// SPDX-License-Identifier: GPL-2.0 /* Copyright (c) 2012-2018, The Linux Foundation. All rights reserved. * Copyright (C) 2018-2022 Linaro Ltd. */ #include #include #include #include #include #include #include #include #include #include "ipa.h" #include "ipa_version.h" #include "ipa_endpoint.h" #include "ipa_table.h" #include "ipa_reg.h" #include "ipa_mem.h" #include "ipa_cmd.h" #include "gsi.h" #include "gsi_trans.h" /** * DOC: IPA Filter and Route Tables * * The IPA has tables defined in its local (IPA-resident) memory that define * filter and routing rules. An entry in either of these tables is a little * endian 64-bit "slot" that holds the address of a rule definition. (The * size of these slots is 64 bits regardless of the host DMA address size.) * * Separate tables (both filter and route) are used for IPv4 and IPv6. There * is normally another set of "hashed" filter and route tables, which are * used with a hash of message metadata. Hashed operation is not supported * by all IPA hardware (IPA v4.2 doesn't support hashed tables). * * Rules can be in local memory or in DRAM (system memory). The offset of * an object (such as a route or filter table) in IPA-resident memory must * 128-byte aligned. An object in system memory (such as a route or filter * rule) must be at an 8-byte aligned address. We currently only place * route or filter rules in system memory. * * A rule consists of a contiguous block of 32-bit values terminated with * 32 zero bits. A special "zero entry" rule consisting of 64 zero bits * represents "no filtering" or "no routing," and is the reset value for * filter or route table rules. * * Each filter rule is associated with an AP or modem TX endpoint, though * not all TX endpoints support filtering. The first 64-bit slot in a * filter table is a bitmap indicating which endpoints have entries in * the table. Each set bit in this bitmap indicates the presence of the * address of a filter rule in the memory following the bitmap. Until IPA * v5.0, the low-order bit (bit 0) in this bitmap represents a special * global filter, which applies to all traffic. Otherwise the position of * each set bit represents an endpoint for which a filter rule is defined. * * The global rule is not used in current code, and support for it is * removed starting at IPA v5.0. For IPA v5.0+, the endpoint bitmap * position defines the endpoint ID--i.e. if bit 1 is set in the endpoint * bitmap, endpoint 1 has a filter rule. Older versions of IPA represent * the presence of a filter rule for endpoint X by bit (X + 1) being set. * I.e., bit 1 set indicates the presence of a filter rule for endpoint 0, * and bit 3 set means there is a filter rule present for endpoint 2. * * Each filter table entry has the address of a set of equations that * implement a filter rule. So following the endpoint bitmap there * will be such an address/entry for each endpoint with a set bit in * the bitmap. * * The AP initializes all entries in a filter table to refer to a "zero" * rule. Once initialized, the modem and AP update the entries for * endpoints they "own" directly. Currently the AP does not use the IPA * filtering functionality. * * This diagram shows an example of a filter table with an endpoint * bitmap as defined prior to IPA v5.0. * * IPA Filter Table * ---------------------- * endpoint bitmap | 0x0000000000000048 | Bits 3 and 6 set (endpoints 2 and 5) * |--------------------| * 1st endpoint | 0x000123456789abc0 | DMA address for modem endpoint 2 rule * |--------------------| * 2nd endpoint | 0x000123456789abf0 | DMA address for AP endpoint 5 rule * |--------------------| * (unused) | | (Unused space in filter table) * |--------------------| * . . . * |--------------------| * (unused) | | (Unused space in filter table) * ---------------------- * * The set of available route rules is divided about equally between the AP * and modem. The AP initializes all entries in a route table to refer to * a "zero entry". Once initialized, the modem and AP are responsible for * updating their own entries. All entries in a route table are usable, * though the AP currently does not use the IPA routing functionality. * * IPA Route Table * ---------------------- * 1st modem route | 0x0001234500001100 | DMA address for first route rule * |--------------------| * 2nd modem route | 0x0001234500001140 | DMA address for second route rule * |--------------------| * . . . * |--------------------| * Last modem route| 0x0001234500002280 | DMA address for Nth route rule * |--------------------| * 1st AP route | 0x0001234500001100 | DMA address for route rule (N+1) * |--------------------| * 2nd AP route | 0x0001234500001140 | DMA address for next route rule * |--------------------| * . . . * |--------------------| * Last AP route | 0x0001234500002280 | DMA address for last route rule * ---------------------- */ /* Filter or route rules consist of a set of 32-bit values followed by a * 32-bit all-zero rule list terminator. The "zero rule" is simply an * all-zero rule followed by the list terminator. */ #define IPA_ZERO_RULE_SIZE (2 * sizeof(__le32)) /* Check things that can be validated at build time. */ static void ipa_table_validate_build(void) { /* Filter and route tables contain DMA addresses that refer * to filter or route rules. But the size of a table entry * is 64 bits regardless of what the size of an AP DMA address * is. A fixed constant defines the size of an entry, and * code in ipa_table_init() uses a pointer to __le64 to * initialize tables. */ BUILD_BUG_ON(sizeof(dma_addr_t) > sizeof(__le64)); /* A "zero rule" is used to represent no filtering or no routing. * It is a 64-bit block of zeroed memory. Code in ipa_table_init() * assumes that it can be written using a pointer to __le64. */ BUILD_BUG_ON(IPA_ZERO_RULE_SIZE != sizeof(__le64)); } static const struct ipa_mem * ipa_table_mem(struct ipa *ipa, bool filter, bool hashed, bool ipv6) { enum ipa_mem_id mem_id; mem_id = filter ? hashed ? ipv6 ? IPA_MEM_V6_FILTER_HASHED : IPA_MEM_V4_FILTER_HASHED : ipv6 ? IPA_MEM_V6_FILTER : IPA_MEM_V4_FILTER : hashed ? ipv6 ? IPA_MEM_V6_ROUTE_HASHED : IPA_MEM_V4_ROUTE_HASHED : ipv6 ? IPA_MEM_V6_ROUTE : IPA_MEM_V4_ROUTE; return ipa_mem_find(ipa, mem_id); } bool ipa_filtered_valid(struct ipa *ipa, u64 filtered) { struct device *dev = &ipa->pdev->dev; u32 count; if (!filtered) { dev_err(dev, "at least one filtering endpoint is required\n"); return false; } count = hweight64(filtered); if (count > ipa->filter_count) { dev_err(dev, "too many filtering endpoints (%u > %u)\n", count, ipa->filter_count); return false; } return true; } /* Zero entry count means no table, so just return a 0 address */ static dma_addr_t ipa_table_addr(struct ipa *ipa, bool filter_mask, u16 count) { u32 skip; if (!count) return 0; WARN_ON(count > max_t(u32, ipa->filter_count, ipa->route_count)); /* Skip over the zero rule and possibly the filter mask */ skip = filter_mask ? 1 : 2; return ipa->table_addr + skip * sizeof(*ipa->table_virt); } static void ipa_table_reset_add(struct gsi_trans *trans, bool filter, bool hashed, bool ipv6, u16 first, u16 count) { struct ipa *ipa = container_of(trans->gsi, struct ipa, gsi); const struct ipa_mem *mem; dma_addr_t addr; u32 offset; u16 size; /* Nothing to do if the memory region is doesn't exist or is empty */ mem = ipa_table_mem(ipa, filter, hashed, ipv6); if (!mem || !mem->size) return; if (filter) first++; /* skip over bitmap */ offset = mem->offset + first * sizeof(__le64); size = count * sizeof(__le64); addr = ipa_table_addr(ipa, false, count); ipa_cmd_dma_shared_mem_add(trans, offset, size, addr, true); } /* Reset entries in a single filter table belonging to either the AP or * modem to refer to the zero entry. The memory region supplied will be * for the IPv4 and IPv6 non-hashed and hashed filter tables. */ static int ipa_filter_reset_table(struct ipa *ipa, bool hashed, bool ipv6, bool modem) { u64 ep_mask = ipa->filtered; struct gsi_trans *trans; enum gsi_ee_id ee_id; trans = ipa_cmd_trans_alloc(ipa, hweight64(ep_mask)); if (!trans) { dev_err(&ipa->pdev->dev, "no transaction for %s filter reset\n", modem ? "modem" : "AP"); return -EBUSY; } ee_id = modem ? GSI_EE_MODEM : GSI_EE_AP; while (ep_mask) { u32 endpoint_id = __ffs(ep_mask); struct ipa_endpoint *endpoint; ep_mask ^= BIT(endpoint_id); endpoint = &ipa->endpoint[endpoint_id]; if (endpoint->ee_id != ee_id) continue; ipa_table_reset_add(trans, true, hashed, ipv6, endpoint_id, 1); } gsi_trans_commit_wait(trans); return 0; } /* Theoretically, each filter table could have more filter slots to * update than the maximum number of commands in a transaction. So * we do each table separately. */ static int ipa_filter_reset(struct ipa *ipa, bool modem) { int ret; ret = ipa_filter_reset_table(ipa, false, false, modem); if (ret) return ret; ret = ipa_filter_reset_table(ipa, true, false, modem); if (ret) return ret; ret = ipa_filter_reset_table(ipa, false, true, modem); if (ret) return ret; ret = ipa_filter_reset_table(ipa, true, true, modem); return ret; } /* The AP routes and modem routes are each contiguous within the * table. We can update each table with a single command, and we * won't exceed the per-transaction command limit. * */ static int ipa_route_reset(struct ipa *ipa, bool modem) { u32 modem_route_count = ipa->modem_route_count; struct gsi_trans *trans; u16 first; u16 count; trans = ipa_cmd_trans_alloc(ipa, 4); if (!trans) { dev_err(&ipa->pdev->dev, "no transaction for %s route reset\n", modem ? "modem" : "AP"); return -EBUSY; } if (modem) { first = 0; count = modem_route_count; } else { first = modem_route_count; count = ipa->route_count - modem_route_count; } ipa_table_reset_add(trans, false, false, false, first, count); ipa_table_reset_add(trans, false, true, false, first, count); ipa_table_reset_add(trans, false, false, true, first, count); ipa_table_reset_add(trans, false, true, true, first, count); gsi_trans_commit_wait(trans); return 0; } void ipa_table_reset(struct ipa *ipa, bool modem) { struct device *dev = &ipa->pdev->dev; const char *ee_name; int ret; ee_name = modem ? "modem" : "AP"; /* Report errors, but reset filter and route tables */ ret = ipa_filter_reset(ipa, modem); if (ret) dev_err(dev, "error %d resetting filter table for %s\n", ret, ee_name); ret = ipa_route_reset(ipa, modem); if (ret) dev_err(dev, "error %d resetting route table for %s\n", ret, ee_name); } int ipa_table_hash_flush(struct ipa *ipa) { const struct ipa_reg *reg; struct gsi_trans *trans; u32 offset; u32 val; if (!ipa_table_hash_support(ipa)) return 0; trans = ipa_cmd_trans_alloc(ipa, 1); if (!trans) { dev_err(&ipa->pdev->dev, "no transaction for hash flush\n"); return -EBUSY; } reg = ipa_reg(ipa, FILT_ROUT_HASH_FLUSH); offset = ipa_reg_offset(reg); val = ipa_reg_bit(reg, IPV6_ROUTER_HASH); val |= ipa_reg_bit(reg, IPV6_FILTER_HASH); val |= ipa_reg_bit(reg, IPV4_ROUTER_HASH); val |= ipa_reg_bit(reg, IPV4_FILTER_HASH); ipa_cmd_register_write_add(trans, offset, val, val, false); gsi_trans_commit_wait(trans); return 0; } static void ipa_table_init_add(struct gsi_trans *trans, bool filter, bool ipv6) { struct ipa *ipa = container_of(trans->gsi, struct ipa, gsi); const struct ipa_mem *hash_mem; enum ipa_cmd_opcode opcode; const struct ipa_mem *mem; dma_addr_t hash_addr; dma_addr_t addr; u32 zero_offset; u16 hash_count; u32 zero_size; u16 hash_size; u16 count; u16 size; opcode = filter ? ipv6 ? IPA_CMD_IP_V6_FILTER_INIT : IPA_CMD_IP_V4_FILTER_INIT : ipv6 ? IPA_CMD_IP_V6_ROUTING_INIT : IPA_CMD_IP_V4_ROUTING_INIT; mem = ipa_table_mem(ipa, filter, false, ipv6); hash_mem = ipa_table_mem(ipa, filter, true, ipv6); /* Compute the number of table entries to initialize */ if (filter) { /* The number of filtering endpoints determines number of * entries in the filter table; we also add one more "slot" * to hold the bitmap itself. The size of the hashed filter * table is either the same as the non-hashed one, or zero. */ count = 1 + hweight64(ipa->filtered); hash_count = hash_mem && hash_mem->size ? count : 0; } else { /* The size of a route table region determines the number * of entries it has. */ count = mem->size / sizeof(__le64); hash_count = hash_mem && hash_mem->size / sizeof(__le64); } size = count * sizeof(__le64); hash_size = hash_count * sizeof(__le64); addr = ipa_table_addr(ipa, filter, count); hash_addr = ipa_table_addr(ipa, filter, hash_count); ipa_cmd_table_init_add(trans, opcode, size, mem->offset, addr, hash_size, hash_mem->offset, hash_addr); if (!filter) return; /* Zero the unused space in the filter table */ zero_offset = mem->offset + size; zero_size = mem->size - size; ipa_cmd_dma_shared_mem_add(trans, zero_offset, zero_size, ipa->zero_addr, true); if (!hash_size) return; /* Zero the unused space in the hashed filter table */ zero_offset = hash_mem->offset + hash_size; zero_size = hash_mem->size - hash_size; ipa_cmd_dma_shared_mem_add(trans, zero_offset, zero_size, ipa->zero_addr, true); } int ipa_table_setup(struct ipa *ipa) { struct gsi_trans *trans; /* We will need at most 8 TREs: * - IPv4: * - One for route table initialization (non-hashed and hashed) * - One for filter table initialization (non-hashed and hashed) * - One to zero unused entries in the non-hashed filter table * - One to zero unused entries in the hashed filter table * - IPv6: * - One for route table initialization (non-hashed and hashed) * - One for filter table initialization (non-hashed and hashed) * - One to zero unused entries in the non-hashed filter table * - One to zero unused entries in the hashed filter table * All platforms support at least 8 TREs in a transaction. */ trans = ipa_cmd_trans_alloc(ipa, 8); if (!trans) { dev_err(&ipa->pdev->dev, "no transaction for table setup\n"); return -EBUSY; } ipa_table_init_add(trans, false, false); ipa_table_init_add(trans, false, true); ipa_table_init_add(trans, true, false); ipa_table_init_add(trans, true, true); gsi_trans_commit_wait(trans); return 0; } /** * ipa_filter_tuple_zero() - Zero an endpoint's hashed filter tuple * @endpoint: Endpoint whose filter hash tuple should be zeroed * * Endpoint must be for the AP (not modem) and support filtering. Updates * the filter hash values without changing route ones. */ static void ipa_filter_tuple_zero(struct ipa_endpoint *endpoint) { u32 endpoint_id = endpoint->endpoint_id; struct ipa *ipa = endpoint->ipa; const struct ipa_reg *reg; u32 offset; u32 val; reg = ipa_reg(ipa, ENDP_FILTER_ROUTER_HSH_CFG); offset = ipa_reg_n_offset(reg, endpoint_id); val = ioread32(endpoint->ipa->reg_virt + offset); /* Zero all filter-related fields, preserving the rest */ val &= ~ipa_reg_fmask(reg, FILTER_HASH_MSK_ALL); iowrite32(val, endpoint->ipa->reg_virt + offset); } /* Configure a hashed filter table; there is no ipa_filter_deconfig() */ static void ipa_filter_config(struct ipa *ipa, bool modem) { enum gsi_ee_id ee_id = modem ? GSI_EE_MODEM : GSI_EE_AP; u64 ep_mask = ipa->filtered; if (!ipa_table_hash_support(ipa)) return; while (ep_mask) { u32 endpoint_id = __ffs(ep_mask); struct ipa_endpoint *endpoint; ep_mask ^= BIT(endpoint_id); endpoint = &ipa->endpoint[endpoint_id]; if (endpoint->ee_id == ee_id) ipa_filter_tuple_zero(endpoint); } } static bool ipa_route_id_modem(struct ipa *ipa, u32 route_id) { return route_id < ipa->modem_route_count; } /** * ipa_route_tuple_zero() - Zero a hashed route table entry tuple * @ipa: IPA pointer * @route_id: Route table entry whose hash tuple should be zeroed * * Updates the route hash values without changing filter ones. */ static void ipa_route_tuple_zero(struct ipa *ipa, u32 route_id) { const struct ipa_reg *reg; u32 offset; u32 val; reg = ipa_reg(ipa, ENDP_FILTER_ROUTER_HSH_CFG); offset = ipa_reg_n_offset(reg, route_id); val = ioread32(ipa->reg_virt + offset); /* Zero all route-related fields, preserving the rest */ val &= ~ipa_reg_fmask(reg, ROUTER_HASH_MSK_ALL); iowrite32(val, ipa->reg_virt + offset); } /* Configure a hashed route table; there is no ipa_route_deconfig() */ static void ipa_route_config(struct ipa *ipa, bool modem) { u32 route_id; if (!ipa_table_hash_support(ipa)) return; for (route_id = 0; route_id < ipa->route_count; route_id++) if (ipa_route_id_modem(ipa, route_id) == modem) ipa_route_tuple_zero(ipa, route_id); } /* Configure a filter and route tables; there is no ipa_table_deconfig() */ void ipa_table_config(struct ipa *ipa) { ipa_filter_config(ipa, false); ipa_filter_config(ipa, true); ipa_route_config(ipa, false); ipa_route_config(ipa, true); } /* Verify the sizes of all IPA table filter or routing table memory regions * are valid. If valid, this records the size of the routing table. */ bool ipa_table_mem_valid(struct ipa *ipa, bool filter) { bool hash_support = ipa_table_hash_support(ipa); const struct ipa_mem *mem_hashed; const struct ipa_mem *mem_ipv4; const struct ipa_mem *mem_ipv6; u32 count; /* IPv4 and IPv6 non-hashed tables are expected to be defined and * have the same size. Both must have at least two entries (and * would normally have more than that). */ mem_ipv4 = ipa_table_mem(ipa, filter, false, false); if (!mem_ipv4) return false; mem_ipv6 = ipa_table_mem(ipa, filter, false, true); if (!mem_ipv6) return false; if (mem_ipv4->size != mem_ipv6->size) return false; /* Compute and record the number of entries for each table type */ count = mem_ipv4->size / sizeof(__le64); if (count < 2) return false; if (filter) ipa->filter_count = count - 1; /* Filter map in first entry */ else ipa->route_count = count; /* Table offset and size must fit in TABLE_INIT command fields */ if (!ipa_cmd_table_init_valid(ipa, mem_ipv4, !filter)) return false; /* Make sure the regions are big enough */ if (filter) { /* Filter tables must able to hold the endpoint bitmap plus * an entry for each endpoint that supports filtering */ if (count < 1 + hweight64(ipa->filtered)) return false; } else { /* Routing tables must be able to hold all modem entries, * plus at least one entry for the AP. */ if (count < ipa->modem_route_count + 1) return false; } /* If hashing is supported, hashed tables are expected to be defined, * and have the same size as non-hashed tables. If hashing is not * supported, hashed tables are expected to have zero size (or not * be defined). */ mem_hashed = ipa_table_mem(ipa, filter, true, false); if (hash_support) { if (!mem_hashed || mem_hashed->size != mem_ipv4->size) return false; } else { if (mem_hashed && mem_hashed->size) return false; } /* Same check for IPv6 tables */ mem_hashed = ipa_table_mem(ipa, filter, true, true); if (hash_support) { if (!mem_hashed || mem_hashed->size != mem_ipv6->size) return false; } else { if (mem_hashed && mem_hashed->size) return false; } return true; } /* Initialize a coherent DMA allocation containing initialized filter and * route table data. This is used when initializing or resetting the IPA * filter or route table. * * The first entry in a filter table contains a bitmap indicating which * endpoints contain entries in the table. In addition to that first entry, * there is a fixed maximum number of entries that follow. Filter table * entries are 64 bits wide, and (other than the bitmap) contain the DMA * address of a filter rule. A "zero rule" indicates no filtering, and * consists of 64 bits of zeroes. When a filter table is initialized (or * reset) its entries are made to refer to the zero rule. * * Each entry in a route table is the DMA address of a routing rule. For * routing there is also a 64-bit "zero rule" that means no routing, and * when a route table is initialized or reset, its entries are made to refer * to the zero rule. The zero rule is shared for route and filter tables. * * +-------------------+ * --> | zero rule | * / |-------------------| * | | filter mask | * |\ |-------------------| * | ---- zero rule address | \ * |\ |-------------------| | * | ---- zero rule address | | Max IPA filter count * | |-------------------| > or IPA route count, * | ... | whichever is greater * \ |-------------------| | * ---- zero rule address | / * +-------------------+ */ int ipa_table_init(struct ipa *ipa) { struct device *dev = &ipa->pdev->dev; dma_addr_t addr; __le64 le_addr; __le64 *virt; size_t size; u32 count; ipa_table_validate_build(); count = max_t(u32, ipa->filter_count, ipa->route_count); /* The IPA hardware requires route and filter table rules to be * aligned on a 128-byte boundary. We put the "zero rule" at the * base of the table area allocated here. The DMA address returned * by dma_alloc_coherent() is guaranteed to be a power-of-2 number * of pages, which satisfies the rule alignment requirement. */ size = IPA_ZERO_RULE_SIZE + (1 + count) * sizeof(__le64); virt = dma_alloc_coherent(dev, size, &addr, GFP_KERNEL); if (!virt) return -ENOMEM; ipa->table_virt = virt; ipa->table_addr = addr; /* First slot is the zero rule */ *virt++ = 0; /* Next is the filter table bitmap. The "soft" bitmap value might * need to be converted to the hardware representation by shifting * it left one position. Prior to IPA v5.0, bit 0 repesents global * filtering, which is possible but not used. IPA v5.0+ eliminated * that option, so there's no shifting required. */ if (ipa->version < IPA_VERSION_5_0) *virt++ = cpu_to_le64(ipa->filtered << 1); else *virt++ = cpu_to_le64(ipa->filtered); /* All the rest contain the DMA address of the zero rule */ le_addr = cpu_to_le64(addr); while (count--) *virt++ = le_addr; return 0; } void ipa_table_exit(struct ipa *ipa) { u32 count = max_t(u32, 1 + ipa->filter_count, ipa->route_count); struct device *dev = &ipa->pdev->dev; size_t size; size = IPA_ZERO_RULE_SIZE + (1 + count) * sizeof(__le64); dma_free_coherent(dev, size, ipa->table_virt, ipa->table_addr); ipa->table_addr = 0; ipa->table_virt = NULL; }