Age | Commit message (Collapse) | Author | Files | Lines |
|
The shift of 'cwnd' with '(now - hc->tx_lsndtime) / hc->tx_rto' value
can lead to undefined behavior [1].
In order to fix this use a gradual shift of the window with a 'while'
loop, similar to what tcp_cwnd_restart() is doing.
When comparing delta and RTO there is a minor difference between TCP
and DCCP, the last one also invokes dccp_cwnd_restart() and reduces
'cwnd' if delta equals RTO. That case is preserved in this change.
[1]:
[40850.963623] UBSAN: Undefined behaviour in net/dccp/ccids/ccid2.c:237:7
[40851.043858] shift exponent 67 is too large for 32-bit type 'unsigned int'
[40851.127163] CPU: 3 PID: 15940 Comm: netstress Tainted: G W E 4.18.0-rc7.x86_64 #1
...
[40851.377176] Call Trace:
[40851.408503] dump_stack+0xf1/0x17b
[40851.451331] ? show_regs_print_info+0x5/0x5
[40851.503555] ubsan_epilogue+0x9/0x7c
[40851.548363] __ubsan_handle_shift_out_of_bounds+0x25b/0x2b4
[40851.617109] ? __ubsan_handle_load_invalid_value+0x18f/0x18f
[40851.686796] ? xfrm4_output_finish+0x80/0x80
[40851.739827] ? lock_downgrade+0x6d0/0x6d0
[40851.789744] ? xfrm4_prepare_output+0x160/0x160
[40851.845912] ? ip_queue_xmit+0x810/0x1db0
[40851.895845] ? ccid2_hc_tx_packet_sent+0xd36/0x10a0 [dccp]
[40851.963530] ccid2_hc_tx_packet_sent+0xd36/0x10a0 [dccp]
[40852.029063] dccp_xmit_packet+0x1d3/0x720 [dccp]
[40852.086254] dccp_write_xmit+0x116/0x1d0 [dccp]
[40852.142412] dccp_sendmsg+0x428/0xb20 [dccp]
[40852.195454] ? inet_dccp_listen+0x200/0x200 [dccp]
[40852.254833] ? sched_clock+0x5/0x10
[40852.298508] ? sched_clock+0x5/0x10
[40852.342194] ? inet_create+0xdf0/0xdf0
[40852.388988] sock_sendmsg+0xd9/0x160
...
Fixes: 113ced1f52e5 ("dccp ccid-2: Perform congestion-window validation")
Signed-off-by: Alexey Kodanev <alexey.kodanev@oracle.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
To compute delays, better not use time of the day which can
be changed by admins or malicious programs.
Also change ccid3_first_li() to use s64 type for delta variable
to avoid potential overflows.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Cc: Gerrit Renker <gerrit@erg.abdn.ac.uk>
Cc: dccp@vger.kernel.org
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
On fast hosts or malicious bots, we trigger a DCCP_BUG() which
seems excessive.
syzbot reported :
BUG: delta (-6195) <= 0 at net/dccp/ccids/ccid3.c:628/ccid3_hc_rx_send_feedback()
CPU: 1 PID: 18 Comm: ksoftirqd/1 Not tainted 4.18.0-rc1+ #112
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011
Call Trace:
__dump_stack lib/dump_stack.c:77 [inline]
dump_stack+0x1c9/0x2b4 lib/dump_stack.c:113
ccid3_hc_rx_send_feedback net/dccp/ccids/ccid3.c:628 [inline]
ccid3_hc_rx_packet_recv.cold.16+0x38/0x71 net/dccp/ccids/ccid3.c:793
ccid_hc_rx_packet_recv net/dccp/ccid.h:185 [inline]
dccp_deliver_input_to_ccids+0xf0/0x280 net/dccp/input.c:180
dccp_rcv_established+0x87/0xb0 net/dccp/input.c:378
dccp_v4_do_rcv+0x153/0x180 net/dccp/ipv4.c:654
sk_backlog_rcv include/net/sock.h:914 [inline]
__sk_receive_skb+0x3ba/0xd80 net/core/sock.c:517
dccp_v4_rcv+0x10f9/0x1f58 net/dccp/ipv4.c:875
ip_local_deliver_finish+0x2eb/0xda0 net/ipv4/ip_input.c:215
NF_HOOK include/linux/netfilter.h:287 [inline]
ip_local_deliver+0x1e9/0x750 net/ipv4/ip_input.c:256
dst_input include/net/dst.h:450 [inline]
ip_rcv_finish+0x823/0x2220 net/ipv4/ip_input.c:396
NF_HOOK include/linux/netfilter.h:287 [inline]
ip_rcv+0xa18/0x1284 net/ipv4/ip_input.c:492
__netif_receive_skb_core+0x2488/0x3680 net/core/dev.c:4628
__netif_receive_skb+0x2c/0x1e0 net/core/dev.c:4693
process_backlog+0x219/0x760 net/core/dev.c:5373
napi_poll net/core/dev.c:5771 [inline]
net_rx_action+0x7da/0x1980 net/core/dev.c:5837
__do_softirq+0x2e8/0xb17 kernel/softirq.c:284
run_ksoftirqd+0x86/0x100 kernel/softirq.c:645
smpboot_thread_fn+0x417/0x870 kernel/smpboot.c:164
kthread+0x345/0x410 kernel/kthread.c:240
ret_from_fork+0x3a/0x50 arch/x86/entry/entry_64.S:412
Signed-off-by: Eric Dumazet <edumazet@google.com>
Reported-by: syzbot <syzkaller@googlegroups.com>
Cc: Gerrit Renker <gerrit@erg.abdn.ac.uk>
Cc: dccp@vger.kernel.org
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
The kmalloc() function has a 2-factor argument form, kmalloc_array(). This
patch replaces cases of:
kmalloc(a * b, gfp)
with:
kmalloc_array(a * b, gfp)
as well as handling cases of:
kmalloc(a * b * c, gfp)
with:
kmalloc(array3_size(a, b, c), gfp)
as it's slightly less ugly than:
kmalloc_array(array_size(a, b), c, gfp)
This does, however, attempt to ignore constant size factors like:
kmalloc(4 * 1024, gfp)
though any constants defined via macros get caught up in the conversion.
Any factors with a sizeof() of "unsigned char", "char", and "u8" were
dropped, since they're redundant.
The tools/ directory was manually excluded, since it has its own
implementation of kmalloc().
The Coccinelle script used for this was:
// Fix redundant parens around sizeof().
@@
type TYPE;
expression THING, E;
@@
(
kmalloc(
- (sizeof(TYPE)) * E
+ sizeof(TYPE) * E
, ...)
|
kmalloc(
- (sizeof(THING)) * E
+ sizeof(THING) * E
, ...)
)
// Drop single-byte sizes and redundant parens.
@@
expression COUNT;
typedef u8;
typedef __u8;
@@
(
kmalloc(
- sizeof(u8) * (COUNT)
+ COUNT
, ...)
|
kmalloc(
- sizeof(__u8) * (COUNT)
+ COUNT
, ...)
|
kmalloc(
- sizeof(char) * (COUNT)
+ COUNT
, ...)
|
kmalloc(
- sizeof(unsigned char) * (COUNT)
+ COUNT
, ...)
|
kmalloc(
- sizeof(u8) * COUNT
+ COUNT
, ...)
|
kmalloc(
- sizeof(__u8) * COUNT
+ COUNT
, ...)
|
kmalloc(
- sizeof(char) * COUNT
+ COUNT
, ...)
|
kmalloc(
- sizeof(unsigned char) * COUNT
+ COUNT
, ...)
)
// 2-factor product with sizeof(type/expression) and identifier or constant.
@@
type TYPE;
expression THING;
identifier COUNT_ID;
constant COUNT_CONST;
@@
(
- kmalloc
+ kmalloc_array
(
- sizeof(TYPE) * (COUNT_ID)
+ COUNT_ID, sizeof(TYPE)
, ...)
|
- kmalloc
+ kmalloc_array
(
- sizeof(TYPE) * COUNT_ID
+ COUNT_ID, sizeof(TYPE)
, ...)
|
- kmalloc
+ kmalloc_array
(
- sizeof(TYPE) * (COUNT_CONST)
+ COUNT_CONST, sizeof(TYPE)
, ...)
|
- kmalloc
+ kmalloc_array
(
- sizeof(TYPE) * COUNT_CONST
+ COUNT_CONST, sizeof(TYPE)
, ...)
|
- kmalloc
+ kmalloc_array
(
- sizeof(THING) * (COUNT_ID)
+ COUNT_ID, sizeof(THING)
, ...)
|
- kmalloc
+ kmalloc_array
(
- sizeof(THING) * COUNT_ID
+ COUNT_ID, sizeof(THING)
, ...)
|
- kmalloc
+ kmalloc_array
(
- sizeof(THING) * (COUNT_CONST)
+ COUNT_CONST, sizeof(THING)
, ...)
|
- kmalloc
+ kmalloc_array
(
- sizeof(THING) * COUNT_CONST
+ COUNT_CONST, sizeof(THING)
, ...)
)
// 2-factor product, only identifiers.
@@
identifier SIZE, COUNT;
@@
- kmalloc
+ kmalloc_array
(
- SIZE * COUNT
+ COUNT, SIZE
, ...)
// 3-factor product with 1 sizeof(type) or sizeof(expression), with
// redundant parens removed.
@@
expression THING;
identifier STRIDE, COUNT;
type TYPE;
@@
(
kmalloc(
- sizeof(TYPE) * (COUNT) * (STRIDE)
+ array3_size(COUNT, STRIDE, sizeof(TYPE))
, ...)
|
kmalloc(
- sizeof(TYPE) * (COUNT) * STRIDE
+ array3_size(COUNT, STRIDE, sizeof(TYPE))
, ...)
|
kmalloc(
- sizeof(TYPE) * COUNT * (STRIDE)
+ array3_size(COUNT, STRIDE, sizeof(TYPE))
, ...)
|
kmalloc(
- sizeof(TYPE) * COUNT * STRIDE
+ array3_size(COUNT, STRIDE, sizeof(TYPE))
, ...)
|
kmalloc(
- sizeof(THING) * (COUNT) * (STRIDE)
+ array3_size(COUNT, STRIDE, sizeof(THING))
, ...)
|
kmalloc(
- sizeof(THING) * (COUNT) * STRIDE
+ array3_size(COUNT, STRIDE, sizeof(THING))
, ...)
|
kmalloc(
- sizeof(THING) * COUNT * (STRIDE)
+ array3_size(COUNT, STRIDE, sizeof(THING))
, ...)
|
kmalloc(
- sizeof(THING) * COUNT * STRIDE
+ array3_size(COUNT, STRIDE, sizeof(THING))
, ...)
)
// 3-factor product with 2 sizeof(variable), with redundant parens removed.
@@
expression THING1, THING2;
identifier COUNT;
type TYPE1, TYPE2;
@@
(
kmalloc(
- sizeof(TYPE1) * sizeof(TYPE2) * COUNT
+ array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2))
, ...)
|
kmalloc(
- sizeof(TYPE1) * sizeof(THING2) * (COUNT)
+ array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2))
, ...)
|
kmalloc(
- sizeof(THING1) * sizeof(THING2) * COUNT
+ array3_size(COUNT, sizeof(THING1), sizeof(THING2))
, ...)
|
kmalloc(
- sizeof(THING1) * sizeof(THING2) * (COUNT)
+ array3_size(COUNT, sizeof(THING1), sizeof(THING2))
, ...)
|
kmalloc(
- sizeof(TYPE1) * sizeof(THING2) * COUNT
+ array3_size(COUNT, sizeof(TYPE1), sizeof(THING2))
, ...)
|
kmalloc(
- sizeof(TYPE1) * sizeof(THING2) * (COUNT)
+ array3_size(COUNT, sizeof(TYPE1), sizeof(THING2))
, ...)
)
// 3-factor product, only identifiers, with redundant parens removed.
@@
identifier STRIDE, SIZE, COUNT;
@@
(
kmalloc(
- (COUNT) * STRIDE * SIZE
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
|
kmalloc(
- COUNT * (STRIDE) * SIZE
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
|
kmalloc(
- COUNT * STRIDE * (SIZE)
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
|
kmalloc(
- (COUNT) * (STRIDE) * SIZE
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
|
kmalloc(
- COUNT * (STRIDE) * (SIZE)
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
|
kmalloc(
- (COUNT) * STRIDE * (SIZE)
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
|
kmalloc(
- (COUNT) * (STRIDE) * (SIZE)
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
|
kmalloc(
- COUNT * STRIDE * SIZE
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
)
// Any remaining multi-factor products, first at least 3-factor products,
// when they're not all constants...
@@
expression E1, E2, E3;
constant C1, C2, C3;
@@
(
kmalloc(C1 * C2 * C3, ...)
|
kmalloc(
- (E1) * E2 * E3
+ array3_size(E1, E2, E3)
, ...)
|
kmalloc(
- (E1) * (E2) * E3
+ array3_size(E1, E2, E3)
, ...)
|
kmalloc(
- (E1) * (E2) * (E3)
+ array3_size(E1, E2, E3)
, ...)
|
kmalloc(
- E1 * E2 * E3
+ array3_size(E1, E2, E3)
, ...)
)
// And then all remaining 2 factors products when they're not all constants,
// keeping sizeof() as the second factor argument.
@@
expression THING, E1, E2;
type TYPE;
constant C1, C2, C3;
@@
(
kmalloc(sizeof(THING) * C2, ...)
|
kmalloc(sizeof(TYPE) * C2, ...)
|
kmalloc(C1 * C2 * C3, ...)
|
kmalloc(C1 * C2, ...)
|
- kmalloc
+ kmalloc_array
(
- sizeof(TYPE) * (E2)
+ E2, sizeof(TYPE)
, ...)
|
- kmalloc
+ kmalloc_array
(
- sizeof(TYPE) * E2
+ E2, sizeof(TYPE)
, ...)
|
- kmalloc
+ kmalloc_array
(
- sizeof(THING) * (E2)
+ E2, sizeof(THING)
, ...)
|
- kmalloc
+ kmalloc_array
(
- sizeof(THING) * E2
+ E2, sizeof(THING)
, ...)
|
- kmalloc
+ kmalloc_array
(
- (E1) * E2
+ E1, E2
, ...)
|
- kmalloc
+ kmalloc_array
(
- (E1) * (E2)
+ E1, E2
, ...)
|
- kmalloc
+ kmalloc_array
(
- E1 * E2
+ E1, E2
, ...)
)
Signed-off-by: Kees Cook <keescook@chromium.org>
|
|
syzbot reported a crash in tasklet_action_common() caused by dccp.
dccp needs to make sure socket wont disappear before tasklet handler
has completed.
This patch takes a reference on the socket when arming the tasklet,
and moves the sock_put() from dccp_write_xmit_timer() to dccp_write_xmitlet()
kernel BUG at kernel/softirq.c:514!
invalid opcode: 0000 [#1] SMP KASAN
Dumping ftrace buffer:
(ftrace buffer empty)
Modules linked in:
CPU: 1 PID: 17 Comm: ksoftirqd/1 Not tainted 4.17.0-rc3+ #30
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011
RIP: 0010:tasklet_action_common.isra.19+0x6db/0x700 kernel/softirq.c:515
RSP: 0018:ffff8801d9b3faf8 EFLAGS: 00010246
dccp_close: ABORT with 65423 bytes unread
RAX: 1ffff1003b367f6b RBX: ffff8801daf1f3f0 RCX: 0000000000000000
RDX: ffff8801cf895498 RSI: 0000000000000004 RDI: 0000000000000000
RBP: ffff8801d9b3fc40 R08: ffffed0039f12a95 R09: ffffed0039f12a94
dccp_close: ABORT with 65423 bytes unread
R10: ffffed0039f12a94 R11: ffff8801cf8954a3 R12: 0000000000000000
R13: ffff8801d9b3fc18 R14: dffffc0000000000 R15: ffff8801cf895490
FS: 0000000000000000(0000) GS:ffff8801daf00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000001b2bc28000 CR3: 00000001a08a9000 CR4: 00000000001406e0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
tasklet_action+0x1d/0x20 kernel/softirq.c:533
__do_softirq+0x2e0/0xaf5 kernel/softirq.c:285
dccp_close: ABORT with 65423 bytes unread
run_ksoftirqd+0x86/0x100 kernel/softirq.c:646
smpboot_thread_fn+0x417/0x870 kernel/smpboot.c:164
kthread+0x345/0x410 kernel/kthread.c:238
ret_from_fork+0x3a/0x50 arch/x86/entry/entry_64.S:412
Code: 48 8b 85 e8 fe ff ff 48 8b 95 f0 fe ff ff e9 94 fb ff ff 48 89 95 f0 fe ff ff e8 81 53 6e 00 48 8b 95 f0 fe ff ff e9 62 fb ff ff <0f> 0b 48 89 cf 48 89 8d e8 fe ff ff e8 64 53 6e 00 48 8b 8d e8
RIP: tasklet_action_common.isra.19+0x6db/0x700 kernel/softirq.c:515 RSP: ffff8801d9b3faf8
Fixes: dc841e30eaea ("dccp: Extend CCID packet dequeueing interface")
Signed-off-by: Eric Dumazet <edumazet@google.com>
Reported-by: syzbot <syzkaller@googlegroups.com>
Cc: Gerrit Renker <gerrit@erg.abdn.ac.uk>
Cc: dccp@vger.kernel.org
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
ccid2_hc_tx_rto_expire() timer callback always restarts the timer
again and can run indefinitely (unless it is stopped outside), and after
commit 120e9dabaf55 ("dccp: defer ccid_hc_tx_delete() at dismantle time"),
which moved ccid_hc_tx_delete() (also includes sk_stop_timer()) from
dccp_destroy_sock() to sk_destruct(), this started to happen quite often.
The timer prevents releasing the socket, as a result, sk_destruct() won't
be called.
Found with LTP/dccp_ipsec tests running on the bonding device,
which later couldn't be unloaded after the tests were completed:
unregister_netdevice: waiting for bond0 to become free. Usage count = 148
Fixes: 2a91aa396739 ("[DCCP] CCID2: Initial CCID2 (TCP-Like) implementation")
Signed-off-by: Alexey Kodanev <alexey.kodanev@oracle.com>
Reviewed-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
Files removed in 'net-next' had their license header updated
in 'net'. We take the remove from 'net-next'.
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier. The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne. Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed. Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained >5
lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that became
the concluded license(s).
- when there was disagreement between the two scanners (one detected a
license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply (and
which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights. The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch license
was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
Make use of the swap macro and remove unnecessary variable tmp.
This makes the code easier to read and maintain.
This code was detected with the help of Coccinelle.
Signed-off-by: Gustavo A. R. Silva <garsilva@embeddedor.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
In preparation for unconditionally passing the struct timer_list pointer to
all timer callbacks, switch to using the new timer_setup() and from_timer()
to pass the timer pointer explicitly. Adds a pointer back to the sock.
Cc: Gerrit Renker <gerrit@erg.abdn.ac.uk>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Soheil Hassas Yeganeh <soheil@google.com>
Cc: Hannes Frederic Sowa <hannes@stressinduktion.org>
Cc: Eric Dumazet <edumazet@google.com>
Cc: dccp@vger.kernel.org
Cc: netdev@vger.kernel.org
Signed-off-by: Kees Cook <keescook@chromium.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
Use our own macro instead of abusing tcp_time_stamp
Signed-off-by: Eric Dumazet <edumazet@google.com>
Acked-by: Soheil Hassas Yeganeh <soheil@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
This patch fixes a memory leak, which happens if the connection request
is not fulfilled between parsing the DCCP options and handling the SYN
(because e.g. the backlog is full), because we forgot to free the
list of ack vectors.
Reported-by: Jianwen Ji <jiji@redhat.com>
Signed-off-by: Hannes Frederic Sowa <hannes@stressinduktion.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
dccp tfrc: revert
This reverts 6aee49c558de ("dccp: make local variable static") since
the variable tfrc_debug is referenced by the tfrc_pr_debug(fmt, ...)
macro when TFRC debugging is enabled. If it is enabled, use of the
macro produces a compilation error.
Signed-off-by: Gerrit Renker <gerrit@erg.abdn.ac.uk>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
Make DCCP module config variable static, only used in one file.
Signed-off-by: Stephen Hemminger <stephen@networkplumber.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
There are a mix of function prototypes with and without extern
in the kernel sources. Standardize on not using extern for
function prototypes.
Function prototypes don't need to be written with extern.
extern is assumed by the compiler. Its use is as unnecessary as
using auto to declare automatic/local variables in a block.
Signed-off-by: Joe Perches <joe@perches.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
The CONFIG_EXPERIMENTAL config item has not carried much meaning for a
while now and is almost always enabled by default. As agreed during the
Linux kernel summit, remove it from any "depends on" lines in Kconfigs.
CC: Gerrit Renker <gerrit@erg.abdn.ac.uk>
CC: "David S. Miller" <davem@davemloft.net>
Signed-off-by: Kees Cook <keescook@chromium.org>
Acked-by: David S. Miller <davem@davemloft.net>
Acked-by: Gerrit Renker <gerrit@erg.abdn.ac.uk>
|
|
The CCID3 code fails to initialize the trailing padding bytes of struct
tfrc_tx_info added for alignment on 64 bit architectures. It that for
potentially leaks four bytes kernel stack via the getsockopt() syscall.
Add an explicit memset(0) before filling the structure to avoid the
info leak.
Signed-off-by: Mathias Krause <minipli@googlemail.com>
Cc: Gerrit Renker <gerrit@erg.abdn.ac.uk>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
Fix incorrect start markers, wrapped summary lines, missing section
breaks, incorrect separators, and some name mismatches.
Signed-off-by: Ben Hutchings <bhutchings@solarflare.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
Use of "unsigned int" is preferred to bare "unsigned" in net tree.
Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
This replaces an unjustified BUG_ON(), which could get triggered under normal
conditions: X_calc can be 0 when p > 0. X would in this case be set to the
minimum, s/t_mbi. Its replacement avoids t_ipi = 0 (unbounded sending rate).
Thanks to Jordi, Victor and Xavier who reported this.
Signed-off-by: Gerrit Renker <gerrit@erg.abdn.ac.uk>
Acked-by: Ian McDonald <ian.mcdonald@jandi.co.uk>
|
|
module_param(bool) used to counter-intuitively take an int. In
fddd5201 (mid-2009) we allowed bool or int/unsigned int using a messy
trick.
It's time to remove the int/unsigned int option. For this version
it'll simply give a warning, but it'll break next kernel version.
(Thanks to Joe Perches for suggesting coccinelle for 0/1 -> true/false).
Cc: "David S. Miller" <davem@davemloft.net>
Cc: netdev@vger.kernel.org
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
These files were getting access to these two via the implicit
presence of module.h everywhere. They aren't modules, so they
don't need the full module.h inclusion though.
Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
|
|
This patch causes CCID-2 to check the Ack Ratio after reducing the congestion
window. If the Ack Ratio is greater than the congestion window, it is
reduced. This prevents timeouts caused by an Ack Ratio larger than the
congestion window.
In this situation, we choose to set the Ack Ratio to half the congestion window
(or one if that's zero) so that if we loose one ack we don't trigger a timeout.
Signed-off-by: Samuel Jero <sj323707@ohio.edu>
Acked-by: Gerrit Renker <gerrit@erg.abdn.ac.uk>
|
|
This patch fixes an issue where CCID-2 will not increase the congestion
window for numerous RTTs after an idle period, application-limited period,
or a loss once the algorithm is in Congestion Avoidance.
What happens is that, when CCID-2 is in Congestion Avoidance mode, it will
increase hc->tx_packets_acked by one for every packet and will increment cwnd
every cwnd packets. However, if there is now an idle period in the connection,
cwnd will be reduced, possibly below the slow start threshold. This will
cause the connection to go into Slow Start. However, in Slow Start CCID-2
performs this test to increment cwnd every second ack:
++hc->tx_packets_acked == 2
Unfortunately, this will be incorrect, if cwnd previous to the idle period
was larger than 2 and if tx_packets_acked was close to cwnd. For example:
cwnd=50 and tx_packets_acked=45.
In this case, the current code, will increment tx_packets_acked until it
equals two, which will only be once tx_packets_acked (an unsigned 32-bit
integer) overflows.
My fix is simply to change that test for tx_packets_acked greater than or
equal to two in slow start.
Signed-off-by: Samuel Jero <sj323707@ohio.edu>
Acked-by: Gerrit Renker <gerrit@erg.abdn.ac.uk>
|
|
Add a check to prevent CCID-2 from increasing the cwnd greater than the
Sequence Window.
When the congestion window becomes bigger than the Sequence Window, CCID-2
will attempt to keep more data in the network than the DCCP Sequence Window
code considers possible. This results in the Sequence Window code issuing
a Sync, thereby inducing needless overhead. Further, if this occurs at the
sender, CCID-2 will never detect the problem because the Acks it receives
will indicate no losses. I have seen this cause a drop of 1/3rd in throughput
for a connection.
Also add code to adjust the Sequence Window to be about 5 times the number of
packets in the network (RFC 4340, 7.5.2) and to adjust the Ack Ratio so that
the remote Sequence Window will hold about 5 times the number of packets in
the network. This allows the congestion window to increase correctly without
being limited by the Sequence Window.
Signed-off-by: Samuel Jero <sj323707@ohio.edu>
Acked-by: Gerrit Renker <gerrit@erg.abdn.ac.uk>
|
|
This uses the new feature-negotiation framework to signal Ack Ratio changes,
as required by RFC 4341, sec. 6.1.2.
That raises some problems with CCID-2, which at the moment can not cope
gracefully with Ack Ratios > 1. Since these issues are not directly related
to feature negotiation, they are marked by a FIXME.
Signed-off-by: Gerrit Renker <gerrit@erg.abdn.ac.uk>
Signed-off-by: Samuel Jero <sj323707@ohio.edu>
Acked-by: Ian McDonald <ian.mcdonald@jandi.co.uk>
|
|
CCID-2's cwnd increases like TCP during slow-start, which has implications for
* the local Sequence Window value (should be > cwnd),
* the Ack Ratio value.
Hence an exponential growth, if it does not reflect the actual network
conditions, can quickly lead to instability.
This patch adds congestion-window validation (RFC2861) to CCID-2:
* cwnd is constrained if the sender is application limited;
* cwnd is reduced after a long idle period, as suggested in the '90 paper
by Van Jacobson, in RFC 2581 (sec. 4.1);
* cwnd is never reduced below the RFC 3390 initial window.
As marked in the comments, the code is actually almost a direct copy of the
TCP congestion-window-validation algorithms. By continuing this work, it may
in future be possible to use the TCP code (not possible at the moment).
The mechanism can be turned off using a module parameter. Sampling of the
currently-used window (moving-maximum) is however done constantly; this is
used to determine the expected window, which can be exploited to regulate
DCCP's Sequence Window value.
This patch also sets slow-start-after-idle (RFC 4341, 5.1), i.e. it behaves like
TCP when net.ipv4.tcp_slow_start_after_idle = 1.
Signed-off-by: Gerrit Renker <gerrit@erg.abdn.ac.uk>
|
|
This replaces a switch statement with a test, using the equivalent
function dccp_data_packet(skb). It also doubles the range of the field
`rx_num_data_pkts' by changing the type from `int' to `u32', avoiding
signed/unsigned comparison with the u16 field `dccps_r_ack_ratio'.
Signed-off-by: Gerrit Renker <gerrit@erg.abdn.ac.uk>
|
|
This moves CCID-2's initial window function into the header file, since several
parts throughout the CCID-2 code need to call it (CCID-2 still uses RFC 3390).
Signed-off-by: Gerrit Renker <gerrit@erg.abdn.ac.uk>
Acked-by: Leandro Melo de Sales <leandro@ic.ufal.br>
|
|
Signed-off-by: David S. Miller <davem@davemloft.net>
Acked-by: Nandita Dukkipati <nanditad@google.com>
|
|
This patch replaces an almost identical replication of code: large parts
of dccp_parse_options() re-appeared as ccid2_ackvector() in ccid2.c.
Apart from the duplication, this caused two more problems:
1. CCIDs should not need to be concerned with parsing header options;
2. one can not assume that Ack Vectors appear as a contiguous area within an
skb, it is legal to insert other options and/or padding in between. The
current code would throw an error and stop reading in such a case.
Since Ack Vectors provide CCID-specific information, they are now processed
by the CCID directly, separating this functionality from the main DCCP code.
Signed-off-by: Gerrit Renker <gerrit@erg.abdn.ac.uk>
|
|
This patch brings the Ack Vector interface up to date. Its main purpose is
to lay the basis for the subsequent patches of this set, which will use the
new data structure fields and routines.
There are no real algorithmic changes, rather an adaptation:
(1) Replaced the static Ack Vector size (2) with a #define so that it can
be adapted (with low loss / Ack Ratio, a value of 1 works, so 2 seems
to be sufficient for the moment) and added a solution so that computing
the ECN nonce will continue to work - even with larger Ack Vectors.
(2) Replaced the #defines for Ack Vector states with a complete enum.
(3) Replaced #defines to compute Ack Vector length and state with general
purpose routines (inlines), and updated code to use these.
(4) Added a `tail' field (conversion to circular buffer in subsequent patch).
(5) Updated the (outdated) documentation for Ack Vector struct.
(6) All sequence number containers now trimmed to 48 bits.
(7) Removal of unused bits:
* removed dccpav_ack_nonce from struct dccp_ackvec, since this is already
redundantly stored in the `dccpavr_ack_nonce' (of Ack Vector record);
* removed Elapsed Time for Ack Vectors (it was nowhere used);
* replaced semantics of dccpavr_sent_len with dccpavr_ack_runlen, since
the code needs to be able to remember the old run length;
* reduced the de-/allocation routines (redundant / duplicate tests).
Signed-off-by: Gerrit Renker <gerrit@erg.abdn.ac.uk>
|
|
This updates CCID-2 to use the CCID dequeuing mechanism, converting from
previous continuous-polling to a now event-driven mechanism.
Signed-off-by: Gerrit Renker <gerrit@erg.abdn.ac.uk>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
This patch reorganises the return value convention of the CCID TX sending
function, to permit more flexible schemes, as required by subsequent patches.
Currently the convention is
* values < 0 mean error,
* a value == 0 means "send now", and
* a value x > 0 means "send in x milliseconds".
The patch provides symbolic constants and a function to interpret return values.
In addition, it caps the maximum positive return value to 0xFFFF milliseconds,
corresponding to 65.535 seconds. This is possible since in CCID-3/4 the
maximum possible inter-packet gap is fixed at t_mbi = 64 sec.
Signed-off-by: Gerrit Renker <gerrit@erg.abdn.ac.uk>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
This removes the argument `more' from ccid_hc_tx_packet_sent, since it was
nowhere used in the entire code.
(Btw, this argument was not even used in the original KAME code where the
function initially came from; compare the variable moreToSend in the
freebsd61-dccp-kame-28.08.2006.patch kept by Emmanuel Lochin.)
Signed-off-by: Gerrit Renker <gerrit@erg.abdn.ac.uk>
|
|
Change "return (EXPR);" to "return EXPR;"
return is not a function, parentheses are not required.
Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
The `options_received' struct is redundant, since it re-duplicates the existing
`p' and `x_recv' fields. This patch removes the sub-struct and migrates the
format conversion operations to ccid3_hc_tx_parse_options().
Signed-off-by: Gerrit Renker <gerrit@erg.abdn.ac.uk>
|
|
This adds a function to take care of the following, separate cases occurring in
the computation of the Loss Rate p:
* 1/(2^32-1) is mapped into 0% as per RFC 4342, 8.5;
* 1/0 is mapped into 100%, the maximum;
* to avoid that p = 1/x is rounded down to 0 when x is very large, since this
means accidentally re-entering slow-start indicated by p == 0, the minimum
resolution value of p is now returned instead;
* a bug in ccid3_hc_rx_getsockopt is fixed: 1/0 was mapped into ~0U.
Signed-off-by: Gerrit Renker <gerrit@erg.abdn.ac.uk>
|
|
This patch is thanks to an investigation by Leandro Sales de Melo and his
colleagues. They worked out two state diagrams which highlight the fact that
the xxx_TERM states in CCID-3/4 are in fact not necessary.
And this can be confirmed by in turn looking at the code: the xxx_TERM states
are only ever set in ccid3_hc_{rx,tx}_exit(): when CCID-3 sets the state
to xxx_TERM, it is at a time where no more processing should be going on,
hence it is not necessary to introduce a dedicated exit state - this is already
implied by unloading the CCID.
Signed-off-by: Gerrit Renker <gerrit@erg.abdn.ac.uk>
|
|
This
1. adds packet type information to ccid_hc_{rx,tx}_parse_options(). This is
necessary, since table 3 in RFC 4340, 5.8 leaves it to the CCIDs to state
which options may (not) appear on what packet type.
2. adds such a check for CCID-3's {Loss Event, Receive} Rate as specified in
RFC 4340 8.3 ("Receive Rate options MUST NOT be sent on DCCP-Data packets")
and 8.5 ("Loss Event Rate options MUST NOT be sent on DCCP-Data packets").
3. removes an unused argument `idx' from ccid_hc_{rx,tx}_parse_options(). This
is also no longer necessary, since the CCID-specific option-parsing routines
are passed every single parameter of the type-length-value option encoding.
Signed-off-by: Gerrit Renker <gerrit@erg.abdn.ac.uk>
|
|
This simplifies and consolidates the TX option-parsing code:
1. The Loss Intervals option is not currently used, so dead code related to
this option is removed. I am aware of no plans to support the option, but
if someone wants to implement it (e.g. for inter-op tests), it is better
to start afresh than having to also update currently unused code.
2. The Loss Event and Receive Rate options have a lot of code in common (both
are 32 bit, both have same length etc.), so this is consolidated.
3. The test against GSR is not necessary, because
- on first loading CCID3, ccid_new() zeroes out all fields in the socket;
- ccid3_hc_tx_packet_recv() treats 0 and ~0U equivalently, due to
pinv = opt_recv->ccid3or_loss_event_rate;
if (pinv == ~0U || pinv == 0)
hctx->p = 0;
- as a result, the sequence number field is removed from opt_recv.
Signed-off-by: Gerrit Renker <gerrit@erg.abdn.ac.uk>
|
|
This removes the RTT-sampling function tfrc_tx_hist_rtt(), since
1. it suffered from complex passing of return values (the return value both
indicated successful lookup while the value doubled as RTT sample);
2. when for some odd reason the sample value equalled 0, this triggered a bug
warning about "bogus Ack", due to the ambiguity of the return value;
3. on a passive host which has not sent anything the TX history is empty and
thus will lead to unwanted "bogus Ack" warnings such as
ccid3_hc_tx_packet_recv: server(e7b7d518): DATAACK with bogus ACK-28197148
ccid3_hc_tx_packet_recv: server(e7b7d518): DATAACK with bogus ACK-26641606.
The fix is to replace the implicit encoding by performing the steps manually.
Furthermore, the "bogus Ack" warning has been removed, since it can actually be
triggered due to several reasons (network reordering, old packet, (3) above),
hence it is not very useful.
Signed-off-by: Gerrit Renker <gerrit@erg.abdn.ac.uk>
|
|
This fixes a subtle bug in the calculation of the inter-packet gap and shows
that t_delta, as it is currently used, is not needed.
The algorithm from RFC 5348, 8.3 below continually computes a send time t_nom,
which is initialised with the current time t_now; t_gran = 1E6 / HZ specifies
the scheduling granularity, s the packet size, and X the sending rate:
t_distance = t_nom - t_now; // in microseconds
t_delta = min(t_ipi, t_gran) / 2; // `delta' parameter in microseconds
if (t_distance >= t_delta) {
reschedule after (t_distance / 1000) milliseconds;
} else {
t_ipi = s / X; // inter-packet interval in usec
t_nom += t_ipi; // compute the next send time
send packet now;
}
Problem:
--------
Rescheduling requires a conversion into milliseconds (sk_reset_timer()). The
highest jiffy resolution with HZ=1000 is 1 millisecond, so using a higher
granularity does not make much sense here.
As a consequence, values of t_distance < 1000 are truncated to 0. This issue
has so far been resolved by using instead
if (t_distance >= t_delta + 1000)
reschedule after (t_distance / 1000) milliseconds;
This is unnecessarily large, a lower bound is t_delta' = max(t_delta, 1000).
And it implies a further simplification:
a) when HZ >= 500, then t_delta <= t_gran/2 = 10^6/(2*HZ) <= 1000, so that
t_delta' = MAX(1000, t_delta) = 1000 (constant value);
b) when HZ < 500, then t_delta = 1/2*MIN(rtt, t_ipi, t_gran) <= t_gran/2,
so that 1000 <= t_delta' <= t_gran/2.
The maximum error of using a constant t_delta in (b) is less than half a jiffy.
Fix:
----
The patch replaces t_delta with a constant, whose value depends on CONFIG_HZ,
changing the above algorithm to:
if (t_distance >= t_delta')
reschedule after (t_distance / 1000) milliseconds;
where t_delta' = 10^6/(2*HZ) if HZ < 500, and t_delta' = 1000 otherwise.
Signed-off-by: Gerrit Renker <gerrit@erg.abdn.ac.uk>
|
|
This makes RTAX_RTO_MIN also available to CCID-3, replacing the compile-time
RTO lower bound with a per-route tunable value.
The original Kconfig option solved the problem that a very low RTT (in the
order of HZ) can trigger too frequent and unnecessary reductions of the
sending rate.
This tunable does not affect the initial RTO value of 2 seconds specified in
RFC 5348, section 4.2 and Appendix B. But like the hardcoded Kconfig value,
it allows to adapt to network conditions.
The same effect as the original Kconfig option of 100ms is now achieved by
> ip route replace to unicast 192.168.0.0/24 rto_min 100j dev eth0
(assuming HZ=1000).
Signed-off-by: Gerrit Renker <gerrit@erg.abdn.ac.uk>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
Using a fixed RTO_MIN of 0.2 seconds was found to cause problems for CCID-2
over 802.11g: at least once per session there was a spurious timeout. It
helped to then increase the the value of RTO_MIN over this link.
Since the problem is the same as in TCP, this patch makes the solution from
commit "05bb1fad1cde025a864a90cfeb98dcbefe78a44a"
"[TCP]: Allow minimum RTO to be configurable via routing metrics."
available to DCCP.
This avoids reinventing the wheel, so that e.g. the following works in the
expected way now also for CCID-2:
> ip route change 10.0.0.2 rto_min 800 dev ath0
Luckily this useful rto_min function was recently moved to net/tcp.h,
which simplifies sharing code originating from TCP.
Documentation also updated (plus minor whitespace fixes).
Signed-off-by: Gerrit Renker <gerrit@erg.abdn.ac.uk>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
This patch consolidates initial-window code common to TCP and CCID-2:
* TCP uses RFC 3390 in a packet-oriented manner (tcp_input.c) and
* CCID-2 uses RFC 3390 in packet-oriented manner (RFC 4341).
Signed-off-by: Gerrit Renker <gerrit@erg.abdn.ac.uk>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
This removes the wrappers around the sk timer functions, since not much is
gained from using them: the BUG_ON in start_rto_timer will never trigger
since that function is called only if:
* the RTO timer expires (rto_expire, and then timer_pending() is false);
* in tx_packet_sent only if !timer_pending() (BUG_ON is redundant here);
* previously in new_ack, after stopping the timer (timer_pending() false).
Removing the wrappers also clears the way for eventually replacing the
RTO timer with the icsk-retransmission-timer, as it is already part of the
DCCP socket.
Signed-off-by: Gerrit Renker <gerrit@erg.abdn.ac.uk>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
Since CCID-2 is de facto a mini implementation of TCP, it makes sense to share
as much code as possible.
Hence this patch aligns CCID-2 timestamping with TCP timestamping.
This also halves the space consumption (on 64-bit systems).
The necessary include file <net/tcp.h> is already included by way of
net/dccp.h. Redundant includes have been removed.
Signed-off-by: Gerrit Renker <gerrit@erg.abdn.ac.uk>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
The current CCID-2 RTT estimator code is in parts broken and lags behind the
suggestions in RFC2988 of using scaled variants for SRTT/RTTVAR.
That code is replaced by the present patch, which reuses the Linux TCP RTT
estimator code.
Further details:
----------------
1. The minimum RTO of previously one second has been replaced with TCP's, since
RFC4341, sec. 5 says that the minimum of 1 sec. (suggested in RFC2988, 2.4)
is not necessary. Instead, the TCP_RTO_MIN is used, which agrees with DCCP's
concept of a default RTT (RFC 4340, 3.4).
2. The maximum RTO has been set to DCCP_RTO_MAX (64 sec), which agrees with
RFC2988, (2.5).
3. De-inlined the function ccid2_new_ack().
4. Added a FIXME: the RTT is sampled several times per Ack Vector, which will
give the wrong estimate. It should be replaced with one sample per Ack.
However, at the moment this can not be resolved easily, since
- it depends on TX history code (which also needs some work),
- the cleanest solution is not to use the `sent' time at all (saves 4 bytes
per entry) and use DCCP timestamps / elapsed time to estimated the RTT,
which however is non-trivial to get right (but needs to be done).
Reasons for reusing the Linux TCP estimator algorithm:
------------------------------------------------------
Some time was spent to find a better alternative, using basic RFC2988 as a first
step. Further analysis and experimentation showed that the Linux TCP RTO
estimator is superior to a basic RFC2988 implementation. A summary is on
http://www.erg.abdn.ac.uk/users/gerrit/dccp/notes/ccid2/rto_estimator/
In addition, this estimator fared well in a recent empirical evaluation:
Rewaskar, Sushant, Jasleen Kaur and F. Donelson Smith.
A Performance Study of Loss Detection/Recovery in Real-world TCP
Implementations. Proceedings of 15th IEEE International
Conference on Network Protocols (ICNP-07), 2007.
Thus there is significant benefit in reusing the existing TCP code.
Signed-off-by: Gerrit Renker <gerrit@erg.abdn.ac.uk>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
This removes the dec_pipe function and improves the way the RTO timer is rearmed
when a new acknowledgment comes in.
Details and justification for removal:
--------------------------------------
1) The BUG_ON in dec_pipe is never triggered: pipe is only decremented for TX
history entries between tail and head, for which it had previously been
incremented in tx_packet_sent; and it is not decremented twice for the same
entry, since it is
- either decremented when a corresponding Ack Vector cell in state 0 or 1
was received (and then ccid2s_acked==1),
- or it is decremented when ccid2s_acked==0, as part of the loss detection
in tx_packet_recv (and hence it can not have been decremented earlier).
2) Restarting the RTO timer happens for every single entry in each Ack Vector
parsed by tx_packet_recv (according to RFC 4340, 11.4 this can happen up to
16192 times per Ack Vector).
3) The RTO timer should not be restarted when all outstanding data has been
acknowledged. This is currently done similar to (2), in dec_pipe, when
pipe has reached 0.
The patch onsolidates the code which rearms the RTO timer, combining the
segments from new_ack and dec_pipe. As a result, the code becomes clearer
(compare with tcp_rearm_rto()).
Signed-off-by: Gerrit Renker <gerrit@erg.abdn.ac.uk>
Signed-off-by: David S. Miller <davem@davemloft.net>
|