/* * Freescale QUICC Engine USB Host Controller Driver * * Copyright (c) Freescale Semicondutor, Inc. 2006. * Shlomi Gridish * Jerry Huang * Copyright (c) Logic Product Development, Inc. 2007 * Peter Barada * Copyright (c) MontaVista Software, Inc. 2008. * Anton Vorontsov * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation; either version 2 of the License, or (at your * option) any later version. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "fhci.h" void fhci_start_sof_timer(struct fhci_hcd *fhci) { fhci_dbg(fhci, "-> %s\n", __func__); /* clear frame_n */ out_be16(&fhci->pram->frame_num, 0); out_be16(&fhci->regs->usb_sof_tmr, 0); setbits8(&fhci->regs->usb_mod, USB_MODE_SFTE); fhci_dbg(fhci, "<- %s\n", __func__); } void fhci_stop_sof_timer(struct fhci_hcd *fhci) { fhci_dbg(fhci, "-> %s\n", __func__); clrbits8(&fhci->regs->usb_mod, USB_MODE_SFTE); gtm_stop_timer16(fhci->timer); fhci_dbg(fhci, "<- %s\n", __func__); } u16 fhci_get_sof_timer_count(struct fhci_usb *usb) { return be16_to_cpu(in_be16(&usb->fhci->regs->usb_sof_tmr) / 12); } /* initialize the endpoint zero */ static u32 endpoint_zero_init(struct fhci_usb *usb, enum fhci_mem_alloc data_mem, u32 ring_len) { u32 rc; rc = fhci_create_ep(usb, data_mem, ring_len); if (rc) return rc; /* inilialize endpoint registers */ fhci_init_ep_registers(usb, usb->ep0, data_mem); return 0; } /* enable the USB interrupts */ void fhci_usb_enable_interrupt(struct fhci_usb *usb) { struct fhci_hcd *fhci = usb->fhci; if (usb->intr_nesting_cnt == 1) { /* initialize the USB interrupt */ enable_irq(fhci_to_hcd(fhci)->irq); /* initialize the event register and mask register */ out_be16(&usb->fhci->regs->usb_event, 0xffff); out_be16(&usb->fhci->regs->usb_mask, usb->saved_msk); /* enable the timer interrupts */ enable_irq(fhci->timer->irq); } else if (usb->intr_nesting_cnt > 1) fhci_info(fhci, "unbalanced USB interrupts nesting\n"); usb->intr_nesting_cnt--; } /* disable the usb interrupt */ void fhci_usb_disable_interrupt(struct fhci_usb *usb) { struct fhci_hcd *fhci = usb->fhci; if (usb->intr_nesting_cnt == 0) { /* disable the timer interrupt */ disable_irq_nosync(fhci->timer->irq); /* disable the usb interrupt */ disable_irq_nosync(fhci_to_hcd(fhci)->irq); out_be16(&usb->fhci->regs->usb_mask, 0); } usb->intr_nesting_cnt++; } /* enable the USB controller */ static u32 fhci_usb_enable(struct fhci_hcd *fhci) { struct fhci_usb *usb = fhci->usb_lld; out_be16(&usb->fhci->regs->usb_event, 0xffff); out_be16(&usb->fhci->regs->usb_mask, usb->saved_msk); setbits8(&usb->fhci->regs->usb_mod, USB_MODE_EN); mdelay(100); return 0; } /* disable the USB controller */ static u32 fhci_usb_disable(struct fhci_hcd *fhci) { struct fhci_usb *usb = fhci->usb_lld; fhci_usb_disable_interrupt(usb); fhci_port_disable(fhci); /* disable the usb controller */ if (usb->port_status == FHCI_PORT_FULL || usb->port_status == FHCI_PORT_LOW) fhci_device_disconnected_interrupt(fhci); clrbits8(&usb->fhci->regs->usb_mod, USB_MODE_EN); return 0; } /* check the bus state by polling the QE bit on the IO ports */ int fhci_ioports_check_bus_state(struct fhci_hcd *fhci) { u8 bits = 0; /* check USBOE,if transmitting,exit */ if (!gpio_get_value(fhci->gpios[GPIO_USBOE])) return -1; /* check USBRP */ if (gpio_get_value(fhci->gpios[GPIO_USBRP])) bits |= 0x2; /* check USBRN */ if (gpio_get_value(fhci->gpios[GPIO_USBRN])) bits |= 0x1; return bits; } static void fhci_mem_free(struct fhci_hcd *fhci) { struct ed *ed; struct ed *next_ed; struct td *td; struct td *next_td; list_for_each_entry_safe(ed, next_ed, &fhci->empty_eds, node) { list_del(&ed->node); kfree(ed); } list_for_each_entry_safe(td, next_td, &fhci->empty_tds, node) { list_del(&td->node); kfree(td); } kfree(fhci->vroot_hub); fhci->vroot_hub = NULL; kfree(fhci->hc_list); fhci->hc_list = NULL; } static int fhci_mem_init(struct fhci_hcd *fhci) { int i; fhci->hc_list = kzalloc(sizeof(*fhci->hc_list), GFP_KERNEL); if (!fhci->hc_list) goto err; INIT_LIST_HEAD(&fhci->hc_list->ctrl_list); INIT_LIST_HEAD(&fhci->hc_list->bulk_list); INIT_LIST_HEAD(&fhci->hc_list->iso_list); INIT_LIST_HEAD(&fhci->hc_list->intr_list); INIT_LIST_HEAD(&fhci->hc_list->done_list); fhci->vroot_hub = kzalloc(sizeof(*fhci->vroot_hub), GFP_KERNEL); if (!fhci->vroot_hub) goto err; INIT_LIST_HEAD(&fhci->empty_eds); INIT_LIST_HEAD(&fhci->empty_tds); /* initialize work queue to handle done list */ fhci_tasklet.data = (unsigned long)fhci; fhci->process_done_task = &fhci_tasklet; for (i = 0; i < MAX_TDS; i++) { struct td *td; td = kmalloc(sizeof(*td), GFP_KERNEL); if (!td) goto err; fhci_recycle_empty_td(fhci, td); } for (i = 0; i < MAX_EDS; i++) { struct ed *ed; ed = kmalloc(sizeof(*ed), GFP_KERNEL); if (!ed) goto err; fhci_recycle_empty_ed(fhci, ed); } fhci->active_urbs = 0; return 0; err: fhci_mem_free(fhci); return -ENOMEM; } /* destroy the fhci_usb structure */ static void fhci_usb_free(void *lld) { struct fhci_usb *usb = lld; struct fhci_hcd *fhci; if (usb) { fhci = usb->fhci; fhci_config_transceiver(fhci, FHCI_PORT_POWER_OFF); fhci_ep0_free(usb); kfree(usb->actual_frame); kfree(usb); } } /* initialize the USB */ static int fhci_usb_init(struct fhci_hcd *fhci) { struct fhci_usb *usb = fhci->usb_lld; memset_io(usb->fhci->pram, 0, FHCI_PRAM_SIZE); usb->port_status = FHCI_PORT_DISABLED; usb->max_frame_usage = FRAME_TIME_USAGE; usb->sw_transaction_time = SW_FIX_TIME_BETWEEN_TRANSACTION; usb->actual_frame = kzalloc(sizeof(*usb->actual_frame), GFP_KERNEL); if (!usb->actual_frame) { fhci_usb_free(usb); return -ENOMEM; } INIT_LIST_HEAD(&usb->actual_frame->tds_list); /* initializing registers on chip, clear frame number */ out_be16(&fhci->pram->frame_num, 0); /* clear rx state */ out_be32(&fhci->pram->rx_state, 0); /* set mask register */ usb->saved_msk = (USB_E_TXB_MASK | USB_E_TXE1_MASK | USB_E_IDLE_MASK | USB_E_RESET_MASK | USB_E_SFT_MASK | USB_E_MSF_MASK); out_8(&usb->fhci->regs->usb_mod, USB_MODE_HOST | USB_MODE_EN); /* clearing the mask register */ out_be16(&usb->fhci->regs->usb_mask, 0); /* initialing the event register */ out_be16(&usb->fhci->regs->usb_event, 0xffff); if (endpoint_zero_init(usb, DEFAULT_DATA_MEM, DEFAULT_RING_LEN) != 0) { fhci_usb_free(usb); return -EINVAL; } return 0; } /* initialize the fhci_usb struct and the corresponding data staruct */ static struct fhci_usb *fhci_create_lld(struct fhci_hcd *fhci) { struct fhci_usb *usb; /* allocate memory for SCC data structure */ usb = kzalloc(sizeof(*usb), GFP_KERNEL); if (!usb) { fhci_err(fhci, "no memory for SCC data struct\n"); return NULL; } usb->fhci = fhci; usb->hc_list = fhci->hc_list; usb->vroot_hub = fhci->vroot_hub; usb->transfer_confirm = fhci_transfer_confirm_callback; return usb; } static int fhci_start(struct usb_hcd *hcd) { int ret; struct fhci_hcd *fhci = hcd_to_fhci(hcd); ret = fhci_mem_init(fhci); if (ret) { fhci_err(fhci, "failed to allocate memory\n"); goto err; } fhci->usb_lld = fhci_create_lld(fhci); if (!fhci->usb_lld) { fhci_err(fhci, "low level driver config failed\n"); ret = -ENOMEM; goto err; } ret = fhci_usb_init(fhci); if (ret) { fhci_err(fhci, "low level driver initialize failed\n"); goto err; } spin_lock_init(&fhci->lock); /* connect the virtual root hub */ fhci->vroot_hub->dev_num = 1; /* this field may be needed to fix */ fhci->vroot_hub->hub.wHubStatus = 0; fhci->vroot_hub->hub.wHubChange = 0; fhci->vroot_hub->port.wPortStatus = 0; fhci->vroot_hub->port.wPortChange = 0; hcd->state = HC_STATE_RUNNING; /* * From here on, khubd concurrently accesses the root * hub; drivers will be talking to enumerated devices. * (On restart paths, khubd already knows about the root * hub and could find work as soon as we wrote FLAG_CF.) * * Before this point the HC was idle/ready. After, khubd * and device drivers may start it running. */ fhci_usb_enable(fhci); return 0; err: fhci_mem_free(fhci); return ret; } static void fhci_stop(struct usb_hcd *hcd) { struct fhci_hcd *fhci = hcd_to_fhci(hcd); fhci_usb_disable_interrupt(fhci->usb_lld); fhci_usb_disable(fhci); fhci_usb_free(fhci->usb_lld); fhci->usb_lld = NULL; fhci_mem_free(fhci); } static int fhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags) { struct fhci_hcd *fhci = hcd_to_fhci(hcd); u32 pipe = urb->pipe; int ret; int i; int size = 0; struct urb_priv *urb_priv; unsigned long flags; switch (usb_pipetype(pipe)) { case PIPE_CONTROL: /* 1 td fro setup,1 for ack */ size = 2; case PIPE_BULK: /* one td for every 4096 bytes(can be up to 8k) */ size += urb->transfer_buffer_length / 4096; /* ...add for any remaining bytes... */ if ((urb->transfer_buffer_length % 4096) != 0) size++; /* ..and maybe a zero length packet to wrap it up */ if (size == 0) size++; else if ((urb->transfer_flags & URB_ZERO_PACKET) != 0 && (urb->transfer_buffer_length % usb_maxpacket(urb->dev, pipe, usb_pipeout(pipe))) != 0) size++; break; case PIPE_ISOCHRONOUS: size = urb->number_of_packets; if (size <= 0) return -EINVAL; for (i = 0; i < urb->number_of_packets; i++) { urb->iso_frame_desc[i].actual_length = 0; urb->iso_frame_desc[i].status = (u32) (-EXDEV); } break; case PIPE_INTERRUPT: size = 1; } /* allocate the private part of the URB */ urb_priv = kzalloc(sizeof(*urb_priv), mem_flags); if (!urb_priv) return -ENOMEM; /* allocate the private part of the URB */ urb_priv->tds = kcalloc(size, sizeof(*urb_priv->tds), mem_flags); if (!urb_priv->tds) { kfree(urb_priv); return -ENOMEM; } spin_lock_irqsave(&fhci->lock, flags); ret = usb_hcd_link_urb_to_ep(hcd, urb); if (ret) goto err; /* fill the private part of the URB */ urb_priv->num_of_tds = size; urb->status = -EINPROGRESS; urb->actual_length = 0; urb->error_count = 0; urb->hcpriv = urb_priv; fhci_queue_urb(fhci, urb); err: if (ret) { kfree(urb_priv->tds); kfree(urb_priv); } spin_unlock_irqrestore(&fhci->lock, flags); return ret; } /* dequeue FHCI URB */ static int fhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status) { struct fhci_hcd *fhci = hcd_to_fhci(hcd); struct fhci_usb *usb = fhci->usb_lld; int ret = -EINVAL; unsigned long flags; if (!urb || !urb->dev || !urb->dev->bus) goto out; spin_lock_irqsave(&fhci->lock, flags); ret = usb_hcd_check_unlink_urb(hcd, urb, status); if (ret) goto out2; if (usb->port_status != FHCI_PORT_DISABLED) { struct urb_priv *urb_priv; /* * flag the urb's data for deletion in some upcoming * SF interrupt's delete list processing */ urb_priv = urb->hcpriv; if (!urb_priv || (urb_priv->state == URB_DEL)) goto out2; urb_priv->state = URB_DEL; /* already pending? */ urb_priv->ed->state = FHCI_ED_URB_DEL; } else { fhci_urb_complete_free(fhci, urb); } out2: spin_unlock_irqrestore(&fhci->lock, flags); out: return ret; } static void fhci_endpoint_disable(struct usb_hcd *hcd, struct usb_host_endpoint *ep) { struct fhci_hcd *fhci; struct ed *ed; unsigned long flags; fhci = hcd_to_fhci(hcd); spin_lock_irqsave(&fhci->lock, flags); ed = ep->hcpriv; if (ed) { while (ed->td_head != NULL) { struct td *td = fhci_remove_td_from_ed(ed); fhci_urb_complete_free(fhci, td->urb); } fhci_recycle_empty_ed(fhci, ed); ep->hcpriv = NULL; } spin_unlock_irqrestore(&fhci->lock, flags); } static int fhci_get_frame_number(struct usb_hcd *hcd) { struct fhci_hcd *fhci = hcd_to_fhci(hcd); return get_frame_num(fhci); } static const struct hc_driver fhci_driver = { .description = "fsl,usb-fhci", .product_desc = "FHCI HOST Controller", .hcd_priv_size = sizeof(struct fhci_hcd), /* generic hardware linkage */ .irq = fhci_irq, .flags = HCD_USB11 | HCD_MEMORY, /* basic lifecycle operation */ .start = fhci_start, .stop = fhci_stop, /* managing i/o requests and associated device resources */ .urb_enqueue = fhci_urb_enqueue, .urb_dequeue = fhci_urb_dequeue, .endpoint_disable = fhci_endpoint_disable, /* scheduling support */ .get_frame_number = fhci_get_frame_number, /* root hub support */ .hub_status_data = fhci_hub_status_data, .hub_control = fhci_hub_control, }; static int __devinit of_fhci_probe(struct platform_device *ofdev) { struct device *dev = &ofdev->dev; struct device_node *node = dev->of_node; struct usb_hcd *hcd; struct fhci_hcd *fhci; struct resource usb_regs; unsigned long pram_addr; unsigned int usb_irq; const char *sprop; const u32 *iprop; int size; int ret; int i; int j; if (usb_disabled()) return -ENODEV; sprop = of_get_property(node, "mode", NULL); if (sprop && strcmp(sprop, "host")) return -ENODEV; hcd = usb_create_hcd(&fhci_driver, dev, dev_name(dev)); if (!hcd) { dev_err(dev, "could not create hcd\n"); return -ENOMEM; } fhci = hcd_to_fhci(hcd); hcd->self.controller = dev; dev_set_drvdata(dev, hcd); iprop = of_get_property(node, "hub-power-budget", &size); if (iprop && size == sizeof(*iprop)) hcd->power_budget = *iprop; /* FHCI registers. */ ret = of_address_to_resource(node, 0, &usb_regs); if (ret) { dev_err(dev, "could not get regs\n"); goto err_regs; } hcd->regs = ioremap(usb_regs.start, resource_size(&usb_regs)); if (!hcd->regs) { dev_err(dev, "could not ioremap regs\n"); ret = -ENOMEM; goto err_regs; } fhci->regs = hcd->regs; /* Parameter RAM. */ iprop = of_get_property(node, "reg", &size); if (!iprop || size < sizeof(*iprop) * 4) { dev_err(dev, "can't get pram offset\n"); ret = -EINVAL; goto err_pram; } pram_addr = cpm_muram_alloc(FHCI_PRAM_SIZE, 64); if (IS_ERR_VALUE(pram_addr)) { dev_err(dev, "failed to allocate usb pram\n"); ret = -ENOMEM; goto err_pram; } qe_issue_cmd(QE_ASSIGN_PAGE_TO_DEVICE, QE_CR_SUBBLOCK_USB, QE_CR_PROTOCOL_UNSPECIFIED, pram_addr); fhci->pram = cpm_muram_addr(pram_addr); /* GPIOs and pins */ for (i = 0; i < NUM_GPIOS; i++) { int gpio; enum of_gpio_flags flags; gpio = of_get_gpio_flags(node, i, &flags); fhci->gpios[i] = gpio; fhci->alow_gpios[i] = flags & OF_GPIO_ACTIVE_LOW; if (!gpio_is_valid(gpio)) { if (i < GPIO_SPEED) { dev_err(dev, "incorrect GPIO%d: %d\n", i, gpio); goto err_gpios; } else { dev_info(dev, "assuming board doesn't have " "%s gpio\n", i == GPIO_SPEED ? "speed" : "power"); continue; } } ret = gpio_request(gpio, dev_name(dev)); if (ret) { dev_err(dev, "failed to request gpio %d", i); goto err_gpios; } if (i >= GPIO_SPEED) { ret = gpio_direction_output(gpio, 0); if (ret) { dev_err(dev, "failed to set gpio %d as " "an output\n", i); i++; goto err_gpios; } } } for (j = 0; j < NUM_PINS; j++) { fhci->pins[j] = qe_pin_request(node, j); if (IS_ERR(fhci->pins[j])) { ret = PTR_ERR(fhci->pins[j]); dev_err(dev, "can't get pin %d: %d\n", j, ret); goto err_pins; } } /* Frame limit timer and its interrupt. */ fhci->timer = gtm_get_timer16(); if (IS_ERR(fhci->timer)) { ret = PTR_ERR(fhci->timer); dev_err(dev, "failed to request qe timer: %i", ret); goto err_get_timer; } ret = request_irq(fhci->timer->irq, fhci_frame_limit_timer_irq, IRQF_DISABLED, "qe timer (usb)", hcd); if (ret) { dev_err(dev, "failed to request timer irq"); goto err_timer_irq; } /* USB Host interrupt. */ usb_irq = irq_of_parse_and_map(node, 0); if (usb_irq == NO_IRQ) { dev_err(dev, "could not get usb irq\n"); ret = -EINVAL; goto err_usb_irq; } /* Clocks. */ sprop = of_get_property(node, "fsl,fullspeed-clock", NULL); if (sprop) { fhci->fullspeed_clk = qe_clock_source(sprop); if (fhci->fullspeed_clk == QE_CLK_DUMMY) { dev_err(dev, "wrong fullspeed-clock\n"); ret = -EINVAL; goto err_clocks; } } sprop = of_get_property(node, "fsl,lowspeed-clock", NULL); if (sprop) { fhci->lowspeed_clk = qe_clock_source(sprop); if (fhci->lowspeed_clk == QE_CLK_DUMMY) { dev_err(dev, "wrong lowspeed-clock\n"); ret = -EINVAL; goto err_clocks; } } if (fhci->fullspeed_clk == QE_CLK_NONE && fhci->lowspeed_clk == QE_CLK_NONE) { dev_err(dev, "no clocks specified\n"); ret = -EINVAL; goto err_clocks; } dev_info(dev, "at 0x%p, irq %d\n", hcd->regs, usb_irq); fhci_config_transceiver(fhci, FHCI_PORT_POWER_OFF); /* Start with full-speed, if possible. */ if (fhci->fullspeed_clk != QE_CLK_NONE) { fhci_config_transceiver(fhci, FHCI_PORT_FULL); qe_usb_clock_set(fhci->fullspeed_clk, USB_CLOCK); } else { fhci_config_transceiver(fhci, FHCI_PORT_LOW); qe_usb_clock_set(fhci->lowspeed_clk, USB_CLOCK >> 3); } /* Clear and disable any pending interrupts. */ out_be16(&fhci->regs->usb_event, 0xffff); out_be16(&fhci->regs->usb_mask, 0); ret = usb_add_hcd(hcd, usb_irq, IRQF_DISABLED); if (ret < 0) goto err_add_hcd; fhci_dfs_create(fhci); return 0; err_add_hcd: err_clocks: irq_dispose_mapping(usb_irq); err_usb_irq: free_irq(fhci->timer->irq, hcd); err_timer_irq: gtm_put_timer16(fhci->timer); err_get_timer: err_pins: while (--j >= 0) qe_pin_free(fhci->pins[j]); err_gpios: while (--i >= 0) { if (gpio_is_valid(fhci->gpios[i])) gpio_free(fhci->gpios[i]); } cpm_muram_free(pram_addr); err_pram: iounmap(hcd->regs); err_regs: usb_put_hcd(hcd); return ret; } static int __devexit fhci_remove(struct device *dev) { struct usb_hcd *hcd = dev_get_drvdata(dev); struct fhci_hcd *fhci = hcd_to_fhci(hcd); int i; int j; usb_remove_hcd(hcd); free_irq(fhci->timer->irq, hcd); gtm_put_timer16(fhci->timer); cpm_muram_free(cpm_muram_offset(fhci->pram)); for (i = 0; i < NUM_GPIOS; i++) { if (!gpio_is_valid(fhci->gpios[i])) continue; gpio_free(fhci->gpios[i]); } for (j = 0; j < NUM_PINS; j++) qe_pin_free(fhci->pins[j]); fhci_dfs_destroy(fhci); usb_put_hcd(hcd); return 0; } static int __devexit of_fhci_remove(struct platform_device *ofdev) { return fhci_remove(&ofdev->dev); } static const struct of_device_id of_fhci_match[] = { { .compatible = "fsl,mpc8323-qe-usb", }, {}, }; MODULE_DEVICE_TABLE(of, of_fhci_match); static struct platform_driver of_fhci_driver = { .driver = { .name = "fsl,usb-fhci", .owner = THIS_MODULE, .of_match_table = of_fhci_match, }, .probe = of_fhci_probe, .remove = __devexit_p(of_fhci_remove), }; static int __init fhci_module_init(void) { return platform_driver_register(&of_fhci_driver); } module_init(fhci_module_init); static void __exit fhci_module_exit(void) { platform_driver_unregister(&of_fhci_driver); } module_exit(fhci_module_exit); MODULE_DESCRIPTION("USB Freescale Host Controller Interface Driver"); MODULE_AUTHOR("Shlomi Gridish , " "Jerry Huang , " "Anton Vorontsov "); MODULE_LICENSE("GPL");