrs |= 1U << i; i++; } } incompressible: if (target && bch2_target_accepts_data(c, BCH_DATA_user, target)) { unsigned i = 0; bkey_for_each_ptr(ptrs, ptr) { if (!ptr->cached && !bch2_dev_in_target(c, ptr->dev, target)) rewrite_ptrs |= 1U << i; i++; } } return rewrite_ptrs; } bool bch2_bkey_needs_rebalance(struct bch_fs *c, struct bkey_s_c k) { const struct bch_extent_rebalance *r = bch2_bkey_rebalance_opts(k); /* * If it's an indirect extent, we don't delete the rebalance entry when * done so that we know what options were applied - check if it still * needs work done: */ if (r && k.k->type == KEY_TYPE_reflink_v && !bch2_bkey_ptrs_need_rebalance(c, k, r->target, r->compression)) r = NULL; return r != NULL; } static u64 __bch2_bkey_sectors_need_rebalance(struct bch_fs *c, struct bkey_s_c k, unsigned target, unsigned compression) { struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); const union bch_extent_entry *entry; struct extent_ptr_decoded p; u64 sectors = 0; if (compression) { unsigned compression_type = bch2_compression_opt_to_type(compression); bkey_for_each_ptr_decode(k.k, ptrs, p, entry) { if (p.crc.compression_type == BCH_COMPRESSION_TYPE_incompressible || p.ptr.unwritten) { sectors = 0; goto incompressible; } if (!p.ptr.cached && p.crc.compression_type != compression_type) sectors += p.crc.compressed_size; } } incompressible: if (target && bch2_target_accepts_data(c, BCH_DATA_user, target)) { bkey_for_each_ptr_decode(k.k, ptrs, p, entry) if (!p.ptr.cached && !bch2_dev_in_target(c, p.ptr.dev, target)) sectors += p.crc.compressed_size; } return sectors; } u64 bch2_bkey_sectors_need_rebalance(struct bch_fs *c, struct bkey_s_c k) { const struct bch_extent_rebalance *r = bch2_bkey_rebalance_opts(k); return r ? __bch2_bkey_sectors_need_rebalance(c, k, r->target, r->compression) : 0; } int bch2_bkey_set_needs_rebalance(struct bch_fs *c, struct bkey_i *_k, struct bch_io_opts *opts) { struct bkey_s k = bkey_i_to_s(_k); struct bch_extent_rebalance *r; unsigned target = opts->background_target; unsigned compression = background_compression(*opts); bool needs_rebalance; if (!bkey_extent_is_direct_data(k.k)) return 0; /* get existing rebalance entry: */ r = (struct bch_extent_rebalance *) bch2_bkey_rebalance_opts(k.s_c); if (r) { if (k.k->type == KEY_TYPE_reflink_v) { /* * indirect extents: existing options take precedence, * so that we don't move extents back and forth if * they're referenced by different inodes with different * options: */ if (r->target) target = r->target; if (r->compression) compression = r->compression; } r->target = target; r->compression = compression; } needs_rebalance = bch2_bkey_ptrs_need_rebalance(c, k.s_c, target, compression); if (needs_rebalance && !r) { union bch_extent_entry *new = bkey_val_end(k); new->rebalance.type = 1U << BCH_EXTENT_ENTRY_rebalance; new->rebalance.compression = compression; new->rebalance.target = target; new->rebalance.unused = 0; k.k->u64s += extent_entry_u64s(new); } else if (!needs_rebalance && r && k.k->type != KEY_TYPE_reflink_v) { /* * For indirect extents, don't delete the rebalance entry when * we're finished so that we know we specifically moved it or * compressed it to its current location/compression type */ extent_entry_drop(k, (union bch_extent_entry *) r); } return 0; } /* Generic extent code: */ int bch2_cut_front_s(struct bpos where, struct bkey_s k) { unsigned new_val_u64s = bkey_val_u64s(k.k); int val_u64s_delta; u64 sub; if (bkey_le(where, bkey_start_pos(k.k))) return 0; EBUG_ON(bkey_gt(where, k.k->p)); sub = where.offset - bkey_start_offset(k.k); k.k->size -= sub; if (!k.k->size) { k.k->type = KEY_TYPE_deleted; new_val_u64s = 0; } switch (k.k->type) { case KEY_TYPE_extent: case KEY_TYPE_reflink_v: { struct bkey_ptrs ptrs = bch2_bkey_ptrs(k); union bch_extent_entry *entry; bool seen_crc = false; bkey_extent_entry_for_each(ptrs, entry) { switch (extent_entry_type(entry)) { case BCH_EXTENT_ENTRY_ptr: if (!seen_crc) entry->ptr.offset += sub; break; case BCH_EXTENT_ENTRY_crc32: entry->crc32.offset += sub; break; case BCH_EXTENT_ENTRY_crc64: entry->crc64.offset += sub; break; case BCH_EXTENT_ENTRY_crc128: entry->crc128.offset += sub; break; case BCH_EXTENT_ENTRY_stripe_ptr: break; case BCH_EXTENT_ENTRY_rebalance: break; } if (extent_entry_is_crc(entry)) seen_crc = true; } break; } case KEY_TYPE_reflink_p: { struct bkey_s_reflink_p p = bkey_s_to_reflink_p(k); le64_add_cpu(&p.v->idx, sub); break; } case KEY_TYPE_inline_data: case KEY_TYPE_indirect_inline_data: { void *p = bkey_inline_data_p(k); unsigned bytes = bkey_inline_data_bytes(k.k); sub = min_t(u64, sub << 9, bytes); memmove(p, p + sub, bytes - sub); new_val_u64s -= sub >> 3; break; } } val_u64s_delta = bkey_val_u64s(k.k) - new_val_u64s; BUG_ON(val_u64s_delta < 0); set_bkey_val_u64s(k.k, new_val_u64s); memset(bkey_val_end(k), 0, val_u64s_delta * sizeof(u64)); return -val_u64s_delta; } int bch2_cut_back_s(struct bpos where, struct bkey_s k) { unsigned new_val_u64s = bkey_val_u64s(k.k); int val_u64s_delta; u64 len = 0; if (bkey_ge(where, k.k->p)) return 0; EBUG_ON(bkey_lt(where, bkey_start_pos(k.k))); len = where.offset - bkey_start_offset(k.k); k.k->p.offset = where.offset; k.k->size = len; if (!len) { k.k->type = KEY_TYPE_deleted; new_val_u64s = 0; } switch (k.k->type) { case KEY_TYPE_inline_data: case KEY_TYPE_indirect_inline_data: new_val_u64s = (bkey_inline_data_offset(k.k) + min(bkey_inline_data_bytes(k.k), k.k->size << 9)) >> 3; break; } val_u64s_delta = bkey_val_u64s(k.k) - new_val_u64s; BUG_ON(val_u64s_delta < 0); set_bkey_val_u64s(k.k, new_val_u64s); memset(bkey_val_end(k), 0, val_u64s_delta * sizeof(u64)); return -val_u64s_delta; }