// SPDX-License-Identifier: GPL-2.0-only /****************************************************************************** * * Copyright(c) 2008 - 2014 Intel Corporation. All rights reserved. * Copyright (C) 2019 Intel Corporation * * Contact Information: * Intel Linux Wireless * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 * *****************************************************************************/ /* * DVM device-specific data & functions */ #include "iwl-io.h" #include "iwl-prph.h" #include "iwl-eeprom-parse.h" #include "agn.h" #include "dev.h" #include "commands.h" /* * 1000 series * =========== */ /* * For 1000, use advance thermal throttling critical temperature threshold, * but legacy thermal management implementation for now. * This is for the reason of 1000 uCode using advance thermal throttling API * but not implement ct_kill_exit based on ct_kill exit temperature * so the thermal throttling will still based on legacy thermal throttling * management. * The code here need to be modified once 1000 uCode has the advanced thermal * throttling algorithm in place */ static void iwl1000_set_ct_threshold(struct iwl_priv *priv) { /* want Celsius */ priv->hw_params.ct_kill_threshold = CT_KILL_THRESHOLD_LEGACY; priv->hw_params.ct_kill_exit_threshold = CT_KILL_EXIT_THRESHOLD; } /* NIC configuration for 1000 series */ static void iwl1000_nic_config(struct iwl_priv *priv) { /* Setting digital SVR for 1000 card to 1.32V */ /* locking is acquired in iwl_set_bits_mask_prph() function */ iwl_set_bits_mask_prph(priv->trans, APMG_DIGITAL_SVR_REG, APMG_SVR_DIGITAL_VOLTAGE_1_32, ~APMG_SVR_VOLTAGE_CONFIG_BIT_MSK); } /** * iwl_beacon_time_mask_low - mask of lower 32 bit of beacon time * @priv -- pointer to iwl_priv data structure * @tsf_bits -- number of bits need to shift for masking) */ static inline u32 iwl_beacon_time_mask_low(struct iwl_priv *priv, u16 tsf_bits) { return (1 << tsf_bits) - 1; } /** * iwl_beacon_time_mask_high - mask of higher 32 bit of beacon time * @priv -- pointer to iwl_priv data structure * @tsf_bits -- number of bits need to shift for masking) */ static inline u32 iwl_beacon_time_mask_high(struct iwl_priv *priv, u16 tsf_bits) { return ((1 << (32 - tsf_bits)) - 1) << tsf_bits; } /* * extended beacon time format * time in usec will be changed into a 32-bit value in extended:internal format * the extended part is the beacon counts * the internal part is the time in usec within one beacon interval */ static u32 iwl_usecs_to_beacons(struct iwl_priv *priv, u32 usec, u32 beacon_interval) { u32 quot; u32 rem; u32 interval = beacon_interval * TIME_UNIT; if (!interval || !usec) return 0; quot = (usec / interval) & (iwl_beacon_time_mask_high(priv, IWLAGN_EXT_BEACON_TIME_POS) >> IWLAGN_EXT_BEACON_TIME_POS); rem = (usec % interval) & iwl_beacon_time_mask_low(priv, IWLAGN_EXT_BEACON_TIME_POS); return (quot << IWLAGN_EXT_BEACON_TIME_POS) + rem; } /* base is usually what we get from ucode with each received frame, * the same as HW timer counter counting down */ static __le32 iwl_add_beacon_time(struct iwl_priv *priv, u32 base, u32 addon, u32 beacon_interval) { u32 base_low = base & iwl_beacon_time_mask_low(priv, IWLAGN_EXT_BEACON_TIME_POS); u32 addon_low = addon & iwl_beacon_time_mask_low(priv, IWLAGN_EXT_BEACON_TIME_POS); u32 interval = beacon_interval * TIME_UNIT; u32 res = (base & iwl_beacon_time_mask_high(priv, IWLAGN_EXT_BEACON_TIME_POS)) + (addon & iwl_beacon_time_mask_high(priv, IWLAGN_EXT_BEACON_TIME_POS)); if (base_low > addon_low) res += base_low - addon_low; else if (base_low < addon_low) { res += interval + base_low - addon_low; res += (1 << IWLAGN_EXT_BEACON_TIME_POS); } else res += (1 << IWLAGN_EXT_BEACON_TIME_POS); return cpu_to_le32(res); } static const struct iwl_sensitivity_ranges iwl1000_sensitivity = { .min_nrg_cck = 95, .auto_corr_min_ofdm = 90, .auto_corr_min_ofdm_mrc = 170, .auto_corr_min_ofdm_x1 = 120, .auto_corr_min_ofdm_mrc_x1 = 240, .auto_corr_max_ofdm = 120, .auto_corr_max_ofdm_mrc = 210, .auto_corr_max_ofdm_x1 = 155, .auto_corr_max_ofdm_mrc_x1 = 290, .auto_corr_min_cck = 125, .auto_corr_max_cck = 200, .auto_corr_min_cck_mrc = 170, .auto_corr_max_cck_mrc = 400, .nrg_th_cck = 95, .nrg_th_ofdm = 95, .barker_corr_th_min = 190, .barker_corr_th_min_mrc = 390, .nrg_th_cca = 62, }; static void iwl1000_hw_set_hw_params(struct iwl_priv *priv) { iwl1000_set_ct_threshold(priv); /* Set initial sensitivity parameters */ priv->hw_params.sens = &iwl1000_sensitivity; } const struct iwl_dvm_cfg iwl_dvm_1000_cfg = { .set_hw_params = iwl1000_hw_set_hw_params, .nic_config = iwl1000_nic_config, .temperature = iwlagn_temperature, .support_ct_kill_exit = true, .plcp_delta_threshold = IWL_MAX_PLCP_ERR_EXT_LONG_THRESHOLD_DEF, .chain_noise_scale = 1000, }; /* * 2000 series * =========== */ static void iwl2000_set_ct_threshold(struct iwl_priv *priv) { /* want Celsius */ priv->hw_params.ct_kill_threshold = CT_KILL_THRESHOLD; priv->hw_params.ct_kill_exit_threshold = CT_KILL_EXIT_THRESHOLD; } /* NIC configuration for 2000 series */ static void iwl2000_nic_config(struct iwl_priv *priv) { iwl_set_bit(priv->trans, CSR_GP_DRIVER_REG, CSR_GP_DRIVER_REG_BIT_RADIO_IQ_INVER); } static const struct iwl_sensitivity_ranges iwl2000_sensitivity = { .min_nrg_cck = 97, .auto_corr_min_ofdm = 80, .auto_corr_min_ofdm_mrc = 128, .auto_corr_min_ofdm_x1 = 105, .auto_corr_min_ofdm_mrc_x1 = 192, .auto_corr_max_ofdm = 145, .auto_corr_max_ofdm_mrc = 232, .auto_corr_max_ofdm_x1 = 110, .auto_corr_max_ofdm_mrc_x1 = 232, .auto_corr_min_cck = 125, .auto_corr_max_cck = 175, .auto_corr_min_cck_mrc = 160, .auto_corr_max_cck_mrc = 310, .nrg_th_cck = 97, .nrg_th_ofdm = 100, .barker_corr_th_min = 190, .barker_corr_th_min_mrc = 390, .nrg_th_cca = 62, }; static void iwl2000_hw_set_hw_params(struct iwl_priv *priv) { iwl2000_set_ct_threshold(priv); /* Set initial sensitivity parameters */ priv->hw_params.sens = &iwl2000_sensitivity; } const struct iwl_dvm_cfg iwl_dvm_2000_cfg = { .set_hw_params = iwl2000_hw_set_hw_params, .nic_config = iwl2000_nic_config, .temperature = iwlagn_temperature, .adv_thermal_throttle = true, .support_ct_kill_exit = true, .plcp_delta_threshold = IWL_MAX_PLCP_ERR_THRESHOLD_DEF, .chain_noise_scale = 1000, .hd_v2 = true, .need_temp_offset_calib = true, .temp_offset_v2 = true, }; const struct iwl_dvm_cfg iwl_dvm_105_cfg = { .set_hw_params = iwl2000_hw_set_hw_params, .nic_config = iwl2000_nic_config, .temperature = iwlagn_temperature, .adv_thermal_throttle = true, .support_ct_kill_exit = true, .plcp_delta_threshold = IWL_MAX_PLCP_ERR_THRESHOLD_DEF, .chain_noise_scale = 1000, .hd_v2 = true, .need_temp_offset_calib = true, .temp_offset_v2 = true, .adv_pm = true, }; static const struct iwl_dvm_bt_params iwl2030_bt_params = { /* Due to bluetooth, we transmit 2.4 GHz probes only on antenna A */ .advanced_bt_coexist = true, .agg_time_limit = BT_AGG_THRESHOLD_DEF, .bt_init_traffic_load = IWL_BT_COEX_TRAFFIC_LOAD_NONE, .bt_prio_boost = IWLAGN_BT_PRIO_BOOST_DEFAULT32, .bt_sco_disable = true, .bt_session_2 = true, }; const struct iwl_dvm_cfg iwl_dvm_2030_cfg = { .set_hw_params = iwl2000_hw_set_hw_params, .nic_config = iwl2000_nic_config, .temperature = iwlagn_temperature, .adv_thermal_throttle = true, .support_ct_kill_exit = true, .plcp_delta_threshold = IWL_MAX_PLCP_ERR_THRESHOLD_DEF, .chain_noise_scale = 1000, .hd_v2 = true, .bt_params = &iwl2030_bt_params, .need_temp_offset_calib = true, .temp_offset_v2 = true, .adv_pm = true, }; /* * 5000 series * =========== */ /* NIC configuration for 5000 series */ static const struct iwl_sensitivity_ranges iwl5000_sensitivity = { .min_nrg_cck = 100, .auto_corr_min_ofdm = 90, .auto_corr_min_ofdm_mrc = 170, .auto_corr_min_ofdm_x1 = 105, .auto_corr_min_ofdm_mrc_x1 = 220, .auto_corr_max_ofdm = 120, .auto_corr_max_ofdm_mrc = 210, .auto_corr_max_ofdm_x1 = 120, .auto_corr_max_ofdm_mrc_x1 = 240, .auto_corr_min_cck = 125, .auto_corr_max_cck = 200, .auto_corr_min_cck_mrc = 200, .auto_corr_max_cck_mrc = 400, .nrg_th_cck = 100, .nrg_th_ofdm = 100, .barker_corr_th_min = 190, .barker_corr_th_min_mrc = 390, .nrg_th_cca = 62, }; static const struct iwl_sensitivity_ranges iwl5150_sensitivity = { .min_nrg_cck = 95, .auto_corr_min_ofdm = 90, .auto_corr_min_ofdm_mrc = 170, .auto_corr_min_ofdm_x1 = 105, .auto_corr_min_ofdm_mrc_x1 = 220, .auto_corr_max_ofdm = 120, .auto_corr_max_ofdm_mrc = 210, /* max = min for performance bug in 5150 DSP */ .auto_corr_max_ofdm_x1 = 105, .auto_corr_max_ofdm_mrc_x1 = 220, .auto_corr_min_cck = 125, .auto_corr_max_cck = 200, .auto_corr_min_cck_mrc = 170, .auto_corr_max_cck_mrc = 400, .nrg_th_cck = 95, .nrg_th_ofdm = 95, .barker_corr_th_min = 190, .barker_corr_th_min_mrc = 390, .nrg_th_cca = 62, }; #define IWL_5150_VOLTAGE_TO_TEMPERATURE_COEFF (-5) static s32 iwl_temp_calib_to_offset(struct iwl_priv *priv) { u16 temperature, voltage; temperature = le16_to_cpu(priv->nvm_data->kelvin_temperature); voltage = le16_to_cpu(priv->nvm_data->kelvin_voltage); /* offset = temp - volt / coeff */ return (s32)(temperature - voltage / IWL_5150_VOLTAGE_TO_TEMPERATURE_COEFF); } static void iwl5150_set_ct_threshold(struct iwl_priv *priv) { const s32 volt2temp_coef = IWL_5150_VOLTAGE_TO_TEMPERATURE_COEFF; s32 threshold = (s32)CELSIUS_TO_KELVIN(CT_KILL_THRESHOLD_LEGACY) - iwl_temp_calib_to_offset(priv); priv->hw_params.ct_kill_threshold = threshold * volt2temp_coef; } static void iwl5000_set_ct_threshold(struct iwl_priv *priv) { /* want Celsius */ priv->hw_params.ct_kill_threshold = CT_KILL_THRESHOLD_LEGACY; } static void iwl5000_hw_set_hw_params(struct iwl_priv *priv) { iwl5000_set_ct_threshold(priv); /* Set initial sensitivity parameters */ priv->hw_params.sens = &iwl5000_sensitivity; } static void iwl5150_hw_set_hw_params(struct iwl_priv *priv) { iwl5150_set_ct_threshold(priv); /* Set initial sensitivity parameters */ priv->hw_params.sens = &iwl5150_sensitivity; } static void iwl5150_temperature(struct iwl_priv *priv) { u32 vt = 0; s32 offset = iwl_temp_calib_to_offset(priv); vt = le32_to_cpu(priv->statistics.common.temperature); vt = vt / IWL_5150_VOLTAGE_TO_TEMPERATURE_COEFF + offset; /* now vt hold the temperature in Kelvin */ priv->temperature = KELVIN_TO_CELSIUS(vt); iwl_tt_handler(priv); } static int iwl5000_hw_channel_switch(struct iwl_priv *priv, struct ieee80211_channel_switch *ch_switch) { /* * MULTI-FIXME * See iwlagn_mac_channel_switch. */ struct iwl_rxon_context *ctx = &priv->contexts[IWL_RXON_CTX_BSS]; struct iwl5000_channel_switch_cmd cmd; u32 switch_time_in_usec, ucode_switch_time; u16 ch; u32 tsf_low; u8 switch_count; u16 beacon_interval = le16_to_cpu(ctx->timing.beacon_interval); struct ieee80211_vif *vif = ctx->vif; struct iwl_host_cmd hcmd = { .id = REPLY_CHANNEL_SWITCH, .len = { sizeof(cmd), }, .data = { &cmd, }, }; cmd.band = priv->band == NL80211_BAND_2GHZ; ch = ch_switch->chandef.chan->hw_value; IWL_DEBUG_11H(priv, "channel switch from %d to %d\n", ctx->active.channel, ch); cmd.channel = cpu_to_le16(ch); cmd.rxon_flags = ctx->staging.flags; cmd.rxon_filter_flags = ctx->staging.filter_flags; switch_count = ch_switch->count; tsf_low = ch_switch->timestamp & 0x0ffffffff; /* * calculate the ucode channel switch time * adding TSF as one of the factor for when to switch */ if ((priv->ucode_beacon_time > tsf_low) && beacon_interval) { if (switch_count > ((priv->ucode_beacon_time - tsf_low) / beacon_interval)) { switch_count -= (priv->ucode_beacon_time - tsf_low) / beacon_interval; } else switch_count = 0; } if (switch_count <= 1) cmd.switch_time = cpu_to_le32(priv->ucode_beacon_time); else { switch_time_in_usec = vif->bss_conf.beacon_int * switch_count * TIME_UNIT; ucode_switch_time = iwl_usecs_to_beacons(priv, switch_time_in_usec, beacon_interval); cmd.switch_time = iwl_add_beacon_time(priv, priv->ucode_beacon_time, ucode_switch_time, beacon_interval); } IWL_DEBUG_11H(priv, "uCode time for the switch is 0x%x\n", cmd.switch_time); cmd.expect_beacon = ch_switch->chandef.chan->flags & IEEE80211_CHAN_RADAR; return iwl_dvm_send_cmd(priv, &hcmd); } const struct iwl_dvm_cfg iwl_dvm_5000_cfg = { .set_hw_params = iwl5000_hw_set_hw_params, .set_channel_switch = iwl5000_hw_channel_switch, .temperature = iwlagn_temperature, .plcp_delta_threshold = IWL_MAX_PLCP_ERR_LONG_THRESHOLD_DEF, .chain_noise_scale = 1000, .no_idle_support = true, }; const struct iwl_dvm_cfg iwl_dvm_5150_cfg = { .set_hw_params = iwl5150_hw_set_hw_params, .set_channel_switch = iwl5000_hw_channel_switch, .temperature = iwl5150_temperature, .plcp_delta_threshold = IWL_MAX_PLCP_ERR_LONG_THRESHOLD_DEF, .chain_noise_scale = 1000, .no_idle_support = true, .no_xtal_calib = true, }; /* * 6000 series * =========== */ static void iwl6000_set_ct_threshold(struct iwl_priv *priv) { /* want Celsius */ priv->hw_params.ct_kill_threshold = CT_KILL_THRESHOLD; priv->hw_params.ct_kill_exit_threshold = CT_KILL_EXIT_THRESHOLD; } /* NIC configuration for 6000 series */ static void iwl6000_nic_config(struct iwl_priv *priv) { switch (priv->cfg->trans.device_family) { case IWL_DEVICE_FAMILY_6005: case IWL_DEVICE_FAMILY_6030: case IWL_DEVICE_FAMILY_6000: break; case IWL_DEVICE_FAMILY_6000i: /* 2x2 IPA phy type */ iwl_write32(priv->trans, CSR_GP_DRIVER_REG, CSR_GP_DRIVER_REG_BIT_RADIO_SKU_2x2_IPA); break; case IWL_DEVICE_FAMILY_6050: /* Indicate calibration version to uCode. */ if (priv->nvm_data->calib_version >= 6) iwl_set_bit(priv->trans, CSR_GP_DRIVER_REG, CSR_GP_DRIVER_REG_BIT_CALIB_VERSION6); break; case IWL_DEVICE_FAMILY_6150: /* Indicate calibration version to uCode. */ if (priv->nvm_data->calib_version >= 6) iwl_set_bit(priv->trans, CSR_GP_DRIVER_REG, CSR_GP_DRIVER_REG_BIT_CALIB_VERSION6); iwl_set_bit(priv->trans, CSR_GP_DRIVER_REG, CSR_GP_DRIVER_REG_BIT_6050_1x2); break; default: WARN_ON(1); } } static const struct iwl_sensitivity_ranges iwl6000_sensitivity = { .min_nrg_cck = 110, .auto_corr_min_ofdm = 80, .auto_corr_min_ofdm_mrc = 128, .auto_corr_min_ofdm_x1 = 105, .auto_corr_min_ofdm_mrc_x1 = 192, .auto_corr_max_ofdm = 145, .auto_corr_max_ofdm_mrc = 232, .auto_corr_max_ofdm_x1 = 110, .auto_corr_max_ofdm_mrc_x1 = 232, .auto_corr_min_cck = 125, .auto_corr_max_cck = 175, .auto_corr_min_cck_mrc = 160, .auto_corr_max_cck_mrc = 310, .nrg_th_cck = 110, .nrg_th_ofdm = 110, .barker_corr_th_min = 190, .barker_corr_th_min_mrc = 336, .nrg_th_cca = 62, }; static void iwl6000_hw_set_hw_params(struct iwl_priv *priv) { iwl6000_set_ct_threshold(priv); /* Set initial sensitivity parameters */ priv->hw_params.sens = &iwl6000_sensitivity; } static int iwl6000_hw_channel_switch(struct iwl_priv *priv, struct ieee80211_channel_switch *ch_switch) { /* * MULTI-FIXME * See iwlagn_mac_channel_switch. */ struct iwl_rxon_context *ctx = &priv->contexts[IWL_RXON_CTX_BSS]; struct iwl6000_channel_switch_cmd *cmd; u32 switch_time_in_usec, ucode_switch_time; u16 ch; u32 tsf_low; u8 switch_count; u16 beacon_interval = le16_to_cpu(ctx->timing.beacon_interval); struct ieee80211_vif *vif = ctx->vif; struct iwl_host_cmd hcmd = { .id = REPLY_CHANNEL_SWITCH, .len = { sizeof(*cmd), }, .dataflags[0] = IWL_HCMD_DFL_NOCOPY, }; int err; cmd = kzalloc(sizeof(*cmd), GFP_KERNEL); if (!cmd) return -ENOMEM; hcmd.data[0] = cmd; cmd->band = priv->band == NL80211_BAND_2GHZ; ch = ch_switch->chandef.chan->hw_value; IWL_DEBUG_11H(priv, "channel switch from %u to %u\n", ctx->active.channel, ch); cmd->channel = cpu_to_le16(ch); cmd->rxon_flags = ctx->staging.flags; cmd->rxon_filter_flags = ctx->staging.filter_flags; switch_count = ch_switch->count; tsf_low = ch_switch->timestamp & 0x0ffffffff; /* * calculate the ucode channel switch time * adding TSF as one of the factor for when to switch */ if ((priv->ucode_beacon_time > tsf_low) && beacon_interval) { if (switch_count > ((priv->ucode_beacon_time - tsf_low) / beacon_interval)) { switch_count -= (priv->ucode_beacon_time - tsf_low) / beacon_interval; } else switch_count = 0; } if (switch_count <= 1) cmd->switch_time = cpu_to_le32(priv->ucode_beacon_time); else { switch_time_in_usec = vif->bss_conf.beacon_int * switch_count * TIME_UNIT; ucode_switch_time = iwl_usecs_to_beacons(priv, switch_time_in_usec, beacon_interval); cmd->switch_time = iwl_add_beacon_time(priv, priv->ucode_beacon_time, ucode_switch_time, beacon_interval); } IWL_DEBUG_11H(priv, "uCode time for the switch is 0x%x\n", cmd->switch_time); cmd->expect_beacon = ch_switch->chandef.chan->flags & IEEE80211_CHAN_RADAR; err = iwl_dvm_send_cmd(priv, &hcmd); kfree(cmd); return err; } const struct iwl_dvm_cfg iwl_dvm_6000_cfg = { .set_hw_params = iwl6000_hw_set_hw_params, .set_channel_switch = iwl6000_hw_channel_switch, .nic_config = iwl6000_nic_config, .temperature = iwlagn_temperature, .adv_thermal_throttle = true, .support_ct_kill_exit = true, .plcp_delta_threshold = IWL_MAX_PLCP_ERR_THRESHOLD_DEF, .chain_noise_scale = 1000, }; const struct iwl_dvm_cfg iwl_dvm_6005_cfg = { .set_hw_params = iwl6000_hw_set_hw_params, .set_channel_switch = iwl6000_hw_channel_switch, .nic_config = iwl6000_nic_config, .temperature = iwlagn_temperature, .adv_thermal_throttle = true, .support_ct_kill_exit = true, .plcp_delta_threshold = IWL_MAX_PLCP_ERR_THRESHOLD_DEF, .chain_noise_scale = 1000, .need_temp_offset_calib = true, }; const struct iwl_dvm_cfg iwl_dvm_6050_cfg = { .set_hw_params = iwl6000_hw_set_hw_params, .set_channel_switch = iwl6000_hw_channel_switch, .nic_config = iwl6000_nic_config, .temperature = iwlagn_temperature, .adv_thermal_throttle = true, .support_ct_kill_exit = true, .plcp_delta_threshold = IWL_MAX_PLCP_ERR_THRESHOLD_DEF, .chain_noise_scale = 1500, }; static const struct iwl_dvm_bt_params iwl6000_bt_params = { /* Due to bluetooth, we transmit 2.4 GHz probes only on antenna A */ .advanced_bt_coexist = true, .agg_time_limit = BT_AGG_THRESHOLD_DEF, .bt_init_traffic_load = IWL_BT_COEX_TRAFFIC_LOAD_NONE, .bt_prio_boost = IWLAGN_BT_PRIO_BOOST_DEFAULT, .bt_sco_disable = true, }; const struct iwl_dvm_cfg iwl_dvm_6030_cfg = { .set_hw_params = iwl6000_hw_set_hw_params, .set_channel_switch = iwl6000_hw_channel_switch, .nic_config = iwl6000_nic_config, .temperature = iwlagn_temperature, .adv_thermal_throttle = true, .support_ct_kill_exit = true, .plcp_delta_threshold = IWL_MAX_PLCP_ERR_THRESHOLD_DEF, .chain_noise_scale = 1000, .bt_params = &iwl6000_bt_params, .need_temp_offset_calib = true, .adv_pm = true, };