/* * Remote Processor Framework * * Copyright (C) 2011 Texas Instruments, Inc. * Copyright (C) 2011 Google, Inc. * * Ohad Ben-Cohen * Brian Swetland * Mark Grosen * Fernando Guzman Lugo * Suman Anna * Robert Tivy * Armando Uribe De Leon * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * version 2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #define pr_fmt(fmt) "%s: " fmt, __func__ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "remoteproc_internal.h" static DEFINE_MUTEX(rproc_list_mutex); static LIST_HEAD(rproc_list); typedef int (*rproc_handle_resources_t)(struct rproc *rproc, struct resource_table *table, int len); typedef int (*rproc_handle_resource_t)(struct rproc *rproc, void *, int offset, int avail); /* Unique indices for remoteproc devices */ static DEFINE_IDA(rproc_dev_index); static const char * const rproc_crash_names[] = { [RPROC_MMUFAULT] = "mmufault", [RPROC_WATCHDOG] = "watchdog", [RPROC_FATAL_ERROR] = "fatal error", }; /* translate rproc_crash_type to string */ static const char *rproc_crash_to_string(enum rproc_crash_type type) { if (type < ARRAY_SIZE(rproc_crash_names)) return rproc_crash_names[type]; return "unknown"; } /* * This is the IOMMU fault handler we register with the IOMMU API * (when relevant; not all remote processors access memory through * an IOMMU). * * IOMMU core will invoke this handler whenever the remote processor * will try to access an unmapped device address. */ static int rproc_iommu_fault(struct iommu_domain *domain, struct device *dev, unsigned long iova, int flags, void *token) { struct rproc *rproc = token; dev_err(dev, "iommu fault: da 0x%lx flags 0x%x\n", iova, flags); rproc_report_crash(rproc, RPROC_MMUFAULT); /* * Let the iommu core know we're not really handling this fault; * we just used it as a recovery trigger. */ return -ENOSYS; } static int rproc_enable_iommu(struct rproc *rproc) { struct iommu_domain *domain; struct device *dev = rproc->dev.parent; int ret; if (!rproc->has_iommu) { dev_dbg(dev, "iommu not present\n"); return 0; } domain = iommu_domain_alloc(dev->bus); if (!domain) { dev_err(dev, "can't alloc iommu domain\n"); return -ENOMEM; } iommu_set_fault_handler(domain, rproc_iommu_fault, rproc); ret = iommu_attach_device(domain, dev); if (ret) { dev_err(dev, "can't attach iommu device: %d\n", ret); goto free_domain; } rproc->domain = domain; return 0; free_domain: iommu_domain_free(domain); return ret; } static void rproc_disable_iommu(struct rproc *rproc) { struct iommu_domain *domain = rproc->domain; struct device *dev = rproc->dev.parent; if (!domain) return; iommu_detach_device(domain, dev); iommu_domain_free(domain); } /** * rproc_da_to_va() - lookup the kernel virtual address for a remoteproc address * @rproc: handle of a remote processor * @da: remoteproc device address to translate * @len: length of the memory region @da is pointing to * * Some remote processors will ask us to allocate them physically contiguous * memory regions (which we call "carveouts"), and map them to specific * device addresses (which are hardcoded in the firmware). They may also have * dedicated memory regions internal to the processors, and use them either * exclusively or alongside carveouts. * * They may then ask us to copy objects into specific device addresses (e.g. * code/data sections) or expose us certain symbols in other device address * (e.g. their trace buffer). * * This function is a helper function with which we can go over the allocated * carveouts and translate specific device addresses to kernel virtual addresses * so we can access the referenced memory. This function also allows to perform * translations on the internal remoteproc memory regions through a platform * implementation specific da_to_va ops, if present. * * The function returns a valid kernel address on success or NULL on failure. * * Note: phys_to_virt(iommu_iova_to_phys(rproc->domain, da)) will work too, * but only on kernel direct mapped RAM memory. Instead, we're just using * here the output of the DMA API for the carveouts, which should be more * correct. */ void *rproc_da_to_va(struct rproc *rproc, u64 da, int len) { struct rproc_mem_entry *carveout; void *ptr = NULL; if (rproc->ops->da_to_va) { ptr = rproc->ops->da_to_va(rproc, da, len); if (ptr) goto out; } list_for_each_entry(carveout, &rproc->carveouts, node) { int offset = da - carveout->da; /* try next carveout if da is too small */ if (offset < 0) continue; /* try next carveout if da is too large */ if (offset + len > carveout->len) continue; ptr = carveout->va + offset; break; } out: return ptr; } EXPORT_SYMBOL(rproc_da_to_va); int rproc_alloc_vring(struct rproc_vdev *rvdev, int i) { struct rproc *rproc = rvdev->rproc; struct device *dev = &rproc->dev; struct rproc_vring *rvring = &rvdev->vring[i]; struct fw_rsc_vdev *rsc; dma_addr_t dma; void *va; int ret, size, notifyid; /* actual size of vring (in bytes) */ size = PAGE_ALIGN(vring_size(rvring->len, rvring->align)); /* * Allocate non-cacheable memory for the vring. In the future * this call will also configure the IOMMU for us */ va = dma_alloc_coherent(dev->parent, size, &dma, GFP_KERNEL); if (!va) { dev_err(dev->parent, "dma_alloc_coherent failed\n"); return -EINVAL; } /* * Assign an rproc-wide unique index for this vring * TODO: assign a notifyid for rvdev updates as well * TODO: support predefined notifyids (via resource table) */ ret = idr_alloc(&rproc->notifyids, rvring, 0, 0, GFP_KERNEL); if (ret < 0) { dev_err(dev, "idr_alloc failed: %d\n", ret); dma_free_coherent(dev->parent, size, va, dma); return ret; } notifyid = ret; /* Potentially bump max_notifyid */ if (notifyid > rproc->max_notifyid) rproc->max_notifyid = notifyid; dev_dbg(dev, "vring%d: va %p dma %pad size 0x%x idr %d\n", i, va, &dma, size, notifyid); rvring->va = va; rvring->dma = dma; rvring->notifyid = notifyid; /* * Let the rproc know the notifyid and da of this vring. * Not all platforms use dma_alloc_coherent to automatically * set up the iommu. In this case the device address (da) will * hold the physical address and not the device address. */ rsc = (void *)rproc->table_ptr + rvdev->rsc_offset; rsc->vring[i].da = dma; rsc->vring[i].notifyid = notifyid; return 0; } static int rproc_parse_vring(struct rproc_vdev *rvdev, struct fw_rsc_vdev *rsc, int i) { struct rproc *rproc = rvdev->rproc; struct device *dev = &rproc->dev; struct fw_rsc_vdev_vring *vring = &rsc->vring[i]; struct rproc_vring *rvring = &rvdev->vring[i]; dev_dbg(dev, "vdev rsc: vring%d: da 0x%x, qsz %d, align %d\n", i, vring->da, vring->num, vring->align); /* verify queue size and vring alignment are sane */ if (!vring->num || !vring->align) { dev_err(dev, "invalid qsz (%d) or alignment (%d)\n", vring->num, vring->align); return -EINVAL; } rvring->len = vring->num; rvring->align = vring->align; rvring->rvdev = rvdev; return 0; } void rproc_free_vring(struct rproc_vring *rvring) { int size = PAGE_ALIGN(vring_size(rvring->len, rvring->align)); struct rproc *rproc = rvring->rvdev->rproc; int idx = rvring->rvdev->vring - rvring; struct fw_rsc_vdev *rsc; dma_free_coherent(rproc->dev.parent, size, rvring->va, rvring->dma); idr_remove(&rproc->notifyids, rvring->notifyid); /* reset resource entry info */ rsc = (void *)rproc->table_ptr + rvring->rvdev->rsc_offset; rsc->vring[idx].da = 0; rsc->vring[idx].notifyid = -1; } static int rproc_vdev_do_probe(struct rproc_subdev *subdev) { struct rproc_vdev *rvdev = container_of(subdev, struct rproc_vdev, subdev); return rproc_add_virtio_dev(rvdev, rvdev->id); } static void rproc_vdev_do_remove(struct rproc_subdev *subdev) { struct rproc_vdev *rvdev = container_of(subdev, struct rproc_vdev, subdev); rproc_remove_virtio_dev(rvdev); } /** * rproc_handle_vdev() - handle a vdev fw resource * @rproc: the remote processor * @rsc: the vring resource descriptor * @avail: size of available data (for sanity checking the image) * * This resource entry requests the host to statically register a virtio * device (vdev), and setup everything needed to support it. It contains * everything needed to make it possible: the virtio device id, virtio * device features, vrings information, virtio config space, etc... * * Before registering the vdev, the vrings are allocated from non-cacheable * physically contiguous memory. Currently we only support two vrings per * remote processor (temporary limitation). We might also want to consider * doing the vring allocation only later when ->find_vqs() is invoked, and * then release them upon ->del_vqs(). * * Note: @da is currently not really handled correctly: we dynamically * allocate it using the DMA API, ignoring requested hard coded addresses, * and we don't take care of any required IOMMU programming. This is all * going to be taken care of when the generic iommu-based DMA API will be * merged. Meanwhile, statically-addressed iommu-based firmware images should * use RSC_DEVMEM resource entries to map their required @da to the physical * address of their base CMA region (ouch, hacky!). * * Returns 0 on success, or an appropriate error code otherwise */ static int rproc_handle_vdev(struct rproc *rproc, struct fw_rsc_vdev *rsc, int offset, int avail) { struct device *dev = &rproc->dev; struct rproc_vdev *rvdev; int i, ret; /* make sure resource isn't truncated */ if (sizeof(*rsc) + rsc->num_of_vrings * sizeof(struct fw_rsc_vdev_vring) + rsc->config_len > avail) { dev_err(dev, "vdev rsc is truncated\n"); return -EINVAL; } /* make sure reserved bytes are zeroes */ if (rsc->reserved[0] || rsc->reserved[1]) { dev_err(dev, "vdev rsc has non zero reserved bytes\n"); return -EINVAL; } dev_dbg(dev, "vdev rsc: id %d, dfeatures 0x%x, cfg len %d, %d vrings\n", rsc->id, rsc->dfeatures, rsc->config_len, rsc->num_of_vrings); /* we currently support only two vrings per rvdev */ if (rsc->num_of_vrings > ARRAY_SIZE(rvdev->vring)) { dev_err(dev, "too many vrings: %d\n", rsc->num_of_vrings); return -EINVAL; } rvdev = kzalloc(sizeof(*rvdev), GFP_KERNEL); if (!rvdev) return -ENOMEM; kref_init(&rvdev->refcount); rvdev->id = rsc->id; rvdev->rproc = rproc; /* parse the vrings */ for (i = 0; i < rsc->num_of_vrings; i++) { ret = rproc_parse_vring(rvdev, rsc, i); if (ret) goto free_rvdev; } /* remember the resource offset*/ rvdev->rsc_offset = offset; /* allocate the vring resources */ for (i = 0; i < rsc->num_of_vrings; i++) { ret = rproc_alloc_vring(rvdev, i); if (ret) goto unwind_vring_allocations; } list_add_tail(&rvdev->node, &rproc->rvdevs); rproc_add_subdev(rproc, &rvdev->subdev, rproc_vdev_do_probe, rproc_vdev_do_remove); return 0; unwind_vring_allocations: for (i--; i >= 0; i--) rproc_free_vring(&rvdev->vring[i]); free_rvdev: kfree(rvdev); return ret; } void rproc_vdev_release(struct kref *ref) { struct rproc_vdev *rvdev = container_of(ref, struct rproc_vdev, refcount); struct rproc_vring *rvring; struct rproc *rproc = rvdev->rproc; int id; for (id = 0; id < ARRAY_SIZE(rvdev->vring); id++) { rvring = &rvdev->vring[id]; if (!rvring->va) continue; rproc_free_vring(rvring); } rproc_remove_subdev(rproc, &rvdev->subdev); list_del(&rvdev->node); kfree(rvdev); } /** * rproc_handle_trace() - handle a shared trace buffer resource * @rproc: the remote processor * @rsc: the trace resource descriptor * @avail: size of available data (for sanity checking the image) * * In case the remote processor dumps trace logs into memory, * export it via debugfs. * * Currently, the 'da' member of @rsc should contain the device address * where the remote processor is dumping the traces. Later we could also * support dynamically allocating this address using the generic * DMA API (but currently there isn't a use case for that). * * Returns 0 on success, or an appropriate error code otherwise */ static int rproc_handle_trace(struct rproc *rproc, struct fw_rsc_trace *rsc, int offset, int avail) { struct rproc_mem_entry *trace; struct device *dev = &rproc->dev; void *ptr; char name[15]; if (sizeof(*rsc) > avail) { dev_err(dev, "trace rsc is truncated\n"); return -EINVAL; } /* make sure reserved bytes are zeroes */ if (rsc->reserved) { dev_err(dev, "trace rsc has non zero reserved bytes\n"); return -EINVAL; } /* what's the kernel address of this resource ? */ ptr = rproc_da_to_va(rproc, rsc->da, rsc->len); if (!ptr) { dev_err(dev, "erroneous trace resource entry\n"); return -EINVAL; } trace = kzalloc(sizeof(*trace), GFP_KERNEL); if (!trace) return -ENOMEM; /* set the trace buffer dma properties */ trace->len = rsc->len; trace->va = ptr; /* make sure snprintf always null terminates, even if truncating */ snprintf(name, sizeof(name), "trace%d", rproc->num_traces); /* create the debugfs entry */ trace->priv = rproc_create_trace_file(name, rproc, trace); if (!trace->priv) { trace->va = NULL; kfree(trace); return -EINVAL; } list_add_tail(&trace->node, &rproc->traces); rproc->num_traces++; dev_dbg(dev, "%s added: va %p, da 0x%x, len 0x%x\n", name, ptr, rsc->da, rsc->len); return 0; } /** * rproc_handle_devmem() - handle devmem resource entry * @rproc: remote processor handle * @rsc: the devmem resource entry * @avail: size of available data (for sanity checking the image) * * Remote processors commonly need to access certain on-chip peripherals. * * Some of these remote processors access memory via an iommu device, * and might require us to configure their iommu before they can access * the on-chip peripherals they need. * * This resource entry is a request to map such a peripheral device. * * These devmem entries will contain the physical address of the device in * the 'pa' member. If a specific device address is expected, then 'da' will * contain it (currently this is the only use case supported). 'len' will * contain the size of the physical region we need to map. * * Currently we just "trust" those devmem entries to contain valid physical * addresses, but this is going to change: we want the implementations to * tell us ranges of physical addresses the firmware is allowed to request, * and not allow firmwares to request access to physical addresses that * are outside those ranges. */ static int rproc_handle_devmem(struct rproc *rproc, struct fw_rsc_devmem *rsc, int offset, int avail) { struct rproc_mem_entry *mapping; struct device *dev = &rproc->dev; int ret; /* no point in handling this resource without a valid iommu domain */ if (!rproc->domain) return -EINVAL; if (sizeof(*rsc) > avail) { dev_err(dev, "devmem rsc is truncated\n"); return -EINVAL; } /* make sure reserved bytes are zeroes */ if (rsc->reserved) { dev_err(dev, "devmem rsc has non zero reserved bytes\n"); return -EINVAL; } mapping = kzalloc(sizeof(*mapping), GFP_KERNEL); if (!mapping) return -ENOMEM; ret = iommu_map(rproc->domain, rsc->da, rsc->pa, rsc->len, rsc->flags); if (ret) { dev_err(dev, "failed to map devmem: %d\n", ret); goto out; } /* * We'll need this info later when we'll want to unmap everything * (e.g. on shutdown). * * We can't trust the remote processor not to change the resource * table, so we must maintain this info independently. */ mapping->da = rsc->da; mapping->len = rsc->len; list_add_tail(&mapping->node, &rproc->mappings); dev_dbg(dev, "mapped devmem pa 0x%x, da 0x%x, len 0x%x\n", rsc->pa, rsc->da, rsc->len); return 0; out: kfree(mapping); return ret; } /** * rproc_handle_carveout() - handle phys contig memory allocation requests * @rproc: rproc handle * @rsc: the resource entry * @avail: size of available data (for image validation) * * This function will handle firmware requests for allocation of physically * contiguous memory regions. * * These request entries should come first in the firmware's resource table, * as other firmware entries might request placing other data objects inside * these memory regions (e.g. data/code segments, trace resource entries, ...). * * Allocating memory this way helps utilizing the reserved physical memory * (e.g. CMA) more efficiently, and also minimizes the number of TLB entries * needed to map it (in case @rproc is using an IOMMU). Reducing the TLB * pressure is important; it may have a substantial impact on performance. */ static int rproc_handle_carveout(struct rproc *rproc, struct fw_rsc_carveout *rsc, int offset, int avail) { struct rproc_mem_entry *carveout, *mapping; struct device *dev = &rproc->dev; dma_addr_t dma; void *va; int ret; if (sizeof(*rsc) > avail) { dev_err(dev, "carveout rsc is truncated\n"); return -EINVAL; } /* make sure reserved bytes are zeroes */ if (rsc->reserved) { dev_err(dev, "carveout rsc has non zero reserved bytes\n"); return -EINVAL; } dev_dbg(dev, "carveout rsc: name: %s, da 0x%x, pa 0x%x, len 0x%x, flags 0x%x\n", rsc->name, rsc->da, rsc->pa, rsc->len, rsc->flags); carveout = kzalloc(sizeof(*carveout), GFP_KERNEL); if (!carveout) return -ENOMEM; va = dma_alloc_coherent(dev->parent, rsc->len, &dma, GFP_KERNEL); if (!va) { dev_err(dev->parent, "failed to allocate dma memory: len 0x%x\n", rsc->len); ret = -ENOMEM; goto free_carv; } dev_dbg(dev, "carveout va %p, dma %pad, len 0x%x\n", va, &dma, rsc->len); /* * Ok, this is non-standard. * * Sometimes we can't rely on the generic iommu-based DMA API * to dynamically allocate the device address and then set the IOMMU * tables accordingly, because some remote processors might * _require_ us to use hard coded device addresses that their * firmware was compiled with. * * In this case, we must use the IOMMU API directly and map * the memory to the device address as expected by the remote * processor. * * Obviously such remote processor devices should not be configured * to use the iommu-based DMA API: we expect 'dma' to contain the * physical address in this case. */ if (rproc->domain) { mapping = kzalloc(sizeof(*mapping), GFP_KERNEL); if (!mapping) { ret = -ENOMEM; goto dma_free; } ret = iommu_map(rproc->domain, rsc->da, dma, rsc->len, rsc->flags); if (ret) { dev_err(dev, "iommu_map failed: %d\n", ret); goto free_mapping; } /* * We'll need this info later when we'll want to unmap * everything (e.g. on shutdown). * * We can't trust the remote processor not to change the * resource table, so we must maintain this info independently. */ mapping->da = rsc->da; mapping->len = rsc->len; list_add_tail(&mapping->node, &rproc->mappings); dev_dbg(dev, "carveout mapped 0x%x to %pad\n", rsc->da, &dma); } /* * Some remote processors might need to know the pa * even though they are behind an IOMMU. E.g., OMAP4's * remote M3 processor needs this so it can control * on-chip hardware accelerators that are not behind * the IOMMU, and therefor must know the pa. * * Generally we don't want to expose physical addresses * if we don't have to (remote processors are generally * _not_ trusted), so we might want to do this only for * remote processor that _must_ have this (e.g. OMAP4's * dual M3 subsystem). * * Non-IOMMU processors might also want to have this info. * In this case, the device address and the physical address * are the same. */ rsc->pa = dma; carveout->va = va; carveout->len = rsc->len; carveout->dma = dma; carveout->da = rsc->da; list_add_tail(&carveout->node, &rproc->carveouts); return 0; free_mapping: kfree(mapping); dma_free: dma_free_coherent(dev->parent, rsc->len, va, dma); free_carv: kfree(carveout); return ret; } /* * A lookup table for resource handlers. The indices are defined in * enum fw_resource_type. */ static rproc_handle_resource_t rproc_loading_handlers[RSC_LAST] = { [RSC_CARVEOUT] = (rproc_handle_resource_t)rproc_handle_carveout, [RSC_DEVMEM] = (rproc_handle_resource_t)rproc_handle_devmem, [RSC_TRACE] = (rproc_handle_resource_t)rproc_handle_trace, [RSC_VDEV] = (rproc_handle_resource_t)rproc_handle_vdev, }; /* handle firmware resource entries before booting the remote processor */ static int rproc_handle_resources(struct rproc *rproc, int len, rproc_handle_resource_t handlers[RSC_LAST]) { struct device *dev = &rproc->dev; rproc_handle_resource_t handler; int ret = 0, i; for (i = 0; i < rproc->table_ptr->num; i++) { int offset = rproc->table_ptr->offset[i]; struct fw_rsc_hdr *hdr = (void *)rproc->table_ptr + offset; int avail = len - offset - sizeof(*hdr); void *rsc = (void *)hdr + sizeof(*hdr); /* make sure table isn't truncated */ if (avail < 0) { dev_err(dev, "rsc table is truncated\n"); return -EINVAL; } dev_dbg(dev, "rsc: type %d\n", hdr->type); if (hdr->type >= RSC_LAST) { dev_warn(dev, "unsupported resource %d\n", hdr->type); continue; } handler = handlers[hdr->type]; if (!handler) continue; ret = handler(rproc, rsc, offset + sizeof(*hdr), avail); if (ret) break; } return ret; } static int rproc_probe_subdevices(struct rproc *rproc) { struct rproc_subdev *subdev; int ret; list_for_each_entry(subdev, &rproc->subdevs, node) { ret = subdev->probe(subdev); if (ret) goto unroll_registration; } return 0; unroll_registration: list_for_each_entry_continue_reverse(subdev, &rproc->subdevs, node) subdev->remove(subdev); return ret; } static void rproc_remove_subdevices(struct rproc *rproc) { struct rproc_subdev *subdev; list_for_each_entry(subdev, &rproc->subdevs, node) subdev->remove(subdev); } /** * rproc_resource_cleanup() - clean up and free all acquired resources * @rproc: rproc handle * * This function will free all resources acquired for @rproc, and it * is called whenever @rproc either shuts down or fails to boot. */ static void rproc_resource_cleanup(struct rproc *rproc) { struct rproc_mem_entry *entry, *tmp; struct rproc_vdev *rvdev, *rvtmp; struct device *dev = &rproc->dev; /* clean up debugfs trace entries */ list_for_each_entry_safe(entry, tmp, &rproc->traces, node) { rproc_remove_trace_file(entry->priv); rproc->num_traces--; list_del(&entry->node); kfree(entry); } /* clean up iommu mapping entries */ list_for_each_entry_safe(entry, tmp, &rproc->mappings, node) { size_t unmapped; unmapped = iommu_unmap(rproc->domain, entry->da, entry->len); if (unmapped != entry->len) { /* nothing much to do besides complaining */ dev_err(dev, "failed to unmap %u/%zu\n", entry->len, unmapped); } list_del(&entry->node); kfree(entry); } /* clean up carveout allocations */ list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) { dma_free_coherent(dev->parent, entry->len, entry->va, entry->dma); list_del(&entry->node); kfree(entry); } /* clean up remote vdev entries */ list_for_each_entry_safe(rvdev, rvtmp, &rproc->rvdevs, node) kref_put(&rvdev->refcount, rproc_vdev_release); } /* * take a firmware and boot a remote processor with it. */ static int rproc_fw_boot(struct rproc *rproc, const struct firmware *fw) { struct device *dev = &rproc->dev; const char *name = rproc->firmware; struct resource_table *table, *loaded_table; int ret, tablesz; ret = rproc_fw_sanity_check(rproc, fw); if (ret) return ret; dev_info(dev, "Booting fw image %s, size %zd\n", name, fw->size); /* * if enabling an IOMMU isn't relevant for this rproc, this is * just a nop */ ret = rproc_enable_iommu(rproc); if (ret) { dev_err(dev, "can't enable iommu: %d\n", ret); return ret; } rproc->bootaddr = rproc_get_boot_addr(rproc, fw); ret = -EINVAL; /* look for the resource table */ table = rproc_find_rsc_table(rproc, fw, &tablesz); if (!table) { dev_err(dev, "Failed to find resource table\n"); goto clean_up; } /* * Create a copy of the resource table. When a virtio device starts * and calls vring_new_virtqueue() the address of the allocated vring * will be stored in the table_ptr. Before the device is started, * table_ptr will be copied into device memory. */ rproc->table_ptr = kmemdup(table, tablesz, GFP_KERNEL); if (!rproc->table_ptr) goto clean_up; /* reset max_notifyid */ rproc->max_notifyid = -1; /* handle fw resources which are required to boot rproc */ ret = rproc_handle_resources(rproc, tablesz, rproc_loading_handlers); if (ret) { dev_err(dev, "Failed to process resources: %d\n", ret); goto clean_up_resources; } /* load the ELF segments to memory */ ret = rproc_load_segments(rproc, fw); if (ret) { dev_err(dev, "Failed to load program segments: %d\n", ret); goto clean_up_resources; } /* * The starting device has been given the rproc->table_ptr as the * resource table. The address of the vring along with the other * allocated resources (carveouts etc) is stored in table_ptr. * In order to pass this information to the remote device we must copy * this information to device memory. We also update the table_ptr so * that any subsequent changes will be applied to the loaded version. */ loaded_table = rproc_find_loaded_rsc_table(rproc, fw); if (loaded_table) memcpy(loaded_table, rproc->table_ptr, tablesz); /* power up the remote processor */ ret = rproc->ops->start(rproc); if (ret) { dev_err(dev, "can't start rproc %s: %d\n", rproc->name, ret); goto clean_up_resources; } /* probe any subdevices for the remote processor */ ret = rproc_probe_subdevices(rproc); if (ret) { dev_err(dev, "failed to probe subdevices for %s: %d\n", rproc->name, ret); goto stop_rproc; } rproc->state = RPROC_RUNNING; dev_info(dev, "remote processor %s is now up\n", rproc->name); return 0; stop_rproc: rproc->ops->stop(rproc); clean_up_resources: rproc_resource_cleanup(rproc); clean_up: kfree(rproc->table_ptr); rproc->table_ptr = NULL; rproc_disable_iommu(rproc); return ret; } /* * take a firmware and look for virtio devices to register. * * Note: this function is called asynchronously upon registration of the * remote processor (so we must wait until it completes before we try * to unregister the device. one other option is just to use kref here, * that might be cleaner). */ static void rproc_fw_config_virtio(const struct firmware *fw, void *context) { struct rproc *rproc = context; /* if rproc is marked always-on, request it to boot */ if (rproc->auto_boot) rproc_boot(rproc); release_firmware(fw); /* allow rproc_del() contexts, if any, to proceed */ complete_all(&rproc->firmware_loading_complete); } static int rproc_add_virtio_devices(struct rproc *rproc) { int ret; /* rproc_del() calls must wait until async loader completes */ init_completion(&rproc->firmware_loading_complete); /* * We must retrieve early virtio configuration info from * the firmware (e.g. whether to register a virtio device, * what virtio features does it support, ...). * * We're initiating an asynchronous firmware loading, so we can * be built-in kernel code, without hanging the boot process. */ ret = request_firmware_nowait(THIS_MODULE, FW_ACTION_HOTPLUG, rproc->firmware, &rproc->dev, GFP_KERNEL, rproc, rproc_fw_config_virtio); if (ret < 0) { dev_err(&rproc->dev, "request_firmware_nowait err: %d\n", ret); complete_all(&rproc->firmware_loading_complete); } return ret; } /** * rproc_trigger_recovery() - recover a remoteproc * @rproc: the remote processor * * The recovery is done by resetting all the virtio devices, that way all the * rpmsg drivers will be reseted along with the remote processor making the * remoteproc functional again. * * This function can sleep, so it cannot be called from atomic context. */ int rproc_trigger_recovery(struct rproc *rproc) { dev_err(&rproc->dev, "recovering %s\n", rproc->name); init_completion(&rproc->crash_comp); /* shut down the remote */ /* TODO: make sure this works with rproc->power > 1 */ rproc_shutdown(rproc); /* wait until there is no more rproc users */ wait_for_completion(&rproc->crash_comp); /* * boot the remote processor up again */ rproc_boot(rproc); return 0; } /** * rproc_crash_handler_work() - handle a crash * * This function needs to handle everything related to a crash, like cpu * registers and stack dump, information to help to debug the fatal error, etc. */ static void rproc_crash_handler_work(struct work_struct *work) { struct rproc *rproc = container_of(work, struct rproc, crash_handler); struct device *dev = &rproc->dev; dev_dbg(dev, "enter %s\n", __func__); mutex_lock(&rproc->lock); if (rproc->state == RPROC_CRASHED || rproc->state == RPROC_OFFLINE) { /* handle only the first crash detected */ mutex_unlock(&rproc->lock); return; } rproc->state = RPROC_CRASHED; dev_err(dev, "handling crash #%u in %s\n", ++rproc->crash_cnt, rproc->name); mutex_unlock(&rproc->lock); if (!rproc->recovery_disabled) rproc_trigger_recovery(rproc); } /** * __rproc_boot() - boot a remote processor * @rproc: handle of a remote processor * * Boot a remote processor (i.e. load its firmware, power it on, ...). * * If the remote processor is already powered on, this function immediately * returns (successfully). * * Returns 0 on success, and an appropriate error value otherwise. */ static int __rproc_boot(struct rproc *rproc) { const struct firmware *firmware_p; struct device *dev; int ret; if (!rproc) { pr_err("invalid rproc handle\n"); return -EINVAL; } dev = &rproc->dev; ret = mutex_lock_interruptible(&rproc->lock); if (ret) { dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret); return ret; } /* skip the boot process if rproc is already powered up */ if (atomic_inc_return(&rproc->power) > 1) { ret = 0; goto unlock_mutex; } dev_info(dev, "powering up %s\n", rproc->name); /* load firmware */ ret = request_firmware(&firmware_p, rproc->firmware, dev); if (ret < 0) { dev_err(dev, "request_firmware failed: %d\n", ret); goto downref_rproc; } ret = rproc_fw_boot(rproc, firmware_p); release_firmware(firmware_p); downref_rproc: if (ret) atomic_dec(&rproc->power); unlock_mutex: mutex_unlock(&rproc->lock); return ret; } /** * rproc_boot() - boot a remote processor * @rproc: handle of a remote processor */ int rproc_boot(struct rproc *rproc) { return __rproc_boot(rproc); } EXPORT_SYMBOL(rproc_boot); /** * rproc_shutdown() - power off the remote processor * @rproc: the remote processor * * Power off a remote processor (previously booted with rproc_boot()). * * In case @rproc is still being used by an additional user(s), then * this function will just decrement the power refcount and exit, * without really powering off the device. * * Every call to rproc_boot() must (eventually) be accompanied by a call * to rproc_shutdown(). Calling rproc_shutdown() redundantly is a bug. * * Notes: * - we're not decrementing the rproc's refcount, only the power refcount. * which means that the @rproc handle stays valid even after rproc_shutdown() * returns, and users can still use it with a subsequent rproc_boot(), if * needed. */ void rproc_shutdown(struct rproc *rproc) { struct device *dev = &rproc->dev; int ret; ret = mutex_lock_interruptible(&rproc->lock); if (ret) { dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret); return; } /* if the remote proc is still needed, bail out */ if (!atomic_dec_and_test(&rproc->power)) goto out; /* remove any subdevices for the remote processor */ rproc_remove_subdevices(rproc); /* power off the remote processor */ ret = rproc->ops->stop(rproc); if (ret) { atomic_inc(&rproc->power); dev_err(dev, "can't stop rproc: %d\n", ret); goto out; } /* clean up all acquired resources */ rproc_resource_cleanup(rproc); rproc_disable_iommu(rproc); /* Free the copy of the resource table */ kfree(rproc->table_ptr); rproc->table_ptr = NULL; /* if in crash state, unlock crash handler */ if (rproc->state == RPROC_CRASHED) complete_all(&rproc->crash_comp); rproc->state = RPROC_OFFLINE; dev_info(dev, "stopped remote processor %s\n", rproc->name); out: mutex_unlock(&rproc->lock); } EXPORT_SYMBOL(rproc_shutdown); /** * rproc_get_by_phandle() - find a remote processor by phandle * @phandle: phandle to the rproc * * Finds an rproc handle using the remote processor's phandle, and then * return a handle to the rproc. * * This function increments the remote processor's refcount, so always * use rproc_put() to decrement it back once rproc isn't needed anymore. * * Returns the rproc handle on success, and NULL on failure. */ #ifdef CONFIG_OF struct rproc *rproc_get_by_phandle(phandle phandle) { struct rproc *rproc = NULL, *r; struct device_node *np; np = of_find_node_by_phandle(phandle); if (!np) return NULL; mutex_lock(&rproc_list_mutex); list_for_each_entry(r, &rproc_list, node) { if (r->dev.parent && r->dev.parent->of_node == np) { /* prevent underlying implementation from being removed */ if (!try_module_get(r->dev.parent->driver->owner)) { dev_err(&r->dev, "can't get owner\n"); break; } rproc = r; get_device(&rproc->dev); break; } } mutex_unlock(&rproc_list_mutex); of_node_put(np); return rproc; } #else struct rproc *rproc_get_by_phandle(phandle phandle) { return NULL; } #endif EXPORT_SYMBOL(rproc_get_by_phandle); /** * rproc_add() - register a remote processor * @rproc: the remote processor handle to register * * Registers @rproc with the remoteproc framework, after it has been * allocated with rproc_alloc(). * * This is called by the platform-specific rproc implementation, whenever * a new remote processor device is probed. * * Returns 0 on success and an appropriate error code otherwise. * * Note: this function initiates an asynchronous firmware loading * context, which will look for virtio devices supported by the rproc's * firmware. * * If found, those virtio devices will be created and added, so as a result * of registering this remote processor, additional virtio drivers might be * probed. */ int rproc_add(struct rproc *rproc) { struct device *dev = &rproc->dev; int ret; ret = device_add(dev); if (ret < 0) return ret; dev_info(dev, "%s is available\n", rproc->name); /* create debugfs entries */ rproc_create_debug_dir(rproc); ret = rproc_add_virtio_devices(rproc); if (ret < 0) return ret; /* expose to rproc_get_by_phandle users */ mutex_lock(&rproc_list_mutex); list_add(&rproc->node, &rproc_list); mutex_unlock(&rproc_list_mutex); return 0; } EXPORT_SYMBOL(rproc_add); /** * rproc_type_release() - release a remote processor instance * @dev: the rproc's device * * This function should _never_ be called directly. * * It will be called by the driver core when no one holds a valid pointer * to @dev anymore. */ static void rproc_type_release(struct device *dev) { struct rproc *rproc = container_of(dev, struct rproc, dev); dev_info(&rproc->dev, "releasing %s\n", rproc->name); rproc_delete_debug_dir(rproc); idr_destroy(&rproc->notifyids); if (rproc->index >= 0) ida_simple_remove(&rproc_dev_index, rproc->index); kfree(rproc->firmware); kfree(rproc); } static struct device_type rproc_type = { .name = "remoteproc", .release = rproc_type_release, }; /** * rproc_alloc() - allocate a remote processor handle * @dev: the underlying device * @name: name of this remote processor * @ops: platform-specific handlers (mainly start/stop) * @firmware: name of firmware file to load, can be NULL * @len: length of private data needed by the rproc driver (in bytes) * * Allocates a new remote processor handle, but does not register * it yet. if @firmware is NULL, a default name is used. * * This function should be used by rproc implementations during initialization * of the remote processor. * * After creating an rproc handle using this function, and when ready, * implementations should then call rproc_add() to complete * the registration of the remote processor. * * On success the new rproc is returned, and on failure, NULL. * * Note: _never_ directly deallocate @rproc, even if it was not registered * yet. Instead, when you need to unroll rproc_alloc(), use rproc_free(). */ struct rproc *rproc_alloc(struct device *dev, const char *name, const struct rproc_ops *ops, const char *firmware, int len) { struct rproc *rproc; char *p, *template = "rproc-%s-fw"; int name_len; if (!dev || !name || !ops) return NULL; if (!firmware) { /* * If the caller didn't pass in a firmware name then * construct a default name. */ name_len = strlen(name) + strlen(template) - 2 + 1; p = kmalloc(name_len, GFP_KERNEL); if (!p) return NULL; snprintf(p, name_len, template, name); } else { p = kstrdup(firmware, GFP_KERNEL); if (!p) return NULL; } rproc = kzalloc(sizeof(struct rproc) + len, GFP_KERNEL); if (!rproc) { kfree(p); return NULL; } rproc->firmware = p; rproc->name = name; rproc->ops = ops; rproc->priv = &rproc[1]; rproc->auto_boot = true; device_initialize(&rproc->dev); rproc->dev.parent = dev; rproc->dev.type = &rproc_type; rproc->dev.class = &rproc_class; /* Assign a unique device index and name */ rproc->index = ida_simple_get(&rproc_dev_index, 0, 0, GFP_KERNEL); if (rproc->index < 0) { dev_err(dev, "ida_simple_get failed: %d\n", rproc->index); put_device(&rproc->dev); return NULL; } dev_set_name(&rproc->dev, "remoteproc%d", rproc->index); atomic_set(&rproc->power, 0); /* Set ELF as the default fw_ops handler */ rproc->fw_ops = &rproc_elf_fw_ops; mutex_init(&rproc->lock); idr_init(&rproc->notifyids); INIT_LIST_HEAD(&rproc->carveouts); INIT_LIST_HEAD(&rproc->mappings); INIT_LIST_HEAD(&rproc->traces); INIT_LIST_HEAD(&rproc->rvdevs); INIT_LIST_HEAD(&rproc->subdevs); INIT_WORK(&rproc->crash_handler, rproc_crash_handler_work); init_completion(&rproc->crash_comp); rproc->state = RPROC_OFFLINE; return rproc; } EXPORT_SYMBOL(rproc_alloc); /** * rproc_free() - unroll rproc_alloc() * @rproc: the remote processor handle * * This function decrements the rproc dev refcount. * * If no one holds any reference to rproc anymore, then its refcount would * now drop to zero, and it would be freed. */ void rproc_free(struct rproc *rproc) { put_device(&rproc->dev); } EXPORT_SYMBOL(rproc_free); /** * rproc_put() - release rproc reference * @rproc: the remote processor handle * * This function decrements the rproc dev refcount. * * If no one holds any reference to rproc anymore, then its refcount would * now drop to zero, and it would be freed. */ void rproc_put(struct rproc *rproc) { module_put(rproc->dev.parent->driver->owner); put_device(&rproc->dev); } EXPORT_SYMBOL(rproc_put); /** * rproc_del() - unregister a remote processor * @rproc: rproc handle to unregister * * This function should be called when the platform specific rproc * implementation decides to remove the rproc device. it should * _only_ be called if a previous invocation of rproc_add() * has completed successfully. * * After rproc_del() returns, @rproc isn't freed yet, because * of the outstanding reference created by rproc_alloc. To decrement that * one last refcount, one still needs to call rproc_free(). * * Returns 0 on success and -EINVAL if @rproc isn't valid. */ int rproc_del(struct rproc *rproc) { if (!rproc) return -EINVAL; /* if rproc is just being registered, wait */ wait_for_completion(&rproc->firmware_loading_complete); /* if rproc is marked always-on, rproc_add() booted it */ /* TODO: make sure this works with rproc->power > 1 */ if (rproc->auto_boot) rproc_shutdown(rproc); /* the rproc is downref'ed as soon as it's removed from the klist */ mutex_lock(&rproc_list_mutex); list_del(&rproc->node); mutex_unlock(&rproc_list_mutex); device_del(&rproc->dev); return 0; } EXPORT_SYMBOL(rproc_del); /** * rproc_add_subdev() - add a subdevice to a remoteproc * @rproc: rproc handle to add the subdevice to * @subdev: subdev handle to register * @probe: function to call when the rproc boots * @remove: function to call when the rproc shuts down */ void rproc_add_subdev(struct rproc *rproc, struct rproc_subdev *subdev, int (*probe)(struct rproc_subdev *subdev), void (*remove)(struct rproc_subdev *subdev)) { subdev->probe = probe; subdev->remove = remove; list_add_tail(&subdev->node, &rproc->subdevs); } EXPORT_SYMBOL(rproc_add_subdev); /** * rproc_remove_subdev() - remove a subdevice from a remoteproc * @rproc: rproc handle to remove the subdevice from * @subdev: subdev handle, previously registered with rproc_add_subdev() */ void rproc_remove_subdev(struct rproc *rproc, struct rproc_subdev *subdev) { list_del(&subdev->node); } EXPORT_SYMBOL(rproc_remove_subdev); /** * rproc_report_crash() - rproc crash reporter function * @rproc: remote processor * @type: crash type * * This function must be called every time a crash is detected by the low-level * drivers implementing a specific remoteproc. This should not be called from a * non-remoteproc driver. * * This function can be called from atomic/interrupt context. */ void rproc_report_crash(struct rproc *rproc, enum rproc_crash_type type) { if (!rproc) { pr_err("NULL rproc pointer\n"); return; } dev_err(&rproc->dev, "crash detected in %s: type %s\n", rproc->name, rproc_crash_to_string(type)); /* create a new task to handle the error */ schedule_work(&rproc->crash_handler); } EXPORT_SYMBOL(rproc_report_crash); static int __init remoteproc_init(void) { rproc_init_sysfs(); rproc_init_debugfs(); return 0; } module_init(remoteproc_init); static void __exit remoteproc_exit(void) { ida_destroy(&rproc_dev_index); rproc_exit_debugfs(); rproc_exit_sysfs(); } module_exit(remoteproc_exit); MODULE_LICENSE("GPL v2"); MODULE_DESCRIPTION("Generic Remote Processor Framework");