diff options
Diffstat (limited to 'include/asm-generic/bitops-instrumented.h')
-rw-r--r-- | include/asm-generic/bitops-instrumented.h | 263 |
1 files changed, 263 insertions, 0 deletions
diff --git a/include/asm-generic/bitops-instrumented.h b/include/asm-generic/bitops-instrumented.h new file mode 100644 index 000000000000..ddd1c6d9d8db --- /dev/null +++ b/include/asm-generic/bitops-instrumented.h @@ -0,0 +1,263 @@ +/* SPDX-License-Identifier: GPL-2.0 */ + +/* + * This file provides wrappers with sanitizer instrumentation for bit + * operations. + * + * To use this functionality, an arch's bitops.h file needs to define each of + * the below bit operations with an arch_ prefix (e.g. arch_set_bit(), + * arch___set_bit(), etc.). + */ +#ifndef _ASM_GENERIC_BITOPS_INSTRUMENTED_H +#define _ASM_GENERIC_BITOPS_INSTRUMENTED_H + +#include <linux/kasan-checks.h> + +/** + * set_bit - Atomically set a bit in memory + * @nr: the bit to set + * @addr: the address to start counting from + * + * This is a relaxed atomic operation (no implied memory barriers). + * + * Note that @nr may be almost arbitrarily large; this function is not + * restricted to acting on a single-word quantity. + */ +static inline void set_bit(long nr, volatile unsigned long *addr) +{ + kasan_check_write(addr + BIT_WORD(nr), sizeof(long)); + arch_set_bit(nr, addr); +} + +/** + * __set_bit - Set a bit in memory + * @nr: the bit to set + * @addr: the address to start counting from + * + * Unlike set_bit(), this function is non-atomic. If it is called on the same + * region of memory concurrently, the effect may be that only one operation + * succeeds. + */ +static inline void __set_bit(long nr, volatile unsigned long *addr) +{ + kasan_check_write(addr + BIT_WORD(nr), sizeof(long)); + arch___set_bit(nr, addr); +} + +/** + * clear_bit - Clears a bit in memory + * @nr: Bit to clear + * @addr: Address to start counting from + * + * This is a relaxed atomic operation (no implied memory barriers). + */ +static inline void clear_bit(long nr, volatile unsigned long *addr) +{ + kasan_check_write(addr + BIT_WORD(nr), sizeof(long)); + arch_clear_bit(nr, addr); +} + +/** + * __clear_bit - Clears a bit in memory + * @nr: the bit to clear + * @addr: the address to start counting from + * + * Unlike clear_bit(), this function is non-atomic. If it is called on the same + * region of memory concurrently, the effect may be that only one operation + * succeeds. + */ +static inline void __clear_bit(long nr, volatile unsigned long *addr) +{ + kasan_check_write(addr + BIT_WORD(nr), sizeof(long)); + arch___clear_bit(nr, addr); +} + +/** + * clear_bit_unlock - Clear a bit in memory, for unlock + * @nr: the bit to set + * @addr: the address to start counting from + * + * This operation is atomic and provides release barrier semantics. + */ +static inline void clear_bit_unlock(long nr, volatile unsigned long *addr) +{ + kasan_check_write(addr + BIT_WORD(nr), sizeof(long)); + arch_clear_bit_unlock(nr, addr); +} + +/** + * __clear_bit_unlock - Clears a bit in memory + * @nr: Bit to clear + * @addr: Address to start counting from + * + * This is a non-atomic operation but implies a release barrier before the + * memory operation. It can be used for an unlock if no other CPUs can + * concurrently modify other bits in the word. + */ +static inline void __clear_bit_unlock(long nr, volatile unsigned long *addr) +{ + kasan_check_write(addr + BIT_WORD(nr), sizeof(long)); + arch___clear_bit_unlock(nr, addr); +} + +/** + * change_bit - Toggle a bit in memory + * @nr: Bit to change + * @addr: Address to start counting from + * + * This is a relaxed atomic operation (no implied memory barriers). + * + * Note that @nr may be almost arbitrarily large; this function is not + * restricted to acting on a single-word quantity. + */ +static inline void change_bit(long nr, volatile unsigned long *addr) +{ + kasan_check_write(addr + BIT_WORD(nr), sizeof(long)); + arch_change_bit(nr, addr); +} + +/** + * __change_bit - Toggle a bit in memory + * @nr: the bit to change + * @addr: the address to start counting from + * + * Unlike change_bit(), this function is non-atomic. If it is called on the same + * region of memory concurrently, the effect may be that only one operation + * succeeds. + */ +static inline void __change_bit(long nr, volatile unsigned long *addr) +{ + kasan_check_write(addr + BIT_WORD(nr), sizeof(long)); + arch___change_bit(nr, addr); +} + +/** + * test_and_set_bit - Set a bit and return its old value + * @nr: Bit to set + * @addr: Address to count from + * + * This is an atomic fully-ordered operation (implied full memory barrier). + */ +static inline bool test_and_set_bit(long nr, volatile unsigned long *addr) +{ + kasan_check_write(addr + BIT_WORD(nr), sizeof(long)); + return arch_test_and_set_bit(nr, addr); +} + +/** + * __test_and_set_bit - Set a bit and return its old value + * @nr: Bit to set + * @addr: Address to count from + * + * This operation is non-atomic. If two instances of this operation race, one + * can appear to succeed but actually fail. + */ +static inline bool __test_and_set_bit(long nr, volatile unsigned long *addr) +{ + kasan_check_write(addr + BIT_WORD(nr), sizeof(long)); + return arch___test_and_set_bit(nr, addr); +} + +/** + * test_and_set_bit_lock - Set a bit and return its old value, for lock + * @nr: Bit to set + * @addr: Address to count from + * + * This operation is atomic and provides acquire barrier semantics if + * the returned value is 0. + * It can be used to implement bit locks. + */ +static inline bool test_and_set_bit_lock(long nr, volatile unsigned long *addr) +{ + kasan_check_write(addr + BIT_WORD(nr), sizeof(long)); + return arch_test_and_set_bit_lock(nr, addr); +} + +/** + * test_and_clear_bit - Clear a bit and return its old value + * @nr: Bit to clear + * @addr: Address to count from + * + * This is an atomic fully-ordered operation (implied full memory barrier). + */ +static inline bool test_and_clear_bit(long nr, volatile unsigned long *addr) +{ + kasan_check_write(addr + BIT_WORD(nr), sizeof(long)); + return arch_test_and_clear_bit(nr, addr); +} + +/** + * __test_and_clear_bit - Clear a bit and return its old value + * @nr: Bit to clear + * @addr: Address to count from + * + * This operation is non-atomic. If two instances of this operation race, one + * can appear to succeed but actually fail. + */ +static inline bool __test_and_clear_bit(long nr, volatile unsigned long *addr) +{ + kasan_check_write(addr + BIT_WORD(nr), sizeof(long)); + return arch___test_and_clear_bit(nr, addr); +} + +/** + * test_and_change_bit - Change a bit and return its old value + * @nr: Bit to change + * @addr: Address to count from + * + * This is an atomic fully-ordered operation (implied full memory barrier). + */ +static inline bool test_and_change_bit(long nr, volatile unsigned long *addr) +{ + kasan_check_write(addr + BIT_WORD(nr), sizeof(long)); + return arch_test_and_change_bit(nr, addr); +} + +/** + * __test_and_change_bit - Change a bit and return its old value + * @nr: Bit to change + * @addr: Address to count from + * + * This operation is non-atomic. If two instances of this operation race, one + * can appear to succeed but actually fail. + */ +static inline bool __test_and_change_bit(long nr, volatile unsigned long *addr) +{ + kasan_check_write(addr + BIT_WORD(nr), sizeof(long)); + return arch___test_and_change_bit(nr, addr); +} + +/** + * test_bit - Determine whether a bit is set + * @nr: bit number to test + * @addr: Address to start counting from + */ +static inline bool test_bit(long nr, const volatile unsigned long *addr) +{ + kasan_check_read(addr + BIT_WORD(nr), sizeof(long)); + return arch_test_bit(nr, addr); +} + +#if defined(arch_clear_bit_unlock_is_negative_byte) +/** + * clear_bit_unlock_is_negative_byte - Clear a bit in memory and test if bottom + * byte is negative, for unlock. + * @nr: the bit to clear + * @addr: the address to start counting from + * + * This operation is atomic and provides release barrier semantics. + * + * This is a bit of a one-trick-pony for the filemap code, which clears + * PG_locked and tests PG_waiters, + */ +static inline bool +clear_bit_unlock_is_negative_byte(long nr, volatile unsigned long *addr) +{ + kasan_check_write(addr + BIT_WORD(nr), sizeof(long)); + return arch_clear_bit_unlock_is_negative_byte(nr, addr); +} +/* Let everybody know we have it. */ +#define clear_bit_unlock_is_negative_byte clear_bit_unlock_is_negative_byte +#endif + +#endif /* _ASM_GENERIC_BITOPS_INSTRUMENTED_H */ |