diff options
author | Miaohe Lin <linmiaohe@huawei.com> | 2021-05-04 18:33:52 -0700 |
---|---|---|
committer | Linus Torvalds <torvalds@linux-foundation.org> | 2021-05-05 11:27:21 -0700 |
commit | 71f9e58eb408db423e0e27b55e0de66fb3590296 (patch) | |
tree | 5934926845f83226f0ec55f57b24ce8d56243fa6 | |
parent | 8fd5eda4c7268b62f46b2ed76b96f9e41e128a47 (diff) |
mm/huge_memory.c: rework the function vma_adjust_trans_huge()
Patch series "Some cleanups for huge_memory", v3.
This series contains cleanups to rework some function logics to make it
more readable, use helper function and so on. More details can be found
in the respective changelogs.
This patch (of 6):
The current implementation of vma_adjust_trans_huge() contains some
duplicated codes. Add helper function to get rid of these codes to make
it more succinct.
Link: https://lkml.kernel.org/r/20210318122722.13135-1-linmiaohe@huawei.com
Link: https://lkml.kernel.org/r/20210318122722.13135-2-linmiaohe@huawei.com
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Reviewed-by: Peter Xu <peterx@redhat.com>
Cc: Zi Yan <ziy@nvidia.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: William Kucharski <william.kucharski@oracle.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Peter Xu <peterx@redhat.com>
Cc: yuleixzhang <yulei.kernel@gmail.com>
Cc: Michel Lespinasse <walken@google.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Cc: Ralph Campbell <rcampbell@nvidia.com>
Cc: Thomas Hellstrm (Intel) <thomas_os@shipmail.org>
Cc: Yang Shi <yang.shi@linux.alibaba.com>
Cc: Wei Yang <richard.weiyang@linux.alibaba.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-rw-r--r-- | mm/huge_memory.c | 44 |
1 files changed, 19 insertions, 25 deletions
diff --git a/mm/huge_memory.c b/mm/huge_memory.c index bff92dea5ab3..ae16a82da823 100644 --- a/mm/huge_memory.c +++ b/mm/huge_memory.c @@ -2301,44 +2301,38 @@ void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address, __split_huge_pmd(vma, pmd, address, freeze, page); } +static inline void split_huge_pmd_if_needed(struct vm_area_struct *vma, unsigned long address) +{ + /* + * If the new address isn't hpage aligned and it could previously + * contain an hugepage: check if we need to split an huge pmd. + */ + if (!IS_ALIGNED(address, HPAGE_PMD_SIZE) && + range_in_vma(vma, ALIGN_DOWN(address, HPAGE_PMD_SIZE), + ALIGN(address, HPAGE_PMD_SIZE))) + split_huge_pmd_address(vma, address, false, NULL); +} + void vma_adjust_trans_huge(struct vm_area_struct *vma, unsigned long start, unsigned long end, long adjust_next) { - /* - * If the new start address isn't hpage aligned and it could - * previously contain an hugepage: check if we need to split - * an huge pmd. - */ - if (start & ~HPAGE_PMD_MASK && - (start & HPAGE_PMD_MASK) >= vma->vm_start && - (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end) - split_huge_pmd_address(vma, start, false, NULL); + /* Check if we need to split start first. */ + split_huge_pmd_if_needed(vma, start); - /* - * If the new end address isn't hpage aligned and it could - * previously contain an hugepage: check if we need to split - * an huge pmd. - */ - if (end & ~HPAGE_PMD_MASK && - (end & HPAGE_PMD_MASK) >= vma->vm_start && - (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end) - split_huge_pmd_address(vma, end, false, NULL); + /* Check if we need to split end next. */ + split_huge_pmd_if_needed(vma, end); /* - * If we're also updating the vma->vm_next->vm_start, if the new - * vm_next->vm_start isn't hpage aligned and it could previously - * contain an hugepage: check if we need to split an huge pmd. + * If we're also updating the vma->vm_next->vm_start, + * check if we need to split it. */ if (adjust_next > 0) { struct vm_area_struct *next = vma->vm_next; unsigned long nstart = next->vm_start; nstart += adjust_next; - if (nstart & ~HPAGE_PMD_MASK && - (nstart & HPAGE_PMD_MASK) >= next->vm_start && - (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end) - split_huge_pmd_address(next, nstart, false, NULL); + split_huge_pmd_if_needed(next, nstart); } } |