diff options
Diffstat (limited to 'drivers/iommu')
-rw-r--r-- | drivers/iommu/dma-iommu.c | 84 |
1 files changed, 61 insertions, 23 deletions
diff --git a/drivers/iommu/dma-iommu.c b/drivers/iommu/dma-iommu.c index 58f2fe687a24..886cb3a78326 100644 --- a/drivers/iommu/dma-iommu.c +++ b/drivers/iommu/dma-iommu.c @@ -389,26 +389,58 @@ void iommu_dma_unmap_page(struct device *dev, dma_addr_t handle, size_t size, /* * Prepare a successfully-mapped scatterlist to give back to the caller. - * Handling IOVA concatenation can come later, if needed + * + * At this point the segments are already laid out by iommu_dma_map_sg() to + * avoid individually crossing any boundaries, so we merely need to check a + * segment's start address to avoid concatenating across one. */ static int __finalise_sg(struct device *dev, struct scatterlist *sg, int nents, dma_addr_t dma_addr) { - struct scatterlist *s; - int i; + struct scatterlist *s, *cur = sg; + unsigned long seg_mask = dma_get_seg_boundary(dev); + unsigned int cur_len = 0, max_len = dma_get_max_seg_size(dev); + int i, count = 0; for_each_sg(sg, s, nents, i) { - /* Un-swizzling the fields here, hence the naming mismatch */ - unsigned int s_offset = sg_dma_address(s); + /* Restore this segment's original unaligned fields first */ + unsigned int s_iova_off = sg_dma_address(s); unsigned int s_length = sg_dma_len(s); - unsigned int s_dma_len = s->length; + unsigned int s_iova_len = s->length; - s->offset += s_offset; + s->offset += s_iova_off; s->length = s_length; - sg_dma_address(s) = dma_addr + s_offset; - dma_addr += s_dma_len; + sg_dma_address(s) = DMA_ERROR_CODE; + sg_dma_len(s) = 0; + + /* + * Now fill in the real DMA data. If... + * - there is a valid output segment to append to + * - and this segment starts on an IOVA page boundary + * - but doesn't fall at a segment boundary + * - and wouldn't make the resulting output segment too long + */ + if (cur_len && !s_iova_off && (dma_addr & seg_mask) && + (cur_len + s_length <= max_len)) { + /* ...then concatenate it with the previous one */ + cur_len += s_length; + } else { + /* Otherwise start the next output segment */ + if (i > 0) + cur = sg_next(cur); + cur_len = s_length; + count++; + + sg_dma_address(cur) = dma_addr + s_iova_off; + } + + sg_dma_len(cur) = cur_len; + dma_addr += s_iova_len; + + if (s_length + s_iova_off < s_iova_len) + cur_len = 0; } - return i; + return count; } /* @@ -446,34 +478,40 @@ int iommu_dma_map_sg(struct device *dev, struct scatterlist *sg, struct scatterlist *s, *prev = NULL; dma_addr_t dma_addr; size_t iova_len = 0; + unsigned long mask = dma_get_seg_boundary(dev); int i; /* * Work out how much IOVA space we need, and align the segments to * IOVA granules for the IOMMU driver to handle. With some clever * trickery we can modify the list in-place, but reversibly, by - * hiding the original data in the as-yet-unused DMA fields. + * stashing the unaligned parts in the as-yet-unused DMA fields. */ for_each_sg(sg, s, nents, i) { - size_t s_offset = iova_offset(iovad, s->offset); + size_t s_iova_off = iova_offset(iovad, s->offset); size_t s_length = s->length; + size_t pad_len = (mask - iova_len + 1) & mask; - sg_dma_address(s) = s_offset; + sg_dma_address(s) = s_iova_off; sg_dma_len(s) = s_length; - s->offset -= s_offset; - s_length = iova_align(iovad, s_length + s_offset); + s->offset -= s_iova_off; + s_length = iova_align(iovad, s_length + s_iova_off); s->length = s_length; /* - * The simple way to avoid the rare case of a segment - * crossing the boundary mask is to pad the previous one - * to end at a naturally-aligned IOVA for this one's size, - * at the cost of potentially over-allocating a little. + * Due to the alignment of our single IOVA allocation, we can + * depend on these assumptions about the segment boundary mask: + * - If mask size >= IOVA size, then the IOVA range cannot + * possibly fall across a boundary, so we don't care. + * - If mask size < IOVA size, then the IOVA range must start + * exactly on a boundary, therefore we can lay things out + * based purely on segment lengths without needing to know + * the actual addresses beforehand. + * - The mask must be a power of 2, so pad_len == 0 if + * iova_len == 0, thus we cannot dereference prev the first + * time through here (i.e. before it has a meaningful value). */ - if (prev) { - size_t pad_len = roundup_pow_of_two(s_length); - - pad_len = (pad_len - iova_len) & (pad_len - 1); + if (pad_len && pad_len < s_length - 1) { prev->length += pad_len; iova_len += pad_len; } |