diff options
author | Paolo Bonzini <pbonzini@redhat.com> | 2017-05-09 12:51:49 +0200 |
---|---|---|
committer | Paolo Bonzini <pbonzini@redhat.com> | 2017-05-09 12:51:49 +0200 |
commit | 36c344f3f1ffc0b1b20abd237b7401dc6687ee8f (patch) | |
tree | 24b330a2e62bfc8f576cccdc833b53e1f1b69050 /virt/kvm | |
parent | 03efce6f935f89f90a98997ceea514aeff47b6dc (diff) | |
parent | a2b19e6e2d4bb662a64799541c144fd94f8fb024 (diff) |
Merge tag 'kvm-arm-for-v4.12-round2' of git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into HEAD
Second round of KVM/ARM Changes for v4.12.
Changes include:
- A fix related to the 32-bit idmap stub
- A fix to the bitmask used to deode the operands of an AArch32 CP
instruction
- We have moved the files shared between arch/arm/kvm and
arch/arm64/kvm to virt/kvm/arm
- We add support for saving/restoring the virtual ITS state to
userspace
Diffstat (limited to 'virt/kvm')
-rw-r--r-- | virt/kvm/arm/arm.c | 1480 | ||||
-rw-r--r-- | virt/kvm/arm/mmio.c | 217 | ||||
-rw-r--r-- | virt/kvm/arm/mmu.c | 1975 | ||||
-rw-r--r-- | virt/kvm/arm/perf.c | 68 | ||||
-rw-r--r-- | virt/kvm/arm/psci.c | 332 | ||||
-rw-r--r-- | virt/kvm/arm/trace.h | 246 | ||||
-rw-r--r-- | virt/kvm/arm/vgic/trace.h | 37 | ||||
-rw-r--r-- | virt/kvm/arm/vgic/vgic-init.c | 25 | ||||
-rw-r--r-- | virt/kvm/arm/vgic/vgic-its.c | 1234 | ||||
-rw-r--r-- | virt/kvm/arm/vgic/vgic-kvm-device.c | 53 | ||||
-rw-r--r-- | virt/kvm/arm/vgic/vgic-mmio-v3.c | 147 | ||||
-rw-r--r-- | virt/kvm/arm/vgic/vgic-mmio.c | 11 | ||||
-rw-r--r-- | virt/kvm/arm/vgic/vgic-mmio.h | 14 | ||||
-rw-r--r-- | virt/kvm/arm/vgic/vgic-v3.c | 128 | ||||
-rw-r--r-- | virt/kvm/arm/vgic/vgic.c | 2 | ||||
-rw-r--r-- | virt/kvm/arm/vgic/vgic.h | 33 |
16 files changed, 5725 insertions, 277 deletions
diff --git a/virt/kvm/arm/arm.c b/virt/kvm/arm/arm.c new file mode 100644 index 000000000000..3417e184c8e1 --- /dev/null +++ b/virt/kvm/arm/arm.c @@ -0,0 +1,1480 @@ +/* + * Copyright (C) 2012 - Virtual Open Systems and Columbia University + * Author: Christoffer Dall <c.dall@virtualopensystems.com> + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License, version 2, as + * published by the Free Software Foundation. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. + */ + +#include <linux/cpu_pm.h> +#include <linux/errno.h> +#include <linux/err.h> +#include <linux/kvm_host.h> +#include <linux/list.h> +#include <linux/module.h> +#include <linux/vmalloc.h> +#include <linux/fs.h> +#include <linux/mman.h> +#include <linux/sched.h> +#include <linux/kvm.h> +#include <trace/events/kvm.h> +#include <kvm/arm_pmu.h> + +#define CREATE_TRACE_POINTS +#include "trace.h" + +#include <linux/uaccess.h> +#include <asm/ptrace.h> +#include <asm/mman.h> +#include <asm/tlbflush.h> +#include <asm/cacheflush.h> +#include <asm/virt.h> +#include <asm/kvm_arm.h> +#include <asm/kvm_asm.h> +#include <asm/kvm_mmu.h> +#include <asm/kvm_emulate.h> +#include <asm/kvm_coproc.h> +#include <asm/kvm_psci.h> +#include <asm/sections.h> + +#ifdef REQUIRES_VIRT +__asm__(".arch_extension virt"); +#endif + +static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page); +static kvm_cpu_context_t __percpu *kvm_host_cpu_state; + +/* Per-CPU variable containing the currently running vcpu. */ +static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_arm_running_vcpu); + +/* The VMID used in the VTTBR */ +static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1); +static u32 kvm_next_vmid; +static unsigned int kvm_vmid_bits __read_mostly; +static DEFINE_SPINLOCK(kvm_vmid_lock); + +static bool vgic_present; + +static DEFINE_PER_CPU(unsigned char, kvm_arm_hardware_enabled); + +static void kvm_arm_set_running_vcpu(struct kvm_vcpu *vcpu) +{ + BUG_ON(preemptible()); + __this_cpu_write(kvm_arm_running_vcpu, vcpu); +} + +/** + * kvm_arm_get_running_vcpu - get the vcpu running on the current CPU. + * Must be called from non-preemptible context + */ +struct kvm_vcpu *kvm_arm_get_running_vcpu(void) +{ + BUG_ON(preemptible()); + return __this_cpu_read(kvm_arm_running_vcpu); +} + +/** + * kvm_arm_get_running_vcpus - get the per-CPU array of currently running vcpus. + */ +struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void) +{ + return &kvm_arm_running_vcpu; +} + +int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu) +{ + return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE; +} + +int kvm_arch_hardware_setup(void) +{ + return 0; +} + +void kvm_arch_check_processor_compat(void *rtn) +{ + *(int *)rtn = 0; +} + + +/** + * kvm_arch_init_vm - initializes a VM data structure + * @kvm: pointer to the KVM struct + */ +int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) +{ + int ret, cpu; + + if (type) + return -EINVAL; + + kvm->arch.last_vcpu_ran = alloc_percpu(typeof(*kvm->arch.last_vcpu_ran)); + if (!kvm->arch.last_vcpu_ran) + return -ENOMEM; + + for_each_possible_cpu(cpu) + *per_cpu_ptr(kvm->arch.last_vcpu_ran, cpu) = -1; + + ret = kvm_alloc_stage2_pgd(kvm); + if (ret) + goto out_fail_alloc; + + ret = create_hyp_mappings(kvm, kvm + 1, PAGE_HYP); + if (ret) + goto out_free_stage2_pgd; + + kvm_vgic_early_init(kvm); + + /* Mark the initial VMID generation invalid */ + kvm->arch.vmid_gen = 0; + + /* The maximum number of VCPUs is limited by the host's GIC model */ + kvm->arch.max_vcpus = vgic_present ? + kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS; + + return ret; +out_free_stage2_pgd: + kvm_free_stage2_pgd(kvm); +out_fail_alloc: + free_percpu(kvm->arch.last_vcpu_ran); + kvm->arch.last_vcpu_ran = NULL; + return ret; +} + +bool kvm_arch_has_vcpu_debugfs(void) +{ + return false; +} + +int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu) +{ + return 0; +} + +int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf) +{ + return VM_FAULT_SIGBUS; +} + + +/** + * kvm_arch_destroy_vm - destroy the VM data structure + * @kvm: pointer to the KVM struct + */ +void kvm_arch_destroy_vm(struct kvm *kvm) +{ + int i; + + free_percpu(kvm->arch.last_vcpu_ran); + kvm->arch.last_vcpu_ran = NULL; + + for (i = 0; i < KVM_MAX_VCPUS; ++i) { + if (kvm->vcpus[i]) { + kvm_arch_vcpu_free(kvm->vcpus[i]); + kvm->vcpus[i] = NULL; + } + } + + kvm_vgic_destroy(kvm); +} + +int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext) +{ + int r; + switch (ext) { + case KVM_CAP_IRQCHIP: + r = vgic_present; + break; + case KVM_CAP_IOEVENTFD: + case KVM_CAP_DEVICE_CTRL: + case KVM_CAP_USER_MEMORY: + case KVM_CAP_SYNC_MMU: + case KVM_CAP_DESTROY_MEMORY_REGION_WORKS: + case KVM_CAP_ONE_REG: + case KVM_CAP_ARM_PSCI: + case KVM_CAP_ARM_PSCI_0_2: + case KVM_CAP_READONLY_MEM: + case KVM_CAP_MP_STATE: + case KVM_CAP_IMMEDIATE_EXIT: + r = 1; + break; + case KVM_CAP_ARM_SET_DEVICE_ADDR: + r = 1; + break; + case KVM_CAP_NR_VCPUS: + r = num_online_cpus(); + break; + case KVM_CAP_MAX_VCPUS: + r = KVM_MAX_VCPUS; + break; + case KVM_CAP_NR_MEMSLOTS: + r = KVM_USER_MEM_SLOTS; + break; + case KVM_CAP_MSI_DEVID: + if (!kvm) + r = -EINVAL; + else + r = kvm->arch.vgic.msis_require_devid; + break; + case KVM_CAP_ARM_USER_IRQ: + /* + * 1: EL1_VTIMER, EL1_PTIMER, and PMU. + * (bump this number if adding more devices) + */ + r = 1; + break; + default: + r = kvm_arch_dev_ioctl_check_extension(kvm, ext); + break; + } + return r; +} + +long kvm_arch_dev_ioctl(struct file *filp, + unsigned int ioctl, unsigned long arg) +{ + return -EINVAL; +} + + +struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id) +{ + int err; + struct kvm_vcpu *vcpu; + + if (irqchip_in_kernel(kvm) && vgic_initialized(kvm)) { + err = -EBUSY; + goto out; + } + + if (id >= kvm->arch.max_vcpus) { + err = -EINVAL; + goto out; + } + + vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL); + if (!vcpu) { + err = -ENOMEM; + goto out; + } + + err = kvm_vcpu_init(vcpu, kvm, id); + if (err) + goto free_vcpu; + + err = create_hyp_mappings(vcpu, vcpu + 1, PAGE_HYP); + if (err) + goto vcpu_uninit; + + return vcpu; +vcpu_uninit: + kvm_vcpu_uninit(vcpu); +free_vcpu: + kmem_cache_free(kvm_vcpu_cache, vcpu); +out: + return ERR_PTR(err); +} + +void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu) +{ + kvm_vgic_vcpu_early_init(vcpu); +} + +void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu) +{ + kvm_mmu_free_memory_caches(vcpu); + kvm_timer_vcpu_terminate(vcpu); + kvm_vgic_vcpu_destroy(vcpu); + kvm_pmu_vcpu_destroy(vcpu); + kvm_vcpu_uninit(vcpu); + kmem_cache_free(kvm_vcpu_cache, vcpu); +} + +void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) +{ + kvm_arch_vcpu_free(vcpu); +} + +int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu) +{ + return kvm_timer_should_fire(vcpu_vtimer(vcpu)) || + kvm_timer_should_fire(vcpu_ptimer(vcpu)); +} + +void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu) +{ + kvm_timer_schedule(vcpu); +} + +void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu) +{ + kvm_timer_unschedule(vcpu); +} + +int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu) +{ + /* Force users to call KVM_ARM_VCPU_INIT */ + vcpu->arch.target = -1; + bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES); + + /* Set up the timer */ + kvm_timer_vcpu_init(vcpu); + + kvm_arm_reset_debug_ptr(vcpu); + + return kvm_vgic_vcpu_init(vcpu); +} + +void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) +{ + int *last_ran; + + last_ran = this_cpu_ptr(vcpu->kvm->arch.last_vcpu_ran); + + /* + * We might get preempted before the vCPU actually runs, but + * over-invalidation doesn't affect correctness. + */ + if (*last_ran != vcpu->vcpu_id) { + kvm_call_hyp(__kvm_tlb_flush_local_vmid, vcpu); + *last_ran = vcpu->vcpu_id; + } + + vcpu->cpu = cpu; + vcpu->arch.host_cpu_context = this_cpu_ptr(kvm_host_cpu_state); + + kvm_arm_set_running_vcpu(vcpu); + + kvm_vgic_load(vcpu); +} + +void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) +{ + kvm_vgic_put(vcpu); + + vcpu->cpu = -1; + + kvm_arm_set_running_vcpu(NULL); + kvm_timer_vcpu_put(vcpu); +} + +int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, + struct kvm_mp_state *mp_state) +{ + if (vcpu->arch.power_off) + mp_state->mp_state = KVM_MP_STATE_STOPPED; + else + mp_state->mp_state = KVM_MP_STATE_RUNNABLE; + + return 0; +} + +int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, + struct kvm_mp_state *mp_state) +{ + switch (mp_state->mp_state) { + case KVM_MP_STATE_RUNNABLE: + vcpu->arch.power_off = false; + break; + case KVM_MP_STATE_STOPPED: + vcpu->arch.power_off = true; + break; + default: + return -EINVAL; + } + + return 0; +} + +/** + * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled + * @v: The VCPU pointer + * + * If the guest CPU is not waiting for interrupts or an interrupt line is + * asserted, the CPU is by definition runnable. + */ +int kvm_arch_vcpu_runnable(struct kvm_vcpu *v) +{ + return ((!!v->arch.irq_lines || kvm_vgic_vcpu_pending_irq(v)) + && !v->arch.power_off && !v->arch.pause); +} + +/* Just ensure a guest exit from a particular CPU */ +static void exit_vm_noop(void *info) +{ +} + +void force_vm_exit(const cpumask_t *mask) +{ + preempt_disable(); + smp_call_function_many(mask, exit_vm_noop, NULL, true); + preempt_enable(); +} + +/** + * need_new_vmid_gen - check that the VMID is still valid + * @kvm: The VM's VMID to check + * + * return true if there is a new generation of VMIDs being used + * + * The hardware supports only 256 values with the value zero reserved for the + * host, so we check if an assigned value belongs to a previous generation, + * which which requires us to assign a new value. If we're the first to use a + * VMID for the new generation, we must flush necessary caches and TLBs on all + * CPUs. + */ +static bool need_new_vmid_gen(struct kvm *kvm) +{ + return unlikely(kvm->arch.vmid_gen != atomic64_read(&kvm_vmid_gen)); +} + +/** + * update_vttbr - Update the VTTBR with a valid VMID before the guest runs + * @kvm The guest that we are about to run + * + * Called from kvm_arch_vcpu_ioctl_run before entering the guest to ensure the + * VM has a valid VMID, otherwise assigns a new one and flushes corresponding + * caches and TLBs. + */ +static void update_vttbr(struct kvm *kvm) +{ + phys_addr_t pgd_phys; + u64 vmid; + + if (!need_new_vmid_gen(kvm)) + return; + + spin_lock(&kvm_vmid_lock); + + /* + * We need to re-check the vmid_gen here to ensure that if another vcpu + * already allocated a valid vmid for this vm, then this vcpu should + * use the same vmid. + */ + if (!need_new_vmid_gen(kvm)) { + spin_unlock(&kvm_vmid_lock); + return; + } + + /* First user of a new VMID generation? */ + if (unlikely(kvm_next_vmid == 0)) { + atomic64_inc(&kvm_vmid_gen); + kvm_next_vmid = 1; + + /* + * On SMP we know no other CPUs can use this CPU's or each + * other's VMID after force_vm_exit returns since the + * kvm_vmid_lock blocks them from reentry to the guest. + */ + force_vm_exit(cpu_all_mask); + /* + * Now broadcast TLB + ICACHE invalidation over the inner + * shareable domain to make sure all data structures are + * clean. + */ + kvm_call_hyp(__kvm_flush_vm_context); + } + + kvm->arch.vmid_gen = atomic64_read(&kvm_vmid_gen); + kvm->arch.vmid = kvm_next_vmid; + kvm_next_vmid++; + kvm_next_vmid &= (1 << kvm_vmid_bits) - 1; + + /* update vttbr to be used with the new vmid */ + pgd_phys = virt_to_phys(kvm->arch.pgd); + BUG_ON(pgd_phys & ~VTTBR_BADDR_MASK); + vmid = ((u64)(kvm->arch.vmid) << VTTBR_VMID_SHIFT) & VTTBR_VMID_MASK(kvm_vmid_bits); + kvm->arch.vttbr = pgd_phys | vmid; + + spin_unlock(&kvm_vmid_lock); +} + +static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu) +{ + struct kvm *kvm = vcpu->kvm; + int ret = 0; + + if (likely(vcpu->arch.has_run_once)) + return 0; + + vcpu->arch.has_run_once = true; + + /* + * Map the VGIC hardware resources before running a vcpu the first + * time on this VM. + */ + if (unlikely(irqchip_in_kernel(kvm) && !vgic_ready(kvm))) { + ret = kvm_vgic_map_resources(kvm); + if (ret) + return ret; + } + + ret = kvm_timer_enable(vcpu); + + return ret; +} + +bool kvm_arch_intc_initialized(struct kvm *kvm) +{ + return vgic_initialized(kvm); +} + +void kvm_arm_halt_guest(struct kvm *kvm) +{ + int i; + struct kvm_vcpu *vcpu; + + kvm_for_each_vcpu(i, vcpu, kvm) + vcpu->arch.pause = true; + kvm_make_all_cpus_request(kvm, KVM_REQ_VCPU_EXIT); +} + +void kvm_arm_halt_vcpu(struct kvm_vcpu *vcpu) +{ + vcpu->arch.pause = true; + kvm_vcpu_kick(vcpu); +} + +void kvm_arm_resume_vcpu(struct kvm_vcpu *vcpu) +{ + struct swait_queue_head *wq = kvm_arch_vcpu_wq(vcpu); + + vcpu->arch.pause = false; + swake_up(wq); +} + +void kvm_arm_resume_guest(struct kvm *kvm) +{ + int i; + struct kvm_vcpu *vcpu; + + kvm_for_each_vcpu(i, vcpu, kvm) + kvm_arm_resume_vcpu(vcpu); +} + +static void vcpu_sleep(struct kvm_vcpu *vcpu) +{ + struct swait_queue_head *wq = kvm_arch_vcpu_wq(vcpu); + + swait_event_interruptible(*wq, ((!vcpu->arch.power_off) && + (!vcpu->arch.pause))); +} + +static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu) +{ + return vcpu->arch.target >= 0; +} + +/** + * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code + * @vcpu: The VCPU pointer + * @run: The kvm_run structure pointer used for userspace state exchange + * + * This function is called through the VCPU_RUN ioctl called from user space. It + * will execute VM code in a loop until the time slice for the process is used + * or some emulation is needed from user space in which case the function will + * return with return value 0 and with the kvm_run structure filled in with the + * required data for the requested emulation. + */ +int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run) +{ + int ret; + sigset_t sigsaved; + + if (unlikely(!kvm_vcpu_initialized(vcpu))) + return -ENOEXEC; + + ret = kvm_vcpu_first_run_init(vcpu); + if (ret) + return ret; + + if (run->exit_reason == KVM_EXIT_MMIO) { + ret = kvm_handle_mmio_return(vcpu, vcpu->run); + if (ret) + return ret; + } + + if (run->immediate_exit) + return -EINTR; + + if (vcpu->sigset_active) + sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved); + + ret = 1; + run->exit_reason = KVM_EXIT_UNKNOWN; + while (ret > 0) { + /* + * Check conditions before entering the guest + */ + cond_resched(); + + update_vttbr(vcpu->kvm); + + if (vcpu->arch.power_off || vcpu->arch.pause) + vcpu_sleep(vcpu); + + /* + * Preparing the interrupts to be injected also + * involves poking the GIC, which must be done in a + * non-preemptible context. + */ + preempt_disable(); + + kvm_pmu_flush_hwstate(vcpu); + + kvm_timer_flush_hwstate(vcpu); + kvm_vgic_flush_hwstate(vcpu); + + local_irq_disable(); + + /* + * If we have a singal pending, or need to notify a userspace + * irqchip about timer or PMU level changes, then we exit (and + * update the timer level state in kvm_timer_update_run + * below). + */ + if (signal_pending(current) || + kvm_timer_should_notify_user(vcpu) || + kvm_pmu_should_notify_user(vcpu)) { + ret = -EINTR; + run->exit_reason = KVM_EXIT_INTR; + } + + if (ret <= 0 || need_new_vmid_gen(vcpu->kvm) || + vcpu->arch.power_off || vcpu->arch.pause) { + local_irq_enable(); + kvm_pmu_sync_hwstate(vcpu); + kvm_timer_sync_hwstate(vcpu); + kvm_vgic_sync_hwstate(vcpu); + preempt_enable(); + continue; + } + + kvm_arm_setup_debug(vcpu); + + /************************************************************** + * Enter the guest + */ + trace_kvm_entry(*vcpu_pc(vcpu)); + guest_enter_irqoff(); + vcpu->mode = IN_GUEST_MODE; + + ret = kvm_call_hyp(__kvm_vcpu_run, vcpu); + + vcpu->mode = OUTSIDE_GUEST_MODE; + vcpu->stat.exits++; + /* + * Back from guest + *************************************************************/ + + kvm_arm_clear_debug(vcpu); + + /* + * We may have taken a host interrupt in HYP mode (ie + * while executing the guest). This interrupt is still + * pending, as we haven't serviced it yet! + * + * We're now back in SVC mode, with interrupts + * disabled. Enabling the interrupts now will have + * the effect of taking the interrupt again, in SVC + * mode this time. + */ + local_irq_enable(); + + /* + * We do local_irq_enable() before calling guest_exit() so + * that if a timer interrupt hits while running the guest we + * account that tick as being spent in the guest. We enable + * preemption after calling guest_exit() so that if we get + * preempted we make sure ticks after that is not counted as + * guest time. + */ + guest_exit(); + trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu)); + + /* + * We must sync the PMU and timer state before the vgic state so + * that the vgic can properly sample the updated state of the + * interrupt line. + */ + kvm_pmu_sync_hwstate(vcpu); + kvm_timer_sync_hwstate(vcpu); + + kvm_vgic_sync_hwstate(vcpu); + + preempt_enable(); + + ret = handle_exit(vcpu, run, ret); + } + + /* Tell userspace about in-kernel device output levels */ + if (unlikely(!irqchip_in_kernel(vcpu->kvm))) { + kvm_timer_update_run(vcpu); + kvm_pmu_update_run(vcpu); + } + + if (vcpu->sigset_active) + sigprocmask(SIG_SETMASK, &sigsaved, NULL); + return ret; +} + +static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level) +{ + int bit_index; + bool set; + unsigned long *ptr; + + if (number == KVM_ARM_IRQ_CPU_IRQ) + bit_index = __ffs(HCR_VI); + else /* KVM_ARM_IRQ_CPU_FIQ */ + bit_index = __ffs(HCR_VF); + + ptr = (unsigned long *)&vcpu->arch.irq_lines; + if (level) + set = test_and_set_bit(bit_index, ptr); + else + set = test_and_clear_bit(bit_index, ptr); + + /* + * If we didn't change anything, no need to wake up or kick other CPUs + */ + if (set == level) + return 0; + + /* + * The vcpu irq_lines field was updated, wake up sleeping VCPUs and + * trigger a world-switch round on the running physical CPU to set the + * virtual IRQ/FIQ fields in the HCR appropriately. + */ + kvm_vcpu_kick(vcpu); + + return 0; +} + +int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level, + bool line_status) +{ + u32 irq = irq_level->irq; + unsigned int irq_type, vcpu_idx, irq_num; + int nrcpus = atomic_read(&kvm->online_vcpus); + struct kvm_vcpu *vcpu = NULL; + bool level = irq_level->level; + + irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK; + vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK; + irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK; + + trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level); + + switch (irq_type) { + case KVM_ARM_IRQ_TYPE_CPU: + if (irqchip_in_kernel(kvm)) + return -ENXIO; + + if (vcpu_idx >= nrcpus) + return -EINVAL; + + vcpu = kvm_get_vcpu(kvm, vcpu_idx); + if (!vcpu) + return -EINVAL; + + if (irq_num > KVM_ARM_IRQ_CPU_FIQ) + return -EINVAL; + + return vcpu_interrupt_line(vcpu, irq_num, level); + case KVM_ARM_IRQ_TYPE_PPI: + if (!irqchip_in_kernel(kvm)) + return -ENXIO; + + if (vcpu_idx >= nrcpus) + return -EINVAL; + + vcpu = kvm_get_vcpu(kvm, vcpu_idx); + if (!vcpu) + return -EINVAL; + + if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS) + return -EINVAL; + + return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level); + case KVM_ARM_IRQ_TYPE_SPI: + if (!irqchip_in_kernel(kvm)) + return -ENXIO; + + if (irq_num < VGIC_NR_PRIVATE_IRQS) + return -EINVAL; + + return kvm_vgic_inject_irq(kvm, 0, irq_num, level); + } + + return -EINVAL; +} + +static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu, + const struct kvm_vcpu_init *init) +{ + unsigned int i; + int phys_target = kvm_target_cpu(); + + if (init->target != phys_target) + return -EINVAL; + + /* + * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must + * use the same target. + */ + if (vcpu->arch.target != -1 && vcpu->arch.target != init->target) + return -EINVAL; + + /* -ENOENT for unknown features, -EINVAL for invalid combinations. */ + for (i = 0; i < sizeof(init->features) * 8; i++) { + bool set = (init->features[i / 32] & (1 << (i % 32))); + + if (set && i >= KVM_VCPU_MAX_FEATURES) + return -ENOENT; + + /* + * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must + * use the same feature set. + */ + if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES && + test_bit(i, vcpu->arch.features) != set) + return -EINVAL; + + if (set) + set_bit(i, vcpu->arch.features); + } + + vcpu->arch.target = phys_target; + + /* Now we know what it is, we can reset it. */ + return kvm_reset_vcpu(vcpu); +} + + +static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu, + struct kvm_vcpu_init *init) +{ + int ret; + + ret = kvm_vcpu_set_target(vcpu, init); + if (ret) + return ret; + + /* + * Ensure a rebooted VM will fault in RAM pages and detect if the + * guest MMU is turned off and flush the caches as needed. + */ + if (vcpu->arch.has_run_once) + stage2_unmap_vm(vcpu->kvm); + + vcpu_reset_hcr(vcpu); + + /* + * Handle the "start in power-off" case. + */ + if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features)) + vcpu->arch.power_off = true; + else + vcpu->arch.power_off = false; + + return 0; +} + +static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu, + struct kvm_device_attr *attr) +{ + int ret = -ENXIO; + + switch (attr->group) { + default: + ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr); + break; + } + + return ret; +} + +static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu, + struct kvm_device_attr *attr) +{ + int ret = -ENXIO; + + switch (attr->group) { + default: + ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr); + break; + } + + return ret; +} + +static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu, + struct kvm_device_attr *attr) +{ + int ret = -ENXIO; + + switch (attr->group) { + default: + ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr); + break; + } + + return ret; +} + +long kvm_arch_vcpu_ioctl(struct file *filp, + unsigned int ioctl, unsigned long arg) +{ + struct kvm_vcpu *vcpu = filp->private_data; + void __user *argp = (void __user *)arg; + struct kvm_device_attr attr; + + switch (ioctl) { + case KVM_ARM_VCPU_INIT: { + struct kvm_vcpu_init init; + + if (copy_from_user(&init, argp, sizeof(init))) + return -EFAULT; + + return kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init); + } + case KVM_SET_ONE_REG: + case KVM_GET_ONE_REG: { + struct kvm_one_reg reg; + + if (unlikely(!kvm_vcpu_initialized(vcpu))) + return -ENOEXEC; + + if (copy_from_user(®, argp, sizeof(reg))) + return -EFAULT; + if (ioctl == KVM_SET_ONE_REG) + return kvm_arm_set_reg(vcpu, ®); + else + return kvm_arm_get_reg(vcpu, ®); + } + case KVM_GET_REG_LIST: { + struct kvm_reg_list __user *user_list = argp; + struct kvm_reg_list reg_list; + unsigned n; + + if (unlikely(!kvm_vcpu_initialized(vcpu))) + return -ENOEXEC; + + if (copy_from_user(®_list, user_list, sizeof(reg_list))) + return -EFAULT; + n = reg_list.n; + reg_list.n = kvm_arm_num_regs(vcpu); + if (copy_to_user(user_list, ®_list, sizeof(reg_list))) + return -EFAULT; + if (n < reg_list.n) + return -E2BIG; + return kvm_arm_copy_reg_indices(vcpu, user_list->reg); + } + case KVM_SET_DEVICE_ATTR: { + if (copy_from_user(&attr, argp, sizeof(attr))) + return -EFAULT; + return kvm_arm_vcpu_set_attr(vcpu, &attr); + } + case KVM_GET_DEVICE_ATTR: { + if (copy_from_user(&attr, argp, sizeof(attr))) + return -EFAULT; + return kvm_arm_vcpu_get_attr(vcpu, &attr); + } + case KVM_HAS_DEVICE_ATTR: { + if (copy_from_user(&attr, argp, sizeof(attr))) + return -EFAULT; + return kvm_arm_vcpu_has_attr(vcpu, &attr); + } + default: + return -EINVAL; + } +} + +/** + * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot + * @kvm: kvm instance + * @log: slot id and address to which we copy the log + * + * Steps 1-4 below provide general overview of dirty page logging. See + * kvm_get_dirty_log_protect() function description for additional details. + * + * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we + * always flush the TLB (step 4) even if previous step failed and the dirty + * bitmap may be corrupt. Regardless of previous outcome the KVM logging API + * does not preclude user space subsequent dirty log read. Flushing TLB ensures + * writes will be marked dirty for next log read. + * + * 1. Take a snapshot of the bit and clear it if needed. + * 2. Write protect the corresponding page. + * 3. Copy the snapshot to the userspace. + * 4. Flush TLB's if needed. + */ +int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log) +{ + bool is_dirty = false; + int r; + + mutex_lock(&kvm->slots_lock); + + r = kvm_get_dirty_log_protect(kvm, log, &is_dirty); + + if (is_dirty) + kvm_flush_remote_tlbs(kvm); + + mutex_unlock(&kvm->slots_lock); + return r; +} + +static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm, + struct kvm_arm_device_addr *dev_addr) +{ + unsigned long dev_id, type; + + dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >> + KVM_ARM_DEVICE_ID_SHIFT; + type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >> + KVM_ARM_DEVICE_TYPE_SHIFT; + + switch (dev_id) { + case KVM_ARM_DEVICE_VGIC_V2: + if (!vgic_present) + return -ENXIO; + return kvm_vgic_addr(kvm, type, &dev_addr->addr, true); + default: + return -ENODEV; + } +} + +long kvm_arch_vm_ioctl(struct file *filp, + unsigned int ioctl, unsigned long arg) +{ + struct kvm *kvm = filp->private_data; + void __user *argp = (void __user *)arg; + + switch (ioctl) { + case KVM_CREATE_IRQCHIP: { + int ret; + if (!vgic_present) + return -ENXIO; + mutex_lock(&kvm->lock); + ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2); + mutex_unlock(&kvm->lock); + return ret; + } + case KVM_ARM_SET_DEVICE_ADDR: { + struct kvm_arm_device_addr dev_addr; + + if (copy_from_user(&dev_addr, argp, sizeof(dev_addr))) + return -EFAULT; + return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr); + } + case KVM_ARM_PREFERRED_TARGET: { + int err; + struct kvm_vcpu_init init; + + err = kvm_vcpu_preferred_target(&init); + if (err) + return err; + + if (copy_to_user(argp, &init, sizeof(init))) + return -EFAULT; + + return 0; + } + default: + return -EINVAL; + } +} + +static void cpu_init_hyp_mode(void *dummy) +{ + phys_addr_t pgd_ptr; + unsigned long hyp_stack_ptr; + unsigned long stack_page; + unsigned long vector_ptr; + + /* Switch from the HYP stub to our own HYP init vector */ + __hyp_set_vectors(kvm_get_idmap_vector()); + + pgd_ptr = kvm_mmu_get_httbr(); + stack_page = __this_cpu_read(kvm_arm_hyp_stack_page); + hyp_stack_ptr = stack_page + PAGE_SIZE; + vector_ptr = (unsigned long)kvm_ksym_ref(__kvm_hyp_vector); + + __cpu_init_hyp_mode(pgd_ptr, hyp_stack_ptr, vector_ptr); + __cpu_init_stage2(); + + if (is_kernel_in_hyp_mode()) + kvm_timer_init_vhe(); + + kvm_arm_init_debug(); +} + +static void cpu_hyp_reset(void) +{ + if (!is_kernel_in_hyp_mode()) + __hyp_reset_vectors(); +} + +static void cpu_hyp_reinit(void) +{ + cpu_hyp_reset(); + + if (is_kernel_in_hyp_mode()) { + /* + * __cpu_init_stage2() is safe to call even if the PM + * event was cancelled before the CPU was reset. + */ + __cpu_init_stage2(); + } else { + cpu_init_hyp_mode(NULL); + } + + if (vgic_present) + kvm_vgic_init_cpu_hardware(); +} + +static void _kvm_arch_hardware_enable(void *discard) +{ + if (!__this_cpu_read(kvm_arm_hardware_enabled)) { + cpu_hyp_reinit(); + __this_cpu_write(kvm_arm_hardware_enabled, 1); + } +} + +int kvm_arch_hardware_enable(void) +{ + _kvm_arch_hardware_enable(NULL); + return 0; +} + +static void _kvm_arch_hardware_disable(void *discard) +{ + if (__this_cpu_read(kvm_arm_hardware_enabled)) { + cpu_hyp_reset(); + __this_cpu_write(kvm_arm_hardware_enabled, 0); + } +} + +void kvm_arch_hardware_disable(void) +{ + _kvm_arch_hardware_disable(NULL); +} + +#ifdef CONFIG_CPU_PM +static int hyp_init_cpu_pm_notifier(struct notifier_block *self, + unsigned long cmd, + void *v) +{ + /* + * kvm_arm_hardware_enabled is left with its old value over + * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should + * re-enable hyp. + */ + switch (cmd) { + case CPU_PM_ENTER: + if (__this_cpu_read(kvm_arm_hardware_enabled)) + /* + * don't update kvm_arm_hardware_enabled here + * so that the hardware will be re-enabled + * when we resume. See below. + */ + cpu_hyp_reset(); + + return NOTIFY_OK; + case CPU_PM_EXIT: + if (__this_cpu_read(kvm_arm_hardware_enabled)) + /* The hardware was enabled before suspend. */ + cpu_hyp_reinit(); + + return NOTIFY_OK; + + default: + return NOTIFY_DONE; + } +} + +static struct notifier_block hyp_init_cpu_pm_nb = { + .notifier_call = hyp_init_cpu_pm_notifier, +}; + +static void __init hyp_cpu_pm_init(void) +{ + cpu_pm_register_notifier(&hyp_init_cpu_pm_nb); +} +static void __init hyp_cpu_pm_exit(void) +{ + cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb); +} +#else +static inline void hyp_cpu_pm_init(void) +{ +} +static inline void hyp_cpu_pm_exit(void) +{ +} +#endif + +static void teardown_common_resources(void) +{ + free_percpu(kvm_host_cpu_state); +} + +static int init_common_resources(void) +{ + kvm_host_cpu_state = alloc_percpu(kvm_cpu_context_t); + if (!kvm_host_cpu_state) { + kvm_err("Cannot allocate host CPU state\n"); + return -ENOMEM; + } + + /* set size of VMID supported by CPU */ + kvm_vmid_bits = kvm_get_vmid_bits(); + kvm_info("%d-bit VMID\n", kvm_vmid_bits); + + return 0; +} + +static int init_subsystems(void) +{ + int err = 0; + + /* + * Enable hardware so that subsystem initialisation can access EL2. + */ + on_each_cpu(_kvm_arch_hardware_enable, NULL, 1); + + /* + * Register CPU lower-power notifier + */ + hyp_cpu_pm_init(); + + /* + * Init HYP view of VGIC + */ + err = kvm_vgic_hyp_init(); + switch (err) { + case 0: + vgic_present = true; + break; + case -ENODEV: + case -ENXIO: + vgic_present = false; + err = 0; + break; + default: + goto out; + } + + /* + * Init HYP architected timer support + */ + err = kvm_timer_hyp_init(); + if (err) + goto out; + + kvm_perf_init(); + kvm_coproc_table_init(); + +out: + on_each_cpu(_kvm_arch_hardware_disable, NULL, 1); + + return err; +} + +static void teardown_hyp_mode(void) +{ + int cpu; + + if (is_kernel_in_hyp_mode()) + return; + + free_hyp_pgds(); + for_each_possible_cpu(cpu) + free_page(per_cpu(kvm_arm_hyp_stack_page, cpu)); + hyp_cpu_pm_exit(); +} + +static int init_vhe_mode(void) +{ + kvm_info("VHE mode initialized successfully\n"); + return 0; +} + +/** + * Inits Hyp-mode on all online CPUs + */ +static int init_hyp_mode(void) +{ + int cpu; + int err = 0; + + /* + * Allocate Hyp PGD and setup Hyp identity mapping + */ + err = kvm_mmu_init(); + if (err) + goto out_err; + + /* + * Allocate stack pages for Hypervisor-mode + */ + for_each_possible_cpu(cpu) { + unsigned long stack_page; + + stack_page = __get_free_page(GFP_KERNEL); + if (!stack_page) { + err = -ENOMEM; + goto out_err; + } + + per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page; + } + + /* + * Map the Hyp-code called directly from the host + */ + err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start), + kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC); + if (err) { + kvm_err("Cannot map world-switch code\n"); + goto out_err; + } + + err = create_hyp_mappings(kvm_ksym_ref(__start_rodata), + kvm_ksym_ref(__end_rodata), PAGE_HYP_RO); + if (err) { + kvm_err("Cannot map rodata section\n"); + goto out_err; + } + + err = create_hyp_mappings(kvm_ksym_ref(__bss_start), + kvm_ksym_ref(__bss_stop), PAGE_HYP_RO); + if (err) { + kvm_err("Cannot map bss section\n"); + goto out_err; + } + + /* + * Map the Hyp stack pages + */ + for_each_possible_cpu(cpu) { + char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu); + err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE, + PAGE_HYP); + + if (err) { + kvm_err("Cannot map hyp stack\n"); + goto out_err; + } + } + + for_each_possible_cpu(cpu) { + kvm_cpu_context_t *cpu_ctxt; + + cpu_ctxt = per_cpu_ptr(kvm_host_cpu_state, cpu); + err = create_hyp_mappings(cpu_ctxt, cpu_ctxt + 1, PAGE_HYP); + + if (err) { + kvm_err("Cannot map host CPU state: %d\n", err); + goto out_err; + } + } + + kvm_info("Hyp mode initialized successfully\n"); + + return 0; + +out_err: + teardown_hyp_mode(); + kvm_err("error initializing Hyp mode: %d\n", err); + return err; +} + +static void check_kvm_target_cpu(void *ret) +{ + *(int *)ret = kvm_target_cpu(); +} + +struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr) +{ + struct kvm_vcpu *vcpu; + int i; + + mpidr &= MPIDR_HWID_BITMASK; + kvm_for_each_vcpu(i, vcpu, kvm) { + if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu)) + return vcpu; + } + return NULL; +} + +/** + * Initialize Hyp-mode and memory mappings on all CPUs. + */ +int kvm_arch_init(void *opaque) +{ + int err; + int ret, cpu; + + if (!is_hyp_mode_available()) { + kvm_err("HYP mode not available\n"); + return -ENODEV; + } + + for_each_online_cpu(cpu) { + smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1); + if (ret < 0) { + kvm_err("Error, CPU %d not supported!\n", cpu); + return -ENODEV; + } + } + + err = init_common_resources(); + if (err) + return err; + + if (is_kernel_in_hyp_mode()) + err = init_vhe_mode(); + else + err = init_hyp_mode(); + if (err) + goto out_err; + + err = init_subsystems(); + if (err) + goto out_hyp; + + return 0; + +out_hyp: + teardown_hyp_mode(); +out_err: + teardown_common_resources(); + return err; +} + +/* NOP: Compiling as a module not supported */ +void kvm_arch_exit(void) +{ + kvm_perf_teardown(); +} + +static int arm_init(void) +{ + int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE); + return rc; +} + +module_init(arm_init); diff --git a/virt/kvm/arm/mmio.c b/virt/kvm/arm/mmio.c new file mode 100644 index 000000000000..b6e715fd3c90 --- /dev/null +++ b/virt/kvm/arm/mmio.c @@ -0,0 +1,217 @@ +/* + * Copyright (C) 2012 - Virtual Open Systems and Columbia University + * Author: Christoffer Dall <c.dall@virtualopensystems.com> + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License, version 2, as + * published by the Free Software Foundation. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. + */ + +#include <linux/kvm_host.h> +#include <asm/kvm_mmio.h> +#include <asm/kvm_emulate.h> +#include <trace/events/kvm.h> + +#include "trace.h" + +void kvm_mmio_write_buf(void *buf, unsigned int len, unsigned long data) +{ + void *datap = NULL; + union { + u8 byte; + u16 hword; + u32 word; + u64 dword; + } tmp; + + switch (len) { + case 1: + tmp.byte = data; + datap = &tmp.byte; + break; + case 2: + tmp.hword = data; + datap = &tmp.hword; + break; + case 4: + tmp.word = data; + datap = &tmp.word; + break; + case 8: + tmp.dword = data; + datap = &tmp.dword; + break; + } + + memcpy(buf, datap, len); +} + +unsigned long kvm_mmio_read_buf(const void *buf, unsigned int len) +{ + unsigned long data = 0; + union { + u16 hword; + u32 word; + u64 dword; + } tmp; + + switch (len) { + case 1: + data = *(u8 *)buf; + break; + case 2: + memcpy(&tmp.hword, buf, len); + data = tmp.hword; + break; + case 4: + memcpy(&tmp.word, buf, len); + data = tmp.word; + break; + case 8: + memcpy(&tmp.dword, buf, len); + data = tmp.dword; + break; + } + + return data; +} + +/** + * kvm_handle_mmio_return -- Handle MMIO loads after user space emulation + * or in-kernel IO emulation + * + * @vcpu: The VCPU pointer + * @run: The VCPU run struct containing the mmio data + */ +int kvm_handle_mmio_return(struct kvm_vcpu *vcpu, struct kvm_run *run) +{ + unsigned long data; + unsigned int len; + int mask; + + if (!run->mmio.is_write) { + len = run->mmio.len; + if (len > sizeof(unsigned long)) + return -EINVAL; + + data = kvm_mmio_read_buf(run->mmio.data, len); + + if (vcpu->arch.mmio_decode.sign_extend && + len < sizeof(unsigned long)) { + mask = 1U << ((len * 8) - 1); + data = (data ^ mask) - mask; + } + + trace_kvm_mmio(KVM_TRACE_MMIO_READ, len, run->mmio.phys_addr, + data); + data = vcpu_data_host_to_guest(vcpu, data, len); + vcpu_set_reg(vcpu, vcpu->arch.mmio_decode.rt, data); + } + + return 0; +} + +static int decode_hsr(struct kvm_vcpu *vcpu, bool *is_write, int *len) +{ + unsigned long rt; + int access_size; + bool sign_extend; + + if (kvm_vcpu_dabt_iss1tw(vcpu)) { + /* page table accesses IO mem: tell guest to fix its TTBR */ + kvm_inject_dabt(vcpu, kvm_vcpu_get_hfar(vcpu)); + return 1; + } + + access_size = kvm_vcpu_dabt_get_as(vcpu); + if (unlikely(access_size < 0)) + return access_size; + + *is_write = kvm_vcpu_dabt_iswrite(vcpu); + sign_extend = kvm_vcpu_dabt_issext(vcpu); + rt = kvm_vcpu_dabt_get_rd(vcpu); + + *len = access_size; + vcpu->arch.mmio_decode.sign_extend = sign_extend; + vcpu->arch.mmio_decode.rt = rt; + + /* + * The MMIO instruction is emulated and should not be re-executed + * in the guest. + */ + kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu)); + return 0; +} + +int io_mem_abort(struct kvm_vcpu *vcpu, struct kvm_run *run, + phys_addr_t fault_ipa) +{ + unsigned long data; + unsigned long rt; + int ret; + bool is_write; + int len; + u8 data_buf[8]; + + /* + * Prepare MMIO operation. First decode the syndrome data we get + * from the CPU. Then try if some in-kernel emulation feels + * responsible, otherwise let user space do its magic. + */ + if (kvm_vcpu_dabt_isvalid(vcpu)) { + ret = decode_hsr(vcpu, &is_write, &len); + if (ret) + return ret; + } else { + kvm_err("load/store instruction decoding not implemented\n"); + return -ENOSYS; + } + + rt = vcpu->arch.mmio_decode.rt; + + if (is_write) { + data = vcpu_data_guest_to_host(vcpu, vcpu_get_reg(vcpu, rt), + len); + + trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, len, fault_ipa, data); + kvm_mmio_write_buf(data_buf, len, data); + + ret = kvm_io_bus_write(vcpu, KVM_MMIO_BUS, fault_ipa, len, + data_buf); + } else { + trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, len, + fault_ipa, 0); + + ret = kvm_io_bus_read(vcpu, KVM_MMIO_BUS, fault_ipa, len, + data_buf); + } + + /* Now prepare kvm_run for the potential return to userland. */ + run->mmio.is_write = is_write; + run->mmio.phys_addr = fault_ipa; + run->mmio.len = len; + + if (!ret) { + /* We handled the access successfully in the kernel. */ + if (!is_write) + memcpy(run->mmio.data, data_buf, len); + vcpu->stat.mmio_exit_kernel++; + kvm_handle_mmio_return(vcpu, run); + return 1; + } + + if (is_write) + memcpy(run->mmio.data, data_buf, len); + vcpu->stat.mmio_exit_user++; + run->exit_reason = KVM_EXIT_MMIO; + return 0; +} diff --git a/virt/kvm/arm/mmu.c b/virt/kvm/arm/mmu.c new file mode 100644 index 000000000000..313ee646480f --- /dev/null +++ b/virt/kvm/arm/mmu.c @@ -0,0 +1,1975 @@ +/* + * Copyright (C) 2012 - Virtual Open Systems and Columbia University + * Author: Christoffer Dall <c.dall@virtualopensystems.com> + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License, version 2, as + * published by the Free Software Foundation. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. + */ + +#include <linux/mman.h> +#include <linux/kvm_host.h> +#include <linux/io.h> +#include <linux/hugetlb.h> +#include <trace/events/kvm.h> +#include <asm/pgalloc.h> +#include <asm/cacheflush.h> +#include <asm/kvm_arm.h> +#include <asm/kvm_mmu.h> +#include <asm/kvm_mmio.h> +#include <asm/kvm_asm.h> +#include <asm/kvm_emulate.h> +#include <asm/virt.h> + +#include "trace.h" + +static pgd_t *boot_hyp_pgd; +static pgd_t *hyp_pgd; +static pgd_t *merged_hyp_pgd; +static DEFINE_MUTEX(kvm_hyp_pgd_mutex); + +static unsigned long hyp_idmap_start; +static unsigned long hyp_idmap_end; +static phys_addr_t hyp_idmap_vector; + +#define S2_PGD_SIZE (PTRS_PER_S2_PGD * sizeof(pgd_t)) +#define hyp_pgd_order get_order(PTRS_PER_PGD * sizeof(pgd_t)) + +#define KVM_S2PTE_FLAG_IS_IOMAP (1UL << 0) +#define KVM_S2_FLAG_LOGGING_ACTIVE (1UL << 1) + +static bool memslot_is_logging(struct kvm_memory_slot *memslot) +{ + return memslot->dirty_bitmap && !(memslot->flags & KVM_MEM_READONLY); +} + +/** + * kvm_flush_remote_tlbs() - flush all VM TLB entries for v7/8 + * @kvm: pointer to kvm structure. + * + * Interface to HYP function to flush all VM TLB entries + */ +void kvm_flush_remote_tlbs(struct kvm *kvm) +{ + kvm_call_hyp(__kvm_tlb_flush_vmid, kvm); +} + +static void kvm_tlb_flush_vmid_ipa(struct kvm *kvm, phys_addr_t ipa) +{ + kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, kvm, ipa); +} + +/* + * D-Cache management functions. They take the page table entries by + * value, as they are flushing the cache using the kernel mapping (or + * kmap on 32bit). + */ +static void kvm_flush_dcache_pte(pte_t pte) +{ + __kvm_flush_dcache_pte(pte); +} + +static void kvm_flush_dcache_pmd(pmd_t pmd) +{ + __kvm_flush_dcache_pmd(pmd); +} + +static void kvm_flush_dcache_pud(pud_t pud) +{ + __kvm_flush_dcache_pud(pud); +} + +static bool kvm_is_device_pfn(unsigned long pfn) +{ + return !pfn_valid(pfn); +} + +/** + * stage2_dissolve_pmd() - clear and flush huge PMD entry + * @kvm: pointer to kvm structure. + * @addr: IPA + * @pmd: pmd pointer for IPA + * + * Function clears a PMD entry, flushes addr 1st and 2nd stage TLBs. Marks all + * pages in the range dirty. + */ +static void stage2_dissolve_pmd(struct kvm *kvm, phys_addr_t addr, pmd_t *pmd) +{ + if (!pmd_thp_or_huge(*pmd)) + return; + + pmd_clear(pmd); + kvm_tlb_flush_vmid_ipa(kvm, addr); + put_page(virt_to_page(pmd)); +} + +static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache, + int min, int max) +{ + void *page; + + BUG_ON(max > KVM_NR_MEM_OBJS); + if (cache->nobjs >= min) + return 0; + while (cache->nobjs < max) { + page = (void *)__get_free_page(PGALLOC_GFP); + if (!page) + return -ENOMEM; + cache->objects[cache->nobjs++] = page; + } + return 0; +} + +static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc) +{ + while (mc->nobjs) + free_page((unsigned long)mc->objects[--mc->nobjs]); +} + +static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc) +{ + void *p; + + BUG_ON(!mc || !mc->nobjs); + p = mc->objects[--mc->nobjs]; + return p; +} + +static void clear_stage2_pgd_entry(struct kvm *kvm, pgd_t *pgd, phys_addr_t addr) +{ + pud_t *pud_table __maybe_unused = stage2_pud_offset(pgd, 0UL); + stage2_pgd_clear(pgd); + kvm_tlb_flush_vmid_ipa(kvm, addr); + stage2_pud_free(pud_table); + put_page(virt_to_page(pgd)); +} + +static void clear_stage2_pud_entry(struct kvm *kvm, pud_t *pud, phys_addr_t addr) +{ + pmd_t *pmd_table __maybe_unused = stage2_pmd_offset(pud, 0); + VM_BUG_ON(stage2_pud_huge(*pud)); + stage2_pud_clear(pud); + kvm_tlb_flush_vmid_ipa(kvm, addr); + stage2_pmd_free(pmd_table); + put_page(virt_to_page(pud)); +} + +static void clear_stage2_pmd_entry(struct kvm *kvm, pmd_t *pmd, phys_addr_t addr) +{ + pte_t *pte_table = pte_offset_kernel(pmd, 0); + VM_BUG_ON(pmd_thp_or_huge(*pmd)); + pmd_clear(pmd); + kvm_tlb_flush_vmid_ipa(kvm, addr); + pte_free_kernel(NULL, pte_table); + put_page(virt_to_page(pmd)); +} + +/* + * Unmapping vs dcache management: + * + * If a guest maps certain memory pages as uncached, all writes will + * bypass the data cache and go directly to RAM. However, the CPUs + * can still speculate reads (not writes) and fill cache lines with + * data. + * + * Those cache lines will be *clean* cache lines though, so a + * clean+invalidate operation is equivalent to an invalidate + * operation, because no cache lines are marked dirty. + * + * Those clean cache lines could be filled prior to an uncached write + * by the guest, and the cache coherent IO subsystem would therefore + * end up writing old data to disk. + * + * This is why right after unmapping a page/section and invalidating + * the corresponding TLBs, we call kvm_flush_dcache_p*() to make sure + * the IO subsystem will never hit in the cache. + */ +static void unmap_stage2_ptes(struct kvm *kvm, pmd_t *pmd, + phys_addr_t addr, phys_addr_t end) +{ + phys_addr_t start_addr = addr; + pte_t *pte, *start_pte; + + start_pte = pte = pte_offset_kernel(pmd, addr); + do { + if (!pte_none(*pte)) { + pte_t old_pte = *pte; + + kvm_set_pte(pte, __pte(0)); + kvm_tlb_flush_vmid_ipa(kvm, addr); + + /* No need to invalidate the cache for device mappings */ + if (!kvm_is_device_pfn(pte_pfn(old_pte))) + kvm_flush_dcache_pte(old_pte); + + put_page(virt_to_page(pte)); + } + } while (pte++, addr += PAGE_SIZE, addr != end); + + if (stage2_pte_table_empty(start_pte)) + clear_stage2_pmd_entry(kvm, pmd, start_addr); +} + +static void unmap_stage2_pmds(struct kvm *kvm, pud_t *pud, + phys_addr_t addr, phys_addr_t end) +{ + phys_addr_t next, start_addr = addr; + pmd_t *pmd, *start_pmd; + + start_pmd = pmd = stage2_pmd_offset(pud, addr); + do { + next = stage2_pmd_addr_end(addr, end); + if (!pmd_none(*pmd)) { + if (pmd_thp_or_huge(*pmd)) { + pmd_t old_pmd = *pmd; + + pmd_clear(pmd); + kvm_tlb_flush_vmid_ipa(kvm, addr); + + kvm_flush_dcache_pmd(old_pmd); + + put_page(virt_to_page(pmd)); + } else { + unmap_stage2_ptes(kvm, pmd, addr, next); + } + } + } while (pmd++, addr = next, addr != end); + + if (stage2_pmd_table_empty(start_pmd)) + clear_stage2_pud_entry(kvm, pud, start_addr); +} + +static void unmap_stage2_puds(struct kvm *kvm, pgd_t *pgd, + phys_addr_t addr, phys_addr_t end) +{ + phys_addr_t next, start_addr = addr; + pud_t *pud, *start_pud; + + start_pud = pud = stage2_pud_offset(pgd, addr); + do { + next = stage2_pud_addr_end(addr, end); + if (!stage2_pud_none(*pud)) { + if (stage2_pud_huge(*pud)) { + pud_t old_pud = *pud; + + stage2_pud_clear(pud); + kvm_tlb_flush_vmid_ipa(kvm, addr); + kvm_flush_dcache_pud(old_pud); + put_page(virt_to_page(pud)); + } else { + unmap_stage2_pmds(kvm, pud, addr, next); + } + } + } while (pud++, addr = next, addr != end); + + if (stage2_pud_table_empty(start_pud)) + clear_stage2_pgd_entry(kvm, pgd, start_addr); +} + +/** + * unmap_stage2_range -- Clear stage2 page table entries to unmap a range + * @kvm: The VM pointer + * @start: The intermediate physical base address of the range to unmap + * @size: The size of the area to unmap + * + * Clear a range of stage-2 mappings, lowering the various ref-counts. Must + * be called while holding mmu_lock (unless for freeing the stage2 pgd before + * destroying the VM), otherwise another faulting VCPU may come in and mess + * with things behind our backs. + */ +static void unmap_stage2_range(struct kvm *kvm, phys_addr_t start, u64 size) +{ + pgd_t *pgd; + phys_addr_t addr = start, end = start + size; + phys_addr_t next; + + assert_spin_locked(&kvm->mmu_lock); + pgd = kvm->arch.pgd + stage2_pgd_index(addr); + do { + next = stage2_pgd_addr_end(addr, end); + if (!stage2_pgd_none(*pgd)) + unmap_stage2_puds(kvm, pgd, addr, next); + /* + * If the range is too large, release the kvm->mmu_lock + * to prevent starvation and lockup detector warnings. + */ + if (next != end) + cond_resched_lock(&kvm->mmu_lock); + } while (pgd++, addr = next, addr != end); +} + +static void stage2_flush_ptes(struct kvm *kvm, pmd_t *pmd, + phys_addr_t addr, phys_addr_t end) +{ + pte_t *pte; + + pte = pte_offset_kernel(pmd, addr); + do { + if (!pte_none(*pte) && !kvm_is_device_pfn(pte_pfn(*pte))) + kvm_flush_dcache_pte(*pte); + } while (pte++, addr += PAGE_SIZE, addr != end); +} + +static void stage2_flush_pmds(struct kvm *kvm, pud_t *pud, + phys_addr_t addr, phys_addr_t end) +{ + pmd_t *pmd; + phys_addr_t next; + + pmd = stage2_pmd_offset(pud, addr); + do { + next = stage2_pmd_addr_end(addr, end); + if (!pmd_none(*pmd)) { + if (pmd_thp_or_huge(*pmd)) + kvm_flush_dcache_pmd(*pmd); + else + stage2_flush_ptes(kvm, pmd, addr, next); + } + } while (pmd++, addr = next, addr != end); +} + +static void stage2_flush_puds(struct kvm *kvm, pgd_t *pgd, + phys_addr_t addr, phys_addr_t end) +{ + pud_t *pud; + phys_addr_t next; + + pud = stage2_pud_offset(pgd, addr); + do { + next = stage2_pud_addr_end(addr, end); + if (!stage2_pud_none(*pud)) { + if (stage2_pud_huge(*pud)) + kvm_flush_dcache_pud(*pud); + else + stage2_flush_pmds(kvm, pud, addr, next); + } + } while (pud++, addr = next, addr != end); +} + +static void stage2_flush_memslot(struct kvm *kvm, + struct kvm_memory_slot *memslot) +{ + phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT; + phys_addr_t end = addr + PAGE_SIZE * memslot->npages; + phys_addr_t next; + pgd_t *pgd; + + pgd = kvm->arch.pgd + stage2_pgd_index(addr); + do { + next = stage2_pgd_addr_end(addr, end); + stage2_flush_puds(kvm, pgd, addr, next); + } while (pgd++, addr = next, addr != end); +} + +/** + * stage2_flush_vm - Invalidate cache for pages mapped in stage 2 + * @kvm: The struct kvm pointer + * + * Go through the stage 2 page tables and invalidate any cache lines + * backing memory already mapped to the VM. + */ +static void stage2_flush_vm(struct kvm *kvm) +{ + struct kvm_memslots *slots; + struct kvm_memory_slot *memslot; + int idx; + + idx = srcu_read_lock(&kvm->srcu); + spin_lock(&kvm->mmu_lock); + + slots = kvm_memslots(kvm); + kvm_for_each_memslot(memslot, slots) + stage2_flush_memslot(kvm, memslot); + + spin_unlock(&kvm->mmu_lock); + srcu_read_unlock(&kvm->srcu, idx); +} + +static void clear_hyp_pgd_entry(pgd_t *pgd) +{ + pud_t *pud_table __maybe_unused = pud_offset(pgd, 0UL); + pgd_clear(pgd); + pud_free(NULL, pud_table); + put_page(virt_to_page(pgd)); +} + +static void clear_hyp_pud_entry(pud_t *pud) +{ + pmd_t *pmd_table __maybe_unused = pmd_offset(pud, 0); + VM_BUG_ON(pud_huge(*pud)); + pud_clear(pud); + pmd_free(NULL, pmd_table); + put_page(virt_to_page(pud)); +} + +static void clear_hyp_pmd_entry(pmd_t *pmd) +{ + pte_t *pte_table = pte_offset_kernel(pmd, 0); + VM_BUG_ON(pmd_thp_or_huge(*pmd)); + pmd_clear(pmd); + pte_free_kernel(NULL, pte_table); + put_page(virt_to_page(pmd)); +} + +static void unmap_hyp_ptes(pmd_t *pmd, phys_addr_t addr, phys_addr_t end) +{ + pte_t *pte, *start_pte; + + start_pte = pte = pte_offset_kernel(pmd, addr); + do { + if (!pte_none(*pte)) { + kvm_set_pte(pte, __pte(0)); + put_page(virt_to_page(pte)); + } + } while (pte++, addr += PAGE_SIZE, addr != end); + + if (hyp_pte_table_empty(start_pte)) + clear_hyp_pmd_entry(pmd); +} + +static void unmap_hyp_pmds(pud_t *pud, phys_addr_t addr, phys_addr_t end) +{ + phys_addr_t next; + pmd_t *pmd, *start_pmd; + + start_pmd = pmd = pmd_offset(pud, addr); + do { + next = pmd_addr_end(addr, end); + /* Hyp doesn't use huge pmds */ + if (!pmd_none(*pmd)) + unmap_hyp_ptes(pmd, addr, next); + } while (pmd++, addr = next, addr != end); + + if (hyp_pmd_table_empty(start_pmd)) + clear_hyp_pud_entry(pud); +} + +static void unmap_hyp_puds(pgd_t *pgd, phys_addr_t addr, phys_addr_t end) +{ + phys_addr_t next; + pud_t *pud, *start_pud; + + start_pud = pud = pud_offset(pgd, addr); + do { + next = pud_addr_end(addr, end); + /* Hyp doesn't use huge puds */ + if (!pud_none(*pud)) + unmap_hyp_pmds(pud, addr, next); + } while (pud++, addr = next, addr != end); + + if (hyp_pud_table_empty(start_pud)) + clear_hyp_pgd_entry(pgd); +} + +static void unmap_hyp_range(pgd_t *pgdp, phys_addr_t start, u64 size) +{ + pgd_t *pgd; + phys_addr_t addr = start, end = start + size; + phys_addr_t next; + + /* + * We don't unmap anything from HYP, except at the hyp tear down. + * Hence, we don't have to invalidate the TLBs here. + */ + pgd = pgdp + pgd_index(addr); + do { + next = pgd_addr_end(addr, end); + if (!pgd_none(*pgd)) + unmap_hyp_puds(pgd, addr, next); + } while (pgd++, addr = next, addr != end); +} + +/** + * free_hyp_pgds - free Hyp-mode page tables + * + * Assumes hyp_pgd is a page table used strictly in Hyp-mode and + * therefore contains either mappings in the kernel memory area (above + * PAGE_OFFSET), or device mappings in the vmalloc range (from + * VMALLOC_START to VMALLOC_END). + * + * boot_hyp_pgd should only map two pages for the init code. + */ +void free_hyp_pgds(void) +{ + unsigned long addr; + + mutex_lock(&kvm_hyp_pgd_mutex); + + if (boot_hyp_pgd) { + unmap_hyp_range(boot_hyp_pgd, hyp_idmap_start, PAGE_SIZE); + free_pages((unsigned long)boot_hyp_pgd, hyp_pgd_order); + boot_hyp_pgd = NULL; + } + + if (hyp_pgd) { + unmap_hyp_range(hyp_pgd, hyp_idmap_start, PAGE_SIZE); + for (addr = PAGE_OFFSET; virt_addr_valid(addr); addr += PGDIR_SIZE) + unmap_hyp_range(hyp_pgd, kern_hyp_va(addr), PGDIR_SIZE); + for (addr = VMALLOC_START; is_vmalloc_addr((void*)addr); addr += PGDIR_SIZE) + unmap_hyp_range(hyp_pgd, kern_hyp_va(addr), PGDIR_SIZE); + + free_pages((unsigned long)hyp_pgd, hyp_pgd_order); + hyp_pgd = NULL; + } + if (merged_hyp_pgd) { + clear_page(merged_hyp_pgd); + free_page((unsigned long)merged_hyp_pgd); + merged_hyp_pgd = NULL; + } + + mutex_unlock(&kvm_hyp_pgd_mutex); +} + +static void create_hyp_pte_mappings(pmd_t *pmd, unsigned long start, + unsigned long end, unsigned long pfn, + pgprot_t prot) +{ + pte_t *pte; + unsigned long addr; + + addr = start; + do { + pte = pte_offset_kernel(pmd, addr); + kvm_set_pte(pte, pfn_pte(pfn, prot)); + get_page(virt_to_page(pte)); + kvm_flush_dcache_to_poc(pte, sizeof(*pte)); + pfn++; + } while (addr += PAGE_SIZE, addr != end); +} + +static int create_hyp_pmd_mappings(pud_t *pud, unsigned long start, + unsigned long end, unsigned long pfn, + pgprot_t prot) +{ + pmd_t *pmd; + pte_t *pte; + unsigned long addr, next; + + addr = start; + do { + pmd = pmd_offset(pud, addr); + + BUG_ON(pmd_sect(*pmd)); + + if (pmd_none(*pmd)) { + pte = pte_alloc_one_kernel(NULL, addr); + if (!pte) { + kvm_err("Cannot allocate Hyp pte\n"); + return -ENOMEM; + } + pmd_populate_kernel(NULL, pmd, pte); + get_page(virt_to_page(pmd)); + kvm_flush_dcache_to_poc(pmd, sizeof(*pmd)); + } + + next = pmd_addr_end(addr, end); + + create_hyp_pte_mappings(pmd, addr, next, pfn, prot); + pfn += (next - addr) >> PAGE_SHIFT; + } while (addr = next, addr != end); + + return 0; +} + +static int create_hyp_pud_mappings(pgd_t *pgd, unsigned long start, + unsigned long end, unsigned long pfn, + pgprot_t prot) +{ + pud_t *pud; + pmd_t *pmd; + unsigned long addr, next; + int ret; + + addr = start; + do { + pud = pud_offset(pgd, addr); + + if (pud_none_or_clear_bad(pud)) { + pmd = pmd_alloc_one(NULL, addr); + if (!pmd) { + kvm_err("Cannot allocate Hyp pmd\n"); + return -ENOMEM; + } + pud_populate(NULL, pud, pmd); + get_page(virt_to_page(pud)); + kvm_flush_dcache_to_poc(pud, sizeof(*pud)); + } + + next = pud_addr_end(addr, end); + ret = create_hyp_pmd_mappings(pud, addr, next, pfn, prot); + if (ret) + return ret; + pfn += (next - addr) >> PAGE_SHIFT; + } while (addr = next, addr != end); + + return 0; +} + +static int __create_hyp_mappings(pgd_t *pgdp, + unsigned long start, unsigned long end, + unsigned long pfn, pgprot_t prot) +{ + pgd_t *pgd; + pud_t *pud; + unsigned long addr, next; + int err = 0; + + mutex_lock(&kvm_hyp_pgd_mutex); + addr = start & PAGE_MASK; + end = PAGE_ALIGN(end); + do { + pgd = pgdp + pgd_index(addr); + + if (pgd_none(*pgd)) { + pud = pud_alloc_one(NULL, addr); + if (!pud) { + kvm_err("Cannot allocate Hyp pud\n"); + err = -ENOMEM; + goto out; + } + pgd_populate(NULL, pgd, pud); + get_page(virt_to_page(pgd)); + kvm_flush_dcache_to_poc(pgd, sizeof(*pgd)); + } + + next = pgd_addr_end(addr, end); + err = create_hyp_pud_mappings(pgd, addr, next, pfn, prot); + if (err) + goto out; + pfn += (next - addr) >> PAGE_SHIFT; + } while (addr = next, addr != end); +out: + mutex_unlock(&kvm_hyp_pgd_mutex); + return err; +} + +static phys_addr_t kvm_kaddr_to_phys(void *kaddr) +{ + if (!is_vmalloc_addr(kaddr)) { + BUG_ON(!virt_addr_valid(kaddr)); + return __pa(kaddr); + } else { + return page_to_phys(vmalloc_to_page(kaddr)) + + offset_in_page(kaddr); + } +} + +/** + * create_hyp_mappings - duplicate a kernel virtual address range in Hyp mode + * @from: The virtual kernel start address of the range + * @to: The virtual kernel end address of the range (exclusive) + * @prot: The protection to be applied to this range + * + * The same virtual address as the kernel virtual address is also used + * in Hyp-mode mapping (modulo HYP_PAGE_OFFSET) to the same underlying + * physical pages. + */ +int create_hyp_mappings(void *from, void *to, pgprot_t prot) +{ + phys_addr_t phys_addr; + unsigned long virt_addr; + unsigned long start = kern_hyp_va((unsigned long)from); + unsigned long end = kern_hyp_va((unsigned long)to); + + if (is_kernel_in_hyp_mode()) + return 0; + + start = start & PAGE_MASK; + end = PAGE_ALIGN(end); + + for (virt_addr = start; virt_addr < end; virt_addr += PAGE_SIZE) { + int err; + + phys_addr = kvm_kaddr_to_phys(from + virt_addr - start); + err = __create_hyp_mappings(hyp_pgd, virt_addr, + virt_addr + PAGE_SIZE, + __phys_to_pfn(phys_addr), + prot); + if (err) + return err; + } + + return 0; +} + +/** + * create_hyp_io_mappings - duplicate a kernel IO mapping into Hyp mode + * @from: The kernel start VA of the range + * @to: The kernel end VA of the range (exclusive) + * @phys_addr: The physical start address which gets mapped + * + * The resulting HYP VA is the same as the kernel VA, modulo + * HYP_PAGE_OFFSET. + */ +int create_hyp_io_mappings(void *from, void *to, phys_addr_t phys_addr) +{ + unsigned long start = kern_hyp_va((unsigned long)from); + unsigned long end = kern_hyp_va((unsigned long)to); + + if (is_kernel_in_hyp_mode()) + return 0; + + /* Check for a valid kernel IO mapping */ + if (!is_vmalloc_addr(from) || !is_vmalloc_addr(to - 1)) + return -EINVAL; + + return __create_hyp_mappings(hyp_pgd, start, end, + __phys_to_pfn(phys_addr), PAGE_HYP_DEVICE); +} + +/** + * kvm_alloc_stage2_pgd - allocate level-1 table for stage-2 translation. + * @kvm: The KVM struct pointer for the VM. + * + * Allocates only the stage-2 HW PGD level table(s) (can support either full + * 40-bit input addresses or limited to 32-bit input addresses). Clears the + * allocated pages. + * + * Note we don't need locking here as this is only called when the VM is + * created, which can only be done once. + */ +int kvm_alloc_stage2_pgd(struct kvm *kvm) +{ + pgd_t *pgd; + + if (kvm->arch.pgd != NULL) { + kvm_err("kvm_arch already initialized?\n"); + return -EINVAL; + } + + /* Allocate the HW PGD, making sure that each page gets its own refcount */ + pgd = alloc_pages_exact(S2_PGD_SIZE, GFP_KERNEL | __GFP_ZERO); + if (!pgd) + return -ENOMEM; + + kvm->arch.pgd = pgd; + return 0; +} + +static void stage2_unmap_memslot(struct kvm *kvm, + struct kvm_memory_slot *memslot) +{ + hva_t hva = memslot->userspace_addr; + phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT; + phys_addr_t size = PAGE_SIZE * memslot->npages; + hva_t reg_end = hva + size; + + /* + * A memory region could potentially cover multiple VMAs, and any holes + * between them, so iterate over all of them to find out if we should + * unmap any of them. + * + * +--------------------------------------------+ + * +---------------+----------------+ +----------------+ + * | : VMA 1 | VMA 2 | | VMA 3 : | + * +---------------+----------------+ +----------------+ + * | memory region | + * +--------------------------------------------+ + */ + do { + struct vm_area_struct *vma = find_vma(current->mm, hva); + hva_t vm_start, vm_end; + + if (!vma || vma->vm_start >= reg_end) + break; + + /* + * Take the intersection of this VMA with the memory region + */ + vm_start = max(hva, vma->vm_start); + vm_end = min(reg_end, vma->vm_end); + + if (!(vma->vm_flags & VM_PFNMAP)) { + gpa_t gpa = addr + (vm_start - memslot->userspace_addr); + unmap_stage2_range(kvm, gpa, vm_end - vm_start); + } + hva = vm_end; + } while (hva < reg_end); +} + +/** + * stage2_unmap_vm - Unmap Stage-2 RAM mappings + * @kvm: The struct kvm pointer + * + * Go through the memregions and unmap any reguler RAM + * backing memory already mapped to the VM. + */ +void stage2_unmap_vm(struct kvm *kvm) +{ + struct kvm_memslots *slots; + struct kvm_memory_slot *memslot; + int idx; + + idx = srcu_read_lock(&kvm->srcu); + down_read(¤t->mm->mmap_sem); + spin_lock(&kvm->mmu_lock); + + slots = kvm_memslots(kvm); + kvm_for_each_memslot(memslot, slots) + stage2_unmap_memslot(kvm, memslot); + + spin_unlock(&kvm->mmu_lock); + up_read(¤t->mm->mmap_sem); + srcu_read_unlock(&kvm->srcu, idx); +} + +/** + * kvm_free_stage2_pgd - free all stage-2 tables + * @kvm: The KVM struct pointer for the VM. + * + * Walks the level-1 page table pointed to by kvm->arch.pgd and frees all + * underlying level-2 and level-3 tables before freeing the actual level-1 table + * and setting the struct pointer to NULL. + * + * Note we don't need locking here as this is only called when the VM is + * destroyed, which can only be done once. + */ +void kvm_free_stage2_pgd(struct kvm *kvm) +{ + if (kvm->arch.pgd == NULL) + return; + + spin_lock(&kvm->mmu_lock); + unmap_stage2_range(kvm, 0, KVM_PHYS_SIZE); + spin_unlock(&kvm->mmu_lock); + + /* Free the HW pgd, one page at a time */ + free_pages_exact(kvm->arch.pgd, S2_PGD_SIZE); + kvm->arch.pgd = NULL; +} + +static pud_t *stage2_get_pud(struct kvm *kvm, struct kvm_mmu_memory_cache *cache, + phys_addr_t addr) +{ + pgd_t *pgd; + pud_t *pud; + + pgd = kvm->arch.pgd + stage2_pgd_index(addr); + if (WARN_ON(stage2_pgd_none(*pgd))) { + if (!cache) + return NULL; + pud = mmu_memory_cache_alloc(cache); + stage2_pgd_populate(pgd, pud); + get_page(virt_to_page(pgd)); + } + + return stage2_pud_offset(pgd, addr); +} + +static pmd_t *stage2_get_pmd(struct kvm *kvm, struct kvm_mmu_memory_cache *cache, + phys_addr_t addr) +{ + pud_t *pud; + pmd_t *pmd; + + pud = stage2_get_pud(kvm, cache, addr); + if (stage2_pud_none(*pud)) { + if (!cache) + return NULL; + pmd = mmu_memory_cache_alloc(cache); + stage2_pud_populate(pud, pmd); + get_page(virt_to_page(pud)); + } + + return stage2_pmd_offset(pud, addr); +} + +static int stage2_set_pmd_huge(struct kvm *kvm, struct kvm_mmu_memory_cache + *cache, phys_addr_t addr, const pmd_t *new_pmd) +{ + pmd_t *pmd, old_pmd; + + pmd = stage2_get_pmd(kvm, cache, addr); + VM_BUG_ON(!pmd); + + /* + * Mapping in huge pages should only happen through a fault. If a + * page is merged into a transparent huge page, the individual + * subpages of that huge page should be unmapped through MMU + * notifiers before we get here. + * + * Merging of CompoundPages is not supported; they should become + * splitting first, unmapped, merged, and mapped back in on-demand. + */ + VM_BUG_ON(pmd_present(*pmd) && pmd_pfn(*pmd) != pmd_pfn(*new_pmd)); + + old_pmd = *pmd; + if (pmd_present(old_pmd)) { + pmd_clear(pmd); + kvm_tlb_flush_vmid_ipa(kvm, addr); + } else { + get_page(virt_to_page(pmd)); + } + + kvm_set_pmd(pmd, *new_pmd); + return 0; +} + +static int stage2_set_pte(struct kvm *kvm, struct kvm_mmu_memory_cache *cache, + phys_addr_t addr, const pte_t *new_pte, + unsigned long flags) +{ + pmd_t *pmd; + pte_t *pte, old_pte; + bool iomap = flags & KVM_S2PTE_FLAG_IS_IOMAP; + bool logging_active = flags & KVM_S2_FLAG_LOGGING_ACTIVE; + + VM_BUG_ON(logging_active && !cache); + + /* Create stage-2 page table mapping - Levels 0 and 1 */ + pmd = stage2_get_pmd(kvm, cache, addr); + if (!pmd) { + /* + * Ignore calls from kvm_set_spte_hva for unallocated + * address ranges. + */ + return 0; + } + + /* + * While dirty page logging - dissolve huge PMD, then continue on to + * allocate page. + */ + if (logging_active) + stage2_dissolve_pmd(kvm, addr, pmd); + + /* Create stage-2 page mappings - Level 2 */ + if (pmd_none(*pmd)) { + if (!cache) + return 0; /* ignore calls from kvm_set_spte_hva */ + pte = mmu_memory_cache_alloc(cache); + pmd_populate_kernel(NULL, pmd, pte); + get_page(virt_to_page(pmd)); + } + + pte = pte_offset_kernel(pmd, addr); + + if (iomap && pte_present(*pte)) + return -EFAULT; + + /* Create 2nd stage page table mapping - Level 3 */ + old_pte = *pte; + if (pte_present(old_pte)) { + kvm_set_pte(pte, __pte(0)); + kvm_tlb_flush_vmid_ipa(kvm, addr); + } else { + get_page(virt_to_page(pte)); + } + + kvm_set_pte(pte, *new_pte); + return 0; +} + +#ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG +static int stage2_ptep_test_and_clear_young(pte_t *pte) +{ + if (pte_young(*pte)) { + *pte = pte_mkold(*pte); + return 1; + } + return 0; +} +#else +static int stage2_ptep_test_and_clear_young(pte_t *pte) +{ + return __ptep_test_and_clear_young(pte); +} +#endif + +static int stage2_pmdp_test_and_clear_young(pmd_t *pmd) +{ + return stage2_ptep_test_and_clear_young((pte_t *)pmd); +} + +/** + * kvm_phys_addr_ioremap - map a device range to guest IPA + * + * @kvm: The KVM pointer + * @guest_ipa: The IPA at which to insert the mapping + * @pa: The physical address of the device + * @size: The size of the mapping + */ +int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa, + phys_addr_t pa, unsigned long size, bool writable) +{ + phys_addr_t addr, end; + int ret = 0; + unsigned long pfn; + struct kvm_mmu_memory_cache cache = { 0, }; + + end = (guest_ipa + size + PAGE_SIZE - 1) & PAGE_MASK; + pfn = __phys_to_pfn(pa); + + for (addr = guest_ipa; addr < end; addr += PAGE_SIZE) { + pte_t pte = pfn_pte(pfn, PAGE_S2_DEVICE); + + if (writable) + pte = kvm_s2pte_mkwrite(pte); + + ret = mmu_topup_memory_cache(&cache, KVM_MMU_CACHE_MIN_PAGES, + KVM_NR_MEM_OBJS); + if (ret) + goto out; + spin_lock(&kvm->mmu_lock); + ret = stage2_set_pte(kvm, &cache, addr, &pte, + KVM_S2PTE_FLAG_IS_IOMAP); + spin_unlock(&kvm->mmu_lock); + if (ret) + goto out; + + pfn++; + } + +out: + mmu_free_memory_cache(&cache); + return ret; +} + +static bool transparent_hugepage_adjust(kvm_pfn_t *pfnp, phys_addr_t *ipap) +{ + kvm_pfn_t pfn = *pfnp; + gfn_t gfn = *ipap >> PAGE_SHIFT; + + if (PageTransCompoundMap(pfn_to_page(pfn))) { + unsigned long mask; + /* + * The address we faulted on is backed by a transparent huge + * page. However, because we map the compound huge page and + * not the individual tail page, we need to transfer the + * refcount to the head page. We have to be careful that the + * THP doesn't start to split while we are adjusting the + * refcounts. + * + * We are sure this doesn't happen, because mmu_notifier_retry + * was successful and we are holding the mmu_lock, so if this + * THP is trying to split, it will be blocked in the mmu + * notifier before touching any of the pages, specifically + * before being able to call __split_huge_page_refcount(). + * + * We can therefore safely transfer the refcount from PG_tail + * to PG_head and switch the pfn from a tail page to the head + * page accordingly. + */ + mask = PTRS_PER_PMD - 1; + VM_BUG_ON((gfn & mask) != (pfn & mask)); + if (pfn & mask) { + *ipap &= PMD_MASK; + kvm_release_pfn_clean(pfn); + pfn &= ~mask; + kvm_get_pfn(pfn); + *pfnp = pfn; + } + + return true; + } + + return false; +} + +static bool kvm_is_write_fault(struct kvm_vcpu *vcpu) +{ + if (kvm_vcpu_trap_is_iabt(vcpu)) + return false; + + return kvm_vcpu_dabt_iswrite(vcpu); +} + +/** + * stage2_wp_ptes - write protect PMD range + * @pmd: pointer to pmd entry + * @addr: range start address + * @end: range end address + */ +static void stage2_wp_ptes(pmd_t *pmd, phys_addr_t addr, phys_addr_t end) +{ + pte_t *pte; + + pte = pte_offset_kernel(pmd, addr); + do { + if (!pte_none(*pte)) { + if (!kvm_s2pte_readonly(pte)) + kvm_set_s2pte_readonly(pte); + } + } while (pte++, addr += PAGE_SIZE, addr != end); +} + +/** + * stage2_wp_pmds - write protect PUD range + * @pud: pointer to pud entry + * @addr: range start address + * @end: range end address + */ +static void stage2_wp_pmds(pud_t *pud, phys_addr_t addr, phys_addr_t end) +{ + pmd_t *pmd; + phys_addr_t next; + + pmd = stage2_pmd_offset(pud, addr); + + do { + next = stage2_pmd_addr_end(addr, end); + if (!pmd_none(*pmd)) { + if (pmd_thp_or_huge(*pmd)) { + if (!kvm_s2pmd_readonly(pmd)) + kvm_set_s2pmd_readonly(pmd); + } else { + stage2_wp_ptes(pmd, addr, next); + } + } + } while (pmd++, addr = next, addr != end); +} + +/** + * stage2_wp_puds - write protect PGD range + * @pgd: pointer to pgd entry + * @addr: range start address + * @end: range end address + * + * Process PUD entries, for a huge PUD we cause a panic. + */ +static void stage2_wp_puds(pgd_t *pgd, phys_addr_t addr, phys_addr_t end) +{ + pud_t *pud; + phys_addr_t next; + + pud = stage2_pud_offset(pgd, addr); + do { + next = stage2_pud_addr_end(addr, end); + if (!stage2_pud_none(*pud)) { + /* TODO:PUD not supported, revisit later if supported */ + BUG_ON(stage2_pud_huge(*pud)); + stage2_wp_pmds(pud, addr, next); + } + } while (pud++, addr = next, addr != end); +} + +/** + * stage2_wp_range() - write protect stage2 memory region range + * @kvm: The KVM pointer + * @addr: Start address of range + * @end: End address of range + */ +static void stage2_wp_range(struct kvm *kvm, phys_addr_t addr, phys_addr_t end) +{ + pgd_t *pgd; + phys_addr_t next; + + pgd = kvm->arch.pgd + stage2_pgd_index(addr); + do { + /* + * Release kvm_mmu_lock periodically if the memory region is + * large. Otherwise, we may see kernel panics with + * CONFIG_DETECT_HUNG_TASK, CONFIG_LOCKUP_DETECTOR, + * CONFIG_LOCKDEP. Additionally, holding the lock too long + * will also starve other vCPUs. + */ + if (need_resched() || spin_needbreak(&kvm->mmu_lock)) + cond_resched_lock(&kvm->mmu_lock); + + next = stage2_pgd_addr_end(addr, end); + if (stage2_pgd_present(*pgd)) + stage2_wp_puds(pgd, addr, next); + } while (pgd++, addr = next, addr != end); +} + +/** + * kvm_mmu_wp_memory_region() - write protect stage 2 entries for memory slot + * @kvm: The KVM pointer + * @slot: The memory slot to write protect + * + * Called to start logging dirty pages after memory region + * KVM_MEM_LOG_DIRTY_PAGES operation is called. After this function returns + * all present PMD and PTEs are write protected in the memory region. + * Afterwards read of dirty page log can be called. + * + * Acquires kvm_mmu_lock. Called with kvm->slots_lock mutex acquired, + * serializing operations for VM memory regions. + */ +void kvm_mmu_wp_memory_region(struct kvm *kvm, int slot) +{ + struct kvm_memslots *slots = kvm_memslots(kvm); + struct kvm_memory_slot *memslot = id_to_memslot(slots, slot); + phys_addr_t start = memslot->base_gfn << PAGE_SHIFT; + phys_addr_t end = (memslot->base_gfn + memslot->npages) << PAGE_SHIFT; + + spin_lock(&kvm->mmu_lock); + stage2_wp_range(kvm, start, end); + spin_unlock(&kvm->mmu_lock); + kvm_flush_remote_tlbs(kvm); +} + +/** + * kvm_mmu_write_protect_pt_masked() - write protect dirty pages + * @kvm: The KVM pointer + * @slot: The memory slot associated with mask + * @gfn_offset: The gfn offset in memory slot + * @mask: The mask of dirty pages at offset 'gfn_offset' in this memory + * slot to be write protected + * + * Walks bits set in mask write protects the associated pte's. Caller must + * acquire kvm_mmu_lock. + */ +static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm, + struct kvm_memory_slot *slot, + gfn_t gfn_offset, unsigned long mask) +{ + phys_addr_t base_gfn = slot->base_gfn + gfn_offset; + phys_addr_t start = (base_gfn + __ffs(mask)) << PAGE_SHIFT; + phys_addr_t end = (base_gfn + __fls(mask) + 1) << PAGE_SHIFT; + + stage2_wp_range(kvm, start, end); +} + +/* + * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected + * dirty pages. + * + * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to + * enable dirty logging for them. + */ +void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm, + struct kvm_memory_slot *slot, + gfn_t gfn_offset, unsigned long mask) +{ + kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask); +} + +static void coherent_cache_guest_page(struct kvm_vcpu *vcpu, kvm_pfn_t pfn, + unsigned long size) +{ + __coherent_cache_guest_page(vcpu, pfn, size); +} + +static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa, + struct kvm_memory_slot *memslot, unsigned long hva, + unsigned long fault_status) +{ + int ret; + bool write_fault, writable, hugetlb = false, force_pte = false; + unsigned long mmu_seq; + gfn_t gfn = fault_ipa >> PAGE_SHIFT; + struct kvm *kvm = vcpu->kvm; + struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache; + struct vm_area_struct *vma; + kvm_pfn_t pfn; + pgprot_t mem_type = PAGE_S2; + bool logging_active = memslot_is_logging(memslot); + unsigned long flags = 0; + + write_fault = kvm_is_write_fault(vcpu); + if (fault_status == FSC_PERM && !write_fault) { + kvm_err("Unexpected L2 read permission error\n"); + return -EFAULT; + } + + /* Let's check if we will get back a huge page backed by hugetlbfs */ + down_read(¤t->mm->mmap_sem); + vma = find_vma_intersection(current->mm, hva, hva + 1); + if (unlikely(!vma)) { + kvm_err("Failed to find VMA for hva 0x%lx\n", hva); + up_read(¤t->mm->mmap_sem); + return -EFAULT; + } + + if (is_vm_hugetlb_page(vma) && !logging_active) { + hugetlb = true; + gfn = (fault_ipa & PMD_MASK) >> PAGE_SHIFT; + } else { + /* + * Pages belonging to memslots that don't have the same + * alignment for userspace and IPA cannot be mapped using + * block descriptors even if the pages belong to a THP for + * the process, because the stage-2 block descriptor will + * cover more than a single THP and we loose atomicity for + * unmapping, updates, and splits of the THP or other pages + * in the stage-2 block range. + */ + if ((memslot->userspace_addr & ~PMD_MASK) != + ((memslot->base_gfn << PAGE_SHIFT) & ~PMD_MASK)) + force_pte = true; + } + up_read(¤t->mm->mmap_sem); + + /* We need minimum second+third level pages */ + ret = mmu_topup_memory_cache(memcache, KVM_MMU_CACHE_MIN_PAGES, + KVM_NR_MEM_OBJS); + if (ret) + return ret; + + mmu_seq = vcpu->kvm->mmu_notifier_seq; + /* + * Ensure the read of mmu_notifier_seq happens before we call + * gfn_to_pfn_prot (which calls get_user_pages), so that we don't risk + * the page we just got a reference to gets unmapped before we have a + * chance to grab the mmu_lock, which ensure that if the page gets + * unmapped afterwards, the call to kvm_unmap_hva will take it away + * from us again properly. This smp_rmb() interacts with the smp_wmb() + * in kvm_mmu_notifier_invalidate_<page|range_end>. + */ + smp_rmb(); + + pfn = gfn_to_pfn_prot(kvm, gfn, write_fault, &writable); + if (is_error_noslot_pfn(pfn)) + return -EFAULT; + + if (kvm_is_device_pfn(pfn)) { + mem_type = PAGE_S2_DEVICE; + flags |= KVM_S2PTE_FLAG_IS_IOMAP; + } else if (logging_active) { + /* + * Faults on pages in a memslot with logging enabled + * should not be mapped with huge pages (it introduces churn + * and performance degradation), so force a pte mapping. + */ + force_pte = true; + flags |= KVM_S2_FLAG_LOGGING_ACTIVE; + + /* + * Only actually map the page as writable if this was a write + * fault. + */ + if (!write_fault) + writable = false; + } + + spin_lock(&kvm->mmu_lock); + if (mmu_notifier_retry(kvm, mmu_seq)) + goto out_unlock; + + if (!hugetlb && !force_pte) + hugetlb = transparent_hugepage_adjust(&pfn, &fault_ipa); + + if (hugetlb) { + pmd_t new_pmd = pfn_pmd(pfn, mem_type); + new_pmd = pmd_mkhuge(new_pmd); + if (writable) { + new_pmd = kvm_s2pmd_mkwrite(new_pmd); + kvm_set_pfn_dirty(pfn); + } + coherent_cache_guest_page(vcpu, pfn, PMD_SIZE); + ret = stage2_set_pmd_huge(kvm, memcache, fault_ipa, &new_pmd); + } else { + pte_t new_pte = pfn_pte(pfn, mem_type); + + if (writable) { + new_pte = kvm_s2pte_mkwrite(new_pte); + kvm_set_pfn_dirty(pfn); + mark_page_dirty(kvm, gfn); + } + coherent_cache_guest_page(vcpu, pfn, PAGE_SIZE); + ret = stage2_set_pte(kvm, memcache, fault_ipa, &new_pte, flags); + } + +out_unlock: + spin_unlock(&kvm->mmu_lock); + kvm_set_pfn_accessed(pfn); + kvm_release_pfn_clean(pfn); + return ret; +} + +/* + * Resolve the access fault by making the page young again. + * Note that because the faulting entry is guaranteed not to be + * cached in the TLB, we don't need to invalidate anything. + * Only the HW Access Flag updates are supported for Stage 2 (no DBM), + * so there is no need for atomic (pte|pmd)_mkyoung operations. + */ +static void handle_access_fault(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa) +{ + pmd_t *pmd; + pte_t *pte; + kvm_pfn_t pfn; + bool pfn_valid = false; + + trace_kvm_access_fault(fault_ipa); + + spin_lock(&vcpu->kvm->mmu_lock); + + pmd = stage2_get_pmd(vcpu->kvm, NULL, fault_ipa); + if (!pmd || pmd_none(*pmd)) /* Nothing there */ + goto out; + + if (pmd_thp_or_huge(*pmd)) { /* THP, HugeTLB */ + *pmd = pmd_mkyoung(*pmd); + pfn = pmd_pfn(*pmd); + pfn_valid = true; + goto out; + } + + pte = pte_offset_kernel(pmd, fault_ipa); + if (pte_none(*pte)) /* Nothing there either */ + goto out; + + *pte = pte_mkyoung(*pte); /* Just a page... */ + pfn = pte_pfn(*pte); + pfn_valid = true; +out: + spin_unlock(&vcpu->kvm->mmu_lock); + if (pfn_valid) + kvm_set_pfn_accessed(pfn); +} + +/** + * kvm_handle_guest_abort - handles all 2nd stage aborts + * @vcpu: the VCPU pointer + * @run: the kvm_run structure + * + * Any abort that gets to the host is almost guaranteed to be caused by a + * missing second stage translation table entry, which can mean that either the + * guest simply needs more memory and we must allocate an appropriate page or it + * can mean that the guest tried to access I/O memory, which is emulated by user + * space. The distinction is based on the IPA causing the fault and whether this + * memory region has been registered as standard RAM by user space. + */ +int kvm_handle_guest_abort(struct kvm_vcpu *vcpu, struct kvm_run *run) +{ + unsigned long fault_status; + phys_addr_t fault_ipa; + struct kvm_memory_slot *memslot; + unsigned long hva; + bool is_iabt, write_fault, writable; + gfn_t gfn; + int ret, idx; + + is_iabt = kvm_vcpu_trap_is_iabt(vcpu); + if (unlikely(!is_iabt && kvm_vcpu_dabt_isextabt(vcpu))) { + kvm_inject_vabt(vcpu); + return 1; + } + + fault_ipa = kvm_vcpu_get_fault_ipa(vcpu); + + trace_kvm_guest_fault(*vcpu_pc(vcpu), kvm_vcpu_get_hsr(vcpu), + kvm_vcpu_get_hfar(vcpu), fault_ipa); + + /* Check the stage-2 fault is trans. fault or write fault */ + fault_status = kvm_vcpu_trap_get_fault_type(vcpu); + if (fault_status != FSC_FAULT && fault_status != FSC_PERM && + fault_status != FSC_ACCESS) { + kvm_err("Unsupported FSC: EC=%#x xFSC=%#lx ESR_EL2=%#lx\n", + kvm_vcpu_trap_get_class(vcpu), + (unsigned long)kvm_vcpu_trap_get_fault(vcpu), + (unsigned long)kvm_vcpu_get_hsr(vcpu)); + return -EFAULT; + } + + idx = srcu_read_lock(&vcpu->kvm->srcu); + + gfn = fault_ipa >> PAGE_SHIFT; + memslot = gfn_to_memslot(vcpu->kvm, gfn); + hva = gfn_to_hva_memslot_prot(memslot, gfn, &writable); + write_fault = kvm_is_write_fault(vcpu); + if (kvm_is_error_hva(hva) || (write_fault && !writable)) { + if (is_iabt) { + /* Prefetch Abort on I/O address */ + kvm_inject_pabt(vcpu, kvm_vcpu_get_hfar(vcpu)); + ret = 1; + goto out_unlock; + } + + /* + * Check for a cache maintenance operation. Since we + * ended-up here, we know it is outside of any memory + * slot. But we can't find out if that is for a device, + * or if the guest is just being stupid. The only thing + * we know for sure is that this range cannot be cached. + * + * So let's assume that the guest is just being + * cautious, and skip the instruction. + */ + if (kvm_vcpu_dabt_is_cm(vcpu)) { + kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu)); + ret = 1; + goto out_unlock; + } + + /* + * The IPA is reported as [MAX:12], so we need to + * complement it with the bottom 12 bits from the + * faulting VA. This is always 12 bits, irrespective + * of the page size. + */ + fault_ipa |= kvm_vcpu_get_hfar(vcpu) & ((1 << 12) - 1); + ret = io_mem_abort(vcpu, run, fault_ipa); + goto out_unlock; + } + + /* Userspace should not be able to register out-of-bounds IPAs */ + VM_BUG_ON(fault_ipa >= KVM_PHYS_SIZE); + + if (fault_status == FSC_ACCESS) { + handle_access_fault(vcpu, fault_ipa); + ret = 1; + goto out_unlock; + } + + ret = user_mem_abort(vcpu, fault_ipa, memslot, hva, fault_status); + if (ret == 0) + ret = 1; +out_unlock: + srcu_read_unlock(&vcpu->kvm->srcu, idx); + return ret; +} + +static int handle_hva_to_gpa(struct kvm *kvm, + unsigned long start, + unsigned long end, + int (*handler)(struct kvm *kvm, + gpa_t gpa, u64 size, + void *data), + void *data) +{ + struct kvm_memslots *slots; + struct kvm_memory_slot *memslot; + int ret = 0; + + slots = kvm_memslots(kvm); + + /* we only care about the pages that the guest sees */ + kvm_for_each_memslot(memslot, slots) { + unsigned long hva_start, hva_end; + gfn_t gpa; + + hva_start = max(start, memslot->userspace_addr); + hva_end = min(end, memslot->userspace_addr + + (memslot->npages << PAGE_SHIFT)); + if (hva_start >= hva_end) + continue; + + gpa = hva_to_gfn_memslot(hva_start, memslot) << PAGE_SHIFT; + ret |= handler(kvm, gpa, (u64)(hva_end - hva_start), data); + } + + return ret; +} + +static int kvm_unmap_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data) +{ + unmap_stage2_range(kvm, gpa, size); + return 0; +} + +int kvm_unmap_hva(struct kvm *kvm, unsigned long hva) +{ + unsigned long end = hva + PAGE_SIZE; + + if (!kvm->arch.pgd) + return 0; + + trace_kvm_unmap_hva(hva); + handle_hva_to_gpa(kvm, hva, end, &kvm_unmap_hva_handler, NULL); + return 0; +} + +int kvm_unmap_hva_range(struct kvm *kvm, + unsigned long start, unsigned long end) +{ + if (!kvm->arch.pgd) + return 0; + + trace_kvm_unmap_hva_range(start, end); + handle_hva_to_gpa(kvm, start, end, &kvm_unmap_hva_handler, NULL); + return 0; +} + +static int kvm_set_spte_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data) +{ + pte_t *pte = (pte_t *)data; + + WARN_ON(size != PAGE_SIZE); + /* + * We can always call stage2_set_pte with KVM_S2PTE_FLAG_LOGGING_ACTIVE + * flag clear because MMU notifiers will have unmapped a huge PMD before + * calling ->change_pte() (which in turn calls kvm_set_spte_hva()) and + * therefore stage2_set_pte() never needs to clear out a huge PMD + * through this calling path. + */ + stage2_set_pte(kvm, NULL, gpa, pte, 0); + return 0; +} + + +void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte) +{ + unsigned long end = hva + PAGE_SIZE; + pte_t stage2_pte; + + if (!kvm->arch.pgd) + return; + + trace_kvm_set_spte_hva(hva); + stage2_pte = pfn_pte(pte_pfn(pte), PAGE_S2); + handle_hva_to_gpa(kvm, hva, end, &kvm_set_spte_handler, &stage2_pte); +} + +static int kvm_age_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data) +{ + pmd_t *pmd; + pte_t *pte; + + WARN_ON(size != PAGE_SIZE && size != PMD_SIZE); + pmd = stage2_get_pmd(kvm, NULL, gpa); + if (!pmd || pmd_none(*pmd)) /* Nothing there */ + return 0; + + if (pmd_thp_or_huge(*pmd)) /* THP, HugeTLB */ + return stage2_pmdp_test_and_clear_young(pmd); + + pte = pte_offset_kernel(pmd, gpa); + if (pte_none(*pte)) + return 0; + + return stage2_ptep_test_and_clear_young(pte); +} + +static int kvm_test_age_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data) +{ + pmd_t *pmd; + pte_t *pte; + + WARN_ON(size != PAGE_SIZE && size != PMD_SIZE); + pmd = stage2_get_pmd(kvm, NULL, gpa); + if (!pmd || pmd_none(*pmd)) /* Nothing there */ + return 0; + + if (pmd_thp_or_huge(*pmd)) /* THP, HugeTLB */ + return pmd_young(*pmd); + + pte = pte_offset_kernel(pmd, gpa); + if (!pte_none(*pte)) /* Just a page... */ + return pte_young(*pte); + + return 0; +} + +int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end) +{ + trace_kvm_age_hva(start, end); + return handle_hva_to_gpa(kvm, start, end, kvm_age_hva_handler, NULL); +} + +int kvm_test_age_hva(struct kvm *kvm, unsigned long hva) +{ + trace_kvm_test_age_hva(hva); + return handle_hva_to_gpa(kvm, hva, hva, kvm_test_age_hva_handler, NULL); +} + +void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu) +{ + mmu_free_memory_cache(&vcpu->arch.mmu_page_cache); +} + +phys_addr_t kvm_mmu_get_httbr(void) +{ + if (__kvm_cpu_uses_extended_idmap()) + return virt_to_phys(merged_hyp_pgd); + else + return virt_to_phys(hyp_pgd); +} + +phys_addr_t kvm_get_idmap_vector(void) +{ + return hyp_idmap_vector; +} + +static int kvm_map_idmap_text(pgd_t *pgd) +{ + int err; + + /* Create the idmap in the boot page tables */ + err = __create_hyp_mappings(pgd, + hyp_idmap_start, hyp_idmap_end, + __phys_to_pfn(hyp_idmap_start), + PAGE_HYP_EXEC); + if (err) + kvm_err("Failed to idmap %lx-%lx\n", + hyp_idmap_start, hyp_idmap_end); + + return err; +} + +int kvm_mmu_init(void) +{ + int err; + + hyp_idmap_start = kvm_virt_to_phys(__hyp_idmap_text_start); + hyp_idmap_end = kvm_virt_to_phys(__hyp_idmap_text_end); + hyp_idmap_vector = kvm_virt_to_phys(__kvm_hyp_init); + + /* + * We rely on the linker script to ensure at build time that the HYP + * init code does not cross a page boundary. + */ + BUG_ON((hyp_idmap_start ^ (hyp_idmap_end - 1)) & PAGE_MASK); + + kvm_info("IDMAP page: %lx\n", hyp_idmap_start); + kvm_info("HYP VA range: %lx:%lx\n", + kern_hyp_va(PAGE_OFFSET), kern_hyp_va(~0UL)); + + if (hyp_idmap_start >= kern_hyp_va(PAGE_OFFSET) && + hyp_idmap_start < kern_hyp_va(~0UL) && + hyp_idmap_start != (unsigned long)__hyp_idmap_text_start) { + /* + * The idmap page is intersecting with the VA space, + * it is not safe to continue further. + */ + kvm_err("IDMAP intersecting with HYP VA, unable to continue\n"); + err = -EINVAL; + goto out; + } + + hyp_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, hyp_pgd_order); + if (!hyp_pgd) { + kvm_err("Hyp mode PGD not allocated\n"); + err = -ENOMEM; + goto out; + } + + if (__kvm_cpu_uses_extended_idmap()) { + boot_hyp_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, + hyp_pgd_order); + if (!boot_hyp_pgd) { + kvm_err("Hyp boot PGD not allocated\n"); + err = -ENOMEM; + goto out; + } + + err = kvm_map_idmap_text(boot_hyp_pgd); + if (err) + goto out; + + merged_hyp_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO); + if (!merged_hyp_pgd) { + kvm_err("Failed to allocate extra HYP pgd\n"); + goto out; + } + __kvm_extend_hypmap(boot_hyp_pgd, hyp_pgd, merged_hyp_pgd, + hyp_idmap_start); + } else { + err = kvm_map_idmap_text(hyp_pgd); + if (err) + goto out; + } + + return 0; +out: + free_hyp_pgds(); + return err; +} + +void kvm_arch_commit_memory_region(struct kvm *kvm, + const struct kvm_userspace_memory_region *mem, + const struct kvm_memory_slot *old, + const struct kvm_memory_slot *new, + enum kvm_mr_change change) +{ + /* + * At this point memslot has been committed and there is an + * allocated dirty_bitmap[], dirty pages will be be tracked while the + * memory slot is write protected. + */ + if (change != KVM_MR_DELETE && mem->flags & KVM_MEM_LOG_DIRTY_PAGES) + kvm_mmu_wp_memory_region(kvm, mem->slot); +} + +int kvm_arch_prepare_memory_region(struct kvm *kvm, + struct kvm_memory_slot *memslot, + const struct kvm_userspace_memory_region *mem, + enum kvm_mr_change change) +{ + hva_t hva = mem->userspace_addr; + hva_t reg_end = hva + mem->memory_size; + bool writable = !(mem->flags & KVM_MEM_READONLY); + int ret = 0; + + if (change != KVM_MR_CREATE && change != KVM_MR_MOVE && + change != KVM_MR_FLAGS_ONLY) + return 0; + + /* + * Prevent userspace from creating a memory region outside of the IPA + * space addressable by the KVM guest IPA space. + */ + if (memslot->base_gfn + memslot->npages >= + (KVM_PHYS_SIZE >> PAGE_SHIFT)) + return -EFAULT; + + down_read(¤t->mm->mmap_sem); + /* + * A memory region could potentially cover multiple VMAs, and any holes + * between them, so iterate over all of them to find out if we can map + * any of them right now. + * + * +--------------------------------------------+ + * +---------------+----------------+ +----------------+ + * | : VMA 1 | VMA 2 | | VMA 3 : | + * +---------------+----------------+ +----------------+ + * | memory region | + * +--------------------------------------------+ + */ + do { + struct vm_area_struct *vma = find_vma(current->mm, hva); + hva_t vm_start, vm_end; + + if (!vma || vma->vm_start >= reg_end) + break; + + /* + * Mapping a read-only VMA is only allowed if the + * memory region is configured as read-only. + */ + if (writable && !(vma->vm_flags & VM_WRITE)) { + ret = -EPERM; + break; + } + + /* + * Take the intersection of this VMA with the memory region + */ + vm_start = max(hva, vma->vm_start); + vm_end = min(reg_end, vma->vm_end); + + if (vma->vm_flags & VM_PFNMAP) { + gpa_t gpa = mem->guest_phys_addr + + (vm_start - mem->userspace_addr); + phys_addr_t pa; + + pa = (phys_addr_t)vma->vm_pgoff << PAGE_SHIFT; + pa += vm_start - vma->vm_start; + + /* IO region dirty page logging not allowed */ + if (memslot->flags & KVM_MEM_LOG_DIRTY_PAGES) { + ret = -EINVAL; + goto out; + } + + ret = kvm_phys_addr_ioremap(kvm, gpa, pa, + vm_end - vm_start, + writable); + if (ret) + break; + } + hva = vm_end; + } while (hva < reg_end); + + if (change == KVM_MR_FLAGS_ONLY) + goto out; + + spin_lock(&kvm->mmu_lock); + if (ret) + unmap_stage2_range(kvm, mem->guest_phys_addr, mem->memory_size); + else + stage2_flush_memslot(kvm, memslot); + spin_unlock(&kvm->mmu_lock); +out: + up_read(¤t->mm->mmap_sem); + return ret; +} + +void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free, + struct kvm_memory_slot *dont) +{ +} + +int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot, + unsigned long npages) +{ + return 0; +} + +void kvm_arch_memslots_updated(struct kvm *kvm, struct kvm_memslots *slots) +{ +} + +void kvm_arch_flush_shadow_all(struct kvm *kvm) +{ + kvm_free_stage2_pgd(kvm); +} + +void kvm_arch_flush_shadow_memslot(struct kvm *kvm, + struct kvm_memory_slot *slot) +{ + gpa_t gpa = slot->base_gfn << PAGE_SHIFT; + phys_addr_t size = slot->npages << PAGE_SHIFT; + + spin_lock(&kvm->mmu_lock); + unmap_stage2_range(kvm, gpa, size); + spin_unlock(&kvm->mmu_lock); +} + +/* + * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized). + * + * Main problems: + * - S/W ops are local to a CPU (not broadcast) + * - We have line migration behind our back (speculation) + * - System caches don't support S/W at all (damn!) + * + * In the face of the above, the best we can do is to try and convert + * S/W ops to VA ops. Because the guest is not allowed to infer the + * S/W to PA mapping, it can only use S/W to nuke the whole cache, + * which is a rather good thing for us. + * + * Also, it is only used when turning caches on/off ("The expected + * usage of the cache maintenance instructions that operate by set/way + * is associated with the cache maintenance instructions associated + * with the powerdown and powerup of caches, if this is required by + * the implementation."). + * + * We use the following policy: + * + * - If we trap a S/W operation, we enable VM trapping to detect + * caches being turned on/off, and do a full clean. + * + * - We flush the caches on both caches being turned on and off. + * + * - Once the caches are enabled, we stop trapping VM ops. + */ +void kvm_set_way_flush(struct kvm_vcpu *vcpu) +{ + unsigned long hcr = vcpu_get_hcr(vcpu); + + /* + * If this is the first time we do a S/W operation + * (i.e. HCR_TVM not set) flush the whole memory, and set the + * VM trapping. + * + * Otherwise, rely on the VM trapping to wait for the MMU + + * Caches to be turned off. At that point, we'll be able to + * clean the caches again. + */ + if (!(hcr & HCR_TVM)) { + trace_kvm_set_way_flush(*vcpu_pc(vcpu), + vcpu_has_cache_enabled(vcpu)); + stage2_flush_vm(vcpu->kvm); + vcpu_set_hcr(vcpu, hcr | HCR_TVM); + } +} + +void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled) +{ + bool now_enabled = vcpu_has_cache_enabled(vcpu); + + /* + * If switching the MMU+caches on, need to invalidate the caches. + * If switching it off, need to clean the caches. + * Clean + invalidate does the trick always. + */ + if (now_enabled != was_enabled) + stage2_flush_vm(vcpu->kvm); + + /* Caches are now on, stop trapping VM ops (until a S/W op) */ + if (now_enabled) + vcpu_set_hcr(vcpu, vcpu_get_hcr(vcpu) & ~HCR_TVM); + + trace_kvm_toggle_cache(*vcpu_pc(vcpu), was_enabled, now_enabled); +} diff --git a/virt/kvm/arm/perf.c b/virt/kvm/arm/perf.c new file mode 100644 index 000000000000..1a3849da0b4b --- /dev/null +++ b/virt/kvm/arm/perf.c @@ -0,0 +1,68 @@ +/* + * Based on the x86 implementation. + * + * Copyright (C) 2012 ARM Ltd. + * Author: Marc Zyngier <marc.zyngier@arm.com> + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License version 2 as + * published by the Free Software Foundation. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program. If not, see <http://www.gnu.org/licenses/>. + */ + +#include <linux/perf_event.h> +#include <linux/kvm_host.h> + +#include <asm/kvm_emulate.h> + +static int kvm_is_in_guest(void) +{ + return kvm_arm_get_running_vcpu() != NULL; +} + +static int kvm_is_user_mode(void) +{ + struct kvm_vcpu *vcpu; + + vcpu = kvm_arm_get_running_vcpu(); + + if (vcpu) + return !vcpu_mode_priv(vcpu); + + return 0; +} + +static unsigned long kvm_get_guest_ip(void) +{ + struct kvm_vcpu *vcpu; + + vcpu = kvm_arm_get_running_vcpu(); + + if (vcpu) + return *vcpu_pc(vcpu); + + return 0; +} + +static struct perf_guest_info_callbacks kvm_guest_cbs = { + .is_in_guest = kvm_is_in_guest, + .is_user_mode = kvm_is_user_mode, + .get_guest_ip = kvm_get_guest_ip, +}; + +int kvm_perf_init(void) +{ + return perf_register_guest_info_callbacks(&kvm_guest_cbs); +} + +int kvm_perf_teardown(void) +{ + return perf_unregister_guest_info_callbacks(&kvm_guest_cbs); +} diff --git a/virt/kvm/arm/psci.c b/virt/kvm/arm/psci.c new file mode 100644 index 000000000000..a08d7a93aebb --- /dev/null +++ b/virt/kvm/arm/psci.c @@ -0,0 +1,332 @@ +/* + * Copyright (C) 2012 - ARM Ltd + * Author: Marc Zyngier <marc.zyngier@arm.com> + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License version 2 as + * published by the Free Software Foundation. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program. If not, see <http://www.gnu.org/licenses/>. + */ + +#include <linux/preempt.h> +#include <linux/kvm_host.h> +#include <linux/wait.h> + +#include <asm/cputype.h> +#include <asm/kvm_emulate.h> +#include <asm/kvm_psci.h> +#include <asm/kvm_host.h> + +#include <uapi/linux/psci.h> + +/* + * This is an implementation of the Power State Coordination Interface + * as described in ARM document number ARM DEN 0022A. + */ + +#define AFFINITY_MASK(level) ~((0x1UL << ((level) * MPIDR_LEVEL_BITS)) - 1) + +static unsigned long psci_affinity_mask(unsigned long affinity_level) +{ + if (affinity_level <= 3) + return MPIDR_HWID_BITMASK & AFFINITY_MASK(affinity_level); + + return 0; +} + +static unsigned long kvm_psci_vcpu_suspend(struct kvm_vcpu *vcpu) +{ + /* + * NOTE: For simplicity, we make VCPU suspend emulation to be + * same-as WFI (Wait-for-interrupt) emulation. + * + * This means for KVM the wakeup events are interrupts and + * this is consistent with intended use of StateID as described + * in section 5.4.1 of PSCI v0.2 specification (ARM DEN 0022A). + * + * Further, we also treat power-down request to be same as + * stand-by request as-per section 5.4.2 clause 3 of PSCI v0.2 + * specification (ARM DEN 0022A). This means all suspend states + * for KVM will preserve the register state. + */ + kvm_vcpu_block(vcpu); + + return PSCI_RET_SUCCESS; +} + +static void kvm_psci_vcpu_off(struct kvm_vcpu *vcpu) +{ + vcpu->arch.power_off = true; +} + +static unsigned long kvm_psci_vcpu_on(struct kvm_vcpu *source_vcpu) +{ + struct kvm *kvm = source_vcpu->kvm; + struct kvm_vcpu *vcpu = NULL; + struct swait_queue_head *wq; + unsigned long cpu_id; + unsigned long context_id; + phys_addr_t target_pc; + + cpu_id = vcpu_get_reg(source_vcpu, 1) & MPIDR_HWID_BITMASK; + if (vcpu_mode_is_32bit(source_vcpu)) + cpu_id &= ~((u32) 0); + + vcpu = kvm_mpidr_to_vcpu(kvm, cpu_id); + + /* + * Make sure the caller requested a valid CPU and that the CPU is + * turned off. + */ + if (!vcpu) + return PSCI_RET_INVALID_PARAMS; + if (!vcpu->arch.power_off) { + if (kvm_psci_version(source_vcpu) != KVM_ARM_PSCI_0_1) + return PSCI_RET_ALREADY_ON; + else + return PSCI_RET_INVALID_PARAMS; + } + + target_pc = vcpu_get_reg(source_vcpu, 2); + context_id = vcpu_get_reg(source_vcpu, 3); + + kvm_reset_vcpu(vcpu); + + /* Gracefully handle Thumb2 entry point */ + if (vcpu_mode_is_32bit(vcpu) && (target_pc & 1)) { + target_pc &= ~((phys_addr_t) 1); + vcpu_set_thumb(vcpu); + } + + /* Propagate caller endianness */ + if (kvm_vcpu_is_be(source_vcpu)) + kvm_vcpu_set_be(vcpu); + + *vcpu_pc(vcpu) = target_pc; + /* + * NOTE: We always update r0 (or x0) because for PSCI v0.1 + * the general puspose registers are undefined upon CPU_ON. + */ + vcpu_set_reg(vcpu, 0, context_id); + vcpu->arch.power_off = false; + smp_mb(); /* Make sure the above is visible */ + + wq = kvm_arch_vcpu_wq(vcpu); + swake_up(wq); + + return PSCI_RET_SUCCESS; +} + +static unsigned long kvm_psci_vcpu_affinity_info(struct kvm_vcpu *vcpu) +{ + int i, matching_cpus = 0; + unsigned long mpidr; + unsigned long target_affinity; + unsigned long target_affinity_mask; + unsigned long lowest_affinity_level; + struct kvm *kvm = vcpu->kvm; + struct kvm_vcpu *tmp; + + target_affinity = vcpu_get_reg(vcpu, 1); + lowest_affinity_level = vcpu_get_reg(vcpu, 2); + + /* Determine target affinity mask */ + target_affinity_mask = psci_affinity_mask(lowest_affinity_level); + if (!target_affinity_mask) + return PSCI_RET_INVALID_PARAMS; + + /* Ignore other bits of target affinity */ + target_affinity &= target_affinity_mask; + + /* + * If one or more VCPU matching target affinity are running + * then ON else OFF + */ + kvm_for_each_vcpu(i, tmp, kvm) { + mpidr = kvm_vcpu_get_mpidr_aff(tmp); + if ((mpidr & target_affinity_mask) == target_affinity) { + matching_cpus++; + if (!tmp->arch.power_off) + return PSCI_0_2_AFFINITY_LEVEL_ON; + } + } + + if (!matching_cpus) + return PSCI_RET_INVALID_PARAMS; + + return PSCI_0_2_AFFINITY_LEVEL_OFF; +} + +static void kvm_prepare_system_event(struct kvm_vcpu *vcpu, u32 type) +{ + int i; + struct kvm_vcpu *tmp; + + /* + * The KVM ABI specifies that a system event exit may call KVM_RUN + * again and may perform shutdown/reboot at a later time that when the + * actual request is made. Since we are implementing PSCI and a + * caller of PSCI reboot and shutdown expects that the system shuts + * down or reboots immediately, let's make sure that VCPUs are not run + * after this call is handled and before the VCPUs have been + * re-initialized. + */ + kvm_for_each_vcpu(i, tmp, vcpu->kvm) { + tmp->arch.power_off = true; + kvm_vcpu_kick(tmp); + } + + memset(&vcpu->run->system_event, 0, sizeof(vcpu->run->system_event)); + vcpu->run->system_event.type = type; + vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; +} + +static void kvm_psci_system_off(struct kvm_vcpu *vcpu) +{ + kvm_prepare_system_event(vcpu, KVM_SYSTEM_EVENT_SHUTDOWN); +} + +static void kvm_psci_system_reset(struct kvm_vcpu *vcpu) +{ + kvm_prepare_system_event(vcpu, KVM_SYSTEM_EVENT_RESET); +} + +int kvm_psci_version(struct kvm_vcpu *vcpu) +{ + if (test_bit(KVM_ARM_VCPU_PSCI_0_2, vcpu->arch.features)) + return KVM_ARM_PSCI_0_2; + + return KVM_ARM_PSCI_0_1; +} + +static int kvm_psci_0_2_call(struct kvm_vcpu *vcpu) +{ + struct kvm *kvm = vcpu->kvm; + unsigned long psci_fn = vcpu_get_reg(vcpu, 0) & ~((u32) 0); + unsigned long val; + int ret = 1; + + switch (psci_fn) { + case PSCI_0_2_FN_PSCI_VERSION: + /* + * Bits[31:16] = Major Version = 0 + * Bits[15:0] = Minor Version = 2 + */ + val = 2; + break; + case PSCI_0_2_FN_CPU_SUSPEND: + case PSCI_0_2_FN64_CPU_SUSPEND: + val = kvm_psci_vcpu_suspend(vcpu); + break; + case PSCI_0_2_FN_CPU_OFF: + kvm_psci_vcpu_off(vcpu); + val = PSCI_RET_SUCCESS; + break; + case PSCI_0_2_FN_CPU_ON: + case PSCI_0_2_FN64_CPU_ON: + mutex_lock(&kvm->lock); + val = kvm_psci_vcpu_on(vcpu); + mutex_unlock(&kvm->lock); + break; + case PSCI_0_2_FN_AFFINITY_INFO: + case PSCI_0_2_FN64_AFFINITY_INFO: + val = kvm_psci_vcpu_affinity_info(vcpu); + break; + case PSCI_0_2_FN_MIGRATE_INFO_TYPE: + /* + * Trusted OS is MP hence does not require migration + * or + * Trusted OS is not present + */ + val = PSCI_0_2_TOS_MP; + break; + case PSCI_0_2_FN_SYSTEM_OFF: + kvm_psci_system_off(vcpu); + /* + * We should'nt be going back to guest VCPU after + * receiving SYSTEM_OFF request. + * + * If user space accidently/deliberately resumes + * guest VCPU after SYSTEM_OFF request then guest + * VCPU should see internal failure from PSCI return + * value. To achieve this, we preload r0 (or x0) with + * PSCI return value INTERNAL_FAILURE. + */ + val = PSCI_RET_INTERNAL_FAILURE; + ret = 0; + break; + case PSCI_0_2_FN_SYSTEM_RESET: + kvm_psci_system_reset(vcpu); + /* + * Same reason as SYSTEM_OFF for preloading r0 (or x0) + * with PSCI return value INTERNAL_FAILURE. + */ + val = PSCI_RET_INTERNAL_FAILURE; + ret = 0; + break; + default: + val = PSCI_RET_NOT_SUPPORTED; + break; + } + + vcpu_set_reg(vcpu, 0, val); + return ret; +} + +static int kvm_psci_0_1_call(struct kvm_vcpu *vcpu) +{ + struct kvm *kvm = vcpu->kvm; + unsigned long psci_fn = vcpu_get_reg(vcpu, 0) & ~((u32) 0); + unsigned long val; + + switch (psci_fn) { + case KVM_PSCI_FN_CPU_OFF: + kvm_psci_vcpu_off(vcpu); + val = PSCI_RET_SUCCESS; + break; + case KVM_PSCI_FN_CPU_ON: + mutex_lock(&kvm->lock); + val = kvm_psci_vcpu_on(vcpu); + mutex_unlock(&kvm->lock); + break; + default: + val = PSCI_RET_NOT_SUPPORTED; + break; + } + + vcpu_set_reg(vcpu, 0, val); + return 1; +} + +/** + * kvm_psci_call - handle PSCI call if r0 value is in range + * @vcpu: Pointer to the VCPU struct + * + * Handle PSCI calls from guests through traps from HVC instructions. + * The calling convention is similar to SMC calls to the secure world + * where the function number is placed in r0. + * + * This function returns: > 0 (success), 0 (success but exit to user + * space), and < 0 (errors) + * + * Errors: + * -EINVAL: Unrecognized PSCI function + */ +int kvm_psci_call(struct kvm_vcpu *vcpu) +{ + switch (kvm_psci_version(vcpu)) { + case KVM_ARM_PSCI_0_2: + return kvm_psci_0_2_call(vcpu); + case KVM_ARM_PSCI_0_1: + return kvm_psci_0_1_call(vcpu); + default: + return -EINVAL; + }; +} diff --git a/virt/kvm/arm/trace.h b/virt/kvm/arm/trace.h index 37d8b98867d5..f7dc5ddd6847 100644 --- a/virt/kvm/arm/trace.h +++ b/virt/kvm/arm/trace.h @@ -7,26 +7,250 @@ #define TRACE_SYSTEM kvm /* - * Tracepoints for vgic + * Tracepoints for entry/exit to guest */ -TRACE_EVENT(vgic_update_irq_pending, - TP_PROTO(unsigned long vcpu_id, __u32 irq, bool level), - TP_ARGS(vcpu_id, irq, level), +TRACE_EVENT(kvm_entry, + TP_PROTO(unsigned long vcpu_pc), + TP_ARGS(vcpu_pc), TP_STRUCT__entry( - __field( unsigned long, vcpu_id ) - __field( __u32, irq ) - __field( bool, level ) + __field( unsigned long, vcpu_pc ) ), TP_fast_assign( - __entry->vcpu_id = vcpu_id; - __entry->irq = irq; + __entry->vcpu_pc = vcpu_pc; + ), + + TP_printk("PC: 0x%08lx", __entry->vcpu_pc) +); + +TRACE_EVENT(kvm_exit, + TP_PROTO(int idx, unsigned int exit_reason, unsigned long vcpu_pc), + TP_ARGS(idx, exit_reason, vcpu_pc), + + TP_STRUCT__entry( + __field( int, idx ) + __field( unsigned int, exit_reason ) + __field( unsigned long, vcpu_pc ) + ), + + TP_fast_assign( + __entry->idx = idx; + __entry->exit_reason = exit_reason; + __entry->vcpu_pc = vcpu_pc; + ), + + TP_printk("%s: HSR_EC: 0x%04x (%s), PC: 0x%08lx", + __print_symbolic(__entry->idx, kvm_arm_exception_type), + __entry->exit_reason, + __print_symbolic(__entry->exit_reason, kvm_arm_exception_class), + __entry->vcpu_pc) +); + +TRACE_EVENT(kvm_guest_fault, + TP_PROTO(unsigned long vcpu_pc, unsigned long hsr, + unsigned long hxfar, + unsigned long long ipa), + TP_ARGS(vcpu_pc, hsr, hxfar, ipa), + + TP_STRUCT__entry( + __field( unsigned long, vcpu_pc ) + __field( unsigned long, hsr ) + __field( unsigned long, hxfar ) + __field( unsigned long long, ipa ) + ), + + TP_fast_assign( + __entry->vcpu_pc = vcpu_pc; + __entry->hsr = hsr; + __entry->hxfar = hxfar; + __entry->ipa = ipa; + ), + + TP_printk("ipa %#llx, hsr %#08lx, hxfar %#08lx, pc %#08lx", + __entry->ipa, __entry->hsr, + __entry->hxfar, __entry->vcpu_pc) +); + +TRACE_EVENT(kvm_access_fault, + TP_PROTO(unsigned long ipa), + TP_ARGS(ipa), + + TP_STRUCT__entry( + __field( unsigned long, ipa ) + ), + + TP_fast_assign( + __entry->ipa = ipa; + ), + + TP_printk("IPA: %lx", __entry->ipa) +); + +TRACE_EVENT(kvm_irq_line, + TP_PROTO(unsigned int type, int vcpu_idx, int irq_num, int level), + TP_ARGS(type, vcpu_idx, irq_num, level), + + TP_STRUCT__entry( + __field( unsigned int, type ) + __field( int, vcpu_idx ) + __field( int, irq_num ) + __field( int, level ) + ), + + TP_fast_assign( + __entry->type = type; + __entry->vcpu_idx = vcpu_idx; + __entry->irq_num = irq_num; __entry->level = level; ), - TP_printk("VCPU: %ld, IRQ %d, level: %d", - __entry->vcpu_id, __entry->irq, __entry->level) + TP_printk("Inject %s interrupt (%d), vcpu->idx: %d, num: %d, level: %d", + (__entry->type == KVM_ARM_IRQ_TYPE_CPU) ? "CPU" : + (__entry->type == KVM_ARM_IRQ_TYPE_PPI) ? "VGIC PPI" : + (__entry->type == KVM_ARM_IRQ_TYPE_SPI) ? "VGIC SPI" : "UNKNOWN", + __entry->type, __entry->vcpu_idx, __entry->irq_num, __entry->level) +); + +TRACE_EVENT(kvm_mmio_emulate, + TP_PROTO(unsigned long vcpu_pc, unsigned long instr, + unsigned long cpsr), + TP_ARGS(vcpu_pc, instr, cpsr), + + TP_STRUCT__entry( + __field( unsigned long, vcpu_pc ) + __field( unsigned long, instr ) + __field( unsigned long, cpsr ) + ), + + TP_fast_assign( + __entry->vcpu_pc = vcpu_pc; + __entry->instr = instr; + __entry->cpsr = cpsr; + ), + + TP_printk("Emulate MMIO at: 0x%08lx (instr: %08lx, cpsr: %08lx)", + __entry->vcpu_pc, __entry->instr, __entry->cpsr) +); + +TRACE_EVENT(kvm_unmap_hva, + TP_PROTO(unsigned long hva), + TP_ARGS(hva), + + TP_STRUCT__entry( + __field( unsigned long, hva ) + ), + + TP_fast_assign( + __entry->hva = hva; + ), + + TP_printk("mmu notifier unmap hva: %#08lx", __entry->hva) +); + +TRACE_EVENT(kvm_unmap_hva_range, + TP_PROTO(unsigned long start, unsigned long end), + TP_ARGS(start, end), + + TP_STRUCT__entry( + __field( unsigned long, start ) + __field( unsigned long, end ) + ), + + TP_fast_assign( + __entry->start = start; + __entry->end = end; + ), + + TP_printk("mmu notifier unmap range: %#08lx -- %#08lx", + __entry->start, __entry->end) +); + +TRACE_EVENT(kvm_set_spte_hva, + TP_PROTO(unsigned long hva), + TP_ARGS(hva), + + TP_STRUCT__entry( + __field( unsigned long, hva ) + ), + + TP_fast_assign( + __entry->hva = hva; + ), + + TP_printk("mmu notifier set pte hva: %#08lx", __entry->hva) +); + +TRACE_EVENT(kvm_age_hva, + TP_PROTO(unsigned long start, unsigned long end), + TP_ARGS(start, end), + + TP_STRUCT__entry( + __field( unsigned long, start ) + __field( unsigned long, end ) + ), + + TP_fast_assign( + __entry->start = start; + __entry->end = end; + ), + + TP_printk("mmu notifier age hva: %#08lx -- %#08lx", + __entry->start, __entry->end) +); + +TRACE_EVENT(kvm_test_age_hva, + TP_PROTO(unsigned long hva), + TP_ARGS(hva), + + TP_STRUCT__entry( + __field( unsigned long, hva ) + ), + + TP_fast_assign( + __entry->hva = hva; + ), + + TP_printk("mmu notifier test age hva: %#08lx", __entry->hva) +); + +TRACE_EVENT(kvm_set_way_flush, + TP_PROTO(unsigned long vcpu_pc, bool cache), + TP_ARGS(vcpu_pc, cache), + + TP_STRUCT__entry( + __field( unsigned long, vcpu_pc ) + __field( bool, cache ) + ), + + TP_fast_assign( + __entry->vcpu_pc = vcpu_pc; + __entry->cache = cache; + ), + + TP_printk("S/W flush at 0x%016lx (cache %s)", + __entry->vcpu_pc, __entry->cache ? "on" : "off") +); + +TRACE_EVENT(kvm_toggle_cache, + TP_PROTO(unsigned long vcpu_pc, bool was, bool now), + TP_ARGS(vcpu_pc, was, now), + + TP_STRUCT__entry( + __field( unsigned long, vcpu_pc ) + __field( bool, was ) + __field( bool, now ) + ), + + TP_fast_assign( + __entry->vcpu_pc = vcpu_pc; + __entry->was = was; + __entry->now = now; + ), + + TP_printk("VM op at 0x%016lx (cache was %s, now %s)", + __entry->vcpu_pc, __entry->was ? "on" : "off", + __entry->now ? "on" : "off") ); /* diff --git a/virt/kvm/arm/vgic/trace.h b/virt/kvm/arm/vgic/trace.h new file mode 100644 index 000000000000..ed3229282888 --- /dev/null +++ b/virt/kvm/arm/vgic/trace.h @@ -0,0 +1,37 @@ +#if !defined(_TRACE_VGIC_H) || defined(TRACE_HEADER_MULTI_READ) +#define _TRACE_VGIC_H + +#include <linux/tracepoint.h> + +#undef TRACE_SYSTEM +#define TRACE_SYSTEM kvm + +TRACE_EVENT(vgic_update_irq_pending, + TP_PROTO(unsigned long vcpu_id, __u32 irq, bool level), + TP_ARGS(vcpu_id, irq, level), + + TP_STRUCT__entry( + __field( unsigned long, vcpu_id ) + __field( __u32, irq ) + __field( bool, level ) + ), + + TP_fast_assign( + __entry->vcpu_id = vcpu_id; + __entry->irq = irq; + __entry->level = level; + ), + + TP_printk("VCPU: %ld, IRQ %d, level: %d", + __entry->vcpu_id, __entry->irq, __entry->level) +); + +#endif /* _TRACE_VGIC_H */ + +#undef TRACE_INCLUDE_PATH +#define TRACE_INCLUDE_PATH ../../../virt/kvm/arm/vgic +#undef TRACE_INCLUDE_FILE +#define TRACE_INCLUDE_FILE trace + +/* This part must be outside protection */ +#include <trace/define_trace.h> diff --git a/virt/kvm/arm/vgic/vgic-init.c b/virt/kvm/arm/vgic/vgic-init.c index 25fd1b942c11..dc68e2e424ab 100644 --- a/virt/kvm/arm/vgic/vgic-init.c +++ b/virt/kvm/arm/vgic/vgic-init.c @@ -227,10 +227,27 @@ static int kvm_vgic_dist_init(struct kvm *kvm, unsigned int nr_spis) } /** - * kvm_vgic_vcpu_init() - Enable the VCPU interface - * @vcpu: the VCPU which's VGIC should be enabled + * kvm_vgic_vcpu_init() - Register VCPU-specific KVM iodevs + * @vcpu: pointer to the VCPU being created and initialized */ -static void kvm_vgic_vcpu_init(struct kvm_vcpu *vcpu) +int kvm_vgic_vcpu_init(struct kvm_vcpu *vcpu) +{ + int ret = 0; + struct vgic_dist *dist = &vcpu->kvm->arch.vgic; + + if (!irqchip_in_kernel(vcpu->kvm)) + return 0; + + /* + * If we are creating a VCPU with a GICv3 we must also register the + * KVM io device for the redistributor that belongs to this VCPU. + */ + if (dist->vgic_model == KVM_DEV_TYPE_ARM_VGIC_V3) + ret = vgic_register_redist_iodev(vcpu); + return ret; +} + +static void kvm_vgic_vcpu_enable(struct kvm_vcpu *vcpu) { if (kvm_vgic_global_state.type == VGIC_V2) vgic_v2_enable(vcpu); @@ -269,7 +286,7 @@ int vgic_init(struct kvm *kvm) dist->msis_require_devid = true; kvm_for_each_vcpu(i, vcpu, kvm) - kvm_vgic_vcpu_init(vcpu); + kvm_vgic_vcpu_enable(vcpu); ret = kvm_vgic_setup_default_irq_routing(kvm); if (ret) diff --git a/virt/kvm/arm/vgic/vgic-its.c b/virt/kvm/arm/vgic/vgic-its.c index 8d1da1af4b09..2dff288b3a66 100644 --- a/virt/kvm/arm/vgic/vgic-its.c +++ b/virt/kvm/arm/vgic/vgic-its.c @@ -23,6 +23,7 @@ #include <linux/interrupt.h> #include <linux/list.h> #include <linux/uaccess.h> +#include <linux/list_sort.h> #include <linux/irqchip/arm-gic-v3.h> @@ -33,6 +34,12 @@ #include "vgic.h" #include "vgic-mmio.h" +static int vgic_its_save_tables_v0(struct vgic_its *its); +static int vgic_its_restore_tables_v0(struct vgic_its *its); +static int vgic_its_commit_v0(struct vgic_its *its); +static int update_lpi_config(struct kvm *kvm, struct vgic_irq *irq, + struct kvm_vcpu *filter_vcpu); + /* * Creates a new (reference to a) struct vgic_irq for a given LPI. * If this LPI is already mapped on another ITS, we increase its refcount @@ -40,10 +47,12 @@ * If this is a "new" LPI, we allocate and initialize a new struct vgic_irq. * This function returns a pointer to the _unlocked_ structure. */ -static struct vgic_irq *vgic_add_lpi(struct kvm *kvm, u32 intid) +static struct vgic_irq *vgic_add_lpi(struct kvm *kvm, u32 intid, + struct kvm_vcpu *vcpu) { struct vgic_dist *dist = &kvm->arch.vgic; struct vgic_irq *irq = vgic_get_irq(kvm, NULL, intid), *oldirq; + int ret; /* In this case there is no put, since we keep the reference. */ if (irq) @@ -60,6 +69,7 @@ static struct vgic_irq *vgic_add_lpi(struct kvm *kvm, u32 intid) irq->config = VGIC_CONFIG_EDGE; kref_init(&irq->refcount); irq->intid = intid; + irq->target_vcpu = vcpu; spin_lock(&dist->lpi_list_lock); @@ -91,6 +101,19 @@ static struct vgic_irq *vgic_add_lpi(struct kvm *kvm, u32 intid) out_unlock: spin_unlock(&dist->lpi_list_lock); + /* + * We "cache" the configuration table entries in our struct vgic_irq's. + * However we only have those structs for mapped IRQs, so we read in + * the respective config data from memory here upon mapping the LPI. + */ + ret = update_lpi_config(kvm, irq, NULL); + if (ret) + return ERR_PTR(ret); + + ret = vgic_v3_lpi_sync_pending_status(kvm, irq); + if (ret) + return ERR_PTR(ret); + return irq; } @@ -99,6 +122,8 @@ struct its_device { /* the head for the list of ITTEs */ struct list_head itt_head; + u32 num_eventid_bits; + gpa_t itt_addr; u32 device_id; }; @@ -114,8 +139,8 @@ struct its_collection { #define its_is_collection_mapped(coll) ((coll) && \ ((coll)->target_addr != COLLECTION_NOT_MAPPED)) -struct its_itte { - struct list_head itte_list; +struct its_ite { + struct list_head ite_list; struct vgic_irq *irq; struct its_collection *collection; @@ -123,6 +148,50 @@ struct its_itte { u32 event_id; }; +/** + * struct vgic_its_abi - ITS abi ops and settings + * @cte_esz: collection table entry size + * @dte_esz: device table entry size + * @ite_esz: interrupt translation table entry size + * @save tables: save the ITS tables into guest RAM + * @restore_tables: restore the ITS internal structs from tables + * stored in guest RAM + * @commit: initialize the registers which expose the ABI settings, + * especially the entry sizes + */ +struct vgic_its_abi { + int cte_esz; + int dte_esz; + int ite_esz; + int (*save_tables)(struct vgic_its *its); + int (*restore_tables)(struct vgic_its *its); + int (*commit)(struct vgic_its *its); +}; + +static const struct vgic_its_abi its_table_abi_versions[] = { + [0] = {.cte_esz = 8, .dte_esz = 8, .ite_esz = 8, + .save_tables = vgic_its_save_tables_v0, + .restore_tables = vgic_its_restore_tables_v0, + .commit = vgic_its_commit_v0, + }, +}; + +#define NR_ITS_ABIS ARRAY_SIZE(its_table_abi_versions) + +inline const struct vgic_its_abi *vgic_its_get_abi(struct vgic_its *its) +{ + return &its_table_abi_versions[its->abi_rev]; +} + +int vgic_its_set_abi(struct vgic_its *its, int rev) +{ + const struct vgic_its_abi *abi; + + its->abi_rev = rev; + abi = vgic_its_get_abi(its); + return abi->commit(its); +} + /* * Find and returns a device in the device table for an ITS. * Must be called with the its_lock mutex held. @@ -143,27 +212,27 @@ static struct its_device *find_its_device(struct vgic_its *its, u32 device_id) * Device ID/Event ID pair on an ITS. * Must be called with the its_lock mutex held. */ -static struct its_itte *find_itte(struct vgic_its *its, u32 device_id, +static struct its_ite *find_ite(struct vgic_its *its, u32 device_id, u32 event_id) { struct its_device *device; - struct its_itte *itte; + struct its_ite *ite; device = find_its_device(its, device_id); if (device == NULL) return NULL; - list_for_each_entry(itte, &device->itt_head, itte_list) - if (itte->event_id == event_id) - return itte; + list_for_each_entry(ite, &device->itt_head, ite_list) + if (ite->event_id == event_id) + return ite; return NULL; } /* To be used as an iterator this macro misses the enclosing parentheses */ -#define for_each_lpi_its(dev, itte, its) \ +#define for_each_lpi_its(dev, ite, its) \ list_for_each_entry(dev, &(its)->device_list, dev_list) \ - list_for_each_entry(itte, &(dev)->itt_head, itte_list) + list_for_each_entry(ite, &(dev)->itt_head, ite_list) /* * We only implement 48 bits of PA at the moment, although the ITS @@ -171,11 +240,14 @@ static struct its_itte *find_itte(struct vgic_its *its, u32 device_id, */ #define BASER_ADDRESS(x) ((x) & GENMASK_ULL(47, 16)) #define CBASER_ADDRESS(x) ((x) & GENMASK_ULL(47, 12)) -#define PENDBASER_ADDRESS(x) ((x) & GENMASK_ULL(47, 16)) -#define PROPBASER_ADDRESS(x) ((x) & GENMASK_ULL(47, 12)) #define GIC_LPI_OFFSET 8192 +#define VITS_TYPER_IDBITS 16 +#define VITS_TYPER_DEVBITS 16 +#define VITS_DTE_MAX_DEVID_OFFSET (BIT(14) - 1) +#define VITS_ITE_MAX_EVENTID_OFFSET (BIT(16) - 1) + /* * Finds and returns a collection in the ITS collection table. * Must be called with the its_lock mutex held. @@ -204,7 +276,7 @@ static struct its_collection *find_collection(struct vgic_its *its, int coll_id) static int update_lpi_config(struct kvm *kvm, struct vgic_irq *irq, struct kvm_vcpu *filter_vcpu) { - u64 propbase = PROPBASER_ADDRESS(kvm->arch.vgic.propbaser); + u64 propbase = GICR_PROPBASER_ADDRESS(kvm->arch.vgic.propbaser); u8 prop; int ret; @@ -229,13 +301,13 @@ static int update_lpi_config(struct kvm *kvm, struct vgic_irq *irq, } /* - * Create a snapshot of the current LPI list, so that we can enumerate all - * LPIs without holding any lock. - * Returns the array length and puts the kmalloc'ed array into intid_ptr. + * Create a snapshot of the current LPIs targeting @vcpu, so that we can + * enumerate those LPIs without holding any lock. + * Returns their number and puts the kmalloc'ed array into intid_ptr. */ -static int vgic_copy_lpi_list(struct kvm *kvm, u32 **intid_ptr) +static int vgic_copy_lpi_list(struct kvm_vcpu *vcpu, u32 **intid_ptr) { - struct vgic_dist *dist = &kvm->arch.vgic; + struct vgic_dist *dist = &vcpu->kvm->arch.vgic; struct vgic_irq *irq; u32 *intids; int irq_count = dist->lpi_list_count, i = 0; @@ -254,14 +326,14 @@ static int vgic_copy_lpi_list(struct kvm *kvm, u32 **intid_ptr) spin_lock(&dist->lpi_list_lock); list_for_each_entry(irq, &dist->lpi_list_head, lpi_list) { /* We don't need to "get" the IRQ, as we hold the list lock. */ - intids[i] = irq->intid; - if (++i == irq_count) - break; + if (irq->target_vcpu != vcpu) + continue; + intids[i++] = irq->intid; } spin_unlock(&dist->lpi_list_lock); *intid_ptr = intids; - return irq_count; + return i; } /* @@ -270,18 +342,18 @@ static int vgic_copy_lpi_list(struct kvm *kvm, u32 **intid_ptr) * Needs to be called whenever either the collection for a LPIs has * changed or the collection itself got retargeted. */ -static void update_affinity_itte(struct kvm *kvm, struct its_itte *itte) +static void update_affinity_ite(struct kvm *kvm, struct its_ite *ite) { struct kvm_vcpu *vcpu; - if (!its_is_collection_mapped(itte->collection)) + if (!its_is_collection_mapped(ite->collection)) return; - vcpu = kvm_get_vcpu(kvm, itte->collection->target_addr); + vcpu = kvm_get_vcpu(kvm, ite->collection->target_addr); - spin_lock(&itte->irq->irq_lock); - itte->irq->target_vcpu = vcpu; - spin_unlock(&itte->irq->irq_lock); + spin_lock(&ite->irq->irq_lock); + ite->irq->target_vcpu = vcpu; + spin_unlock(&ite->irq->irq_lock); } /* @@ -292,13 +364,13 @@ static void update_affinity_collection(struct kvm *kvm, struct vgic_its *its, struct its_collection *coll) { struct its_device *device; - struct its_itte *itte; + struct its_ite *ite; - for_each_lpi_its(device, itte, its) { - if (!itte->collection || coll != itte->collection) + for_each_lpi_its(device, ite, its) { + if (!ite->collection || coll != ite->collection) continue; - update_affinity_itte(kvm, itte); + update_affinity_ite(kvm, ite); } } @@ -310,20 +382,20 @@ static u32 max_lpis_propbaser(u64 propbaser) } /* - * Scan the whole LPI pending table and sync the pending bit in there + * Sync the pending table pending bit of LPIs targeting @vcpu * with our own data structures. This relies on the LPI being * mapped before. */ static int its_sync_lpi_pending_table(struct kvm_vcpu *vcpu) { - gpa_t pendbase = PENDBASER_ADDRESS(vcpu->arch.vgic_cpu.pendbaser); + gpa_t pendbase = GICR_PENDBASER_ADDRESS(vcpu->arch.vgic_cpu.pendbaser); struct vgic_irq *irq; int last_byte_offset = -1; int ret = 0; u32 *intids; int nr_irqs, i; - nr_irqs = vgic_copy_lpi_list(vcpu->kvm, &intids); + nr_irqs = vgic_copy_lpi_list(vcpu, &intids); if (nr_irqs < 0) return nr_irqs; @@ -364,6 +436,7 @@ static unsigned long vgic_mmio_read_its_typer(struct kvm *kvm, struct vgic_its *its, gpa_t addr, unsigned int len) { + const struct vgic_its_abi *abi = vgic_its_get_abi(its); u64 reg = GITS_TYPER_PLPIS; /* @@ -374,8 +447,9 @@ static unsigned long vgic_mmio_read_its_typer(struct kvm *kvm, * To avoid memory waste in the guest, we keep the number of IDBits and * DevBits low - as least for the time being. */ - reg |= 0x0f << GITS_TYPER_DEVBITS_SHIFT; - reg |= 0x0f << GITS_TYPER_IDBITS_SHIFT; + reg |= GIC_ENCODE_SZ(VITS_TYPER_DEVBITS, 5) << GITS_TYPER_DEVBITS_SHIFT; + reg |= GIC_ENCODE_SZ(VITS_TYPER_IDBITS, 5) << GITS_TYPER_IDBITS_SHIFT; + reg |= GIC_ENCODE_SZ(abi->ite_esz, 4) << GITS_TYPER_ITT_ENTRY_SIZE_SHIFT; return extract_bytes(reg, addr & 7, len); } @@ -384,7 +458,23 @@ static unsigned long vgic_mmio_read_its_iidr(struct kvm *kvm, struct vgic_its *its, gpa_t addr, unsigned int len) { - return (PRODUCT_ID_KVM << 24) | (IMPLEMENTER_ARM << 0); + u32 val; + + val = (its->abi_rev << GITS_IIDR_REV_SHIFT) & GITS_IIDR_REV_MASK; + val |= (PRODUCT_ID_KVM << GITS_IIDR_PRODUCTID_SHIFT) | IMPLEMENTER_ARM; + return val; +} + +static int vgic_mmio_uaccess_write_its_iidr(struct kvm *kvm, + struct vgic_its *its, + gpa_t addr, unsigned int len, + unsigned long val) +{ + u32 rev = GITS_IIDR_REV(val); + + if (rev >= NR_ITS_ABIS) + return -EINVAL; + return vgic_its_set_abi(its, rev); } static unsigned long vgic_mmio_read_its_idregs(struct kvm *kvm, @@ -425,25 +515,25 @@ static int vgic_its_trigger_msi(struct kvm *kvm, struct vgic_its *its, u32 devid, u32 eventid) { struct kvm_vcpu *vcpu; - struct its_itte *itte; + struct its_ite *ite; if (!its->enabled) return -EBUSY; - itte = find_itte(its, devid, eventid); - if (!itte || !its_is_collection_mapped(itte->collection)) + ite = find_ite(its, devid, eventid); + if (!ite || !its_is_collection_mapped(ite->collection)) return E_ITS_INT_UNMAPPED_INTERRUPT; - vcpu = kvm_get_vcpu(kvm, itte->collection->target_addr); + vcpu = kvm_get_vcpu(kvm, ite->collection->target_addr); if (!vcpu) return E_ITS_INT_UNMAPPED_INTERRUPT; if (!vcpu->arch.vgic_cpu.lpis_enabled) return -EBUSY; - spin_lock(&itte->irq->irq_lock); - itte->irq->pending_latch = true; - vgic_queue_irq_unlock(kvm, itte->irq); + spin_lock(&ite->irq->irq_lock); + ite->irq->pending_latch = true; + vgic_queue_irq_unlock(kvm, ite->irq); return 0; } @@ -511,15 +601,15 @@ int vgic_its_inject_msi(struct kvm *kvm, struct kvm_msi *msi) } /* Requires the its_lock to be held. */ -static void its_free_itte(struct kvm *kvm, struct its_itte *itte) +static void its_free_ite(struct kvm *kvm, struct its_ite *ite) { - list_del(&itte->itte_list); + list_del(&ite->ite_list); /* This put matches the get in vgic_add_lpi. */ - if (itte->irq) - vgic_put_irq(kvm, itte->irq); + if (ite->irq) + vgic_put_irq(kvm, ite->irq); - kfree(itte); + kfree(ite); } static u64 its_cmd_mask_field(u64 *its_cmd, int word, int shift, int size) @@ -529,9 +619,11 @@ static u64 its_cmd_mask_field(u64 *its_cmd, int word, int shift, int size) #define its_cmd_get_command(cmd) its_cmd_mask_field(cmd, 0, 0, 8) #define its_cmd_get_deviceid(cmd) its_cmd_mask_field(cmd, 0, 32, 32) +#define its_cmd_get_size(cmd) (its_cmd_mask_field(cmd, 1, 0, 5) + 1) #define its_cmd_get_id(cmd) its_cmd_mask_field(cmd, 1, 0, 32) #define its_cmd_get_physical_id(cmd) its_cmd_mask_field(cmd, 1, 32, 32) #define its_cmd_get_collection(cmd) its_cmd_mask_field(cmd, 2, 0, 16) +#define its_cmd_get_ittaddr(cmd) (its_cmd_mask_field(cmd, 2, 8, 44) << 8) #define its_cmd_get_target_addr(cmd) its_cmd_mask_field(cmd, 2, 16, 32) #define its_cmd_get_validbit(cmd) its_cmd_mask_field(cmd, 2, 63, 1) @@ -544,17 +636,17 @@ static int vgic_its_cmd_handle_discard(struct kvm *kvm, struct vgic_its *its, { u32 device_id = its_cmd_get_deviceid(its_cmd); u32 event_id = its_cmd_get_id(its_cmd); - struct its_itte *itte; + struct its_ite *ite; - itte = find_itte(its, device_id, event_id); - if (itte && itte->collection) { + ite = find_ite(its, device_id, event_id); + if (ite && ite->collection) { /* * Though the spec talks about removing the pending state, we * don't bother here since we clear the ITTE anyway and the * pending state is a property of the ITTE struct. */ - its_free_itte(kvm, itte); + its_free_ite(kvm, ite); return 0; } @@ -572,26 +664,26 @@ static int vgic_its_cmd_handle_movi(struct kvm *kvm, struct vgic_its *its, u32 event_id = its_cmd_get_id(its_cmd); u32 coll_id = its_cmd_get_collection(its_cmd); struct kvm_vcpu *vcpu; - struct its_itte *itte; + struct its_ite *ite; struct its_collection *collection; - itte = find_itte(its, device_id, event_id); - if (!itte) + ite = find_ite(its, device_id, event_id); + if (!ite) return E_ITS_MOVI_UNMAPPED_INTERRUPT; - if (!its_is_collection_mapped(itte->collection)) + if (!its_is_collection_mapped(ite->collection)) return E_ITS_MOVI_UNMAPPED_COLLECTION; collection = find_collection(its, coll_id); if (!its_is_collection_mapped(collection)) return E_ITS_MOVI_UNMAPPED_COLLECTION; - itte->collection = collection; + ite->collection = collection; vcpu = kvm_get_vcpu(kvm, collection->target_addr); - spin_lock(&itte->irq->irq_lock); - itte->irq->target_vcpu = vcpu; - spin_unlock(&itte->irq->irq_lock); + spin_lock(&ite->irq->irq_lock); + ite->irq->target_vcpu = vcpu; + spin_unlock(&ite->irq->irq_lock); return 0; } @@ -600,16 +692,31 @@ static int vgic_its_cmd_handle_movi(struct kvm *kvm, struct vgic_its *its, * Check whether an ID can be stored into the corresponding guest table. * For a direct table this is pretty easy, but gets a bit nasty for * indirect tables. We check whether the resulting guest physical address - * is actually valid (covered by a memslot and guest accessbible). + * is actually valid (covered by a memslot and guest accessible). * For this we have to read the respective first level entry. */ -static bool vgic_its_check_id(struct vgic_its *its, u64 baser, int id) +static bool vgic_its_check_id(struct vgic_its *its, u64 baser, u32 id, + gpa_t *eaddr) { int l1_tbl_size = GITS_BASER_NR_PAGES(baser) * SZ_64K; + u64 indirect_ptr, type = GITS_BASER_TYPE(baser); + int esz = GITS_BASER_ENTRY_SIZE(baser); int index; - u64 indirect_ptr; gfn_t gfn; - int esz = GITS_BASER_ENTRY_SIZE(baser); + + switch (type) { + case GITS_BASER_TYPE_DEVICE: + if (id >= BIT_ULL(VITS_TYPER_DEVBITS)) + return false; + break; + case GITS_BASER_TYPE_COLLECTION: + /* as GITS_TYPER.CIL == 0, ITS supports 16-bit collection ID */ + if (id >= BIT_ULL(16)) + return false; + break; + default: + return false; + } if (!(baser & GITS_BASER_INDIRECT)) { phys_addr_t addr; @@ -620,6 +727,8 @@ static bool vgic_its_check_id(struct vgic_its *its, u64 baser, int id) addr = BASER_ADDRESS(baser) + id * esz; gfn = addr >> PAGE_SHIFT; + if (eaddr) + *eaddr = addr; return kvm_is_visible_gfn(its->dev->kvm, gfn); } @@ -652,6 +761,8 @@ static bool vgic_its_check_id(struct vgic_its *its, u64 baser, int id) indirect_ptr += index * esz; gfn = indirect_ptr >> PAGE_SHIFT; + if (eaddr) + *eaddr = indirect_ptr; return kvm_is_visible_gfn(its->dev->kvm, gfn); } @@ -661,7 +772,7 @@ static int vgic_its_alloc_collection(struct vgic_its *its, { struct its_collection *collection; - if (!vgic_its_check_id(its, its->baser_coll_table, coll_id)) + if (!vgic_its_check_id(its, its->baser_coll_table, coll_id, NULL)) return E_ITS_MAPC_COLLECTION_OOR; collection = kzalloc(sizeof(*collection), GFP_KERNEL); @@ -679,7 +790,7 @@ static void vgic_its_free_collection(struct vgic_its *its, u32 coll_id) { struct its_collection *collection; struct its_device *device; - struct its_itte *itte; + struct its_ite *ite; /* * Clearing the mapping for that collection ID removes the @@ -690,15 +801,34 @@ static void vgic_its_free_collection(struct vgic_its *its, u32 coll_id) if (!collection) return; - for_each_lpi_its(device, itte, its) - if (itte->collection && - itte->collection->collection_id == coll_id) - itte->collection = NULL; + for_each_lpi_its(device, ite, its) + if (ite->collection && + ite->collection->collection_id == coll_id) + ite->collection = NULL; list_del(&collection->coll_list); kfree(collection); } +/* Must be called with its_lock mutex held */ +static struct its_ite *vgic_its_alloc_ite(struct its_device *device, + struct its_collection *collection, + u32 lpi_id, u32 event_id) +{ + struct its_ite *ite; + + ite = kzalloc(sizeof(*ite), GFP_KERNEL); + if (!ite) + return ERR_PTR(-ENOMEM); + + ite->event_id = event_id; + ite->collection = collection; + ite->lpi = lpi_id; + + list_add_tail(&ite->ite_list, &device->itt_head); + return ite; +} + /* * The MAPTI and MAPI commands map LPIs to ITTEs. * Must be called with its_lock mutex held. @@ -709,16 +839,20 @@ static int vgic_its_cmd_handle_mapi(struct kvm *kvm, struct vgic_its *its, u32 device_id = its_cmd_get_deviceid(its_cmd); u32 event_id = its_cmd_get_id(its_cmd); u32 coll_id = its_cmd_get_collection(its_cmd); - struct its_itte *itte; + struct its_ite *ite; + struct kvm_vcpu *vcpu = NULL; struct its_device *device; struct its_collection *collection, *new_coll = NULL; - int lpi_nr; struct vgic_irq *irq; + int lpi_nr; device = find_its_device(its, device_id); if (!device) return E_ITS_MAPTI_UNMAPPED_DEVICE; + if (event_id >= BIT_ULL(device->num_eventid_bits)) + return E_ITS_MAPTI_ID_OOR; + if (its_cmd_get_command(its_cmd) == GITS_CMD_MAPTI) lpi_nr = its_cmd_get_physical_id(its_cmd); else @@ -728,7 +862,7 @@ static int vgic_its_cmd_handle_mapi(struct kvm *kvm, struct vgic_its *its, return E_ITS_MAPTI_PHYSICALID_OOR; /* If there is an existing mapping, behavior is UNPREDICTABLE. */ - if (find_itte(its, device_id, event_id)) + if (find_ite(its, device_id, event_id)) return 0; collection = find_collection(its, coll_id); @@ -739,36 +873,24 @@ static int vgic_its_cmd_handle_mapi(struct kvm *kvm, struct vgic_its *its, new_coll = collection; } - itte = kzalloc(sizeof(struct its_itte), GFP_KERNEL); - if (!itte) { + ite = vgic_its_alloc_ite(device, collection, lpi_nr, event_id); + if (IS_ERR(ite)) { if (new_coll) vgic_its_free_collection(its, coll_id); - return -ENOMEM; + return PTR_ERR(ite); } - itte->event_id = event_id; - list_add_tail(&itte->itte_list, &device->itt_head); - - itte->collection = collection; - itte->lpi = lpi_nr; + if (its_is_collection_mapped(collection)) + vcpu = kvm_get_vcpu(kvm, collection->target_addr); - irq = vgic_add_lpi(kvm, lpi_nr); + irq = vgic_add_lpi(kvm, lpi_nr, vcpu); if (IS_ERR(irq)) { if (new_coll) vgic_its_free_collection(its, coll_id); - its_free_itte(kvm, itte); + its_free_ite(kvm, ite); return PTR_ERR(irq); } - itte->irq = irq; - - update_affinity_itte(kvm, itte); - - /* - * We "cache" the configuration table entries in out struct vgic_irq's. - * However we only have those structs for mapped IRQs, so we read in - * the respective config data from memory here upon mapping the LPI. - */ - update_lpi_config(kvm, itte->irq, NULL); + ite->irq = irq; return 0; } @@ -776,20 +898,40 @@ static int vgic_its_cmd_handle_mapi(struct kvm *kvm, struct vgic_its *its, /* Requires the its_lock to be held. */ static void vgic_its_unmap_device(struct kvm *kvm, struct its_device *device) { - struct its_itte *itte, *temp; + struct its_ite *ite, *temp; /* * The spec says that unmapping a device with still valid * ITTEs associated is UNPREDICTABLE. We remove all ITTEs, * since we cannot leave the memory unreferenced. */ - list_for_each_entry_safe(itte, temp, &device->itt_head, itte_list) - its_free_itte(kvm, itte); + list_for_each_entry_safe(ite, temp, &device->itt_head, ite_list) + its_free_ite(kvm, ite); list_del(&device->dev_list); kfree(device); } +/* Must be called with its_lock mutex held */ +static struct its_device *vgic_its_alloc_device(struct vgic_its *its, + u32 device_id, gpa_t itt_addr, + u8 num_eventid_bits) +{ + struct its_device *device; + + device = kzalloc(sizeof(*device), GFP_KERNEL); + if (!device) + return ERR_PTR(-ENOMEM); + + device->device_id = device_id; + device->itt_addr = itt_addr; + device->num_eventid_bits = num_eventid_bits; + INIT_LIST_HEAD(&device->itt_head); + + list_add_tail(&device->dev_list, &its->device_list); + return device; +} + /* * MAPD maps or unmaps a device ID to Interrupt Translation Tables (ITTs). * Must be called with the its_lock mutex held. @@ -799,11 +941,16 @@ static int vgic_its_cmd_handle_mapd(struct kvm *kvm, struct vgic_its *its, { u32 device_id = its_cmd_get_deviceid(its_cmd); bool valid = its_cmd_get_validbit(its_cmd); + u8 num_eventid_bits = its_cmd_get_size(its_cmd); + gpa_t itt_addr = its_cmd_get_ittaddr(its_cmd); struct its_device *device; - if (!vgic_its_check_id(its, its->baser_device_table, device_id)) + if (!vgic_its_check_id(its, its->baser_device_table, device_id, NULL)) return E_ITS_MAPD_DEVICE_OOR; + if (valid && num_eventid_bits > VITS_TYPER_IDBITS) + return E_ITS_MAPD_ITTSIZE_OOR; + device = find_its_device(its, device_id); /* @@ -821,14 +968,10 @@ static int vgic_its_cmd_handle_mapd(struct kvm *kvm, struct vgic_its *its, if (!valid) return 0; - device = kzalloc(sizeof(struct its_device), GFP_KERNEL); - if (!device) - return -ENOMEM; - - device->device_id = device_id; - INIT_LIST_HEAD(&device->itt_head); - - list_add_tail(&device->dev_list, &its->device_list); + device = vgic_its_alloc_device(its, device_id, itt_addr, + num_eventid_bits); + if (IS_ERR(device)) + return PTR_ERR(device); return 0; } @@ -883,14 +1026,14 @@ static int vgic_its_cmd_handle_clear(struct kvm *kvm, struct vgic_its *its, { u32 device_id = its_cmd_get_deviceid(its_cmd); u32 event_id = its_cmd_get_id(its_cmd); - struct its_itte *itte; + struct its_ite *ite; - itte = find_itte(its, device_id, event_id); - if (!itte) + ite = find_ite(its, device_id, event_id); + if (!ite) return E_ITS_CLEAR_UNMAPPED_INTERRUPT; - itte->irq->pending_latch = false; + ite->irq->pending_latch = false; return 0; } @@ -904,14 +1047,14 @@ static int vgic_its_cmd_handle_inv(struct kvm *kvm, struct vgic_its *its, { u32 device_id = its_cmd_get_deviceid(its_cmd); u32 event_id = its_cmd_get_id(its_cmd); - struct its_itte *itte; + struct its_ite *ite; - itte = find_itte(its, device_id, event_id); - if (!itte) + ite = find_ite(its, device_id, event_id); + if (!ite) return E_ITS_INV_UNMAPPED_INTERRUPT; - return update_lpi_config(kvm, itte->irq, NULL); + return update_lpi_config(kvm, ite->irq, NULL); } /* @@ -938,7 +1081,7 @@ static int vgic_its_cmd_handle_invall(struct kvm *kvm, struct vgic_its *its, vcpu = kvm_get_vcpu(kvm, collection->target_addr); - irq_count = vgic_copy_lpi_list(kvm, &intids); + irq_count = vgic_copy_lpi_list(vcpu, &intids); if (irq_count < 0) return irq_count; @@ -1213,6 +1356,33 @@ static unsigned long vgic_mmio_read_its_creadr(struct kvm *kvm, return extract_bytes(its->creadr, addr & 0x7, len); } +static int vgic_mmio_uaccess_write_its_creadr(struct kvm *kvm, + struct vgic_its *its, + gpa_t addr, unsigned int len, + unsigned long val) +{ + u32 cmd_offset; + int ret = 0; + + mutex_lock(&its->cmd_lock); + + if (its->enabled) { + ret = -EBUSY; + goto out; + } + + cmd_offset = ITS_CMD_OFFSET(val); + if (cmd_offset >= ITS_CMD_BUFFER_SIZE(its->cbaser)) { + ret = -EINVAL; + goto out; + } + + its->creadr = cmd_offset; +out: + mutex_unlock(&its->cmd_lock); + return ret; +} + #define BASER_INDEX(addr) (((addr) / sizeof(u64)) & 0x7) static unsigned long vgic_mmio_read_its_baser(struct kvm *kvm, struct vgic_its *its, @@ -1241,6 +1411,7 @@ static void vgic_mmio_write_its_baser(struct kvm *kvm, gpa_t addr, unsigned int len, unsigned long val) { + const struct vgic_its_abi *abi = vgic_its_get_abi(its); u64 entry_size, device_type; u64 reg, *regptr, clearbits = 0; @@ -1251,12 +1422,12 @@ static void vgic_mmio_write_its_baser(struct kvm *kvm, switch (BASER_INDEX(addr)) { case 0: regptr = &its->baser_device_table; - entry_size = 8; + entry_size = abi->dte_esz; device_type = GITS_BASER_TYPE_DEVICE; break; case 1: regptr = &its->baser_coll_table; - entry_size = 8; + entry_size = abi->cte_esz; device_type = GITS_BASER_TYPE_COLLECTION; clearbits = GITS_BASER_INDIRECT; break; @@ -1317,6 +1488,16 @@ static void vgic_mmio_write_its_ctlr(struct kvm *kvm, struct vgic_its *its, .its_write = wr, \ } +#define REGISTER_ITS_DESC_UACCESS(off, rd, wr, uwr, length, acc)\ +{ \ + .reg_offset = off, \ + .len = length, \ + .access_flags = acc, \ + .its_read = rd, \ + .its_write = wr, \ + .uaccess_its_write = uwr, \ +} + static void its_mmio_write_wi(struct kvm *kvm, struct vgic_its *its, gpa_t addr, unsigned int len, unsigned long val) { @@ -1327,8 +1508,9 @@ static struct vgic_register_region its_registers[] = { REGISTER_ITS_DESC(GITS_CTLR, vgic_mmio_read_its_ctlr, vgic_mmio_write_its_ctlr, 4, VGIC_ACCESS_32bit), - REGISTER_ITS_DESC(GITS_IIDR, - vgic_mmio_read_its_iidr, its_mmio_write_wi, 4, + REGISTER_ITS_DESC_UACCESS(GITS_IIDR, + vgic_mmio_read_its_iidr, its_mmio_write_wi, + vgic_mmio_uaccess_write_its_iidr, 4, VGIC_ACCESS_32bit), REGISTER_ITS_DESC(GITS_TYPER, vgic_mmio_read_its_typer, its_mmio_write_wi, 8, @@ -1339,8 +1521,9 @@ static struct vgic_register_region its_registers[] = { REGISTER_ITS_DESC(GITS_CWRITER, vgic_mmio_read_its_cwriter, vgic_mmio_write_its_cwriter, 8, VGIC_ACCESS_64bit | VGIC_ACCESS_32bit), - REGISTER_ITS_DESC(GITS_CREADR, - vgic_mmio_read_its_creadr, its_mmio_write_wi, 8, + REGISTER_ITS_DESC_UACCESS(GITS_CREADR, + vgic_mmio_read_its_creadr, its_mmio_write_wi, + vgic_mmio_uaccess_write_its_creadr, 8, VGIC_ACCESS_64bit | VGIC_ACCESS_32bit), REGISTER_ITS_DESC(GITS_BASER, vgic_mmio_read_its_baser, vgic_mmio_write_its_baser, 0x40, @@ -1357,17 +1540,19 @@ void vgic_enable_lpis(struct kvm_vcpu *vcpu) its_sync_lpi_pending_table(vcpu); } -static int vgic_register_its_iodev(struct kvm *kvm, struct vgic_its *its) +static int vgic_register_its_iodev(struct kvm *kvm, struct vgic_its *its, + u64 addr) { struct vgic_io_device *iodev = &its->iodev; int ret; - if (!its->initialized) - return -EBUSY; - - if (IS_VGIC_ADDR_UNDEF(its->vgic_its_base)) - return -ENXIO; + mutex_lock(&kvm->slots_lock); + if (!IS_VGIC_ADDR_UNDEF(its->vgic_its_base)) { + ret = -EBUSY; + goto out; + } + its->vgic_its_base = addr; iodev->regions = its_registers; iodev->nr_regions = ARRAY_SIZE(its_registers); kvm_iodevice_init(&iodev->dev, &kvm_io_gic_ops); @@ -1375,9 +1560,9 @@ static int vgic_register_its_iodev(struct kvm *kvm, struct vgic_its *its) iodev->base_addr = its->vgic_its_base; iodev->iodev_type = IODEV_ITS; iodev->its = its; - mutex_lock(&kvm->slots_lock); ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, iodev->base_addr, KVM_VGIC_V3_ITS_SIZE, &iodev->dev); +out: mutex_unlock(&kvm->slots_lock); return ret; @@ -1387,7 +1572,6 @@ static int vgic_register_its_iodev(struct kvm *kvm, struct vgic_its *its) (GIC_BASER_CACHEABILITY(GITS_BASER, INNER, RaWb) | \ GIC_BASER_CACHEABILITY(GITS_BASER, OUTER, SameAsInner) | \ GIC_BASER_SHAREABILITY(GITS_BASER, InnerShareable) | \ - ((8ULL - 1) << GITS_BASER_ENTRY_SIZE_SHIFT) | \ GITS_BASER_PAGE_SIZE_64K) #define INITIAL_PROPBASER_VALUE \ @@ -1415,7 +1599,6 @@ static int vgic_its_create(struct kvm_device *dev, u32 type) INIT_LIST_HEAD(&its->collection_list); dev->kvm->arch.vgic.has_its = true; - its->initialized = false; its->enabled = false; its->dev = dev; @@ -1427,16 +1610,23 @@ static int vgic_its_create(struct kvm_device *dev, u32 type) dev->private = its; - return 0; + return vgic_its_set_abi(its, NR_ITS_ABIS - 1); +} + +static void vgic_its_free_device(struct kvm *kvm, struct its_device *dev) +{ + struct its_ite *ite, *tmp; + + list_for_each_entry_safe(ite, tmp, &dev->itt_head, ite_list) + its_free_ite(kvm, ite); + list_del(&dev->dev_list); + kfree(dev); } static void vgic_its_destroy(struct kvm_device *kvm_dev) { struct kvm *kvm = kvm_dev->kvm; struct vgic_its *its = kvm_dev->private; - struct its_device *dev; - struct its_itte *itte; - struct list_head *dev_cur, *dev_temp; struct list_head *cur, *temp; /* @@ -1447,25 +1637,710 @@ static void vgic_its_destroy(struct kvm_device *kvm_dev) return; mutex_lock(&its->its_lock); - list_for_each_safe(dev_cur, dev_temp, &its->device_list) { - dev = container_of(dev_cur, struct its_device, dev_list); - list_for_each_safe(cur, temp, &dev->itt_head) { - itte = (container_of(cur, struct its_itte, itte_list)); - its_free_itte(kvm, itte); - } - list_del(dev_cur); - kfree(dev); + list_for_each_safe(cur, temp, &its->device_list) { + struct its_device *dev; + + dev = list_entry(cur, struct its_device, dev_list); + vgic_its_free_device(kvm, dev); } list_for_each_safe(cur, temp, &its->collection_list) { + struct its_collection *coll; + + coll = list_entry(cur, struct its_collection, coll_list); list_del(cur); - kfree(container_of(cur, struct its_collection, coll_list)); + kfree(coll); } mutex_unlock(&its->its_lock); kfree(its); } +int vgic_its_has_attr_regs(struct kvm_device *dev, + struct kvm_device_attr *attr) +{ + const struct vgic_register_region *region; + gpa_t offset = attr->attr; + int align; + + align = (offset < GITS_TYPER) || (offset >= GITS_PIDR4) ? 0x3 : 0x7; + + if (offset & align) + return -EINVAL; + + region = vgic_find_mmio_region(its_registers, + ARRAY_SIZE(its_registers), + offset); + if (!region) + return -ENXIO; + + return 0; +} + +int vgic_its_attr_regs_access(struct kvm_device *dev, + struct kvm_device_attr *attr, + u64 *reg, bool is_write) +{ + const struct vgic_register_region *region; + struct vgic_its *its; + gpa_t addr, offset; + unsigned int len; + int align, ret = 0; + + its = dev->private; + offset = attr->attr; + + /* + * Although the spec supports upper/lower 32-bit accesses to + * 64-bit ITS registers, the userspace ABI requires 64-bit + * accesses to all 64-bit wide registers. We therefore only + * support 32-bit accesses to GITS_CTLR, GITS_IIDR and GITS ID + * registers + */ + if ((offset < GITS_TYPER) || (offset >= GITS_PIDR4)) + align = 0x3; + else + align = 0x7; + + if (offset & align) + return -EINVAL; + + mutex_lock(&dev->kvm->lock); + + if (IS_VGIC_ADDR_UNDEF(its->vgic_its_base)) { + ret = -ENXIO; + goto out; + } + + region = vgic_find_mmio_region(its_registers, + ARRAY_SIZE(its_registers), + offset); + if (!region) { + ret = -ENXIO; + goto out; + } + + if (!lock_all_vcpus(dev->kvm)) { + ret = -EBUSY; + goto out; + } + + addr = its->vgic_its_base + offset; + + len = region->access_flags & VGIC_ACCESS_64bit ? 8 : 4; + + if (is_write) { + if (region->uaccess_its_write) + ret = region->uaccess_its_write(dev->kvm, its, addr, + len, *reg); + else + region->its_write(dev->kvm, its, addr, len, *reg); + } else { + *reg = region->its_read(dev->kvm, its, addr, len); + } + unlock_all_vcpus(dev->kvm); +out: + mutex_unlock(&dev->kvm->lock); + return ret; +} + +static u32 compute_next_devid_offset(struct list_head *h, + struct its_device *dev) +{ + struct its_device *next; + u32 next_offset; + + if (list_is_last(&dev->dev_list, h)) + return 0; + next = list_next_entry(dev, dev_list); + next_offset = next->device_id - dev->device_id; + + return min_t(u32, next_offset, VITS_DTE_MAX_DEVID_OFFSET); +} + +static u32 compute_next_eventid_offset(struct list_head *h, struct its_ite *ite) +{ + struct its_ite *next; + u32 next_offset; + + if (list_is_last(&ite->ite_list, h)) + return 0; + next = list_next_entry(ite, ite_list); + next_offset = next->event_id - ite->event_id; + + return min_t(u32, next_offset, VITS_ITE_MAX_EVENTID_OFFSET); +} + +/** + * entry_fn_t - Callback called on a table entry restore path + * @its: its handle + * @id: id of the entry + * @entry: pointer to the entry + * @opaque: pointer to an opaque data + * + * Return: < 0 on error, 0 if last element was identified, id offset to next + * element otherwise + */ +typedef int (*entry_fn_t)(struct vgic_its *its, u32 id, void *entry, + void *opaque); + +/** + * scan_its_table - Scan a contiguous table in guest RAM and applies a function + * to each entry + * + * @its: its handle + * @base: base gpa of the table + * @size: size of the table in bytes + * @esz: entry size in bytes + * @start_id: the ID of the first entry in the table + * (non zero for 2d level tables) + * @fn: function to apply on each entry + * + * Return: < 0 on error, 0 if last element was identified, 1 otherwise + * (the last element may not be found on second level tables) + */ +static int scan_its_table(struct vgic_its *its, gpa_t base, int size, int esz, + int start_id, entry_fn_t fn, void *opaque) +{ + void *entry = kzalloc(esz, GFP_KERNEL); + struct kvm *kvm = its->dev->kvm; + unsigned long len = size; + int id = start_id; + gpa_t gpa = base; + int ret; + + while (len > 0) { + int next_offset; + size_t byte_offset; + + ret = kvm_read_guest(kvm, gpa, entry, esz); + if (ret) + goto out; + + next_offset = fn(its, id, entry, opaque); + if (next_offset <= 0) { + ret = next_offset; + goto out; + } + + byte_offset = next_offset * esz; + id += next_offset; + gpa += byte_offset; + len -= byte_offset; + } + ret = 1; + +out: + kfree(entry); + return ret; +} + +/** + * vgic_its_save_ite - Save an interrupt translation entry at @gpa + */ +static int vgic_its_save_ite(struct vgic_its *its, struct its_device *dev, + struct its_ite *ite, gpa_t gpa, int ite_esz) +{ + struct kvm *kvm = its->dev->kvm; + u32 next_offset; + u64 val; + + next_offset = compute_next_eventid_offset(&dev->itt_head, ite); + val = ((u64)next_offset << KVM_ITS_ITE_NEXT_SHIFT) | + ((u64)ite->lpi << KVM_ITS_ITE_PINTID_SHIFT) | + ite->collection->collection_id; + val = cpu_to_le64(val); + return kvm_write_guest(kvm, gpa, &val, ite_esz); +} + +/** + * vgic_its_restore_ite - restore an interrupt translation entry + * @event_id: id used for indexing + * @ptr: pointer to the ITE entry + * @opaque: pointer to the its_device + */ +static int vgic_its_restore_ite(struct vgic_its *its, u32 event_id, + void *ptr, void *opaque) +{ + struct its_device *dev = (struct its_device *)opaque; + struct its_collection *collection; + struct kvm *kvm = its->dev->kvm; + struct kvm_vcpu *vcpu = NULL; + u64 val; + u64 *p = (u64 *)ptr; + struct vgic_irq *irq; + u32 coll_id, lpi_id; + struct its_ite *ite; + u32 offset; + + val = *p; + + val = le64_to_cpu(val); + + coll_id = val & KVM_ITS_ITE_ICID_MASK; + lpi_id = (val & KVM_ITS_ITE_PINTID_MASK) >> KVM_ITS_ITE_PINTID_SHIFT; + + if (!lpi_id) + return 1; /* invalid entry, no choice but to scan next entry */ + + if (lpi_id < VGIC_MIN_LPI) + return -EINVAL; + + offset = val >> KVM_ITS_ITE_NEXT_SHIFT; + if (event_id + offset >= BIT_ULL(dev->num_eventid_bits)) + return -EINVAL; + + collection = find_collection(its, coll_id); + if (!collection) + return -EINVAL; + + ite = vgic_its_alloc_ite(dev, collection, lpi_id, event_id); + if (IS_ERR(ite)) + return PTR_ERR(ite); + + if (its_is_collection_mapped(collection)) + vcpu = kvm_get_vcpu(kvm, collection->target_addr); + + irq = vgic_add_lpi(kvm, lpi_id, vcpu); + if (IS_ERR(irq)) + return PTR_ERR(irq); + ite->irq = irq; + + return offset; +} + +static int vgic_its_ite_cmp(void *priv, struct list_head *a, + struct list_head *b) +{ + struct its_ite *itea = container_of(a, struct its_ite, ite_list); + struct its_ite *iteb = container_of(b, struct its_ite, ite_list); + + if (itea->event_id < iteb->event_id) + return -1; + else + return 1; +} + +static int vgic_its_save_itt(struct vgic_its *its, struct its_device *device) +{ + const struct vgic_its_abi *abi = vgic_its_get_abi(its); + gpa_t base = device->itt_addr; + struct its_ite *ite; + int ret; + int ite_esz = abi->ite_esz; + + list_sort(NULL, &device->itt_head, vgic_its_ite_cmp); + + list_for_each_entry(ite, &device->itt_head, ite_list) { + gpa_t gpa = base + ite->event_id * ite_esz; + + ret = vgic_its_save_ite(its, device, ite, gpa, ite_esz); + if (ret) + return ret; + } + return 0; +} + +static int vgic_its_restore_itt(struct vgic_its *its, struct its_device *dev) +{ + const struct vgic_its_abi *abi = vgic_its_get_abi(its); + gpa_t base = dev->itt_addr; + int ret; + int ite_esz = abi->ite_esz; + size_t max_size = BIT_ULL(dev->num_eventid_bits) * ite_esz; + + ret = scan_its_table(its, base, max_size, ite_esz, 0, + vgic_its_restore_ite, dev); + + return ret; +} + +/** + * vgic_its_save_dte - Save a device table entry at a given GPA + * + * @its: ITS handle + * @dev: ITS device + * @ptr: GPA + */ +static int vgic_its_save_dte(struct vgic_its *its, struct its_device *dev, + gpa_t ptr, int dte_esz) +{ + struct kvm *kvm = its->dev->kvm; + u64 val, itt_addr_field; + u32 next_offset; + + itt_addr_field = dev->itt_addr >> 8; + next_offset = compute_next_devid_offset(&its->device_list, dev); + val = (1ULL << KVM_ITS_DTE_VALID_SHIFT | + ((u64)next_offset << KVM_ITS_DTE_NEXT_SHIFT) | + (itt_addr_field << KVM_ITS_DTE_ITTADDR_SHIFT) | + (dev->num_eventid_bits - 1)); + val = cpu_to_le64(val); + return kvm_write_guest(kvm, ptr, &val, dte_esz); +} + +/** + * vgic_its_restore_dte - restore a device table entry + * + * @its: its handle + * @id: device id the DTE corresponds to + * @ptr: kernel VA where the 8 byte DTE is located + * @opaque: unused + * + * Return: < 0 on error, 0 if the dte is the last one, id offset to the + * next dte otherwise + */ +static int vgic_its_restore_dte(struct vgic_its *its, u32 id, + void *ptr, void *opaque) +{ + struct its_device *dev; + gpa_t itt_addr; + u8 num_eventid_bits; + u64 entry = *(u64 *)ptr; + bool valid; + u32 offset; + int ret; + + entry = le64_to_cpu(entry); + + valid = entry >> KVM_ITS_DTE_VALID_SHIFT; + num_eventid_bits = (entry & KVM_ITS_DTE_SIZE_MASK) + 1; + itt_addr = ((entry & KVM_ITS_DTE_ITTADDR_MASK) + >> KVM_ITS_DTE_ITTADDR_SHIFT) << 8; + + if (!valid) + return 1; + + /* dte entry is valid */ + offset = (entry & KVM_ITS_DTE_NEXT_MASK) >> KVM_ITS_DTE_NEXT_SHIFT; + + dev = vgic_its_alloc_device(its, id, itt_addr, num_eventid_bits); + if (IS_ERR(dev)) + return PTR_ERR(dev); + + ret = vgic_its_restore_itt(its, dev); + if (ret) { + vgic_its_free_device(its->dev->kvm, dev); + return ret; + } + + return offset; +} + +static int vgic_its_device_cmp(void *priv, struct list_head *a, + struct list_head *b) +{ + struct its_device *deva = container_of(a, struct its_device, dev_list); + struct its_device *devb = container_of(b, struct its_device, dev_list); + + if (deva->device_id < devb->device_id) + return -1; + else + return 1; +} + +/** + * vgic_its_save_device_tables - Save the device table and all ITT + * into guest RAM + * + * L1/L2 handling is hidden by vgic_its_check_id() helper which directly + * returns the GPA of the device entry + */ +static int vgic_its_save_device_tables(struct vgic_its *its) +{ + const struct vgic_its_abi *abi = vgic_its_get_abi(its); + struct its_device *dev; + int dte_esz = abi->dte_esz; + u64 baser; + + baser = its->baser_device_table; + + list_sort(NULL, &its->device_list, vgic_its_device_cmp); + + list_for_each_entry(dev, &its->device_list, dev_list) { + int ret; + gpa_t eaddr; + + if (!vgic_its_check_id(its, baser, + dev->device_id, &eaddr)) + return -EINVAL; + + ret = vgic_its_save_itt(its, dev); + if (ret) + return ret; + + ret = vgic_its_save_dte(its, dev, eaddr, dte_esz); + if (ret) + return ret; + } + return 0; +} + +/** + * handle_l1_dte - callback used for L1 device table entries (2 stage case) + * + * @its: its handle + * @id: index of the entry in the L1 table + * @addr: kernel VA + * @opaque: unused + * + * L1 table entries are scanned by steps of 1 entry + * Return < 0 if error, 0 if last dte was found when scanning the L2 + * table, +1 otherwise (meaning next L1 entry must be scanned) + */ +static int handle_l1_dte(struct vgic_its *its, u32 id, void *addr, + void *opaque) +{ + const struct vgic_its_abi *abi = vgic_its_get_abi(its); + int l2_start_id = id * (SZ_64K / abi->dte_esz); + u64 entry = *(u64 *)addr; + int dte_esz = abi->dte_esz; + gpa_t gpa; + int ret; + + entry = le64_to_cpu(entry); + + if (!(entry & KVM_ITS_L1E_VALID_MASK)) + return 1; + + gpa = entry & KVM_ITS_L1E_ADDR_MASK; + + ret = scan_its_table(its, gpa, SZ_64K, dte_esz, + l2_start_id, vgic_its_restore_dte, NULL); + + if (ret <= 0) + return ret; + + return 1; +} + +/** + * vgic_its_restore_device_tables - Restore the device table and all ITT + * from guest RAM to internal data structs + */ +static int vgic_its_restore_device_tables(struct vgic_its *its) +{ + const struct vgic_its_abi *abi = vgic_its_get_abi(its); + u64 baser = its->baser_device_table; + int l1_esz, ret; + int l1_tbl_size = GITS_BASER_NR_PAGES(baser) * SZ_64K; + gpa_t l1_gpa; + + if (!(baser & GITS_BASER_VALID)) + return 0; + + l1_gpa = BASER_ADDRESS(baser); + + if (baser & GITS_BASER_INDIRECT) { + l1_esz = GITS_LVL1_ENTRY_SIZE; + ret = scan_its_table(its, l1_gpa, l1_tbl_size, l1_esz, 0, + handle_l1_dte, NULL); + } else { + l1_esz = abi->dte_esz; + ret = scan_its_table(its, l1_gpa, l1_tbl_size, l1_esz, 0, + vgic_its_restore_dte, NULL); + } + + if (ret > 0) + ret = -EINVAL; + + return ret; +} + +static int vgic_its_save_cte(struct vgic_its *its, + struct its_collection *collection, + gpa_t gpa, int esz) +{ + u64 val; + + val = (1ULL << KVM_ITS_CTE_VALID_SHIFT | + ((u64)collection->target_addr << KVM_ITS_CTE_RDBASE_SHIFT) | + collection->collection_id); + val = cpu_to_le64(val); + return kvm_write_guest(its->dev->kvm, gpa, &val, esz); +} + +static int vgic_its_restore_cte(struct vgic_its *its, gpa_t gpa, int esz) +{ + struct its_collection *collection; + struct kvm *kvm = its->dev->kvm; + u32 target_addr, coll_id; + u64 val; + int ret; + + BUG_ON(esz > sizeof(val)); + ret = kvm_read_guest(kvm, gpa, &val, esz); + if (ret) + return ret; + val = le64_to_cpu(val); + if (!(val & KVM_ITS_CTE_VALID_MASK)) + return 0; + + target_addr = (u32)(val >> KVM_ITS_CTE_RDBASE_SHIFT); + coll_id = val & KVM_ITS_CTE_ICID_MASK; + + if (target_addr >= atomic_read(&kvm->online_vcpus)) + return -EINVAL; + + collection = find_collection(its, coll_id); + if (collection) + return -EEXIST; + ret = vgic_its_alloc_collection(its, &collection, coll_id); + if (ret) + return ret; + collection->target_addr = target_addr; + return 1; +} + +/** + * vgic_its_save_collection_table - Save the collection table into + * guest RAM + */ +static int vgic_its_save_collection_table(struct vgic_its *its) +{ + const struct vgic_its_abi *abi = vgic_its_get_abi(its); + struct its_collection *collection; + u64 val; + gpa_t gpa; + size_t max_size, filled = 0; + int ret, cte_esz = abi->cte_esz; + + gpa = BASER_ADDRESS(its->baser_coll_table); + if (!gpa) + return 0; + + max_size = GITS_BASER_NR_PAGES(its->baser_coll_table) * SZ_64K; + + list_for_each_entry(collection, &its->collection_list, coll_list) { + ret = vgic_its_save_cte(its, collection, gpa, cte_esz); + if (ret) + return ret; + gpa += cte_esz; + filled += cte_esz; + } + + if (filled == max_size) + return 0; + + /* + * table is not fully filled, add a last dummy element + * with valid bit unset + */ + val = 0; + BUG_ON(cte_esz > sizeof(val)); + ret = kvm_write_guest(its->dev->kvm, gpa, &val, cte_esz); + return ret; +} + +/** + * vgic_its_restore_collection_table - reads the collection table + * in guest memory and restores the ITS internal state. Requires the + * BASER registers to be restored before. + */ +static int vgic_its_restore_collection_table(struct vgic_its *its) +{ + const struct vgic_its_abi *abi = vgic_its_get_abi(its); + int cte_esz = abi->cte_esz; + size_t max_size, read = 0; + gpa_t gpa; + int ret; + + if (!(its->baser_coll_table & GITS_BASER_VALID)) + return 0; + + gpa = BASER_ADDRESS(its->baser_coll_table); + + max_size = GITS_BASER_NR_PAGES(its->baser_coll_table) * SZ_64K; + + while (read < max_size) { + ret = vgic_its_restore_cte(its, gpa, cte_esz); + if (ret <= 0) + break; + gpa += cte_esz; + read += cte_esz; + } + return ret; +} + +/** + * vgic_its_save_tables_v0 - Save the ITS tables into guest ARM + * according to v0 ABI + */ +static int vgic_its_save_tables_v0(struct vgic_its *its) +{ + struct kvm *kvm = its->dev->kvm; + int ret; + + mutex_lock(&kvm->lock); + mutex_lock(&its->its_lock); + + if (!lock_all_vcpus(kvm)) { + mutex_unlock(&its->its_lock); + mutex_unlock(&kvm->lock); + return -EBUSY; + } + + ret = vgic_its_save_device_tables(its); + if (ret) + goto out; + + ret = vgic_its_save_collection_table(its); + +out: + unlock_all_vcpus(kvm); + mutex_unlock(&its->its_lock); + mutex_unlock(&kvm->lock); + return ret; +} + +/** + * vgic_its_restore_tables_v0 - Restore the ITS tables from guest RAM + * to internal data structs according to V0 ABI + * + */ +static int vgic_its_restore_tables_v0(struct vgic_its *its) +{ + struct kvm *kvm = its->dev->kvm; + int ret; + + mutex_lock(&kvm->lock); + mutex_lock(&its->its_lock); + + if (!lock_all_vcpus(kvm)) { + mutex_unlock(&its->its_lock); + mutex_unlock(&kvm->lock); + return -EBUSY; + } + + ret = vgic_its_restore_collection_table(its); + if (ret) + goto out; + + ret = vgic_its_restore_device_tables(its); +out: + unlock_all_vcpus(kvm); + mutex_unlock(&its->its_lock); + mutex_unlock(&kvm->lock); + + return ret; +} + +static int vgic_its_commit_v0(struct vgic_its *its) +{ + const struct vgic_its_abi *abi; + + abi = vgic_its_get_abi(its); + its->baser_coll_table &= ~GITS_BASER_ENTRY_SIZE_MASK; + its->baser_device_table &= ~GITS_BASER_ENTRY_SIZE_MASK; + + its->baser_coll_table |= (GIC_ENCODE_SZ(abi->cte_esz, 5) + << GITS_BASER_ENTRY_SIZE_SHIFT); + + its->baser_device_table |= (GIC_ENCODE_SZ(abi->dte_esz, 5) + << GITS_BASER_ENTRY_SIZE_SHIFT); + return 0; +} + static int vgic_its_has_attr(struct kvm_device *dev, struct kvm_device_attr *attr) { @@ -1480,8 +2355,14 @@ static int vgic_its_has_attr(struct kvm_device *dev, switch (attr->attr) { case KVM_DEV_ARM_VGIC_CTRL_INIT: return 0; + case KVM_DEV_ARM_ITS_SAVE_TABLES: + return 0; + case KVM_DEV_ARM_ITS_RESTORE_TABLES: + return 0; } break; + case KVM_DEV_ARM_VGIC_GRP_ITS_REGS: + return vgic_its_has_attr_regs(dev, attr); } return -ENXIO; } @@ -1509,18 +2390,30 @@ static int vgic_its_set_attr(struct kvm_device *dev, if (ret) return ret; - its->vgic_its_base = addr; - - return 0; + return vgic_register_its_iodev(dev->kvm, its, addr); } - case KVM_DEV_ARM_VGIC_GRP_CTRL: + case KVM_DEV_ARM_VGIC_GRP_CTRL: { + const struct vgic_its_abi *abi = vgic_its_get_abi(its); + switch (attr->attr) { case KVM_DEV_ARM_VGIC_CTRL_INIT: - its->initialized = true; - + /* Nothing to do */ return 0; + case KVM_DEV_ARM_ITS_SAVE_TABLES: + return abi->save_tables(its); + case KVM_DEV_ARM_ITS_RESTORE_TABLES: + return abi->restore_tables(its); } - break; + } + case KVM_DEV_ARM_VGIC_GRP_ITS_REGS: { + u64 __user *uaddr = (u64 __user *)(long)attr->addr; + u64 reg; + + if (get_user(reg, uaddr)) + return -EFAULT; + + return vgic_its_attr_regs_access(dev, attr, ®, true); + } } return -ENXIO; } @@ -1541,10 +2434,20 @@ static int vgic_its_get_attr(struct kvm_device *dev, if (copy_to_user(uaddr, &addr, sizeof(addr))) return -EFAULT; break; + } + case KVM_DEV_ARM_VGIC_GRP_ITS_REGS: { + u64 __user *uaddr = (u64 __user *)(long)attr->addr; + u64 reg; + int ret; + + ret = vgic_its_attr_regs_access(dev, attr, ®, false); + if (ret) + return ret; + return put_user(reg, uaddr); + } default: return -ENXIO; } - } return 0; } @@ -1563,30 +2466,3 @@ int kvm_vgic_register_its_device(void) return kvm_register_device_ops(&kvm_arm_vgic_its_ops, KVM_DEV_TYPE_ARM_VGIC_ITS); } - -/* - * Registers all ITSes with the kvm_io_bus framework. - * To follow the existing VGIC initialization sequence, this has to be - * done as late as possible, just before the first VCPU runs. - */ -int vgic_register_its_iodevs(struct kvm *kvm) -{ - struct kvm_device *dev; - int ret = 0; - - list_for_each_entry(dev, &kvm->devices, vm_node) { - if (dev->ops != &kvm_arm_vgic_its_ops) - continue; - - ret = vgic_register_its_iodev(kvm, dev->private); - if (ret) - return ret; - /* - * We don't need to care about tearing down previously - * registered ITSes, as the kvm_io_bus framework removes - * them for us if the VM gets destroyed. - */ - } - - return ret; -} diff --git a/virt/kvm/arm/vgic/vgic-kvm-device.c b/virt/kvm/arm/vgic/vgic-kvm-device.c index d181d2baee9c..10ae6f394b71 100644 --- a/virt/kvm/arm/vgic/vgic-kvm-device.c +++ b/virt/kvm/arm/vgic/vgic-kvm-device.c @@ -37,6 +37,14 @@ int vgic_check_ioaddr(struct kvm *kvm, phys_addr_t *ioaddr, return 0; } +static int vgic_check_type(struct kvm *kvm, int type_needed) +{ + if (kvm->arch.vgic.vgic_model != type_needed) + return -ENODEV; + else + return 0; +} + /** * kvm_vgic_addr - set or get vgic VM base addresses * @kvm: pointer to the vm struct @@ -57,40 +65,41 @@ int kvm_vgic_addr(struct kvm *kvm, unsigned long type, u64 *addr, bool write) { int r = 0; struct vgic_dist *vgic = &kvm->arch.vgic; - int type_needed; phys_addr_t *addr_ptr, alignment; mutex_lock(&kvm->lock); switch (type) { case KVM_VGIC_V2_ADDR_TYPE_DIST: - type_needed = KVM_DEV_TYPE_ARM_VGIC_V2; + r = vgic_check_type(kvm, KVM_DEV_TYPE_ARM_VGIC_V2); addr_ptr = &vgic->vgic_dist_base; alignment = SZ_4K; break; case KVM_VGIC_V2_ADDR_TYPE_CPU: - type_needed = KVM_DEV_TYPE_ARM_VGIC_V2; + r = vgic_check_type(kvm, KVM_DEV_TYPE_ARM_VGIC_V2); addr_ptr = &vgic->vgic_cpu_base; alignment = SZ_4K; break; case KVM_VGIC_V3_ADDR_TYPE_DIST: - type_needed = KVM_DEV_TYPE_ARM_VGIC_V3; + r = vgic_check_type(kvm, KVM_DEV_TYPE_ARM_VGIC_V3); addr_ptr = &vgic->vgic_dist_base; alignment = SZ_64K; break; case KVM_VGIC_V3_ADDR_TYPE_REDIST: - type_needed = KVM_DEV_TYPE_ARM_VGIC_V3; + r = vgic_check_type(kvm, KVM_DEV_TYPE_ARM_VGIC_V3); + if (r) + break; + if (write) { + r = vgic_v3_set_redist_base(kvm, *addr); + goto out; + } addr_ptr = &vgic->vgic_redist_base; - alignment = SZ_64K; break; default: r = -ENODEV; - goto out; } - if (vgic->vgic_model != type_needed) { - r = -ENODEV; + if (r) goto out; - } if (write) { r = vgic_check_ioaddr(kvm, addr_ptr, *addr, alignment); @@ -259,13 +268,13 @@ static void unlock_vcpus(struct kvm *kvm, int vcpu_lock_idx) } } -static void unlock_all_vcpus(struct kvm *kvm) +void unlock_all_vcpus(struct kvm *kvm) { unlock_vcpus(kvm, atomic_read(&kvm->online_vcpus) - 1); } /* Returns true if all vcpus were locked, false otherwise */ -static bool lock_all_vcpus(struct kvm *kvm) +bool lock_all_vcpus(struct kvm *kvm) { struct kvm_vcpu *tmp_vcpu; int c; @@ -580,6 +589,24 @@ static int vgic_v3_set_attr(struct kvm_device *dev, reg = tmp32; return vgic_v3_attr_regs_access(dev, attr, ®, true); } + case KVM_DEV_ARM_VGIC_GRP_CTRL: { + int ret; + + switch (attr->attr) { + case KVM_DEV_ARM_VGIC_SAVE_PENDING_TABLES: + mutex_lock(&dev->kvm->lock); + + if (!lock_all_vcpus(dev->kvm)) { + mutex_unlock(&dev->kvm->lock); + return -EBUSY; + } + ret = vgic_v3_save_pending_tables(dev->kvm); + unlock_all_vcpus(dev->kvm); + mutex_unlock(&dev->kvm->lock); + return ret; + } + break; + } } return -ENXIO; } @@ -658,6 +685,8 @@ static int vgic_v3_has_attr(struct kvm_device *dev, switch (attr->attr) { case KVM_DEV_ARM_VGIC_CTRL_INIT: return 0; + case KVM_DEV_ARM_VGIC_SAVE_PENDING_TABLES: + return 0; } } return -ENXIO; diff --git a/virt/kvm/arm/vgic/vgic-mmio-v3.c b/virt/kvm/arm/vgic/vgic-mmio-v3.c index 6afb3b484886..99da1a207c19 100644 --- a/virt/kvm/arm/vgic/vgic-mmio-v3.c +++ b/virt/kvm/arm/vgic/vgic-mmio-v3.c @@ -556,67 +556,130 @@ unsigned int vgic_v3_init_dist_iodev(struct vgic_io_device *dev) return SZ_64K; } -int vgic_register_redist_iodevs(struct kvm *kvm, gpa_t redist_base_address) +/** + * vgic_register_redist_iodev - register a single redist iodev + * @vcpu: The VCPU to which the redistributor belongs + * + * Register a KVM iodev for this VCPU's redistributor using the address + * provided. + * + * Return 0 on success, -ERRNO otherwise. + */ +int vgic_register_redist_iodev(struct kvm_vcpu *vcpu) +{ + struct kvm *kvm = vcpu->kvm; + struct vgic_dist *vgic = &kvm->arch.vgic; + struct vgic_io_device *rd_dev = &vcpu->arch.vgic_cpu.rd_iodev; + struct vgic_io_device *sgi_dev = &vcpu->arch.vgic_cpu.sgi_iodev; + gpa_t rd_base, sgi_base; + int ret; + + /* + * We may be creating VCPUs before having set the base address for the + * redistributor region, in which case we will come back to this + * function for all VCPUs when the base address is set. Just return + * without doing any work for now. + */ + if (IS_VGIC_ADDR_UNDEF(vgic->vgic_redist_base)) + return 0; + + if (!vgic_v3_check_base(kvm)) + return -EINVAL; + + rd_base = vgic->vgic_redist_base + kvm_vcpu_get_idx(vcpu) * SZ_64K * 2; + sgi_base = rd_base + SZ_64K; + + kvm_iodevice_init(&rd_dev->dev, &kvm_io_gic_ops); + rd_dev->base_addr = rd_base; + rd_dev->iodev_type = IODEV_REDIST; + rd_dev->regions = vgic_v3_rdbase_registers; + rd_dev->nr_regions = ARRAY_SIZE(vgic_v3_rdbase_registers); + rd_dev->redist_vcpu = vcpu; + + mutex_lock(&kvm->slots_lock); + ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, rd_base, + SZ_64K, &rd_dev->dev); + mutex_unlock(&kvm->slots_lock); + + if (ret) + return ret; + + kvm_iodevice_init(&sgi_dev->dev, &kvm_io_gic_ops); + sgi_dev->base_addr = sgi_base; + sgi_dev->iodev_type = IODEV_REDIST; + sgi_dev->regions = vgic_v3_sgibase_registers; + sgi_dev->nr_regions = ARRAY_SIZE(vgic_v3_sgibase_registers); + sgi_dev->redist_vcpu = vcpu; + + mutex_lock(&kvm->slots_lock); + ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, sgi_base, + SZ_64K, &sgi_dev->dev); + mutex_unlock(&kvm->slots_lock); + if (ret) + kvm_io_bus_unregister_dev(kvm, KVM_MMIO_BUS, + &rd_dev->dev); + + return ret; +} + +static void vgic_unregister_redist_iodev(struct kvm_vcpu *vcpu) +{ + struct vgic_io_device *rd_dev = &vcpu->arch.vgic_cpu.rd_iodev; + struct vgic_io_device *sgi_dev = &vcpu->arch.vgic_cpu.sgi_iodev; + + kvm_io_bus_unregister_dev(vcpu->kvm, KVM_MMIO_BUS, &rd_dev->dev); + kvm_io_bus_unregister_dev(vcpu->kvm, KVM_MMIO_BUS, &sgi_dev->dev); +} + +static int vgic_register_all_redist_iodevs(struct kvm *kvm) { struct kvm_vcpu *vcpu; int c, ret = 0; kvm_for_each_vcpu(c, vcpu, kvm) { - gpa_t rd_base = redist_base_address + c * SZ_64K * 2; - gpa_t sgi_base = rd_base + SZ_64K; - struct vgic_io_device *rd_dev = &vcpu->arch.vgic_cpu.rd_iodev; - struct vgic_io_device *sgi_dev = &vcpu->arch.vgic_cpu.sgi_iodev; - - kvm_iodevice_init(&rd_dev->dev, &kvm_io_gic_ops); - rd_dev->base_addr = rd_base; - rd_dev->iodev_type = IODEV_REDIST; - rd_dev->regions = vgic_v3_rdbase_registers; - rd_dev->nr_regions = ARRAY_SIZE(vgic_v3_rdbase_registers); - rd_dev->redist_vcpu = vcpu; - - mutex_lock(&kvm->slots_lock); - ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, rd_base, - SZ_64K, &rd_dev->dev); - mutex_unlock(&kvm->slots_lock); - + ret = vgic_register_redist_iodev(vcpu); if (ret) break; - - kvm_iodevice_init(&sgi_dev->dev, &kvm_io_gic_ops); - sgi_dev->base_addr = sgi_base; - sgi_dev->iodev_type = IODEV_REDIST; - sgi_dev->regions = vgic_v3_sgibase_registers; - sgi_dev->nr_regions = ARRAY_SIZE(vgic_v3_sgibase_registers); - sgi_dev->redist_vcpu = vcpu; - - mutex_lock(&kvm->slots_lock); - ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, sgi_base, - SZ_64K, &sgi_dev->dev); - mutex_unlock(&kvm->slots_lock); - if (ret) { - kvm_io_bus_unregister_dev(kvm, KVM_MMIO_BUS, - &rd_dev->dev); - break; - } } if (ret) { /* The current c failed, so we start with the previous one. */ for (c--; c >= 0; c--) { - struct vgic_cpu *vgic_cpu; - vcpu = kvm_get_vcpu(kvm, c); - vgic_cpu = &vcpu->arch.vgic_cpu; - kvm_io_bus_unregister_dev(kvm, KVM_MMIO_BUS, - &vgic_cpu->rd_iodev.dev); - kvm_io_bus_unregister_dev(kvm, KVM_MMIO_BUS, - &vgic_cpu->sgi_iodev.dev); + vgic_unregister_redist_iodev(vcpu); } } return ret; } +int vgic_v3_set_redist_base(struct kvm *kvm, u64 addr) +{ + struct vgic_dist *vgic = &kvm->arch.vgic; + int ret; + + /* vgic_check_ioaddr makes sure we don't do this twice */ + ret = vgic_check_ioaddr(kvm, &vgic->vgic_redist_base, addr, SZ_64K); + if (ret) + return ret; + + vgic->vgic_redist_base = addr; + if (!vgic_v3_check_base(kvm)) { + vgic->vgic_redist_base = VGIC_ADDR_UNDEF; + return -EINVAL; + } + + /* + * Register iodevs for each existing VCPU. Adding more VCPUs + * afterwards will register the iodevs when needed. + */ + ret = vgic_register_all_redist_iodevs(kvm); + if (ret) + return ret; + + return 0; +} + int vgic_v3_has_attr_regs(struct kvm_device *dev, struct kvm_device_attr *attr) { const struct vgic_register_region *region; diff --git a/virt/kvm/arm/vgic/vgic-mmio.c b/virt/kvm/arm/vgic/vgic-mmio.c index 2a5db1352722..1c17b2a2f105 100644 --- a/virt/kvm/arm/vgic/vgic-mmio.c +++ b/virt/kvm/arm/vgic/vgic-mmio.c @@ -446,13 +446,12 @@ static int match_region(const void *key, const void *elt) return 0; } -/* Find the proper register handler entry given a certain address offset. */ -static const struct vgic_register_region * -vgic_find_mmio_region(const struct vgic_register_region *region, int nr_regions, - unsigned int offset) +const struct vgic_register_region * +vgic_find_mmio_region(const struct vgic_register_region *regions, + int nr_regions, unsigned int offset) { - return bsearch((void *)(uintptr_t)offset, region, nr_regions, - sizeof(region[0]), match_region); + return bsearch((void *)(uintptr_t)offset, regions, nr_regions, + sizeof(regions[0]), match_region); } void vgic_set_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr) diff --git a/virt/kvm/arm/vgic/vgic-mmio.h b/virt/kvm/arm/vgic/vgic-mmio.h index 98bb566b660a..ea4171acdef3 100644 --- a/virt/kvm/arm/vgic/vgic-mmio.h +++ b/virt/kvm/arm/vgic/vgic-mmio.h @@ -36,8 +36,13 @@ struct vgic_register_region { }; unsigned long (*uaccess_read)(struct kvm_vcpu *vcpu, gpa_t addr, unsigned int len); - void (*uaccess_write)(struct kvm_vcpu *vcpu, gpa_t addr, - unsigned int len, unsigned long val); + union { + void (*uaccess_write)(struct kvm_vcpu *vcpu, gpa_t addr, + unsigned int len, unsigned long val); + int (*uaccess_its_write)(struct kvm *kvm, struct vgic_its *its, + gpa_t addr, unsigned int len, + unsigned long val); + }; }; extern struct kvm_io_device_ops kvm_io_gic_ops; @@ -192,4 +197,9 @@ u64 vgic_sanitise_shareability(u64 reg); u64 vgic_sanitise_field(u64 reg, u64 field_mask, int field_shift, u64 (*sanitise_fn)(u64)); +/* Find the proper register handler entry given a certain address offset */ +const struct vgic_register_region * +vgic_find_mmio_region(const struct vgic_register_region *regions, + int nr_regions, unsigned int offset); + #endif diff --git a/virt/kvm/arm/vgic/vgic-v3.c b/virt/kvm/arm/vgic/vgic-v3.c index df1503650300..8fa737edde6f 100644 --- a/virt/kvm/arm/vgic/vgic-v3.c +++ b/virt/kvm/arm/vgic/vgic-v3.c @@ -234,19 +234,125 @@ void vgic_v3_enable(struct kvm_vcpu *vcpu) vgic_v3->vgic_hcr = ICH_HCR_EN; } -/* check for overlapping regions and for regions crossing the end of memory */ -static bool vgic_v3_check_base(struct kvm *kvm) +int vgic_v3_lpi_sync_pending_status(struct kvm *kvm, struct vgic_irq *irq) +{ + struct kvm_vcpu *vcpu; + int byte_offset, bit_nr; + gpa_t pendbase, ptr; + bool status; + u8 val; + int ret; + +retry: + vcpu = irq->target_vcpu; + if (!vcpu) + return 0; + + pendbase = GICR_PENDBASER_ADDRESS(vcpu->arch.vgic_cpu.pendbaser); + + byte_offset = irq->intid / BITS_PER_BYTE; + bit_nr = irq->intid % BITS_PER_BYTE; + ptr = pendbase + byte_offset; + + ret = kvm_read_guest(kvm, ptr, &val, 1); + if (ret) + return ret; + + status = val & (1 << bit_nr); + + spin_lock(&irq->irq_lock); + if (irq->target_vcpu != vcpu) { + spin_unlock(&irq->irq_lock); + goto retry; + } + irq->pending_latch = status; + vgic_queue_irq_unlock(vcpu->kvm, irq); + + if (status) { + /* clear consumed data */ + val &= ~(1 << bit_nr); + ret = kvm_write_guest(kvm, ptr, &val, 1); + if (ret) + return ret; + } + return 0; +} + +/** + * vgic_its_save_pending_tables - Save the pending tables into guest RAM + * kvm lock and all vcpu lock must be held + */ +int vgic_v3_save_pending_tables(struct kvm *kvm) +{ + struct vgic_dist *dist = &kvm->arch.vgic; + int last_byte_offset = -1; + struct vgic_irq *irq; + int ret; + + list_for_each_entry(irq, &dist->lpi_list_head, lpi_list) { + int byte_offset, bit_nr; + struct kvm_vcpu *vcpu; + gpa_t pendbase, ptr; + bool stored; + u8 val; + + vcpu = irq->target_vcpu; + if (!vcpu) + continue; + + pendbase = GICR_PENDBASER_ADDRESS(vcpu->arch.vgic_cpu.pendbaser); + + byte_offset = irq->intid / BITS_PER_BYTE; + bit_nr = irq->intid % BITS_PER_BYTE; + ptr = pendbase + byte_offset; + + if (byte_offset != last_byte_offset) { + ret = kvm_read_guest(kvm, ptr, &val, 1); + if (ret) + return ret; + last_byte_offset = byte_offset; + } + + stored = val & (1U << bit_nr); + if (stored == irq->pending_latch) + continue; + + if (irq->pending_latch) + val |= 1 << bit_nr; + else + val &= ~(1 << bit_nr); + + ret = kvm_write_guest(kvm, ptr, &val, 1); + if (ret) + return ret; + } + return 0; +} + +/* + * Check for overlapping regions and for regions crossing the end of memory + * for base addresses which have already been set. + */ +bool vgic_v3_check_base(struct kvm *kvm) { struct vgic_dist *d = &kvm->arch.vgic; gpa_t redist_size = KVM_VGIC_V3_REDIST_SIZE; redist_size *= atomic_read(&kvm->online_vcpus); - if (d->vgic_dist_base + KVM_VGIC_V3_DIST_SIZE < d->vgic_dist_base) + if (!IS_VGIC_ADDR_UNDEF(d->vgic_dist_base) && + d->vgic_dist_base + KVM_VGIC_V3_DIST_SIZE < d->vgic_dist_base) return false; - if (d->vgic_redist_base + redist_size < d->vgic_redist_base) + + if (!IS_VGIC_ADDR_UNDEF(d->vgic_redist_base) && + d->vgic_redist_base + redist_size < d->vgic_redist_base) return false; + /* Both base addresses must be set to check if they overlap */ + if (IS_VGIC_ADDR_UNDEF(d->vgic_dist_base) || + IS_VGIC_ADDR_UNDEF(d->vgic_redist_base)) + return true; + if (d->vgic_dist_base + KVM_VGIC_V3_DIST_SIZE <= d->vgic_redist_base) return true; if (d->vgic_redist_base + redist_size <= d->vgic_dist_base) @@ -291,20 +397,6 @@ int vgic_v3_map_resources(struct kvm *kvm) goto out; } - ret = vgic_register_redist_iodevs(kvm, dist->vgic_redist_base); - if (ret) { - kvm_err("Unable to register VGICv3 redist MMIO regions\n"); - goto out; - } - - if (vgic_has_its(kvm)) { - ret = vgic_register_its_iodevs(kvm); - if (ret) { - kvm_err("Unable to register VGIC ITS MMIO regions\n"); - goto out; - } - } - dist->ready = true; out: diff --git a/virt/kvm/arm/vgic/vgic.c b/virt/kvm/arm/vgic/vgic.c index 4346bc7d08dc..83b24d20ff8f 100644 --- a/virt/kvm/arm/vgic/vgic.c +++ b/virt/kvm/arm/vgic/vgic.c @@ -21,7 +21,7 @@ #include "vgic.h" #define CREATE_TRACE_POINTS -#include "../trace.h" +#include "trace.h" #ifdef CONFIG_DEBUG_SPINLOCK #define DEBUG_SPINLOCK_BUG_ON(p) BUG_ON(p) diff --git a/virt/kvm/arm/vgic/vgic.h b/virt/kvm/arm/vgic/vgic.h index 799fd651b260..da83e4caa272 100644 --- a/virt/kvm/arm/vgic/vgic.h +++ b/virt/kvm/arm/vgic/vgic.h @@ -73,6 +73,29 @@ KVM_REG_ARM_VGIC_SYSREG_CRM_MASK | \ KVM_REG_ARM_VGIC_SYSREG_OP2_MASK) +/* + * As per Documentation/virtual/kvm/devices/arm-vgic-its.txt, + * below macros are defined for ITS table entry encoding. + */ +#define KVM_ITS_CTE_VALID_SHIFT 63 +#define KVM_ITS_CTE_VALID_MASK BIT_ULL(63) +#define KVM_ITS_CTE_RDBASE_SHIFT 16 +#define KVM_ITS_CTE_ICID_MASK GENMASK_ULL(15, 0) +#define KVM_ITS_ITE_NEXT_SHIFT 48 +#define KVM_ITS_ITE_PINTID_SHIFT 16 +#define KVM_ITS_ITE_PINTID_MASK GENMASK_ULL(47, 16) +#define KVM_ITS_ITE_ICID_MASK GENMASK_ULL(15, 0) +#define KVM_ITS_DTE_VALID_SHIFT 63 +#define KVM_ITS_DTE_VALID_MASK BIT_ULL(63) +#define KVM_ITS_DTE_NEXT_SHIFT 49 +#define KVM_ITS_DTE_NEXT_MASK GENMASK_ULL(62, 49) +#define KVM_ITS_DTE_ITTADDR_SHIFT 5 +#define KVM_ITS_DTE_ITTADDR_MASK GENMASK_ULL(48, 5) +#define KVM_ITS_DTE_SIZE_MASK GENMASK_ULL(4, 0) +#define KVM_ITS_L1E_VALID_MASK BIT_ULL(63) +/* we only support 64 kB translation table page size */ +#define KVM_ITS_L1E_ADDR_MASK GENMASK_ULL(51, 16) + static inline bool irq_is_pending(struct vgic_irq *irq) { if (irq->config == VGIC_CONFIG_EDGE) @@ -157,12 +180,15 @@ void vgic_v3_get_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr); void vgic_v3_enable(struct kvm_vcpu *vcpu); int vgic_v3_probe(const struct gic_kvm_info *info); int vgic_v3_map_resources(struct kvm *kvm); -int vgic_register_redist_iodevs(struct kvm *kvm, gpa_t dist_base_address); +int vgic_v3_lpi_sync_pending_status(struct kvm *kvm, struct vgic_irq *irq); +int vgic_v3_save_pending_tables(struct kvm *kvm); +int vgic_v3_set_redist_base(struct kvm *kvm, u64 addr); +int vgic_register_redist_iodev(struct kvm_vcpu *vcpu); +bool vgic_v3_check_base(struct kvm *kvm); void vgic_v3_load(struct kvm_vcpu *vcpu); void vgic_v3_put(struct kvm_vcpu *vcpu); -int vgic_register_its_iodevs(struct kvm *kvm); bool vgic_has_its(struct kvm *kvm); int kvm_vgic_register_its_device(void); void vgic_enable_lpis(struct kvm_vcpu *vcpu); @@ -187,4 +213,7 @@ int vgic_init(struct kvm *kvm); int vgic_debug_init(struct kvm *kvm); int vgic_debug_destroy(struct kvm *kvm); +bool lock_all_vcpus(struct kvm *kvm); +void unlock_all_vcpus(struct kvm *kvm); + #endif |