Age | Commit message (Collapse) | Author | Files | Lines |
|
The drivers/video directory is a mess. It contains generic video related
files, directories for backlight, console, linux logo, lots of fbdev
device drivers, fbdev framework files.
Make some order into the chaos by creating drivers/video/fbdev
directory, and move all fbdev related files there.
No functionality is changed, although I guess it is possible that some
subtle Makefile build order related issue could be created by this
patch.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Acked-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org>
Acked-by: Rob Clark <robdclark@gmail.com>
Acked-by: Jingoo Han <jg1.han@samsung.com>
Acked-by: Daniel Vetter <daniel.vetter@ffwll.ch>
|
|
Merge OMAP DSS DT support
|
|
Add DT support to VENC.
In contrast to non-DT version, the DT version gets the invert-polarity
and connector type via venc's endpoint, not from the connector.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Reviewed-by: Archit Taneja <archit@ti.com>
|
|
The regulator names used for DSS components are somewhat ugly for DT
use. As we're just adding DT support, it's simple to change the
regulator names.
This patch makes the DSS driver get the regulators with somewhat cleaner
names when bootin with DT. For example, this allows us to define HDMI's
VDDA regulator in the DT data as:
vdda-supply = <...>;
instead of
vdda_hdmi_dac-supply = <...>;
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Reviewed-by: Archit Taneja <archit@ti.com>
|
|
omapdss has its own video-timings struct, but we want to move the common
videomode.
The first step is to change the omapdss's pixelclock unit from kHz to
Hz. Also, omapdss uses "pixel_clock" field name, whereas the common
videomode uses "pixelclock" field name. This patch changes the field
name also, as that makes it easy to spot any non-converted pixel_clock
uses.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
|
|
Nowadays it's normal to get -EPROBE_DEFER from, e.g., regulator_get. As
-EPROBE_DEFER is not really an error, and the driver will be probed fine
a bit later, printing an error message will just confuse the user.
This patch changes omapdss to print an error for regulator_gets only if
the error code is something else than -EPROBE_DEFER.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
|
|
In the old panel device model we had omap_dss_output entities,
representing the encoders in the DSS block. This entity had "device"
field, which pointed to the panel that was using the omap_dss_output.
With the new panel device model, the omap_dss_output is integrated into
omap_dss_device, which now represents a "display entity". Thus the "device"
field, now in omap_dss_device, points to the next entity in the display
entity-chain.
This patch renames the "device" field to "dst", which much better tells
what the field points to.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Reviewed-by: Archit Taneja <archit@ti.com>
|
|
Now that the old panel drivers have been removed, we can remove the
old-model API and related code from the DSS encoder drivers.
This patch removes the code from the VENC driver.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Reviewed-by: Archit Taneja <archit@ti.com>
|
|
Add "ops" style method for using analog TV functionality.
Ops style calls will allow us to have arbitrarily long display
pipelines, where each entity can call ops in the previous display
entity.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
|
|
In order to allow multiple display block in a video pipeline, we need to
give the drivers way to register themselves. For now we have
the omapdss_register_display() which is used to register panels, and
dss_register_output() which is used to register DSS encoders.
This patch makes dss_register_output() public (with the name of
omapdss_register_output), which can be used to register also external
encoders. The distinction between register_output and register_display
is that a "display" is an entity at the end of the videopipeline, and
"output" is something inside the pipeline.
The registration and naming will be made saner in the future, but the
current names and functions are kept to minimize changes during the dss
device model transition.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
|
|
DISPC needs to know the clock rate for DIGIT (i.e. TV) channel, and this
clock is provided by either VENC or HDMI modules. Currently DISPC will
call a function in VENC/HDMI, asking what the clock rate is. This means
we have a fixed dependency from DISPC to both VENC and HDMI.
To have a more generic approach, and in particular to allow adding OMAP5
HDMI driver, we need to remove this dependency. This patch makes
VENC/HDMI inform DISPC when the their clock changes, thus reversing the
dependency and removing the issue.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
|
|
Setup the owner field for DSS output's omap_dss_device so that module
refcounting works.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
|
|
We currently have omap_dss_device, which represents an external display
device, sometimes an external encoder, sometimes a panel. Then we have
omap_dss_output, which represents DSS's output encoder.
In the future with new display device model, we construct a video
pipeline from the display blocks. To accomplish this, all the blocks
need to be presented by the same entity.
Thus, this patch combines omap_dss_output into omap_dss_device. Some of
the fields in omap_dss_output are already found in omap_dss_device, but
some are not. This means we'll have DSS output specific fields in
omap_dss_device, which is not very nice. However, it is easier to just
keep those output specific fields there for now, and after transition to
new display device model is made, they can be cleaned up easier than
could be done now.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
|
|
The omap_dss_start_device() and omap_dss_stop_device(), called by the
DSS output drivers, are old relics. They originally did something
totally else, but nowadays they increase the module ref count for panels
that are enabled.
This model is quite broken: the panel modules may be used even before
they are enabled. For example, configuring the panel requires calls to
functions located in the panel modules.
In the following patches we try to improve the ref count management for
the modules and display devices. The first step, however, is to remove
the omap_dss_start/stop_device() totally.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
|
|
In the future the "dssdev" parameter passed to output drivers will
change its meaning. Instead of being a pointer to the panel device, it's
a pointer to the output instance.
To make the transition easier, some of the uses for this dssdev
parameter can be easily removed.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
|
|
Clean up the VENC driver's regulator init to remove the (unused)
omap_dss_device parameter, renaming the function to a more sensible
name, and making the code slightly clearer.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
|
|
omapdss output drivers always read the platform data. This crashes when
there's no platform data when using DT.
Add a check to read the platform data only if it exists.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
|
|
Add proper error handling for venc_probe_pdata(). This will cause
EPROBE_DEFER to be properly passed upwards, causing the VENC driver to be
probed again later if a resource was missing.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
|
|
Use platform_driver_register() instead of platform_driver_probe() so
that we can support EPROBE_DEFER.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
|
|
|
|
Use devm_clk_get() instead of clk_get() for dss, and for outputs hdmi
and venc. This reduces code and simplifies error handling.
Signed-off-by: Archit Taneja <archit@ti.com>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
|
|
The platform_enable/disable callbacks in board files for VENC omap_dss_device
instances don't do anything. Hence, we can remove these callbacks from the VENC
driver.
Signed-off-by: Archit Taneja <archit@ti.com>
|
|
The DISPC channel used for each output is currently passed in panel
platform data from the board files.
To simplify this, and to make the panel drivers less dependent on OMAP,
this patch changes omapdss to resolve the channel independently. The
channel is resolved based on the OMAP version and, in case of DSI, the
DSI module id. This resolved channel is stored into a new field in
output, dispc_channel.
The few places where dssdev->channel was used are changed to use
output->recommended_channel. After this patch, dssdev->channel is
obsolete.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Reviewed-by: Archit Taneja <archit@ti.com>
|
|
Add name field to omapdss's outputs so that in the following patches
panels refer to the output by their name. The name also helps debugging.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Reviewed-by: Archit Taneja <archit@ti.com>
|
|
We currently attach an output to a dssdev in the initialization code for
dssdevices in display.c. This works, but doesn't quite make sense: an
output entity represents (surprisingly) an output of DSS, which is
managed by an output driver. The output driver also handles adding new
dssdev's for that particular output.
It makes more sense to make the output-dssdev connection in the output
driver. This is also in line with common display framework.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
|
|
Export dss_get_def_display_name() with the name of
omapdss_get_def_display_name() so that omapfb can use it after the next
patch which moves default display handling to omapfb.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
|
|
With addition of output entities, a device connects to an output, and an output
connects to overlay manager. Replace the dssdev->manager references with
dssdev->output->manager to access the manager correctly.
When enabling the VENC output, check whether the output entity connected to
display is not NULL.
Signed-off-by: Archit Taneja <archit@ti.com>
|
|
Add output structs to output driver's private data. Register output instances by
having an init function in the probes of the platform device drivers for
different outputs. The *_init_output for each output registers the output and
fill up the output's plaform device, type and id fields. The *_uninit_output
functions unregister the output.
In the probe of each interface driver, the output entities are initialized
before the *_probe_pdata() functions intentionally. This is done to ensure that
the output entity is prepared before the panels connected to the output are
registered. We need the output entities to be ready because OMAPDSS will try
to make connections between overlays, managers, outputs and devices during the
panel's probe.
Signed-off-by: Archit Taneja <archit@ti.com>
|
|
We currently create omap_dss_devices statically in board files, and use
those devices directly in the omapdss driver. This model prevents us
from having the platform data (which the dssdevs in board files
practically are) as read-only, and it's also different than what we will
use with device tree.
This patch changes the model to be in line with DT model: we allocate
the dssdevs dynamically, and initialize them according to the data in
the board file's dssdev (basically we memcopy the dssdev fields).
The allocation and registration is done in the following steps in the
output drivers:
- Use dss_alloc_and_init_device to allocate and initialize the device.
The function uses kalloc and device_initialize to accomplish this.
- Call dss_copy_device_pdata to copy the data from the board file's
dssdev
- Use dss_add_device to register the device.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
|
|
HDMI and VENC outputs always use the DIGIT output from DISPC. The dssdev
struct contains "channel" field which is used to specify the DISPC
output for the display, but this was not used for HDMI and VENC.
This patch fills the channel field explicitely for HDMI and VENC
displays so that we can always rely on the channel field.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
|
|
We have boards with multiple panel devices connected to the same
physical output, of which only one panel can be enabled at one time.
Examples of these are Overo, where you can use different daughter boards
that have different LCDs, and 3430SDP which has an LCD and a DVI output
and a physical switch to select the active display.
These are supported by omapdss so that we add all the possible display
devices at probe, but the displays are inactive until somebody enables
one. At this point the panel driver starts using the DSS, thus reserving
the physcal resource and excluding the other panels.
This is problematic:
- Panel drivers can't allocate their resources properly at probe(),
because the resources can be shared with other panels. Thus they can
be only reserved at enable time.
- Managing this in omapdss is confusing. It's not natural to have
child devices, which may not even exist (for example, a daughterboard
that is not connected).
Only some boards have multiple displays per output, and of those, only
very few have possibility of switching the display during runtime.
Because of the above points:
- We don't want to make omapdss and all the panel drivers more complex
just because some boards have complex setups.
- Only few boards support runtime switching, and afaik even then it's
not required. So we don't need to support runtime switching.
Thus we'll change to a model where we will have only one display device
per output and this cannot be (currently) changed at runtime. We'll
still have the possibility to select the display from multiple options
during boot with the default display option.
This patch accomplishes the above by changing how the output drivers
register the display device. Instead of registering all the devices
given from the board file, we'll only register one. If the default
display option is set, the output driver selects that display from its
displays. If the default display is not set, or the default display is
not one of the output's displays, the output driver selects the first
display.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
|
|
We used to have all the displays of the board in one list, and we made a
"displayX" directory in the sysfs, where X was the index of the display
in the list.
This doesn't work anymore with device tree, as there's no single list to
get the number from, and it doesn't work very well even with non-DT as
we need to do some tricks to get the index nowadays.
This patch changes omap_dss_register_device() so that it doesn't take
disp_num as a parameter anymore, but uses a private increasing counter
for the display number.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
|
|
set_timings function of DSS's output drivers are not consistent. Some of
them disable the output, set the timings, and re-enable the output. Some
set the timings on the fly, while the output is enabled. And some just
store the given timings, so that they will be taken into use next time
the output is enabled.
We require the DISPC output to be disabled when changing the timings,
and so we can change all the output drivers' set_timings to just store
the given timings.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
|
|
Remove unnecessary includes from omapdss.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
|
|
OMAP4 checks are removed from VENC to provide it a cleaner interface. These
checks were introduced by patches "HACK: OMAP: DSS2: VENC: disable VENC on OMAP4
to prevent crash" (ba02fa37de) by Tomi Valkeinen <tomi.valkeinen@ti.com> and
"OMAPDSS: VENC: fix NULL pointer dereference in DSS2 VENC sysfs debug attr on
OMAP4" (cc1d3e032d) by Danny Kukawka <danny.kukawka@bisect.de> to prevent VENC
from crashing OMAP4 kernel.
Signed-off-by: Chandrabhanu Mahapatra <cmahapatra@ti.com>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
|
|
The VENC driver currently relies on the omap_dss_device struct to configure the
video output polarity. This makes the VENC interface driver dependent on the
omap_dss_device struct.
Make the VENC driver data maintain it's own polarity field. A panel driver
is expected to call omapdss_venc_invert_vid_out_polarity() before enabling the
interface.
Signed-off-by: Archit Taneja <archit@ti.com>
|
|
The VENC driver currently relies on the omap_dss_device struct to configure the
venc type. This makes the VENC interface driver dependent on the omap_dss_device
struct.
Make the VENC driver data maintain it's own 'venc type' field. A panel driver
is expected to call omapdss_venc_set_type() before enabling the interface or
changing the type via display sysfs attributes.
Signed-off-by: Archit Taneja <archit@ti.com>
|
|
The VENC driver currently relies on the timings in omap_dss_device struct to
configure the DISPC and VENC blocks accordingly. This makes the VENC interface
driver dependent on the omap_dss_device struct.
Make the VENC driver data maintain it's own timings field. The panel driver is
expected to call omapdss_venc_set_timings() to set these timings before the
panel is enabled. Call omapdss_venc_set_timings() before enabling
venc output, this is done to atleast have the venc output configured to the
panel's default timings if the DSS user didn't explicitly call the venc panel
driver's set_timings op.
Make the VENC panel driver configure the new timings is the omap_dss_device
struct(dssdev->panel.timings). The VENC driver is responsible for maintaining
only it's own copy of timings.
Signed-off-by: Archit Taneja <archit@ti.com>
|
|
The current venc.c driver contains both the interface and panel driver code.
This makes the driver hard to read, and difficult to understand the work split
between the interface and panel driver and the how the locking works.
This also makes it easier to clearly define the VENC interface ops called by the
panel driver.
Split venc.c into venc.c and venc_panel.c representing the interface and panel
driver respectively. This split is done along the lines of the HDMI interface
and panel drivers.
Signed-off-by: Archit Taneja <archit@ti.com>
|
|
Add a parameter called interlace which tells whether the timings are in
interlaced or progressive mode. This aligns the omap_video_timings struct with
the Xorg modeline configuration.
It also removes the hack needed to write to divide the manager height by 2 if
the connected interface is VENC.
Signed-off-by: Archit Taneja <archit@ti.com>
|
|
If runtime PM is not enabled in the kernel config, pm_runtime_get_sync()
will always return 1 and pm_runtime_put_sync() will always return
-ENOSYS. pm_runtime_get_sync() returning 1 presents no problem to the
driver, but -ENOSYS from pm_runtime_put_sync() causes the driver to
print a warning.
One option would be to ignore errors returned by pm_runtime_put_sync()
totally, as they only say that the call was unable to put the hardware
into suspend mode.
However, I chose to ignore the returned -ENOSYS explicitly, and print a
warning for other errors, as I think we should get notified if the HW
failed to go to suspend properly.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Cc: Jassi Brar <jaswinder.singh@linaro.org>
Cc: Grazvydas Ignotas <notasas@gmail.com>
|
|
In preparation of OMAP moving to Common Clk Framework(CCF) change
clk_enable() and clk_disable() calls to clk_prepare_enable() and
clk_disable_unprepare() in omapdss. This can be safely done, as omapdss
never enables or disables clocks in atomic context.
Signed-off-by: Rajendra Nayak <rnayak@ti.com>
Cc: Tomi Valkeinen <tomi.valkeinen@ti.com>
Cc: <linux-fbdev@vger.kernel.org>
Cc: Paul Walmsley <paul@pwsan.com>
Cc: Mike Turquette <mturquette@linaro.org>
[tomi.valkeinen@ti.com: updated patch description]
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
|
|
The VENC interfaces uses it's venc_set_timing() function to take in a new set
of timings. If the panel is disabled, it does not disable and re-enable the
interface. Currently, the manager timings are applied in venc_power_on(), these
are not called by set_timings if the panel is disabled. When checking overlay
and manager data, the DSS driver uses the last applied manager timings, and not
the timings held by omap_dss_device struct. Hence, there is a need to apply the
new manager timings even if the panel is disabled.
Apply the manager timings if the VENC panel is disabled.
This is similar to the commit below which fixed the same issue for HDMI/DPI
interfaces:
fcc36619901064a76e15a545ea36d38ba0e54192
Signed-off-by: Archit Taneja <archit@ti.com>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
|
|
DSS2 driver uses the timings in manager's private data to check the validity of
overlay and manager infos written by the user. For VENC interface, we divide the
Y resolution by half when writing to the DISPC_DIGIT_SIZE register as the
content is interlaced. However, the height of the manager/display with respect
to the content shown through VENC still remains the same.
The VENC driver divides the y_res parameter in omap_video_timings by half, and
then applies the configuration. This leads to manager's private data storing
the wrong Y resolution. Hence, overlay related checks fail.
Ensure that manager's private data stores the original timings, and the Y
resolution is halved only when we write to the DISPC register. This is a hack,
the proper solution would be to pass some sort of interlace parameter which
makes the call whether we should divide y_res or not.
Signed-off-by: Archit Taneja <archit@ti.com>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
|
|
If CONFIG_BUG is not enabled, BUG() does not stop the execution. Many
places in code expect the execution to stop, and this causes compiler
warnings about uninitialized variables and returning from a non-void
function without a return value.
This patch fixes the warnings by initializing the variables and
returning properly after BUG() lines. However, the behaviour is still
undefined after the BUG, but this is the choice the user makes when
using CONFIG_BUG=n.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
|
|
Move the platform-data based display device initialization into a
separate function, so that we may later add of-based initialization.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
|
|
Now that each output driver creates their own display devices, the
output drivers can also initialize those devices.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
|
|
Currently the higher level omapdss platform driver gets the list of
displays in its platform data, and uses that list to create the
omap_dss_device for each display.
With DT, the logical way to do the above is to list the displays under
each individual output, i.e. we'd have "dpi" node, under which we would
have the display that uses DPI. In other words, each output driver
handles the displays that use that particular output.
To make the current code ready for DT, this patch modifies the output
drivers so that each of them creates the display devices which use that
output. However, instead of changing the platform data to suit this
method, each output driver is passed the full list of displays, and the
drivers pick the displays that are meant for them. This allows us to
keep the old platform data, and thus we avoid the need to change the
board files.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
|
|
Now that we are using platform_driver_probe() we can add __inits and
__exits all around.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
|
|
Now that the core.c doesn't fail if output driver's init fails, we can
change the uses of platform_driver_register to platform_driver_probe.
This will allow us to use __init in the following patches.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
|