/* * turbostat -- show CPU frequency and C-state residency * on modern Intel turbo-capable processors. * * Copyright (c) 2013 Intel Corporation. * Len Brown * * This program is free software; you can redistribute it and/or modify it * under the terms and conditions of the GNU General Public License, * version 2, as published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License along with * this program; if not, write to the Free Software Foundation, Inc., * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. */ #define _GNU_SOURCE #include MSRHEADER #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include char *proc_stat = "/proc/stat"; FILE *outf; int *fd_percpu; struct timespec interval_ts = {5, 0}; unsigned int debug; unsigned int rapl_joules; unsigned int summary_only; unsigned int dump_only; unsigned int do_nhm_cstates; unsigned int do_snb_cstates; unsigned int do_knl_cstates; unsigned int do_pc2; unsigned int do_pc3; unsigned int do_pc6; unsigned int do_pc7; unsigned int do_c8_c9_c10; unsigned int do_skl_residency; unsigned int do_slm_cstates; unsigned int use_c1_residency_msr; unsigned int has_aperf; unsigned int has_epb; unsigned int do_irtl_snb; unsigned int do_irtl_hsw; unsigned int units = 1000000; /* MHz etc */ unsigned int genuine_intel; unsigned int has_invariant_tsc; unsigned int do_nhm_platform_info; unsigned int extra_msr_offset32; unsigned int extra_msr_offset64; unsigned int extra_delta_offset32; unsigned int extra_delta_offset64; unsigned int aperf_mperf_multiplier = 1; int do_irq = 1; int do_smi; double bclk; double base_hz; unsigned int has_base_hz; double tsc_tweak = 1.0; unsigned int show_pkg; unsigned int show_core; unsigned int show_cpu; unsigned int show_pkg_only; unsigned int show_core_only; char *output_buffer, *outp; unsigned int do_rapl; unsigned int do_dts; unsigned int do_ptm; unsigned int do_gfx_rc6_ms; unsigned long long gfx_cur_rc6_ms; unsigned int do_gfx_mhz; unsigned int gfx_cur_mhz; unsigned int tcc_activation_temp; unsigned int tcc_activation_temp_override; double rapl_power_units, rapl_time_units; double rapl_dram_energy_units, rapl_energy_units; double rapl_joule_counter_range; unsigned int do_core_perf_limit_reasons; unsigned int do_gfx_perf_limit_reasons; unsigned int do_ring_perf_limit_reasons; unsigned int crystal_hz; unsigned long long tsc_hz; int base_cpu; double discover_bclk(unsigned int family, unsigned int model); unsigned int has_hwp; /* IA32_PM_ENABLE, IA32_HWP_CAPABILITIES */ /* IA32_HWP_REQUEST, IA32_HWP_STATUS */ unsigned int has_hwp_notify; /* IA32_HWP_INTERRUPT */ unsigned int has_hwp_activity_window; /* IA32_HWP_REQUEST[bits 41:32] */ unsigned int has_hwp_epp; /* IA32_HWP_REQUEST[bits 31:24] */ unsigned int has_hwp_pkg; /* IA32_HWP_REQUEST_PKG */ #define RAPL_PKG (1 << 0) /* 0x610 MSR_PKG_POWER_LIMIT */ /* 0x611 MSR_PKG_ENERGY_STATUS */ #define RAPL_PKG_PERF_STATUS (1 << 1) /* 0x613 MSR_PKG_PERF_STATUS */ #define RAPL_PKG_POWER_INFO (1 << 2) /* 0x614 MSR_PKG_POWER_INFO */ #define RAPL_DRAM (1 << 3) /* 0x618 MSR_DRAM_POWER_LIMIT */ /* 0x619 MSR_DRAM_ENERGY_STATUS */ #define RAPL_DRAM_PERF_STATUS (1 << 4) /* 0x61b MSR_DRAM_PERF_STATUS */ #define RAPL_DRAM_POWER_INFO (1 << 5) /* 0x61c MSR_DRAM_POWER_INFO */ #define RAPL_CORES (1 << 6) /* 0x638 MSR_PP0_POWER_LIMIT */ /* 0x639 MSR_PP0_ENERGY_STATUS */ #define RAPL_CORE_POLICY (1 << 7) /* 0x63a MSR_PP0_POLICY */ #define RAPL_GFX (1 << 8) /* 0x640 MSR_PP1_POWER_LIMIT */ /* 0x641 MSR_PP1_ENERGY_STATUS */ /* 0x642 MSR_PP1_POLICY */ #define TJMAX_DEFAULT 100 #define MAX(a, b) ((a) > (b) ? (a) : (b)) int backwards_count; char *progname; cpu_set_t *cpu_present_set, *cpu_affinity_set; size_t cpu_present_setsize, cpu_affinity_setsize; struct thread_data { unsigned long long tsc; unsigned long long aperf; unsigned long long mperf; unsigned long long c1; unsigned long long extra_msr64; unsigned long long extra_delta64; unsigned long long extra_msr32; unsigned long long extra_delta32; unsigned int irq_count; unsigned int smi_count; unsigned int cpu_id; unsigned int flags; #define CPU_IS_FIRST_THREAD_IN_CORE 0x2 #define CPU_IS_FIRST_CORE_IN_PACKAGE 0x4 } *thread_even, *thread_odd; struct core_data { unsigned long long c3; unsigned long long c6; unsigned long long c7; unsigned int core_temp_c; unsigned int core_id; } *core_even, *core_odd; struct pkg_data { unsigned long long pc2; unsigned long long pc3; unsigned long long pc6; unsigned long long pc7; unsigned long long pc8; unsigned long long pc9; unsigned long long pc10; unsigned long long pkg_wtd_core_c0; unsigned long long pkg_any_core_c0; unsigned long long pkg_any_gfxe_c0; unsigned long long pkg_both_core_gfxe_c0; long long gfx_rc6_ms; unsigned int gfx_mhz; unsigned int package_id; unsigned int energy_pkg; /* MSR_PKG_ENERGY_STATUS */ unsigned int energy_dram; /* MSR_DRAM_ENERGY_STATUS */ unsigned int energy_cores; /* MSR_PP0_ENERGY_STATUS */ unsigned int energy_gfx; /* MSR_PP1_ENERGY_STATUS */ unsigned int rapl_pkg_perf_status; /* MSR_PKG_PERF_STATUS */ unsigned int rapl_dram_perf_status; /* MSR_DRAM_PERF_STATUS */ unsigned int pkg_temp_c; } *package_even, *package_odd; #define ODD_COUNTERS thread_odd, core_odd, package_odd #define EVEN_COUNTERS thread_even, core_even, package_even #define GET_THREAD(thread_base, thread_no, core_no, pkg_no) \ (thread_base + (pkg_no) * topo.num_cores_per_pkg * \ topo.num_threads_per_core + \ (core_no) * topo.num_threads_per_core + (thread_no)) #define GET_CORE(core_base, core_no, pkg_no) \ (core_base + (pkg_no) * topo.num_cores_per_pkg + (core_no)) #define GET_PKG(pkg_base, pkg_no) (pkg_base + pkg_no) struct system_summary { struct thread_data threads; struct core_data cores; struct pkg_data packages; } sum, average; struct topo_params { int num_packages; int num_cpus; int num_cores; int max_cpu_num; int num_cores_per_pkg; int num_threads_per_core; } topo; struct timeval tv_even, tv_odd, tv_delta; int *irq_column_2_cpu; /* /proc/interrupts column numbers */ int *irqs_per_cpu; /* indexed by cpu_num */ void setup_all_buffers(void); int cpu_is_not_present(int cpu) { return !CPU_ISSET_S(cpu, cpu_present_setsize, cpu_present_set); } /* * run func(thread, core, package) in topology order * skip non-present cpus */ int for_all_cpus(int (func)(struct thread_data *, struct core_data *, struct pkg_data *), struct thread_data *thread_base, struct core_data *core_base, struct pkg_data *pkg_base) { int retval, pkg_no, core_no, thread_no; for (pkg_no = 0; pkg_no < topo.num_packages; ++pkg_no) { for (core_no = 0; core_no < topo.num_cores_per_pkg; ++core_no) { for (thread_no = 0; thread_no < topo.num_threads_per_core; ++thread_no) { struct thread_data *t; struct core_data *c; struct pkg_data *p; t = GET_THREAD(thread_base, thread_no, core_no, pkg_no); if (cpu_is_not_present(t->cpu_id)) continue; c = GET_CORE(core_base, core_no, pkg_no); p = GET_PKG(pkg_base, pkg_no); retval = func(t, c, p); if (retval) return retval; } } } return 0; } int cpu_migrate(int cpu) { CPU_ZERO_S(cpu_affinity_setsize, cpu_affinity_set); CPU_SET_S(cpu, cpu_affinity_setsize, cpu_affinity_set); if (sched_setaffinity(0, cpu_affinity_setsize, cpu_affinity_set) == -1) return -1; else return 0; } int get_msr_fd(int cpu) { char pathname[32]; int fd; fd = fd_percpu[cpu]; if (fd) return fd; sprintf(pathname, "/dev/cpu/%d/msr", cpu); fd = open(pathname, O_RDONLY); if (fd < 0) err(-1, "%s open failed, try chown or chmod +r /dev/cpu/*/msr, or run as root", pathname); fd_percpu[cpu] = fd; return fd; } int get_msr(int cpu, off_t offset, unsigned long long *msr) { ssize_t retval; retval = pread(get_msr_fd(cpu), msr, sizeof(*msr), offset); if (retval != sizeof *msr) err(-1, "msr %d offset 0x%llx read failed", cpu, (unsigned long long)offset); return 0; } /* * Example Format w/ field column widths: * * Package Core CPU Avg_MHz Bzy_MHz TSC_MHz IRQ SMI Busy% CPU_%c1 CPU_%c3 CPU_%c6 CPU_%c7 CoreTmp PkgTmp GFXMHz Pkg%pc2 Pkg%pc3 Pkg%pc6 Pkg%pc7 PkgWatt CorWatt GFXWatt * 12345678123456781234567812345678123456781234567812345678123456781234567812345678123456781234567812345678123456781234567812345678123456781234567812345678123456781234567812345678 */ void print_header(void) { if (show_pkg) outp += sprintf(outp, "\tPackage"); if (show_core) outp += sprintf(outp, "\tCore"); if (show_cpu) outp += sprintf(outp, "\tCPU"); if (has_aperf) outp += sprintf(outp, "\tAvg_MHz"); if (has_aperf) outp += sprintf(outp, "\tBusy%%"); if (has_aperf) outp += sprintf(outp, "\tBzy_MHz"); outp += sprintf(outp, "\tTSC_MHz"); if (extra_delta_offset32) outp += sprintf(outp, "\tcount 0x%03X", extra_delta_offset32); if (extra_delta_offset64) outp += sprintf(outp, "\tCOUNT 0x%03X", extra_delta_offset64); if (extra_msr_offset32) outp += sprintf(outp, "\tMSR 0x%03X", extra_msr_offset32); if (extra_msr_offset64) outp += sprintf(outp, "\tMSR 0x%03X", extra_msr_offset64); if (!debug) goto done; if (do_irq) outp += sprintf(outp, "\tIRQ"); if (do_smi) outp += sprintf(outp, "\tSMI"); if (do_nhm_cstates) outp += sprintf(outp, "\tCPU%%c1"); if (do_nhm_cstates && !do_slm_cstates && !do_knl_cstates) outp += sprintf(outp, "\tCPU%%c3"); if (do_nhm_cstates) outp += sprintf(outp, "\tCPU%%c6"); if (do_snb_cstates) outp += sprintf(outp, "\tCPU%%c7"); if (do_dts) outp += sprintf(outp, "\tCoreTmp"); if (do_ptm) outp += sprintf(outp, "\tPkgTmp"); if (do_gfx_rc6_ms) outp += sprintf(outp, "\tGFX%%rc6"); if (do_gfx_mhz) outp += sprintf(outp, "\tGFXMHz"); if (do_skl_residency) { outp += sprintf(outp, "\tTotl%%C0"); outp += sprintf(outp, "\tAny%%C0"); outp += sprintf(outp, "\tGFX%%C0"); outp += sprintf(outp, "\tCPUGFX%%"); } if (do_pc2) outp += sprintf(outp, "\tPkg%%pc2"); if (do_pc3) outp += sprintf(outp, "\tPkg%%pc3"); if (do_pc6) outp += sprintf(outp, "\tPkg%%pc6"); if (do_pc7) outp += sprintf(outp, "\tPkg%%pc7"); if (do_c8_c9_c10) { outp += sprintf(outp, "\tPkg%%pc8"); outp += sprintf(outp, "\tPkg%%pc9"); outp += sprintf(outp, "\tPk%%pc10"); } if (do_rapl && !rapl_joules) { if (do_rapl & RAPL_PKG) outp += sprintf(outp, "\tPkgWatt"); if (do_rapl & RAPL_CORES) outp += sprintf(outp, "\tCorWatt"); if (do_rapl & RAPL_GFX) outp += sprintf(outp, "\tGFXWatt"); if (do_rapl & RAPL_DRAM) outp += sprintf(outp, "\tRAMWatt"); if (do_rapl & RAPL_PKG_PERF_STATUS) outp += sprintf(outp, "\tPKG_%%"); if (do_rapl & RAPL_DRAM_PERF_STATUS) outp += sprintf(outp, "\tRAM_%%"); } else if (do_rapl && rapl_joules) { if (do_rapl & RAPL_PKG) outp += sprintf(outp, "\tPkg_J"); if (do_rapl & RAPL_CORES) outp += sprintf(outp, "\tCor_J"); if (do_rapl & RAPL_GFX) outp += sprintf(outp, "\tGFX_J"); if (do_rapl & RAPL_DRAM) outp += sprintf(outp, "\tRAM_J"); if (do_rapl & RAPL_PKG_PERF_STATUS) outp += sprintf(outp, "\tPKG_%%"); if (do_rapl & RAPL_DRAM_PERF_STATUS) outp += sprintf(outp, "\tRAM_%%"); } done: outp += sprintf(outp, "\n"); } int dump_counters(struct thread_data *t, struct core_data *c, struct pkg_data *p) { outp += sprintf(outp, "t %p, c %p, p %p\n", t, c, p); if (t) { outp += sprintf(outp, "CPU: %d flags 0x%x\n", t->cpu_id, t->flags); outp += sprintf(outp, "TSC: %016llX\n", t->tsc); outp += sprintf(outp, "aperf: %016llX\n", t->aperf); outp += sprintf(outp, "mperf: %016llX\n", t->mperf); outp += sprintf(outp, "c1: %016llX\n", t->c1); outp += sprintf(outp, "msr0x%x: %08llX\n", extra_delta_offset32, t->extra_delta32); outp += sprintf(outp, "msr0x%x: %016llX\n", extra_delta_offset64, t->extra_delta64); outp += sprintf(outp, "msr0x%x: %08llX\n", extra_msr_offset32, t->extra_msr32); outp += sprintf(outp, "msr0x%x: %016llX\n", extra_msr_offset64, t->extra_msr64); if (do_irq) outp += sprintf(outp, "IRQ: %08X\n", t->irq_count); if (do_smi) outp += sprintf(outp, "SMI: %08X\n", t->smi_count); } if (c) { outp += sprintf(outp, "core: %d\n", c->core_id); outp += sprintf(outp, "c3: %016llX\n", c->c3); outp += sprintf(outp, "c6: %016llX\n", c->c6); outp += sprintf(outp, "c7: %016llX\n", c->c7); outp += sprintf(outp, "DTS: %dC\n", c->core_temp_c); } if (p) { outp += sprintf(outp, "package: %d\n", p->package_id); outp += sprintf(outp, "Weighted cores: %016llX\n", p->pkg_wtd_core_c0); outp += sprintf(outp, "Any cores: %016llX\n", p->pkg_any_core_c0); outp += sprintf(outp, "Any GFX: %016llX\n", p->pkg_any_gfxe_c0); outp += sprintf(outp, "CPU + GFX: %016llX\n", p->pkg_both_core_gfxe_c0); outp += sprintf(outp, "pc2: %016llX\n", p->pc2); if (do_pc3) outp += sprintf(outp, "pc3: %016llX\n", p->pc3); if (do_pc6) outp += sprintf(outp, "pc6: %016llX\n", p->pc6); if (do_pc7) outp += sprintf(outp, "pc7: %016llX\n", p->pc7); outp += sprintf(outp, "pc8: %016llX\n", p->pc8); outp += sprintf(outp, "pc9: %016llX\n", p->pc9); outp += sprintf(outp, "pc10: %016llX\n", p->pc10); outp += sprintf(outp, "Joules PKG: %0X\n", p->energy_pkg); outp += sprintf(outp, "Joules COR: %0X\n", p->energy_cores); outp += sprintf(outp, "Joules GFX: %0X\n", p->energy_gfx); outp += sprintf(outp, "Joules RAM: %0X\n", p->energy_dram); outp += sprintf(outp, "Throttle PKG: %0X\n", p->rapl_pkg_perf_status); outp += sprintf(outp, "Throttle RAM: %0X\n", p->rapl_dram_perf_status); outp += sprintf(outp, "PTM: %dC\n", p->pkg_temp_c); } outp += sprintf(outp, "\n"); return 0; } /* * column formatting convention & formats */ int format_counters(struct thread_data *t, struct core_data *c, struct pkg_data *p) { double interval_float; char *fmt8; /* if showing only 1st thread in core and this isn't one, bail out */ if (show_core_only && !(t->flags & CPU_IS_FIRST_THREAD_IN_CORE)) return 0; /* if showing only 1st thread in pkg and this isn't one, bail out */ if (show_pkg_only && !(t->flags & CPU_IS_FIRST_CORE_IN_PACKAGE)) return 0; interval_float = tv_delta.tv_sec + tv_delta.tv_usec/1000000.0; /* topo columns, print blanks on 1st (average) line */ if (t == &average.threads) { if (show_pkg) outp += sprintf(outp, "\t-"); if (show_core) outp += sprintf(outp, "\t-"); if (show_cpu) outp += sprintf(outp, "\t-"); } else { if (show_pkg) { if (p) outp += sprintf(outp, "\t%d", p->package_id); else outp += sprintf(outp, "\t-"); } if (show_core) { if (c) outp += sprintf(outp, "\t%d", c->core_id); else outp += sprintf(outp, "\t-"); } if (show_cpu) outp += sprintf(outp, "\t%d", t->cpu_id); } /* Avg_MHz */ if (has_aperf) outp += sprintf(outp, "\t%.0f", 1.0 / units * t->aperf / interval_float); /* Busy% */ if (has_aperf) outp += sprintf(outp, "\t%.2f", 100.0 * t->mperf/t->tsc/tsc_tweak); /* Bzy_MHz */ if (has_aperf) { if (has_base_hz) outp += sprintf(outp, "\t%.0f", base_hz / units * t->aperf / t->mperf); else outp += sprintf(outp, "\t%.0f", 1.0 * t->tsc / units * t->aperf / t->mperf / interval_float); } /* TSC_MHz */ outp += sprintf(outp, "\t%.0f", 1.0 * t->tsc/units/interval_float); /* delta */ if (extra_delta_offset32) outp += sprintf(outp, "\t%11llu", t->extra_delta32); /* DELTA */ if (extra_delta_offset64) outp += sprintf(outp, "\t%11llu", t->extra_delta64); /* msr */ if (extra_msr_offset32) outp += sprintf(outp, "\t0x%08llx", t->extra_msr32); /* MSR */ if (extra_msr_offset64) outp += sprintf(outp, "\t0x%016llx", t->extra_msr64); if (!debug) goto done; /* IRQ */ if (do_irq) outp += sprintf(outp, "\t%d", t->irq_count); /* SMI */ if (do_smi) outp += sprintf(outp, "\t%d", t->smi_count); if (do_nhm_cstates) outp += sprintf(outp, "\t%.2f", 100.0 * t->c1/t->tsc); /* print per-core data only for 1st thread in core */ if (!(t->flags & CPU_IS_FIRST_THREAD_IN_CORE)) goto done; if (do_nhm_cstates && !do_slm_cstates && !do_knl_cstates) outp += sprintf(outp, "\t%.2f", 100.0 * c->c3/t->tsc); if (do_nhm_cstates) outp += sprintf(outp, "\t%.2f", 100.0 * c->c6/t->tsc); if (do_snb_cstates) outp += sprintf(outp, "\t%.2f", 100.0 * c->c7/t->tsc); if (do_dts) outp += sprintf(outp, "\t%d", c->core_temp_c); /* print per-package data only for 1st core in package */ if (!(t->flags & CPU_IS_FIRST_CORE_IN_PACKAGE)) goto done; /* PkgTmp */ if (do_ptm) outp += sprintf(outp, "\t%d", p->pkg_temp_c); /* GFXrc6 */ if (do_gfx_rc6_ms) { if (p->gfx_rc6_ms == -1) { /* detect GFX counter reset */ outp += sprintf(outp, "\t**.**"); } else { outp += sprintf(outp, "\t%.2f", p->gfx_rc6_ms / 10.0 / interval_float); } } /* GFXMHz */ if (do_gfx_mhz) outp += sprintf(outp, "\t%d", p->gfx_mhz); /* Totl%C0, Any%C0 GFX%C0 CPUGFX% */ if (do_skl_residency) { outp += sprintf(outp, "\t%.2f", 100.0 * p->pkg_wtd_core_c0/t->tsc); outp += sprintf(outp, "\t%.2f", 100.0 * p->pkg_any_core_c0/t->tsc); outp += sprintf(outp, "\t%.2f", 100.0 * p->pkg_any_gfxe_c0/t->tsc); outp += sprintf(outp, "\t%.2f", 100.0 * p->pkg_both_core_gfxe_c0/t->tsc); } if (do_pc2) outp += sprintf(outp, "\t%.2f", 100.0 * p->pc2/t->tsc); if (do_pc3) outp += sprintf(outp, "\t%.2f", 100.0 * p->pc3/t->tsc); if (do_pc6) outp += sprintf(outp, "\t%.2f", 100.0 * p->pc6/t->tsc); if (do_pc7) outp += sprintf(outp, "\t%.2f", 100.0 * p->pc7/t->tsc); if (do_c8_c9_c10) { outp += sprintf(outp, "\t%.2f", 100.0 * p->pc8/t->tsc); outp += sprintf(outp, "\t%.2f", 100.0 * p->pc9/t->tsc); outp += sprintf(outp, "\t%.2f", 100.0 * p->pc10/t->tsc); } /* * If measurement interval exceeds minimum RAPL Joule Counter range, * indicate that results are suspect by printing "**" in fraction place. */ if (interval_float < rapl_joule_counter_range) fmt8 = "\t%.2f"; else fmt8 = "%6.0f**"; if (do_rapl && !rapl_joules) { if (do_rapl & RAPL_PKG) outp += sprintf(outp, fmt8, p->energy_pkg * rapl_energy_units / interval_float); if (do_rapl & RAPL_CORES) outp += sprintf(outp, fmt8, p->energy_cores * rapl_energy_units / interval_float); if (do_rapl & RAPL_GFX) outp += sprintf(outp, fmt8, p->energy_gfx * rapl_energy_units / interval_float); if (do_rapl & RAPL_DRAM) outp += sprintf(outp, fmt8, p->energy_dram * rapl_dram_energy_units / interval_float); if (do_rapl & RAPL_PKG_PERF_STATUS) outp += sprintf(outp, fmt8, 100.0 * p->rapl_pkg_perf_status * rapl_time_units / interval_float); if (do_rapl & RAPL_DRAM_PERF_STATUS) outp += sprintf(outp, fmt8, 100.0 * p->rapl_dram_perf_status * rapl_time_units / interval_float); } else if (do_rapl && rapl_joules) { if (do_rapl & RAPL_PKG) outp += sprintf(outp, fmt8, p->energy_pkg * rapl_energy_units); if (do_rapl & RAPL_CORES) outp += sprintf(outp, fmt8, p->energy_cores * rapl_energy_units); if (do_rapl & RAPL_GFX) outp += sprintf(outp, fmt8, p->energy_gfx * rapl_energy_units); if (do_rapl & RAPL_DRAM) outp += sprintf(outp, fmt8, p->energy_dram * rapl_dram_energy_units); if (do_rapl & RAPL_PKG_PERF_STATUS) outp += sprintf(outp, fmt8, 100.0 * p->rapl_pkg_perf_status * rapl_time_units / interval_float); if (do_rapl & RAPL_DRAM_PERF_STATUS) outp += sprintf(outp, fmt8, 100.0 * p->rapl_dram_perf_status * rapl_time_units / interval_float); } done: outp += sprintf(outp, "\n"); return 0; } void flush_output_stdout(void) { FILE *filep; if (outf == stderr) filep = stdout; else filep = outf; fputs(output_buffer, filep); fflush(filep); outp = output_buffer; } void flush_output_stderr(void) { fputs(output_buffer, outf); fflush(outf); outp = output_buffer; } void format_all_counters(struct thread_data *t, struct core_data *c, struct pkg_data *p) { static int printed; if (!printed || !summary_only) print_header(); if (topo.num_cpus > 1) format_counters(&average.threads, &average.cores, &average.packages); printed = 1; if (summary_only) return; for_all_cpus(format_counters, t, c, p); } #define DELTA_WRAP32(new, old) \ if (new > old) { \ old = new - old; \ } else { \ old = 0x100000000 + new - old; \ } int delta_package(struct pkg_data *new, struct pkg_data *old) { if (do_skl_residency) { old->pkg_wtd_core_c0 = new->pkg_wtd_core_c0 - old->pkg_wtd_core_c0; old->pkg_any_core_c0 = new->pkg_any_core_c0 - old->pkg_any_core_c0; old->pkg_any_gfxe_c0 = new->pkg_any_gfxe_c0 - old->pkg_any_gfxe_c0; old->pkg_both_core_gfxe_c0 = new->pkg_both_core_gfxe_c0 - old->pkg_both_core_gfxe_c0; } old->pc2 = new->pc2 - old->pc2; if (do_pc3) old->pc3 = new->pc3 - old->pc3; if (do_pc6) old->pc6 = new->pc6 - old->pc6; if (do_pc7) old->pc7 = new->pc7 - old->pc7; old->pc8 = new->pc8 - old->pc8; old->pc9 = new->pc9 - old->pc9; old->pc10 = new->pc10 - old->pc10; old->pkg_temp_c = new->pkg_temp_c; /* flag an error when rc6 counter resets/wraps */ if (old->gfx_rc6_ms > new->gfx_rc6_ms) old->gfx_rc6_ms = -1; else old->gfx_rc6_ms = new->gfx_rc6_ms - old->gfx_rc6_ms; old->gfx_mhz = new->gfx_mhz; DELTA_WRAP32(new->energy_pkg, old->energy_pkg); DELTA_WRAP32(new->energy_cores, old->energy_cores); DELTA_WRAP32(new->energy_gfx, old->energy_gfx); DELTA_WRAP32(new->energy_dram, old->energy_dram); DELTA_WRAP32(new->rapl_pkg_perf_status, old->rapl_pkg_perf_status); DELTA_WRAP32(new->rapl_dram_perf_status, old->rapl_dram_perf_status); return 0; } void delta_core(struct core_data *new, struct core_data *old) { old->c3 = new->c3 - old->c3; old->c6 = new->c6 - old->c6; old->c7 = new->c7 - old->c7; old->core_temp_c = new->core_temp_c; } /* * old = new - old */ int delta_thread(struct thread_data *new, struct thread_data *old, struct core_data *core_delta) { old->tsc = new->tsc - old->tsc; /* check for TSC < 1 Mcycles over interval */ if (old->tsc < (1000 * 1000)) errx(-3, "Insanely slow TSC rate, TSC stops in idle?\n" "You can disable all c-states by booting with \"idle=poll\"\n" "or just the deep ones with \"processor.max_cstate=1\""); old->c1 = new->c1 - old->c1; if (has_aperf) { if ((new->aperf > old->aperf) && (new->mperf > old->mperf)) { old->aperf = new->aperf - old->aperf; old->mperf = new->mperf - old->mperf; } else { return -1; } } if (use_c1_residency_msr) { /* * Some models have a dedicated C1 residency MSR, * which should be more accurate than the derivation below. */ } else { /* * As counter collection is not atomic, * it is possible for mperf's non-halted cycles + idle states * to exceed TSC's all cycles: show c1 = 0% in that case. */ if ((old->mperf + core_delta->c3 + core_delta->c6 + core_delta->c7) > old->tsc) old->c1 = 0; else { /* normal case, derive c1 */ old->c1 = old->tsc - old->mperf - core_delta->c3 - core_delta->c6 - core_delta->c7; } } if (old->mperf == 0) { if (debug > 1) fprintf(outf, "cpu%d MPERF 0!\n", old->cpu_id); old->mperf = 1; /* divide by 0 protection */ } old->extra_delta32 = new->extra_delta32 - old->extra_delta32; old->extra_delta32 &= 0xFFFFFFFF; old->extra_delta64 = new->extra_delta64 - old->extra_delta64; /* * Extra MSR is just a snapshot, simply copy latest w/o subtracting */ old->extra_msr32 = new->extra_msr32; old->extra_msr64 = new->extra_msr64; if (do_irq) old->irq_count = new->irq_count - old->irq_count; if (do_smi) old->smi_count = new->smi_count - old->smi_count; return 0; } int delta_cpu(struct thread_data *t, struct core_data *c, struct pkg_data *p, struct thread_data *t2, struct core_data *c2, struct pkg_data *p2) { int retval = 0; /* calculate core delta only for 1st thread in core */ if (t->flags & CPU_IS_FIRST_THREAD_IN_CORE) delta_core(c, c2); /* always calculate thread delta */ retval = delta_thread(t, t2, c2); /* c2 is core delta */ if (retval) return retval; /* calculate package delta only for 1st core in package */ if (t->flags & CPU_IS_FIRST_CORE_IN_PACKAGE) retval = delta_package(p, p2); return retval; } void clear_counters(struct thread_data *t, struct core_data *c, struct pkg_data *p) { t->tsc = 0; t->aperf = 0; t->mperf = 0; t->c1 = 0; t->extra_delta32 = 0; t->extra_delta64 = 0; t->irq_count = 0; t->smi_count = 0; /* tells format_counters to dump all fields from this set */ t->flags = CPU_IS_FIRST_THREAD_IN_CORE | CPU_IS_FIRST_CORE_IN_PACKAGE; c->c3 = 0; c->c6 = 0; c->c7 = 0; c->core_temp_c = 0; p->pkg_wtd_core_c0 = 0; p->pkg_any_core_c0 = 0; p->pkg_any_gfxe_c0 = 0; p->pkg_both_core_gfxe_c0 = 0; p->pc2 = 0; if (do_pc3) p->pc3 = 0; if (do_pc6) p->pc6 = 0; if (do_pc7) p->pc7 = 0; p->pc8 = 0; p->pc9 = 0; p->pc10 = 0; p->energy_pkg = 0; p->energy_dram = 0; p->energy_cores = 0; p->energy_gfx = 0; p->rapl_pkg_perf_status = 0; p->rapl_dram_perf_status = 0; p->pkg_temp_c = 0; p->gfx_rc6_ms = 0; p->gfx_mhz = 0; } int sum_counters(struct thread_data *t, struct core_data *c, struct pkg_data *p) { average.threads.tsc += t->tsc; average.threads.aperf += t->aperf; average.threads.mperf += t->mperf; average.threads.c1 += t->c1; average.threads.extra_delta32 += t->extra_delta32; average.threads.extra_delta64 += t->extra_delta64; average.threads.irq_count += t->irq_count; average.threads.smi_count += t->smi_count; /* sum per-core values only for 1st thread in core */ if (!(t->flags & CPU_IS_FIRST_THREAD_IN_CORE)) return 0; average.cores.c3 += c->c3; average.cores.c6 += c->c6; average.cores.c7 += c->c7; average.cores.core_temp_c = MAX(average.cores.core_temp_c, c->core_temp_c); /* sum per-pkg values only for 1st core in pkg */ if (!(t->flags & CPU_IS_FIRST_CORE_IN_PACKAGE)) return 0; if (do_skl_residency) { average.packages.pkg_wtd_core_c0 += p->pkg_wtd_core_c0; average.packages.pkg_any_core_c0 += p->pkg_any_core_c0; average.packages.pkg_any_gfxe_c0 += p->pkg_any_gfxe_c0; average.packages.pkg_both_core_gfxe_c0 += p->pkg_both_core_gfxe_c0; } average.packages.pc2 += p->pc2; if (do_pc3) average.packages.pc3 += p->pc3; if (do_pc6) average.packages.pc6 += p->pc6; if (do_pc7) average.packages.pc7 += p->pc7; average.packages.pc8 += p->pc8; average.packages.pc9 += p->pc9; average.packages.pc10 += p->pc10; average.packages.energy_pkg += p->energy_pkg; average.packages.energy_dram += p->energy_dram; average.packages.energy_cores += p->energy_cores; average.packages.energy_gfx += p->energy_gfx; average.packages.gfx_rc6_ms = p->gfx_rc6_ms; average.packages.gfx_mhz = p->gfx_mhz; average.packages.pkg_temp_c = MAX(average.packages.pkg_temp_c, p->pkg_temp_c); average.packages.rapl_pkg_perf_status += p->rapl_pkg_perf_status; average.packages.rapl_dram_perf_status += p->rapl_dram_perf_status; return 0; } /* * sum the counters for all cpus in the system * compute the weighted average */ void compute_average(struct thread_data *t, struct core_data *c, struct pkg_data *p) { clear_counters(&average.threads, &average.cores, &average.packages); for_all_cpus(sum_counters, t, c, p); average.threads.tsc /= topo.num_cpus; average.threads.aperf /= topo.num_cpus; average.threads.mperf /= topo.num_cpus; average.threads.c1 /= topo.num_cpus; average.threads.extra_delta32 /= topo.num_cpus; average.threads.extra_delta32 &= 0xFFFFFFFF; average.threads.extra_delta64 /= topo.num_cpus; average.cores.c3 /= topo.num_cores; average.cores.c6 /= topo.num_cores; average.cores.c7 /= topo.num_cores; if (do_skl_residency) { average.packages.pkg_wtd_core_c0 /= topo.num_packages; average.packages.pkg_any_core_c0 /= topo.num_packages; average.packages.pkg_any_gfxe_c0 /= topo.num_packages; average.packages.pkg_both_core_gfxe_c0 /= topo.num_packages; } average.packages.pc2 /= topo.num_packages; if (do_pc3) average.packages.pc3 /= topo.num_packages; if (do_pc6) average.packages.pc6 /= topo.num_packages; if (do_pc7) average.packages.pc7 /= topo.num_packages; average.packages.pc8 /= topo.num_packages; average.packages.pc9 /= topo.num_packages; average.packages.pc10 /= topo.num_packages; } static unsigned long long rdtsc(void) { unsigned int low, high; asm volatile("rdtsc" : "=a" (low), "=d" (high)); return low | ((unsigned long long)high) << 32; } /* * get_counters(...) * migrate to cpu * acquire and record local counters for that cpu */ int get_counters(struct thread_data *t, struct core_data *c, struct pkg_data *p) { int cpu = t->cpu_id; unsigned long long msr; int aperf_mperf_retry_count = 0; if (cpu_migrate(cpu)) { fprintf(outf, "Could not migrate to CPU %d\n", cpu); return -1; } retry: t->tsc = rdtsc(); /* we are running on local CPU of interest */ if (has_aperf) { unsigned long long tsc_before, tsc_between, tsc_after, aperf_time, mperf_time; /* * The TSC, APERF and MPERF must be read together for * APERF/MPERF and MPERF/TSC to give accurate results. * * Unfortunately, APERF and MPERF are read by * individual system call, so delays may occur * between them. If the time to read them * varies by a large amount, we re-read them. */ /* * This initial dummy APERF read has been seen to * reduce jitter in the subsequent reads. */ if (get_msr(cpu, MSR_IA32_APERF, &t->aperf)) return -3; t->tsc = rdtsc(); /* re-read close to APERF */ tsc_before = t->tsc; if (get_msr(cpu, MSR_IA32_APERF, &t->aperf)) return -3; tsc_between = rdtsc(); if (get_msr(cpu, MSR_IA32_MPERF, &t->mperf)) return -4; tsc_after = rdtsc(); aperf_time = tsc_between - tsc_before; mperf_time = tsc_after - tsc_between; /* * If the system call latency to read APERF and MPERF * differ by more than 2x, then try again. */ if ((aperf_time > (2 * mperf_time)) || (mperf_time > (2 * aperf_time))) { aperf_mperf_retry_count++; if (aperf_mperf_retry_count < 5) goto retry; else warnx("cpu%d jitter %lld %lld", cpu, aperf_time, mperf_time); } aperf_mperf_retry_count = 0; t->aperf = t->aperf * aperf_mperf_multiplier; t->mperf = t->mperf * aperf_mperf_multiplier; } if (do_irq) t->irq_count = irqs_per_cpu[cpu]; if (do_smi) { if (get_msr(cpu, MSR_SMI_COUNT, &msr)) return -5; t->smi_count = msr & 0xFFFFFFFF; } if (extra_delta_offset32) { if (get_msr(cpu, extra_delta_offset32, &msr)) return -5; t->extra_delta32 = msr & 0xFFFFFFFF; } if (extra_delta_offset64) if (get_msr(cpu, extra_delta_offset64, &t->extra_delta64)) return -5; if (extra_msr_offset32) { if (get_msr(cpu, extra_msr_offset32, &msr)) return -5; t->extra_msr32 = msr & 0xFFFFFFFF; } if (extra_msr_offset64) if (get_msr(cpu, extra_msr_offset64, &t->extra_msr64)) return -5; if (use_c1_residency_msr) { if (get_msr(cpu, MSR_CORE_C1_RES, &t->c1)) return -6; } /* collect core counters only for 1st thread in core */ if (!(t->flags & CPU_IS_FIRST_THREAD_IN_CORE)) return 0; if (do_nhm_cstates && !do_slm_cstates && !do_knl_cstates) { if (get_msr(cpu, MSR_CORE_C3_RESIDENCY, &c->c3)) return -6; } if (do_nhm_cstates && !do_knl_cstates) { if (get_msr(cpu, MSR_CORE_C6_RESIDENCY, &c->c6)) return -7; } else if (do_knl_cstates) { if (get_msr(cpu, MSR_KNL_CORE_C6_RESIDENCY, &c->c6)) return -7; } if (do_snb_cstates) if (get_msr(cpu, MSR_CORE_C7_RESIDENCY, &c->c7)) return -8; if (do_dts) { if (get_msr(cpu, MSR_IA32_THERM_STATUS, &msr)) return -9; c->core_temp_c = tcc_activation_temp - ((msr >> 16) & 0x7F); } /* collect package counters only for 1st core in package */ if (!(t->flags & CPU_IS_FIRST_CORE_IN_PACKAGE)) return 0; if (do_skl_residency) { if (get_msr(cpu, MSR_PKG_WEIGHTED_CORE_C0_RES, &p->pkg_wtd_core_c0)) return -10; if (get_msr(cpu, MSR_PKG_ANY_CORE_C0_RES, &p->pkg_any_core_c0)) return -11; if (get_msr(cpu, MSR_PKG_ANY_GFXE_C0_RES, &p->pkg_any_gfxe_c0)) return -12; if (get_msr(cpu, MSR_PKG_BOTH_CORE_GFXE_C0_RES, &p->pkg_both_core_gfxe_c0)) return -13; } if (do_pc3) if (get_msr(cpu, MSR_PKG_C3_RESIDENCY, &p->pc3)) return -9; if (do_pc6) if (get_msr(cpu, MSR_PKG_C6_RESIDENCY, &p->pc6)) return -10; if (do_pc2) if (get_msr(cpu, MSR_PKG_C2_RESIDENCY, &p->pc2)) return -11; if (do_pc7) if (get_msr(cpu, MSR_PKG_C7_RESIDENCY, &p->pc7)) return -12; if (do_c8_c9_c10) { if (get_msr(cpu, MSR_PKG_C8_RESIDENCY, &p->pc8)) return -13; if (get_msr(cpu, MSR_PKG_C9_RESIDENCY, &p->pc9)) return -13; if (get_msr(cpu, MSR_PKG_C10_RESIDENCY, &p->pc10)) return -13; } if (do_rapl & RAPL_PKG) { if (get_msr(cpu, MSR_PKG_ENERGY_STATUS, &msr)) return -13; p->energy_pkg = msr & 0xFFFFFFFF; } if (do_rapl & RAPL_CORES) { if (get_msr(cpu, MSR_PP0_ENERGY_STATUS, &msr)) return -14; p->energy_cores = msr & 0xFFFFFFFF; } if (do_rapl & RAPL_DRAM) { if (get_msr(cpu, MSR_DRAM_ENERGY_STATUS, &msr)) return -15; p->energy_dram = msr & 0xFFFFFFFF; } if (do_rapl & RAPL_GFX) { if (get_msr(cpu, MSR_PP1_ENERGY_STATUS, &msr)) return -16; p->energy_gfx = msr & 0xFFFFFFFF; } if (do_rapl & RAPL_PKG_PERF_STATUS) { if (get_msr(cpu, MSR_PKG_PERF_STATUS, &msr)) return -16; p->rapl_pkg_perf_status = msr & 0xFFFFFFFF; } if (do_rapl & RAPL_DRAM_PERF_STATUS) { if (get_msr(cpu, MSR_DRAM_PERF_STATUS, &msr)) return -16; p->rapl_dram_perf_status = msr & 0xFFFFFFFF; } if (do_ptm) { if (get_msr(cpu, MSR_IA32_PACKAGE_THERM_STATUS, &msr)) return -17; p->pkg_temp_c = tcc_activation_temp - ((msr >> 16) & 0x7F); } if (do_gfx_rc6_ms) p->gfx_rc6_ms = gfx_cur_rc6_ms; if (do_gfx_mhz) p->gfx_mhz = gfx_cur_mhz; return 0; } /* * MSR_PKG_CST_CONFIG_CONTROL decoding for pkg_cstate_limit: * If you change the values, note they are used both in comparisons * (>= PCL__7) and to index pkg_cstate_limit_strings[]. */ #define PCLUKN 0 /* Unknown */ #define PCLRSV 1 /* Reserved */ #define PCL__0 2 /* PC0 */ #define PCL__1 3 /* PC1 */ #define PCL__2 4 /* PC2 */ #define PCL__3 5 /* PC3 */ #define PCL__4 6 /* PC4 */ #define PCL__6 7 /* PC6 */ #define PCL_6N 8 /* PC6 No Retention */ #define PCL_6R 9 /* PC6 Retention */ #define PCL__7 10 /* PC7 */ #define PCL_7S 11 /* PC7 Shrink */ #define PCL__8 12 /* PC8 */ #define PCL__9 13 /* PC9 */ #define PCLUNL 14 /* Unlimited */ int pkg_cstate_limit = PCLUKN; char *pkg_cstate_limit_strings[] = { "reserved", "unknown", "pc0", "pc1", "pc2", "pc3", "pc4", "pc6", "pc6n", "pc6r", "pc7", "pc7s", "pc8", "pc9", "unlimited"}; int nhm_pkg_cstate_limits[16] = {PCL__0, PCL__1, PCL__3, PCL__6, PCL__7, PCLRSV, PCLRSV, PCLUNL, PCLRSV, PCLRSV, PCLRSV, PCLRSV, PCLRSV, PCLRSV, PCLRSV, PCLRSV}; int snb_pkg_cstate_limits[16] = {PCL__0, PCL__2, PCL_6N, PCL_6R, PCL__7, PCL_7S, PCLRSV, PCLUNL, PCLRSV, PCLRSV, PCLRSV, PCLRSV, PCLRSV, PCLRSV, PCLRSV, PCLRSV}; int hsw_pkg_cstate_limits[16] = {PCL__0, PCL__2, PCL__3, PCL__6, PCL__7, PCL_7S, PCL__8, PCL__9, PCLUNL, PCLRSV, PCLRSV, PCLRSV, PCLRSV, PCLRSV, PCLRSV, PCLRSV}; int slv_pkg_cstate_limits[16] = {PCL__0, PCL__1, PCLRSV, PCLRSV, PCL__4, PCLRSV, PCL__6, PCL__7, PCLRSV, PCLRSV, PCLRSV, PCLRSV, PCLRSV, PCLRSV, PCLRSV, PCLRSV}; int amt_pkg_cstate_limits[16] = {PCL__0, PCL__1, PCL__2, PCLRSV, PCLRSV, PCLRSV, PCL__6, PCL__7, PCLRSV, PCLRSV, PCLRSV, PCLRSV, PCLRSV, PCLRSV, PCLRSV, PCLRSV}; int phi_pkg_cstate_limits[16] = {PCL__0, PCL__2, PCL_6N, PCL_6R, PCLRSV, PCLRSV, PCLRSV, PCLUNL, PCLRSV, PCLRSV, PCLRSV, PCLRSV, PCLRSV, PCLRSV, PCLRSV, PCLRSV}; int bxt_pkg_cstate_limits[16] = {PCL__0, PCL__2, PCLUNL, PCLRSV, PCLRSV, PCLRSV, PCLRSV, PCLRSV, PCLRSV, PCLRSV, PCLRSV, PCLRSV, PCLRSV, PCLRSV, PCLRSV, PCLRSV}; static void calculate_tsc_tweak() { tsc_tweak = base_hz / tsc_hz; } static void dump_nhm_platform_info(void) { unsigned long long msr; unsigned int ratio; get_msr(base_cpu, MSR_PLATFORM_INFO, &msr); fprintf(outf, "cpu%d: MSR_PLATFORM_INFO: 0x%08llx\n", base_cpu, msr); ratio = (msr >> 40) & 0xFF; fprintf(outf, "%d * %.0f = %.0f MHz max efficiency frequency\n", ratio, bclk, ratio * bclk); ratio = (msr >> 8) & 0xFF; fprintf(outf, "%d * %.0f = %.0f MHz base frequency\n", ratio, bclk, ratio * bclk); get_msr(base_cpu, MSR_IA32_POWER_CTL, &msr); fprintf(outf, "cpu%d: MSR_IA32_POWER_CTL: 0x%08llx (C1E auto-promotion: %sabled)\n", base_cpu, msr, msr & 0x2 ? "EN" : "DIS"); return; } static void dump_hsw_turbo_ratio_limits(void) { unsigned long long msr; unsigned int ratio; get_msr(base_cpu, MSR_TURBO_RATIO_LIMIT2, &msr); fprintf(outf, "cpu%d: MSR_TURBO_RATIO_LIMIT2: 0x%08llx\n", base_cpu, msr); ratio = (msr >> 8) & 0xFF; if (ratio) fprintf(outf, "%d * %.0f = %.0f MHz max turbo 18 active cores\n", ratio, bclk, ratio * bclk); ratio = (msr >> 0) & 0xFF; if (ratio) fprintf(outf, "%d * %.0f = %.0f MHz max turbo 17 active cores\n", ratio, bclk, ratio * bclk); return; } static void dump_ivt_turbo_ratio_limits(void) { unsigned long long msr; unsigned int ratio; get_msr(base_cpu, MSR_TURBO_RATIO_LIMIT1, &msr); fprintf(outf, "cpu%d: MSR_TURBO_RATIO_LIMIT1: 0x%08llx\n", base_cpu, msr); ratio = (msr >> 56) & 0xFF; if (ratio) fprintf(outf, "%d * %.0f = %.0f MHz max turbo 16 active cores\n", ratio, bclk, ratio * bclk); ratio = (msr >> 48) & 0xFF; if (ratio) fprintf(outf, "%d * %.0f = %.0f MHz max turbo 15 active cores\n", ratio, bclk, ratio * bclk); ratio = (msr >> 40) & 0xFF; if (ratio) fprintf(outf, "%d * %.0f = %.0f MHz max turbo 14 active cores\n", ratio, bclk, ratio * bclk); ratio = (msr >> 32) & 0xFF; if (ratio) fprintf(outf, "%d * %.0f = %.0f MHz max turbo 13 active cores\n", ratio, bclk, ratio * bclk); ratio = (msr >> 24) & 0xFF; if (ratio) fprintf(outf, "%d * %.0f = %.0f MHz max turbo 12 active cores\n", ratio, bclk, ratio * bclk); ratio = (msr >> 16) & 0xFF; if (ratio) fprintf(outf, "%d * %.0f = %.0f MHz max turbo 11 active cores\n", ratio, bclk, ratio * bclk); ratio = (msr >> 8) & 0xFF; if (ratio) fprintf(outf, "%d * %.0f = %.0f MHz max turbo 10 active cores\n", ratio, bclk, ratio * bclk); ratio = (msr >> 0) & 0xFF; if (ratio) fprintf(outf, "%d * %.0f = %.0f MHz max turbo 9 active cores\n", ratio, bclk, ratio * bclk); return; } static void dump_nhm_turbo_ratio_limits(void) { unsigned long long msr; unsigned int ratio; get_msr(base_cpu, MSR_TURBO_RATIO_LIMIT, &msr); fprintf(outf, "cpu%d: MSR_TURBO_RATIO_LIMIT: 0x%08llx\n", base_cpu, msr); ratio = (msr >> 56) & 0xFF; if (ratio) fprintf(outf, "%d * %.0f = %.0f MHz max turbo 8 active cores\n", ratio, bclk, ratio * bclk); ratio = (msr >> 48) & 0xFF; if (ratio) fprintf(outf, "%d * %.0f = %.0f MHz max turbo 7 active cores\n", ratio, bclk, ratio * bclk); ratio = (msr >> 40) & 0xFF; if (ratio) fprintf(outf, "%d * %.0f = %.0f MHz max turbo 6 active cores\n", ratio, bclk, ratio * bclk); ratio = (msr >> 32) & 0xFF; if (ratio) fprintf(outf, "%d * %.0f = %.0f MHz max turbo 5 active cores\n", ratio, bclk, ratio * bclk); ratio = (msr >> 24) & 0xFF; if (ratio) fprintf(outf, "%d * %.0f = %.0f MHz max turbo 4 active cores\n", ratio, bclk, ratio * bclk); ratio = (msr >> 16) & 0xFF; if (ratio) fprintf(outf, "%d * %.0f = %.0f MHz max turbo 3 active cores\n", ratio, bclk, ratio * bclk); ratio = (msr >> 8) & 0xFF; if (ratio) fprintf(outf, "%d * %.0f = %.0f MHz max turbo 2 active cores\n", ratio, bclk, ratio * bclk); ratio = (msr >> 0) & 0xFF; if (ratio) fprintf(outf, "%d * %.0f = %.0f MHz max turbo 1 active cores\n", ratio, bclk, ratio * bclk); return; } static void dump_knl_turbo_ratio_limits(void) { const unsigned int buckets_no = 7; unsigned long long msr; int delta_cores, delta_ratio; int i, b_nr; unsigned int cores[buckets_no]; unsigned int ratio[buckets_no]; get_msr(base_cpu, MSR_TURBO_RATIO_LIMIT, &msr); fprintf(outf, "cpu%d: MSR_TURBO_RATIO_LIMIT: 0x%08llx\n", base_cpu, msr); /** * Turbo encoding in KNL is as follows: * [0] -- Reserved * [7:1] -- Base value of number of active cores of bucket 1. * [15:8] -- Base value of freq ratio of bucket 1. * [20:16] -- +ve delta of number of active cores of bucket 2. * i.e. active cores of bucket 2 = * active cores of bucket 1 + delta * [23:21] -- Negative delta of freq ratio of bucket 2. * i.e. freq ratio of bucket 2 = * freq ratio of bucket 1 - delta * [28:24]-- +ve delta of number of active cores of bucket 3. * [31:29]-- -ve delta of freq ratio of bucket 3. * [36:32]-- +ve delta of number of active cores of bucket 4. * [39:37]-- -ve delta of freq ratio of bucket 4. * [44:40]-- +ve delta of number of active cores of bucket 5. * [47:45]-- -ve delta of freq ratio of bucket 5. * [52:48]-- +ve delta of number of active cores of bucket 6. * [55:53]-- -ve delta of freq ratio of bucket 6. * [60:56]-- +ve delta of number of active cores of bucket 7. * [63:61]-- -ve delta of freq ratio of bucket 7. */ b_nr = 0; cores[b_nr] = (msr & 0xFF) >> 1; ratio[b_nr] = (msr >> 8) & 0xFF; for (i = 16; i < 64; i += 8) { delta_cores = (msr >> i) & 0x1F; delta_ratio = (msr >> (i + 5)) & 0x7; cores[b_nr + 1] = cores[b_nr] + delta_cores; ratio[b_nr + 1] = ratio[b_nr] - delta_ratio; b_nr++; } for (i = buckets_no - 1; i >= 0; i--) if (i > 0 ? ratio[i] != ratio[i - 1] : 1) fprintf(outf, "%d * %.0f = %.0f MHz max turbo %d active cores\n", ratio[i], bclk, ratio[i] * bclk, cores[i]); } static void dump_nhm_cst_cfg(void) { unsigned long long msr; get_msr(base_cpu, MSR_NHM_SNB_PKG_CST_CFG_CTL, &msr); #define SNB_C1_AUTO_UNDEMOTE (1UL << 27) #define SNB_C3_AUTO_UNDEMOTE (1UL << 28) fprintf(outf, "cpu%d: MSR_NHM_SNB_PKG_CST_CFG_CTL: 0x%08llx", base_cpu, msr); fprintf(outf, " (%s%s%s%s%slocked: pkg-cstate-limit=%d: %s)\n", (msr & SNB_C3_AUTO_UNDEMOTE) ? "UNdemote-C3, " : "", (msr & SNB_C1_AUTO_UNDEMOTE) ? "UNdemote-C1, " : "", (msr & NHM_C3_AUTO_DEMOTE) ? "demote-C3, " : "", (msr & NHM_C1_AUTO_DEMOTE) ? "demote-C1, " : "", (msr & (1 << 15)) ? "" : "UN", (unsigned int)msr & 0xF, pkg_cstate_limit_strings[pkg_cstate_limit]); return; } static void dump_config_tdp(void) { unsigned long long msr; get_msr(base_cpu, MSR_CONFIG_TDP_NOMINAL, &msr); fprintf(outf, "cpu%d: MSR_CONFIG_TDP_NOMINAL: 0x%08llx", base_cpu, msr); fprintf(outf, " (base_ratio=%d)\n", (unsigned int)msr & 0xFF); get_msr(base_cpu, MSR_CONFIG_TDP_LEVEL_1, &msr); fprintf(outf, "cpu%d: MSR_CONFIG_TDP_LEVEL_1: 0x%08llx (", base_cpu, msr); if (msr) { fprintf(outf, "PKG_MIN_PWR_LVL1=%d ", (unsigned int)(msr >> 48) & 0x7FFF); fprintf(outf, "PKG_MAX_PWR_LVL1=%d ", (unsigned int)(msr >> 32) & 0x7FFF); fprintf(outf, "LVL1_RATIO=%d ", (unsigned int)(msr >> 16) & 0xFF); fprintf(outf, "PKG_TDP_LVL1=%d", (unsigned int)(msr) & 0x7FFF); } fprintf(outf, ")\n"); get_msr(base_cpu, MSR_CONFIG_TDP_LEVEL_2, &msr); fprintf(outf, "cpu%d: MSR_CONFIG_TDP_LEVEL_2: 0x%08llx (", base_cpu, msr); if (msr) { fprintf(outf, "PKG_MIN_PWR_LVL2=%d ", (unsigned int)(msr >> 48) & 0x7FFF); fprintf(outf, "PKG_MAX_PWR_LVL2=%d ", (unsigned int)(msr >> 32) & 0x7FFF); fprintf(outf, "LVL2_RATIO=%d ", (unsigned int)(msr >> 16) & 0xFF); fprintf(outf, "PKG_TDP_LVL2=%d", (unsigned int)(msr) & 0x7FFF); } fprintf(outf, ")\n"); get_msr(base_cpu, MSR_CONFIG_TDP_CONTROL, &msr); fprintf(outf, "cpu%d: MSR_CONFIG_TDP_CONTROL: 0x%08llx (", base_cpu, msr); if ((msr) & 0x3) fprintf(outf, "TDP_LEVEL=%d ", (unsigned int)(msr) & 0x3); fprintf(outf, " lock=%d", (unsigned int)(msr >> 31) & 1); fprintf(outf, ")\n"); get_msr(base_cpu, MSR_TURBO_ACTIVATION_RATIO, &msr); fprintf(outf, "cpu%d: MSR_TURBO_ACTIVATION_RATIO: 0x%08llx (", base_cpu, msr); fprintf(outf, "MAX_NON_TURBO_RATIO=%d", (unsigned int)(msr) & 0xFF); fprintf(outf, " lock=%d", (unsigned int)(msr >> 31) & 1); fprintf(outf, ")\n"); } unsigned int irtl_time_units[] = {1, 32, 1024, 32768, 1048576, 33554432, 0, 0 }; void print_irtl(void) { unsigned long long msr; get_msr(base_cpu, MSR_PKGC3_IRTL, &msr); fprintf(outf, "cpu%d: MSR_PKGC3_IRTL: 0x%08llx (", base_cpu, msr); fprintf(outf, "%svalid, %lld ns)\n", msr & (1 << 15) ? "" : "NOT", (msr & 0x3FF) * irtl_time_units[(msr >> 10) & 0x3]); get_msr(base_cpu, MSR_PKGC6_IRTL, &msr); fprintf(outf, "cpu%d: MSR_PKGC6_IRTL: 0x%08llx (", base_cpu, msr); fprintf(outf, "%svalid, %lld ns)\n", msr & (1 << 15) ? "" : "NOT", (msr & 0x3FF) * irtl_time_units[(msr >> 10) & 0x3]); get_msr(base_cpu, MSR_PKGC7_IRTL, &msr); fprintf(outf, "cpu%d: MSR_PKGC7_IRTL: 0x%08llx (", base_cpu, msr); fprintf(outf, "%svalid, %lld ns)\n", msr & (1 << 15) ? "" : "NOT", (msr & 0x3FF) * irtl_time_units[(msr >> 10) & 0x3]); if (!do_irtl_hsw) return; get_msr(base_cpu, MSR_PKGC8_IRTL, &msr); fprintf(outf, "cpu%d: MSR_PKGC8_IRTL: 0x%08llx (", base_cpu, msr); fprintf(outf, "%svalid, %lld ns)\n", msr & (1 << 15) ? "" : "NOT", (msr & 0x3FF) * irtl_time_units[(msr >> 10) & 0x3]); get_msr(base_cpu, MSR_PKGC9_IRTL, &msr); fprintf(outf, "cpu%d: MSR_PKGC9_IRTL: 0x%08llx (", base_cpu, msr); fprintf(outf, "%svalid, %lld ns)\n", msr & (1 << 15) ? "" : "NOT", (msr & 0x3FF) * irtl_time_units[(msr >> 10) & 0x3]); get_msr(base_cpu, MSR_PKGC10_IRTL, &msr); fprintf(outf, "cpu%d: MSR_PKGC10_IRTL: 0x%08llx (", base_cpu, msr); fprintf(outf, "%svalid, %lld ns)\n", msr & (1 << 15) ? "" : "NOT", (msr & 0x3FF) * irtl_time_units[(msr >> 10) & 0x3]); } void free_fd_percpu(void) { int i; for (i = 0; i < topo.max_cpu_num + 1; ++i) { if (fd_percpu[i] != 0) close(fd_percpu[i]); } free(fd_percpu); } void free_all_buffers(void) { CPU_FREE(cpu_present_set); cpu_present_set = NULL; cpu_present_setsize = 0; CPU_FREE(cpu_affinity_set); cpu_affinity_set = NULL; cpu_affinity_setsize = 0; free(thread_even); free(core_even); free(package_even); thread_even = NULL; core_even = NULL; package_even = NULL; free(thread_odd); free(core_odd); free(package_odd); thread_odd = NULL; core_odd = NULL; package_odd = NULL; free(output_buffer); output_buffer = NULL; outp = NULL; free_fd_percpu(); free(irq_column_2_cpu); free(irqs_per_cpu); } /* * Open a file, and exit on failure */ FILE *fopen_or_die(const char *path, const char *mode) { FILE *filep = fopen(path, mode); if (!filep) err(1, "%s: open failed", path); return filep; } /* * Parse a file containing a single int. */ int parse_int_file(const char *fmt, ...) { va_list args; char path[PATH_MAX]; FILE *filep; int value; va_start(args, fmt); vsnprintf(path, sizeof(path), fmt, args); va_end(args); filep = fopen_or_die(path, "r"); if (fscanf(filep, "%d", &value) != 1) err(1, "%s: failed to parse number from file", path); fclose(filep); return value; } /* * get_cpu_position_in_core(cpu) * return the position of the CPU among its HT siblings in the core * return -1 if the sibling is not in list */ int get_cpu_position_in_core(int cpu) { char path[64]; FILE *filep; int this_cpu; char character; int i; sprintf(path, "/sys/devices/system/cpu/cpu%d/topology/thread_siblings_list", cpu); filep = fopen(path, "r"); if (filep == NULL) { perror(path); exit(1); } for (i = 0; i < topo.num_threads_per_core; i++) { fscanf(filep, "%d", &this_cpu); if (this_cpu == cpu) { fclose(filep); return i; } /* Account for no separator after last thread*/ if (i != (topo.num_threads_per_core - 1)) fscanf(filep, "%c", &character); } fclose(filep); return -1; } /* * cpu_is_first_core_in_package(cpu) * return 1 if given CPU is 1st core in package */ int cpu_is_first_core_in_package(int cpu) { return cpu == parse_int_file("/sys/devices/system/cpu/cpu%d/topology/core_siblings_list", cpu); } int get_physical_package_id(int cpu) { return parse_int_file("/sys/devices/system/cpu/cpu%d/topology/physical_package_id", cpu); } int get_core_id(int cpu) { return parse_int_file("/sys/devices/system/cpu/cpu%d/topology/core_id", cpu); } int get_num_ht_siblings(int cpu) { char path[80]; FILE *filep; int sib1; int matches = 0; char character; char str[100]; char *ch; sprintf(path, "/sys/devices/system/cpu/cpu%d/topology/thread_siblings_list", cpu); filep = fopen_or_die(path, "r"); /* * file format: * A ',' separated or '-' separated set of numbers * (eg 1-2 or 1,3,4,5) */ fscanf(filep, "%d%c\n", &sib1, &character); fseek(filep, 0, SEEK_SET); fgets(str, 100, filep); ch = strchr(str, character); while (ch != NULL) { matches++; ch = strchr(ch+1, character); } fclose(filep); return matches+1; } /* * run func(thread, core, package) in topology order * skip non-present cpus */ int for_all_cpus_2(int (func)(struct thread_data *, struct core_data *, struct pkg_data *, struct thread_data *, struct core_data *, struct pkg_data *), struct thread_data *thread_base, struct core_data *core_base, struct pkg_data *pkg_base, struct thread_data *thread_base2, struct core_data *core_base2, struct pkg_data *pkg_base2) { int retval, pkg_no, core_no, thread_no; for (pkg_no = 0; pkg_no < topo.num_packages; ++pkg_no) { for (core_no = 0; core_no < topo.num_cores_per_pkg; ++core_no) { for (thread_no = 0; thread_no < topo.num_threads_per_core; ++thread_no) { struct thread_data *t, *t2; struct core_data *c, *c2; struct pkg_data *p, *p2; t = GET_THREAD(thread_base, thread_no, core_no, pkg_no); if (cpu_is_not_present(t->cpu_id)) continue; t2 = GET_THREAD(thread_base2, thread_no, core_no, pkg_no); c = GET_CORE(core_base, core_no, pkg_no); c2 = GET_CORE(core_base2, core_no, pkg_no); p = GET_PKG(pkg_base, pkg_no); p2 = GET_PKG(pkg_base2, pkg_no); retval = func(t, c, p, t2, c2, p2); if (retval) return retval; } } } return 0; } /* * run func(cpu) on every cpu in /proc/stat * return max_cpu number */ int for_all_proc_cpus(int (func)(int)) { FILE *fp; int cpu_num; int retval; fp = fopen_or_die(proc_stat, "r"); retval = fscanf(fp, "cpu %*d %*d %*d %*d %*d %*d %*d %*d %*d %*d\n"); if (retval != 0) err(1, "%s: failed to parse format", proc_stat); while (1) { retval = fscanf(fp, "cpu%u %*d %*d %*d %*d %*d %*d %*d %*d %*d %*d\n", &cpu_num); if (retval != 1) break; retval = func(cpu_num); if (retval) { fclose(fp); return(retval); } } fclose(fp); return 0; } void re_initialize(void) { free_all_buffers(); setup_all_buffers(); printf("turbostat: re-initialized with num_cpus %d\n", topo.num_cpus); } /* * count_cpus() * remember the last one seen, it will be the max */ int count_cpus(int cpu) { if (topo.max_cpu_num < cpu) topo.max_cpu_num = cpu; topo.num_cpus += 1; return 0; } int mark_cpu_present(int cpu) { CPU_SET_S(cpu, cpu_present_setsize, cpu_present_set); return 0; } /* * snapshot_proc_interrupts() * * read and record summary of /proc/interrupts * * return 1 if config change requires a restart, else return 0 */ int snapshot_proc_interrupts(void) { static FILE *fp; int column, retval; if (fp == NULL) fp = fopen_or_die("/proc/interrupts", "r"); else rewind(fp); /* read 1st line of /proc/interrupts to get cpu* name for each column */ for (column = 0; column < topo.num_cpus; ++column) { int cpu_number; retval = fscanf(fp, " CPU%d", &cpu_number); if (retval != 1) break; if (cpu_number > topo.max_cpu_num) { warn("/proc/interrupts: cpu%d: > %d", cpu_number, topo.max_cpu_num); return 1; } irq_column_2_cpu[column] = cpu_number; irqs_per_cpu[cpu_number] = 0; } /* read /proc/interrupt count lines and sum up irqs per cpu */ while (1) { int column; char buf[64]; retval = fscanf(fp, " %s:", buf); /* flush irq# "N:" */ if (retval != 1) break; /* read the count per cpu */ for (column = 0; column < topo.num_cpus; ++column) { int cpu_number, irq_count; retval = fscanf(fp, " %d", &irq_count); if (retval != 1) break; cpu_number = irq_column_2_cpu[column]; irqs_per_cpu[cpu_number] += irq_count; } while (getc(fp) != '\n') ; /* flush interrupt description */ } return 0; } /* * snapshot_gfx_rc6_ms() * * record snapshot of * /sys/class/drm/card0/power/rc6_residency_ms * * return 1 if config change requires a restart, else return 0 */ int snapshot_gfx_rc6_ms(void) { FILE *fp; int retval; fp = fopen_or_die("/sys/class/drm/card0/power/rc6_residency_ms", "r"); retval = fscanf(fp, "%lld", &gfx_cur_rc6_ms); if (retval != 1) err(1, "GFX rc6"); fclose(fp); return 0; } /* * snapshot_gfx_mhz() * * record snapshot of * /sys/class/graphics/fb0/device/drm/card0/gt_cur_freq_mhz * * return 1 if config change requires a restart, else return 0 */ int snapshot_gfx_mhz(void) { static FILE *fp; int retval; if (fp == NULL) fp = fopen_or_die("/sys/class/graphics/fb0/device/drm/card0/gt_cur_freq_mhz", "r"); else rewind(fp); retval = fscanf(fp, "%d", &gfx_cur_mhz); if (retval != 1) err(1, "GFX MHz"); return 0; } /* * snapshot /proc and /sys files * * return 1 if configuration restart needed, else return 0 */ int snapshot_proc_sysfs_files(void) { if (snapshot_proc_interrupts()) return 1; if (do_gfx_rc6_ms) snapshot_gfx_rc6_ms(); if (do_gfx_mhz) snapshot_gfx_mhz(); return 0; } void turbostat_loop() { int retval; int restarted = 0; restart: restarted++; snapshot_proc_sysfs_files(); retval = for_all_cpus(get_counters, EVEN_COUNTERS); if (retval < -1) { exit(retval); } else if (retval == -1) { if (restarted > 1) { exit(retval); } re_initialize(); goto restart; } restarted = 0; gettimeofday(&tv_even, (struct timezone *)NULL); while (1) { if (for_all_proc_cpus(cpu_is_not_present)) { re_initialize(); goto restart; } nanosleep(&interval_ts, NULL); if (snapshot_proc_sysfs_files()) goto restart; retval = for_all_cpus(get_counters, ODD_COUNTERS); if (retval < -1) { exit(retval); } else if (retval == -1) { re_initialize(); goto restart; } gettimeofday(&tv_odd, (struct timezone *)NULL); timersub(&tv_odd, &tv_even, &tv_delta); if (for_all_cpus_2(delta_cpu, ODD_COUNTERS, EVEN_COUNTERS)) { re_initialize(); goto restart; } compute_average(EVEN_COUNTERS); format_all_counters(EVEN_COUNTERS); flush_output_stdout(); nanosleep(&interval_ts, NULL); if (snapshot_proc_sysfs_files()) goto restart; retval = for_all_cpus(get_counters, EVEN_COUNTERS); if (retval < -1) { exit(retval); } else if (retval == -1) { re_initialize(); goto restart; } gettimeofday(&tv_even, (struct timezone *)NULL); timersub(&tv_even, &tv_odd, &tv_delta); if (for_all_cpus_2(delta_cpu, EVEN_COUNTERS, ODD_COUNTERS)) { re_initialize(); goto restart; } compute_average(ODD_COUNTERS); format_all_counters(ODD_COUNTERS); flush_output_stdout(); } } void check_dev_msr() { struct stat sb; char pathname[32]; sprintf(pathname, "/dev/cpu/%d/msr", base_cpu); if (stat(pathname, &sb)) if (system("/sbin/modprobe msr > /dev/null 2>&1")) err(-5, "no /dev/cpu/0/msr, Try \"# modprobe msr\" "); } void check_permissions() { struct __user_cap_header_struct cap_header_data; cap_user_header_t cap_header = &cap_header_data; struct __user_cap_data_struct cap_data_data; cap_user_data_t cap_data = &cap_data_data; extern int capget(cap_user_header_t hdrp, cap_user_data_t datap); int do_exit = 0; char pathname[32]; /* check for CAP_SYS_RAWIO */ cap_header->pid = getpid(); cap_header->version = _LINUX_CAPABILITY_VERSION; if (capget(cap_header, cap_data) < 0) err(-6, "capget(2) failed"); if ((cap_data->effective & (1 << CAP_SYS_RAWIO)) == 0) { do_exit++; warnx("capget(CAP_SYS_RAWIO) failed," " try \"# setcap cap_sys_rawio=ep %s\"", progname); } /* test file permissions */ sprintf(pathname, "/dev/cpu/%d/msr", base_cpu); if (euidaccess(pathname, R_OK)) { do_exit++; warn("/dev/cpu/0/msr open failed, try chown or chmod +r /dev/cpu/*/msr"); } /* if all else fails, thell them to be root */ if (do_exit) if (getuid() != 0) warnx("... or simply run as root"); if (do_exit) exit(-6); } /* * NHM adds support for additional MSRs: * * MSR_SMI_COUNT 0x00000034 * * MSR_PLATFORM_INFO 0x000000ce * MSR_NHM_SNB_PKG_CST_CFG_CTL 0x000000e2 * * MSR_PKG_C3_RESIDENCY 0x000003f8 * MSR_PKG_C6_RESIDENCY 0x000003f9 * MSR_CORE_C3_RESIDENCY 0x000003fc * MSR_CORE_C6_RESIDENCY 0x000003fd * * Side effect: * sets global pkg_cstate_limit to decode MSR_NHM_SNB_PKG_CST_CFG_CTL */ int probe_nhm_msrs(unsigned int family, unsigned int model) { unsigned long long msr; unsigned int base_ratio; int *pkg_cstate_limits; if (!genuine_intel) return 0; if (family != 6) return 0; bclk = discover_bclk(family, model); switch (model) { case 0x1A: /* Core i7, Xeon 5500 series - Bloomfield, Gainstown NHM-EP */ case 0x1E: /* Core i7 and i5 Processor - Clarksfield, Lynnfield, Jasper Forest */ case 0x1F: /* Core i7 and i5 Processor - Nehalem */ case 0x25: /* Westmere Client - Clarkdale, Arrandale */ case 0x2C: /* Westmere EP - Gulftown */ case 0x2E: /* Nehalem-EX Xeon - Beckton */ case 0x2F: /* Westmere-EX Xeon - Eagleton */ pkg_cstate_limits = nhm_pkg_cstate_limits; break; case 0x2A: /* SNB */ case 0x2D: /* SNB Xeon */ case 0x3A: /* IVB */ case 0x3E: /* IVB Xeon */ pkg_cstate_limits = snb_pkg_cstate_limits; break; case 0x3C: /* HSW */ case 0x3F: /* HSX */ case 0x45: /* HSW */ case 0x46: /* HSW */ case 0x3D: /* BDW */ case 0x47: /* BDW */ case 0x4F: /* BDX */ case 0x56: /* BDX-DE */ case 0x4E: /* SKL */ case 0x5E: /* SKL */ case 0x8E: /* KBL */ case 0x9E: /* KBL */ case 0x55: /* SKX */ pkg_cstate_limits = hsw_pkg_cstate_limits; break; case 0x37: /* BYT */ case 0x4D: /* AVN */ pkg_cstate_limits = slv_pkg_cstate_limits; break; case 0x4C: /* AMT */ pkg_cstate_limits = amt_pkg_cstate_limits; break; case 0x57: /* PHI */ pkg_cstate_limits = phi_pkg_cstate_limits; break; case 0x5C: /* BXT */ pkg_cstate_limits = bxt_pkg_cstate_limits; break; default: return 0; } get_msr(base_cpu, MSR_NHM_SNB_PKG_CST_CFG_CTL, &msr); pkg_cstate_limit = pkg_cstate_limits[msr & 0xF]; get_msr(base_cpu, MSR_PLATFORM_INFO, &msr); base_ratio = (msr >> 8) & 0xFF; base_hz = base_ratio * bclk * 1000000; has_base_hz = 1; return 1; } int has_nhm_turbo_ratio_limit(unsigned int family, unsigned int model) { switch (model) { /* Nehalem compatible, but do not include turbo-ratio limit support */ case 0x2E: /* Nehalem-EX Xeon - Beckton */ case 0x2F: /* Westmere-EX Xeon - Eagleton */ case 0x57: /* PHI - Knights Landing (different MSR definition) */ return 0; default: return 1; } } int has_ivt_turbo_ratio_limit(unsigned int family, unsigned int model) { if (!genuine_intel) return 0; if (family != 6) return 0; switch (model) { case 0x3E: /* IVB Xeon */ case 0x3F: /* HSW Xeon */ return 1; default: return 0; } } int has_hsw_turbo_ratio_limit(unsigned int family, unsigned int model) { if (!genuine_intel) return 0; if (family != 6) return 0; switch (model) { case 0x3F: /* HSW Xeon */ return 1; default: return 0; } } int has_knl_turbo_ratio_limit(unsigned int family, unsigned int model) { if (!genuine_intel) return 0; if (family != 6) return 0; switch (model) { case 0x57: /* Knights Landing */ return 1; default: return 0; } } int has_config_tdp(unsigned int family, unsigned int model) { if (!genuine_intel) return 0; if (family != 6) return 0; switch (model) { case 0x3A: /* IVB */ case 0x3C: /* HSW */ case 0x3F: /* HSX */ case 0x45: /* HSW */ case 0x46: /* HSW */ case 0x3D: /* BDW */ case 0x47: /* BDW */ case 0x4F: /* BDX */ case 0x56: /* BDX-DE */ case 0x4E: /* SKL */ case 0x5E: /* SKL */ case 0x8E: /* KBL */ case 0x9E: /* KBL */ case 0x55: /* SKX */ case 0x57: /* Knights Landing */ return 1; default: return 0; } } static void dump_cstate_pstate_config_info(unsigned int family, unsigned int model) { if (!do_nhm_platform_info) return; dump_nhm_platform_info(); if (has_hsw_turbo_ratio_limit(family, model)) dump_hsw_turbo_ratio_limits(); if (has_ivt_turbo_ratio_limit(family, model)) dump_ivt_turbo_ratio_limits(); if (has_nhm_turbo_ratio_limit(family, model)) dump_nhm_turbo_ratio_limits(); if (has_knl_turbo_ratio_limit(family, model)) dump_knl_turbo_ratio_limits(); if (has_config_tdp(family, model)) dump_config_tdp(); dump_nhm_cst_cfg(); } /* * print_epb() * Decode the ENERGY_PERF_BIAS MSR */ int print_epb(struct thread_data *t, struct core_data *c, struct pkg_data *p) { unsigned long long msr; char *epb_string; int cpu; if (!has_epb) return 0; cpu = t->cpu_id; /* EPB is per-package */ if (!(t->flags & CPU_IS_FIRST_THREAD_IN_CORE) || !(t->flags & CPU_IS_FIRST_CORE_IN_PACKAGE)) return 0; if (cpu_migrate(cpu)) { fprintf(outf, "Could not migrate to CPU %d\n", cpu); return -1; } if (get_msr(cpu, MSR_IA32_ENERGY_PERF_BIAS, &msr)) return 0; switch (msr & 0xF) { case ENERGY_PERF_BIAS_PERFORMANCE: epb_string = "performance"; break; case ENERGY_PERF_BIAS_NORMAL: epb_string = "balanced"; break; case ENERGY_PERF_BIAS_POWERSAVE: epb_string = "powersave"; break; default: epb_string = "custom"; break; } fprintf(outf, "cpu%d: MSR_IA32_ENERGY_PERF_BIAS: 0x%08llx (%s)\n", cpu, msr, epb_string); return 0; } /* * print_hwp() * Decode the MSR_HWP_CAPABILITIES */ int print_hwp(struct thread_data *t, struct core_data *c, struct pkg_data *p) { unsigned long long msr; int cpu; if (!has_hwp) return 0; cpu = t->cpu_id; /* MSR_HWP_CAPABILITIES is per-package */ if (!(t->flags & CPU_IS_FIRST_THREAD_IN_CORE) || !(t->flags & CPU_IS_FIRST_CORE_IN_PACKAGE)) return 0; if (cpu_migrate(cpu)) { fprintf(outf, "Could not migrate to CPU %d\n", cpu); return -1; } if (get_msr(cpu, MSR_PM_ENABLE, &msr)) return 0; fprintf(outf, "cpu%d: MSR_PM_ENABLE: 0x%08llx (%sHWP)\n", cpu, msr, (msr & (1 << 0)) ? "" : "No-"); /* MSR_PM_ENABLE[1] == 1 if HWP is enabled and MSRs visible */ if ((msr & (1 << 0)) == 0) return 0; if (get_msr(cpu, MSR_HWP_CAPABILITIES, &msr)) return 0; fprintf(outf, "cpu%d: MSR_HWP_CAPABILITIES: 0x%08llx " "(high 0x%x guar 0x%x eff 0x%x low 0x%x)\n", cpu, msr, (unsigned int)HWP_HIGHEST_PERF(msr), (unsigned int)HWP_GUARANTEED_PERF(msr), (unsigned int)HWP_MOSTEFFICIENT_PERF(msr), (unsigned int)HWP_LOWEST_PERF(msr)); if (get_msr(cpu, MSR_HWP_REQUEST, &msr)) return 0; fprintf(outf, "cpu%d: MSR_HWP_REQUEST: 0x%08llx " "(min 0x%x max 0x%x des 0x%x epp 0x%x window 0x%x pkg 0x%x)\n", cpu, msr, (unsigned int)(((msr) >> 0) & 0xff), (unsigned int)(((msr) >> 8) & 0xff), (unsigned int)(((msr) >> 16) & 0xff), (unsigned int)(((msr) >> 24) & 0xff), (unsigned int)(((msr) >> 32) & 0xff3), (unsigned int)(((msr) >> 42) & 0x1)); if (has_hwp_pkg) { if (get_msr(cpu, MSR_HWP_REQUEST_PKG, &msr)) return 0; fprintf(outf, "cpu%d: MSR_HWP_REQUEST_PKG: 0x%08llx " "(min 0x%x max 0x%x des 0x%x epp 0x%x window 0x%x)\n", cpu, msr, (unsigned int)(((msr) >> 0) & 0xff), (unsigned int)(((msr) >> 8) & 0xff), (unsigned int)(((msr) >> 16) & 0xff), (unsigned int)(((msr) >> 24) & 0xff), (unsigned int)(((msr) >> 32) & 0xff3)); } if (has_hwp_notify) { if (get_msr(cpu, MSR_HWP_INTERRUPT, &msr)) return 0; fprintf(outf, "cpu%d: MSR_HWP_INTERRUPT: 0x%08llx " "(%s_Guaranteed_Perf_Change, %s_Excursion_Min)\n", cpu, msr, ((msr) & 0x1) ? "EN" : "Dis", ((msr) & 0x2) ? "EN" : "Dis"); } if (get_msr(cpu, MSR_HWP_STATUS, &msr)) return 0; fprintf(outf, "cpu%d: MSR_HWP_STATUS: 0x%08llx " "(%sGuaranteed_Perf_Change, %sExcursion_Min)\n", cpu, msr, ((msr) & 0x1) ? "" : "No-", ((msr) & 0x2) ? "" : "No-"); return 0; } /* * print_perf_limit() */ int print_perf_limit(struct thread_data *t, struct core_data *c, struct pkg_data *p) { unsigned long long msr; int cpu; cpu = t->cpu_id; /* per-package */ if (!(t->flags & CPU_IS_FIRST_THREAD_IN_CORE) || !(t->flags & CPU_IS_FIRST_CORE_IN_PACKAGE)) return 0; if (cpu_migrate(cpu)) { fprintf(outf, "Could not migrate to CPU %d\n", cpu); return -1; } if (do_core_perf_limit_reasons) { get_msr(cpu, MSR_CORE_PERF_LIMIT_REASONS, &msr); fprintf(outf, "cpu%d: MSR_CORE_PERF_LIMIT_REASONS, 0x%08llx", cpu, msr); fprintf(outf, " (Active: %s%s%s%s%s%s%s%s%s%s%s%s%s%s)", (msr & 1 << 15) ? "bit15, " : "", (msr & 1 << 14) ? "bit14, " : "", (msr & 1 << 13) ? "Transitions, " : "", (msr & 1 << 12) ? "MultiCoreTurbo, " : "", (msr & 1 << 11) ? "PkgPwrL2, " : "", (msr & 1 << 10) ? "PkgPwrL1, " : "", (msr & 1 << 9) ? "CorePwr, " : "", (msr & 1 << 8) ? "Amps, " : "", (msr & 1 << 6) ? "VR-Therm, " : "", (msr & 1 << 5) ? "Auto-HWP, " : "", (msr & 1 << 4) ? "Graphics, " : "", (msr & 1 << 2) ? "bit2, " : "", (msr & 1 << 1) ? "ThermStatus, " : "", (msr & 1 << 0) ? "PROCHOT, " : ""); fprintf(outf, " (Logged: %s%s%s%s%s%s%s%s%s%s%s%s%s%s)\n", (msr & 1 << 31) ? "bit31, " : "", (msr & 1 << 30) ? "bit30, " : "", (msr & 1 << 29) ? "Transitions, " : "", (msr & 1 << 28) ? "MultiCoreTurbo, " : "", (msr & 1 << 27) ? "PkgPwrL2, " : "", (msr & 1 << 26) ? "PkgPwrL1, " : "", (msr & 1 << 25) ? "CorePwr, " : "", (msr & 1 << 24) ? "Amps, " : "", (msr & 1 << 22) ? "VR-Therm, " : "", (msr & 1 << 21) ? "Auto-HWP, " : "", (msr & 1 << 20) ? "Graphics, " : "", (msr & 1 << 18) ? "bit18, " : "", (msr & 1 << 17) ? "ThermStatus, " : "", (msr & 1 << 16) ? "PROCHOT, " : ""); } if (do_gfx_perf_limit_reasons) { get_msr(cpu, MSR_GFX_PERF_LIMIT_REASONS, &msr); fprintf(outf, "cpu%d: MSR_GFX_PERF_LIMIT_REASONS, 0x%08llx", cpu, msr); fprintf(outf, " (Active: %s%s%s%s%s%s%s%s)", (msr & 1 << 0) ? "PROCHOT, " : "", (msr & 1 << 1) ? "ThermStatus, " : "", (msr & 1 << 4) ? "Graphics, " : "", (msr & 1 << 6) ? "VR-Therm, " : "", (msr & 1 << 8) ? "Amps, " : "", (msr & 1 << 9) ? "GFXPwr, " : "", (msr & 1 << 10) ? "PkgPwrL1, " : "", (msr & 1 << 11) ? "PkgPwrL2, " : ""); fprintf(outf, " (Logged: %s%s%s%s%s%s%s%s)\n", (msr & 1 << 16) ? "PROCHOT, " : "", (msr & 1 << 17) ? "ThermStatus, " : "", (msr & 1 << 20) ? "Graphics, " : "", (msr & 1 << 22) ? "VR-Therm, " : "", (msr & 1 << 24) ? "Amps, " : "", (msr & 1 << 25) ? "GFXPwr, " : "", (msr & 1 << 26) ? "PkgPwrL1, " : "", (msr & 1 << 27) ? "PkgPwrL2, " : ""); } if (do_ring_perf_limit_reasons) { get_msr(cpu, MSR_RING_PERF_LIMIT_REASONS, &msr); fprintf(outf, "cpu%d: MSR_RING_PERF_LIMIT_REASONS, 0x%08llx", cpu, msr); fprintf(outf, " (Active: %s%s%s%s%s%s)", (msr & 1 << 0) ? "PROCHOT, " : "", (msr & 1 << 1) ? "ThermStatus, " : "", (msr & 1 << 6) ? "VR-Therm, " : "", (msr & 1 << 8) ? "Amps, " : "", (msr & 1 << 10) ? "PkgPwrL1, " : "", (msr & 1 << 11) ? "PkgPwrL2, " : ""); fprintf(outf, " (Logged: %s%s%s%s%s%s)\n", (msr & 1 << 16) ? "PROCHOT, " : "", (msr & 1 << 17) ? "ThermStatus, " : "", (msr & 1 << 22) ? "VR-Therm, " : "", (msr & 1 << 24) ? "Amps, " : "", (msr & 1 << 26) ? "PkgPwrL1, " : "", (msr & 1 << 27) ? "PkgPwrL2, " : ""); } return 0; } #define RAPL_POWER_GRANULARITY 0x7FFF /* 15 bit power granularity */ #define RAPL_TIME_GRANULARITY 0x3F /* 6 bit time granularity */ double get_tdp(unsigned int model) { unsigned long long msr; if (do_rapl & RAPL_PKG_POWER_INFO) if (!get_msr(base_cpu, MSR_PKG_POWER_INFO, &msr)) return ((msr >> 0) & RAPL_POWER_GRANULARITY) * rapl_power_units; switch (model) { case 0x37: case 0x4D: return 30.0; default: return 135.0; } } /* * rapl_dram_energy_units_probe() * Energy units are either hard-coded, or come from RAPL Energy Unit MSR. */ static double rapl_dram_energy_units_probe(int model, double rapl_energy_units) { /* only called for genuine_intel, family 6 */ switch (model) { case 0x3F: /* HSX */ case 0x4F: /* BDX */ case 0x56: /* BDX-DE */ case 0x57: /* KNL */ return (rapl_dram_energy_units = 15.3 / 1000000); default: return (rapl_energy_units); } } /* * rapl_probe() * * sets do_rapl, rapl_power_units, rapl_energy_units, rapl_time_units */ void rapl_probe(unsigned int family, unsigned int model) { unsigned long long msr; unsigned int time_unit; double tdp; if (!genuine_intel) return; if (family != 6) return; switch (model) { case 0x2A: case 0x3A: case 0x3C: /* HSW */ case 0x45: /* HSW */ case 0x46: /* HSW */ case 0x3D: /* BDW */ case 0x47: /* BDW */ do_rapl = RAPL_PKG | RAPL_CORES | RAPL_CORE_POLICY | RAPL_GFX | RAPL_PKG_POWER_INFO; break; case 0x5C: /* BXT */ do_rapl = RAPL_PKG | RAPL_PKG_POWER_INFO; break; case 0x4E: /* SKL */ case 0x5E: /* SKL */ case 0x8E: /* KBL */ case 0x9E: /* KBL */ do_rapl = RAPL_PKG | RAPL_DRAM | RAPL_DRAM_PERF_STATUS | RAPL_PKG_PERF_STATUS | RAPL_PKG_POWER_INFO; break; case 0x3F: /* HSX */ case 0x4F: /* BDX */ case 0x56: /* BDX-DE */ case 0x55: /* SKX */ case 0x57: /* KNL */ do_rapl = RAPL_PKG | RAPL_DRAM | RAPL_DRAM_POWER_INFO | RAPL_DRAM_PERF_STATUS | RAPL_PKG_PERF_STATUS | RAPL_PKG_POWER_INFO; break; case 0x2D: case 0x3E: do_rapl = RAPL_PKG | RAPL_CORES | RAPL_CORE_POLICY | RAPL_DRAM | RAPL_DRAM_POWER_INFO | RAPL_PKG_PERF_STATUS | RAPL_DRAM_PERF_STATUS | RAPL_PKG_POWER_INFO; break; case 0x37: /* BYT */ case 0x4D: /* AVN */ do_rapl = RAPL_PKG | RAPL_CORES ; break; default: return; } /* units on package 0, verify later other packages match */ if (get_msr(base_cpu, MSR_RAPL_POWER_UNIT, &msr)) return; rapl_power_units = 1.0 / (1 << (msr & 0xF)); if (model == 0x37) rapl_energy_units = 1.0 * (1 << (msr >> 8 & 0x1F)) / 1000000; else rapl_energy_units = 1.0 / (1 << (msr >> 8 & 0x1F)); rapl_dram_energy_units = rapl_dram_energy_units_probe(model, rapl_energy_units); time_unit = msr >> 16 & 0xF; if (time_unit == 0) time_unit = 0xA; rapl_time_units = 1.0 / (1 << (time_unit)); tdp = get_tdp(model); rapl_joule_counter_range = 0xFFFFFFFF * rapl_energy_units / tdp; if (debug) fprintf(outf, "RAPL: %.0f sec. Joule Counter Range, at %.0f Watts\n", rapl_joule_counter_range, tdp); return; } void perf_limit_reasons_probe(unsigned int family, unsigned int model) { if (!genuine_intel) return; if (family != 6) return; switch (model) { case 0x3C: /* HSW */ case 0x45: /* HSW */ case 0x46: /* HSW */ do_gfx_perf_limit_reasons = 1; case 0x3F: /* HSX */ do_core_perf_limit_reasons = 1; do_ring_perf_limit_reasons = 1; default: return; } } int print_thermal(struct thread_data *t, struct core_data *c, struct pkg_data *p) { unsigned long long msr; unsigned int dts; int cpu; if (!(do_dts || do_ptm)) return 0; cpu = t->cpu_id; /* DTS is per-core, no need to print for each thread */ if (!(t->flags & CPU_IS_FIRST_THREAD_IN_CORE)) return 0; if (cpu_migrate(cpu)) { fprintf(outf, "Could not migrate to CPU %d\n", cpu); return -1; } if (do_ptm && (t->flags & CPU_IS_FIRST_CORE_IN_PACKAGE)) { if (get_msr(cpu, MSR_IA32_PACKAGE_THERM_STATUS, &msr)) return 0; dts = (msr >> 16) & 0x7F; fprintf(outf, "cpu%d: MSR_IA32_PACKAGE_THERM_STATUS: 0x%08llx (%d C)\n", cpu, msr, tcc_activation_temp - dts); #ifdef THERM_DEBUG if (get_msr(cpu, MSR_IA32_PACKAGE_THERM_INTERRUPT, &msr)) return 0; dts = (msr >> 16) & 0x7F; dts2 = (msr >> 8) & 0x7F; fprintf(outf, "cpu%d: MSR_IA32_PACKAGE_THERM_INTERRUPT: 0x%08llx (%d C, %d C)\n", cpu, msr, tcc_activation_temp - dts, tcc_activation_temp - dts2); #endif } if (do_dts) { unsigned int resolution; if (get_msr(cpu, MSR_IA32_THERM_STATUS, &msr)) return 0; dts = (msr >> 16) & 0x7F; resolution = (msr >> 27) & 0xF; fprintf(outf, "cpu%d: MSR_IA32_THERM_STATUS: 0x%08llx (%d C +/- %d)\n", cpu, msr, tcc_activation_temp - dts, resolution); #ifdef THERM_DEBUG if (get_msr(cpu, MSR_IA32_THERM_INTERRUPT, &msr)) return 0; dts = (msr >> 16) & 0x7F; dts2 = (msr >> 8) & 0x7F; fprintf(outf, "cpu%d: MSR_IA32_THERM_INTERRUPT: 0x%08llx (%d C, %d C)\n", cpu, msr, tcc_activation_temp - dts, tcc_activation_temp - dts2); #endif } return 0; } void print_power_limit_msr(int cpu, unsigned long long msr, char *label) { fprintf(outf, "cpu%d: %s: %sabled (%f Watts, %f sec, clamp %sabled)\n", cpu, label, ((msr >> 15) & 1) ? "EN" : "DIS", ((msr >> 0) & 0x7FFF) * rapl_power_units, (1.0 + (((msr >> 22) & 0x3)/4.0)) * (1 << ((msr >> 17) & 0x1F)) * rapl_time_units, (((msr >> 16) & 1) ? "EN" : "DIS")); return; } int print_rapl(struct thread_data *t, struct core_data *c, struct pkg_data *p) { unsigned long long msr; int cpu; if (!do_rapl) return 0; /* RAPL counters are per package, so print only for 1st thread/package */ if (!(t->flags & CPU_IS_FIRST_THREAD_IN_CORE) || !(t->flags & CPU_IS_FIRST_CORE_IN_PACKAGE)) return 0; cpu = t->cpu_id; if (cpu_migrate(cpu)) { fprintf(outf, "Could not migrate to CPU %d\n", cpu); return -1; } if (get_msr(cpu, MSR_RAPL_POWER_UNIT, &msr)) return -1; if (debug) { fprintf(outf, "cpu%d: MSR_RAPL_POWER_UNIT: 0x%08llx " "(%f Watts, %f Joules, %f sec.)\n", cpu, msr, rapl_power_units, rapl_energy_units, rapl_time_units); } if (do_rapl & RAPL_PKG_POWER_INFO) { if (get_msr(cpu, MSR_PKG_POWER_INFO, &msr)) return -5; fprintf(outf, "cpu%d: MSR_PKG_POWER_INFO: 0x%08llx (%.0f W TDP, RAPL %.0f - %.0f W, %f sec.)\n", cpu, msr, ((msr >> 0) & RAPL_POWER_GRANULARITY) * rapl_power_units, ((msr >> 16) & RAPL_POWER_GRANULARITY) * rapl_power_units, ((msr >> 32) & RAPL_POWER_GRANULARITY) * rapl_power_units, ((msr >> 48) & RAPL_TIME_GRANULARITY) * rapl_time_units); } if (do_rapl & RAPL_PKG) { if (get_msr(cpu, MSR_PKG_POWER_LIMIT, &msr)) return -9; fprintf(outf, "cpu%d: MSR_PKG_POWER_LIMIT: 0x%08llx (%slocked)\n", cpu, msr, (msr >> 63) & 1 ? "": "UN"); print_power_limit_msr(cpu, msr, "PKG Limit #1"); fprintf(outf, "cpu%d: PKG Limit #2: %sabled (%f Watts, %f* sec, clamp %sabled)\n", cpu, ((msr >> 47) & 1) ? "EN" : "DIS", ((msr >> 32) & 0x7FFF) * rapl_power_units, (1.0 + (((msr >> 54) & 0x3)/4.0)) * (1 << ((msr >> 49) & 0x1F)) * rapl_time_units, ((msr >> 48) & 1) ? "EN" : "DIS"); } if (do_rapl & RAPL_DRAM_POWER_INFO) { if (get_msr(cpu, MSR_DRAM_POWER_INFO, &msr)) return -6; fprintf(outf, "cpu%d: MSR_DRAM_POWER_INFO,: 0x%08llx (%.0f W TDP, RAPL %.0f - %.0f W, %f sec.)\n", cpu, msr, ((msr >> 0) & RAPL_POWER_GRANULARITY) * rapl_power_units, ((msr >> 16) & RAPL_POWER_GRANULARITY) * rapl_power_units, ((msr >> 32) & RAPL_POWER_GRANULARITY) * rapl_power_units, ((msr >> 48) & RAPL_TIME_GRANULARITY) * rapl_time_units); } if (do_rapl & RAPL_DRAM) { if (get_msr(cpu, MSR_DRAM_POWER_LIMIT, &msr)) return -9; fprintf(outf, "cpu%d: MSR_DRAM_POWER_LIMIT: 0x%08llx (%slocked)\n", cpu, msr, (msr >> 31) & 1 ? "": "UN"); print_power_limit_msr(cpu, msr, "DRAM Limit"); } if (do_rapl & RAPL_CORE_POLICY) { if (debug) { if (get_msr(cpu, MSR_PP0_POLICY, &msr)) return -7; fprintf(outf, "cpu%d: MSR_PP0_POLICY: %lld\n", cpu, msr & 0xF); } } if (do_rapl & RAPL_CORES) { if (debug) { if (get_msr(cpu, MSR_PP0_POWER_LIMIT, &msr)) return -9; fprintf(outf, "cpu%d: MSR_PP0_POWER_LIMIT: 0x%08llx (%slocked)\n", cpu, msr, (msr >> 31) & 1 ? "": "UN"); print_power_limit_msr(cpu, msr, "Cores Limit"); } } if (do_rapl & RAPL_GFX) { if (debug) { if (get_msr(cpu, MSR_PP1_POLICY, &msr)) return -8; fprintf(outf, "cpu%d: MSR_PP1_POLICY: %lld\n", cpu, msr & 0xF); if (get_msr(cpu, MSR_PP1_POWER_LIMIT, &msr)) return -9; fprintf(outf, "cpu%d: MSR_PP1_POWER_LIMIT: 0x%08llx (%slocked)\n", cpu, msr, (msr >> 31) & 1 ? "": "UN"); print_power_limit_msr(cpu, msr, "GFX Limit"); } } return 0; } /* * SNB adds support for additional MSRs: * * MSR_PKG_C7_RESIDENCY 0x000003fa * MSR_CORE_C7_RESIDENCY 0x000003fe * MSR_PKG_C2_RESIDENCY 0x0000060d */ int has_snb_msrs(unsigned int family, unsigned int model) { if (!genuine_intel) return 0; switch (model) { case 0x2A: case 0x2D: case 0x3A: /* IVB */ case 0x3E: /* IVB Xeon */ case 0x3C: /* HSW */ case 0x3F: /* HSW */ case 0x45: /* HSW */ case 0x46: /* HSW */ case 0x3D: /* BDW */ case 0x47: /* BDW */ case 0x4F: /* BDX */ case 0x56: /* BDX-DE */ case 0x4E: /* SKL */ case 0x5E: /* SKL */ case 0x8E: /* KBL */ case 0x9E: /* KBL */ case 0x55: /* SKX */ case 0x5C: /* BXT */ return 1; } return 0; } /* * HSW adds support for additional MSRs: * * MSR_PKG_C8_RESIDENCY 0x00000630 * MSR_PKG_C9_RESIDENCY 0x00000631 * MSR_PKG_C10_RESIDENCY 0x00000632 * * MSR_PKGC8_IRTL 0x00000633 * MSR_PKGC9_IRTL 0x00000634 * MSR_PKGC10_IRTL 0x00000635 * */ int has_hsw_msrs(unsigned int family, unsigned int model) { if (!genuine_intel) return 0; switch (model) { case 0x45: /* HSW */ case 0x3D: /* BDW */ case 0x4E: /* SKL */ case 0x5E: /* SKL */ case 0x8E: /* KBL */ case 0x9E: /* KBL */ case 0x5C: /* BXT */ return 1; } return 0; } /* * SKL adds support for additional MSRS: * * MSR_PKG_WEIGHTED_CORE_C0_RES 0x00000658 * MSR_PKG_ANY_CORE_C0_RES 0x00000659 * MSR_PKG_ANY_GFXE_C0_RES 0x0000065A * MSR_PKG_BOTH_CORE_GFXE_C0_RES 0x0000065B */ int has_skl_msrs(unsigned int family, unsigned int model) { if (!genuine_intel) return 0; switch (model) { case 0x4E: /* SKL */ case 0x5E: /* SKL */ case 0x8E: /* KBL */ case 0x9E: /* KBL */ return 1; } return 0; } int is_slm(unsigned int family, unsigned int model) { if (!genuine_intel) return 0; switch (model) { case 0x37: /* BYT */ case 0x4D: /* AVN */ return 1; } return 0; } int is_knl(unsigned int family, unsigned int model) { if (!genuine_intel) return 0; switch (model) { case 0x57: /* KNL */ return 1; } return 0; } unsigned int get_aperf_mperf_multiplier(unsigned int family, unsigned int model) { if (is_knl(family, model)) return 1024; return 1; } #define SLM_BCLK_FREQS 5 double slm_freq_table[SLM_BCLK_FREQS] = { 83.3, 100.0, 133.3, 116.7, 80.0}; double slm_bclk(void) { unsigned long long msr = 3; unsigned int i; double freq; if (get_msr(base_cpu, MSR_FSB_FREQ, &msr)) fprintf(outf, "SLM BCLK: unknown\n"); i = msr & 0xf; if (i >= SLM_BCLK_FREQS) { fprintf(outf, "SLM BCLK[%d] invalid\n", i); i = 3; } freq = slm_freq_table[i]; fprintf(outf, "SLM BCLK: %.1f Mhz\n", freq); return freq; } double discover_bclk(unsigned int family, unsigned int model) { if (has_snb_msrs(family, model) || is_knl(family, model)) return 100.00; else if (is_slm(family, model)) return slm_bclk(); else return 133.33; } /* * MSR_IA32_TEMPERATURE_TARGET indicates the temperature where * the Thermal Control Circuit (TCC) activates. * This is usually equal to tjMax. * * Older processors do not have this MSR, so there we guess, * but also allow cmdline over-ride with -T. * * Several MSR temperature values are in units of degrees-C * below this value, including the Digital Thermal Sensor (DTS), * Package Thermal Management Sensor (PTM), and thermal event thresholds. */ int set_temperature_target(struct thread_data *t, struct core_data *c, struct pkg_data *p) { unsigned long long msr; unsigned int target_c_local; int cpu; /* tcc_activation_temp is used only for dts or ptm */ if (!(do_dts || do_ptm)) return 0; /* this is a per-package concept */ if (!(t->flags & CPU_IS_FIRST_THREAD_IN_CORE) || !(t->flags & CPU_IS_FIRST_CORE_IN_PACKAGE)) return 0; cpu = t->cpu_id; if (cpu_migrate(cpu)) { fprintf(outf, "Could not migrate to CPU %d\n", cpu); return -1; } if (tcc_activation_temp_override != 0) { tcc_activation_temp = tcc_activation_temp_override; fprintf(outf, "cpu%d: Using cmdline TCC Target (%d C)\n", cpu, tcc_activation_temp); return 0; } /* Temperature Target MSR is Nehalem and newer only */ if (!do_nhm_platform_info) goto guess; if (get_msr(base_cpu, MSR_IA32_TEMPERATURE_TARGET, &msr)) goto guess; target_c_local = (msr >> 16) & 0xFF; if (debug) fprintf(outf, "cpu%d: MSR_IA32_TEMPERATURE_TARGET: 0x%08llx (%d C)\n", cpu, msr, target_c_local); if (!target_c_local) goto guess; tcc_activation_temp = target_c_local; return 0; guess: tcc_activation_temp = TJMAX_DEFAULT; fprintf(outf, "cpu%d: Guessing tjMax %d C, Please use -T to specify\n", cpu, tcc_activation_temp); return 0; } void decode_feature_control_msr(void) { unsigned long long msr; if (!get_msr(base_cpu, MSR_IA32_FEATURE_CONTROL, &msr)) fprintf(outf, "cpu%d: MSR_IA32_FEATURE_CONTROL: 0x%08llx (%sLocked %s)\n", base_cpu, msr, msr & FEATURE_CONTROL_LOCKED ? "" : "UN-", msr & (1 << 18) ? "SGX" : ""); } void decode_misc_enable_msr(void) { unsigned long long msr; if (!get_msr(base_cpu, MSR_IA32_MISC_ENABLE, &msr)) fprintf(outf, "cpu%d: MSR_IA32_MISC_ENABLE: 0x%08llx (%s %s %s)\n", base_cpu, msr, msr & (1 << 3) ? "TCC" : "", msr & (1 << 16) ? "EIST" : "", msr & (1 << 18) ? "MONITOR" : ""); } /* * Decode MSR_MISC_PWR_MGMT * * Decode the bits according to the Nehalem documentation * bit[0] seems to continue to have same meaning going forward * bit[1] less so... */ void decode_misc_pwr_mgmt_msr(void) { unsigned long long msr; if (!do_nhm_platform_info) return; if (!get_msr(base_cpu, MSR_MISC_PWR_MGMT, &msr)) fprintf(outf, "cpu%d: MSR_MISC_PWR_MGMT: 0x%08llx (%sable-EIST_Coordination %sable-EPB)\n", base_cpu, msr, msr & (1 << 0) ? "DIS" : "EN", msr & (1 << 1) ? "EN" : "DIS"); } void process_cpuid() { unsigned int eax, ebx, ecx, edx, max_level, max_extended_level; unsigned int fms, family, model, stepping; eax = ebx = ecx = edx = 0; __cpuid(0, max_level, ebx, ecx, edx); if (ebx == 0x756e6547 && edx == 0x49656e69 && ecx == 0x6c65746e) genuine_intel = 1; if (debug) fprintf(outf, "CPUID(0): %.4s%.4s%.4s ", (char *)&ebx, (char *)&edx, (char *)&ecx); __cpuid(1, fms, ebx, ecx, edx); family = (fms >> 8) & 0xf; model = (fms >> 4) & 0xf; stepping = fms & 0xf; if (family == 6 || family == 0xf) model += ((fms >> 16) & 0xf) << 4; if (debug) { fprintf(outf, "%d CPUID levels; family:model:stepping 0x%x:%x:%x (%d:%d:%d)\n", max_level, family, model, stepping, family, model, stepping); fprintf(outf, "CPUID(1): %s %s %s %s %s %s %s %s %s\n", ecx & (1 << 0) ? "SSE3" : "-", ecx & (1 << 3) ? "MONITOR" : "-", ecx & (1 << 6) ? "SMX" : "-", ecx & (1 << 7) ? "EIST" : "-", ecx & (1 << 8) ? "TM2" : "-", edx & (1 << 4) ? "TSC" : "-", edx & (1 << 5) ? "MSR" : "-", edx & (1 << 22) ? "ACPI-TM" : "-", edx & (1 << 29) ? "TM" : "-"); } if (!(edx & (1 << 5))) errx(1, "CPUID: no MSR"); /* * check max extended function levels of CPUID. * This is needed to check for invariant TSC. * This check is valid for both Intel and AMD. */ ebx = ecx = edx = 0; __cpuid(0x80000000, max_extended_level, ebx, ecx, edx); if (max_extended_level >= 0x80000007) { /* * Non-Stop TSC is advertised by CPUID.EAX=0x80000007: EDX.bit8 * this check is valid for both Intel and AMD */ __cpuid(0x80000007, eax, ebx, ecx, edx); has_invariant_tsc = edx & (1 << 8); } /* * APERF/MPERF is advertised by CPUID.EAX=0x6: ECX.bit0 * this check is valid for both Intel and AMD */ __cpuid(0x6, eax, ebx, ecx, edx); has_aperf = ecx & (1 << 0); do_dts = eax & (1 << 0); do_ptm = eax & (1 << 6); has_hwp = eax & (1 << 7); has_hwp_notify = eax & (1 << 8); has_hwp_activity_window = eax & (1 << 9); has_hwp_epp = eax & (1 << 10); has_hwp_pkg = eax & (1 << 11); has_epb = ecx & (1 << 3); if (debug) fprintf(outf, "CPUID(6): %sAPERF, %sDTS, %sPTM, %sHWP, " "%sHWPnotify, %sHWPwindow, %sHWPepp, %sHWPpkg, %sEPB\n", has_aperf ? "" : "No-", do_dts ? "" : "No-", do_ptm ? "" : "No-", has_hwp ? "" : "No-", has_hwp_notify ? "" : "No-", has_hwp_activity_window ? "" : "No-", has_hwp_epp ? "" : "No-", has_hwp_pkg ? "" : "No-", has_epb ? "" : "No-"); if (debug) decode_misc_enable_msr(); if (max_level >= 0x7 && debug) { int has_sgx; ecx = 0; __cpuid_count(0x7, 0, eax, ebx, ecx, edx); has_sgx = ebx & (1 << 2); fprintf(outf, "CPUID(7): %sSGX\n", has_sgx ? "" : "No-"); if (has_sgx) decode_feature_control_msr(); } if (max_level >= 0x15) { unsigned int eax_crystal; unsigned int ebx_tsc; /* * CPUID 15H TSC/Crystal ratio, possibly Crystal Hz */ eax_crystal = ebx_tsc = crystal_hz = edx = 0; __cpuid(0x15, eax_crystal, ebx_tsc, crystal_hz, edx); if (ebx_tsc != 0) { if (debug && (ebx != 0)) fprintf(outf, "CPUID(0x15): eax_crystal: %d ebx_tsc: %d ecx_crystal_hz: %d\n", eax_crystal, ebx_tsc, crystal_hz); if (crystal_hz == 0) switch(model) { case 0x4E: /* SKL */ case 0x5E: /* SKL */ case 0x8E: /* KBL */ case 0x9E: /* KBL */ crystal_hz = 24000000; /* 24.0 MHz */ break; case 0x55: /* SKX */ crystal_hz = 25000000; /* 25.0 MHz */ break; case 0x5C: /* BXT */ crystal_hz = 19200000; /* 19.2 MHz */ break; default: crystal_hz = 0; } if (crystal_hz) { tsc_hz = (unsigned long long) crystal_hz * ebx_tsc / eax_crystal; if (debug) fprintf(outf, "TSC: %lld MHz (%d Hz * %d / %d / 1000000)\n", tsc_hz / 1000000, crystal_hz, ebx_tsc, eax_crystal); } } } if (max_level >= 0x16) { unsigned int base_mhz, max_mhz, bus_mhz, edx; /* * CPUID 16H Base MHz, Max MHz, Bus MHz */ base_mhz = max_mhz = bus_mhz = edx = 0; __cpuid(0x16, base_mhz, max_mhz, bus_mhz, edx); if (debug) fprintf(outf, "CPUID(0x16): base_mhz: %d max_mhz: %d bus_mhz: %d\n", base_mhz, max_mhz, bus_mhz); } if (has_aperf) aperf_mperf_multiplier = get_aperf_mperf_multiplier(family, model); do_nhm_platform_info = do_nhm_cstates = do_smi = probe_nhm_msrs(family, model); do_snb_cstates = has_snb_msrs(family, model); do_irtl_snb = has_snb_msrs(family, model); do_pc2 = do_snb_cstates && (pkg_cstate_limit >= PCL__2); do_pc3 = (pkg_cstate_limit >= PCL__3); do_pc6 = (pkg_cstate_limit >= PCL__6); do_pc7 = do_snb_cstates && (pkg_cstate_limit >= PCL__7); do_c8_c9_c10 = has_hsw_msrs(family, model); do_irtl_hsw = has_hsw_msrs(family, model); do_skl_residency = has_skl_msrs(family, model); do_slm_cstates = is_slm(family, model); do_knl_cstates = is_knl(family, model); if (debug) decode_misc_pwr_mgmt_msr(); rapl_probe(family, model); perf_limit_reasons_probe(family, model); if (debug) dump_cstate_pstate_config_info(family, model); if (has_skl_msrs(family, model)) calculate_tsc_tweak(); do_gfx_rc6_ms = !access("/sys/class/drm/card0/power/rc6_residency_ms", R_OK); do_gfx_mhz = !access("/sys/class/graphics/fb0/device/drm/card0/gt_cur_freq_mhz", R_OK); return; } void help() { fprintf(outf, "Usage: turbostat [OPTIONS][(--interval seconds) | COMMAND ...]\n" "\n" "Turbostat forks the specified COMMAND and prints statistics\n" "when COMMAND completes.\n" "If no COMMAND is specified, turbostat wakes every 5-seconds\n" "to print statistics, until interrupted.\n" "--debug run in \"debug\" mode\n" "--interval sec Override default 5-second measurement interval\n" "--help print this help message\n" "--counter msr print 32-bit counter at address \"msr\"\n" "--Counter msr print 64-bit Counter at address \"msr\"\n" "--out file create or truncate \"file\" for all output\n" "--msr msr print 32-bit value at address \"msr\"\n" "--MSR msr print 64-bit Value at address \"msr\"\n" "--version print version information\n" "\n" "For more help, run \"man turbostat\"\n"); } /* * in /dev/cpu/ return success for names that are numbers * ie. filter out ".", "..", "microcode". */ int dir_filter(const struct dirent *dirp) { if (isdigit(dirp->d_name[0])) return 1; else return 0; } int open_dev_cpu_msr(int dummy1) { return 0; } void topology_probe() { int i; int max_core_id = 0; int max_package_id = 0; int max_siblings = 0; struct cpu_topology { int core_id; int physical_package_id; } *cpus; /* Initialize num_cpus, max_cpu_num */ topo.num_cpus = 0; topo.max_cpu_num = 0; for_all_proc_cpus(count_cpus); if (!summary_only && topo.num_cpus > 1) show_cpu = 1; if (debug > 1) fprintf(outf, "num_cpus %d max_cpu_num %d\n", topo.num_cpus, topo.max_cpu_num); cpus = calloc(1, (topo.max_cpu_num + 1) * sizeof(struct cpu_topology)); if (cpus == NULL) err(1, "calloc cpus"); /* * Allocate and initialize cpu_present_set */ cpu_present_set = CPU_ALLOC((topo.max_cpu_num + 1)); if (cpu_present_set == NULL) err(3, "CPU_ALLOC"); cpu_present_setsize = CPU_ALLOC_SIZE((topo.max_cpu_num + 1)); CPU_ZERO_S(cpu_present_setsize, cpu_present_set); for_all_proc_cpus(mark_cpu_present); /* * Allocate and initialize cpu_affinity_set */ cpu_affinity_set = CPU_ALLOC((topo.max_cpu_num + 1)); if (cpu_affinity_set == NULL) err(3, "CPU_ALLOC"); cpu_affinity_setsize = CPU_ALLOC_SIZE((topo.max_cpu_num + 1)); CPU_ZERO_S(cpu_affinity_setsize, cpu_affinity_set); /* * For online cpus * find max_core_id, max_package_id */ for (i = 0; i <= topo.max_cpu_num; ++i) { int siblings; if (cpu_is_not_present(i)) { if (debug > 1) fprintf(outf, "cpu%d NOT PRESENT\n", i); continue; } cpus[i].core_id = get_core_id(i); if (cpus[i].core_id > max_core_id) max_core_id = cpus[i].core_id; cpus[i].physical_package_id = get_physical_package_id(i); if (cpus[i].physical_package_id > max_package_id) max_package_id = cpus[i].physical_package_id; siblings = get_num_ht_siblings(i); if (siblings > max_siblings) max_siblings = siblings; if (debug > 1) fprintf(outf, "cpu %d pkg %d core %d\n", i, cpus[i].physical_package_id, cpus[i].core_id); } topo.num_cores_per_pkg = max_core_id + 1; if (debug > 1) fprintf(outf, "max_core_id %d, sizing for %d cores per package\n", max_core_id, topo.num_cores_per_pkg); if (debug && !summary_only && topo.num_cores_per_pkg > 1) show_core = 1; topo.num_packages = max_package_id + 1; if (debug > 1) fprintf(outf, "max_package_id %d, sizing for %d packages\n", max_package_id, topo.num_packages); if (debug && !summary_only && topo.num_packages > 1) show_pkg = 1; topo.num_threads_per_core = max_siblings; if (debug > 1) fprintf(outf, "max_siblings %d\n", max_siblings); free(cpus); } void allocate_counters(struct thread_data **t, struct core_data **c, struct pkg_data **p) { int i; *t = calloc(topo.num_threads_per_core * topo.num_cores_per_pkg * topo.num_packages, sizeof(struct thread_data)); if (*t == NULL) goto error; for (i = 0; i < topo.num_threads_per_core * topo.num_cores_per_pkg * topo.num_packages; i++) (*t)[i].cpu_id = -1; *c = calloc(topo.num_cores_per_pkg * topo.num_packages, sizeof(struct core_data)); if (*c == NULL) goto error; for (i = 0; i < topo.num_cores_per_pkg * topo.num_packages; i++) (*c)[i].core_id = -1; *p = calloc(topo.num_packages, sizeof(struct pkg_data)); if (*p == NULL) goto error; for (i = 0; i < topo.num_packages; i++) (*p)[i].package_id = i; return; error: err(1, "calloc counters"); } /* * init_counter() * * set cpu_id, core_num, pkg_num * set FIRST_THREAD_IN_CORE and FIRST_CORE_IN_PACKAGE * * increment topo.num_cores when 1st core in pkg seen */ void init_counter(struct thread_data *thread_base, struct core_data *core_base, struct pkg_data *pkg_base, int thread_num, int core_num, int pkg_num, int cpu_id) { struct thread_data *t; struct core_data *c; struct pkg_data *p; t = GET_THREAD(thread_base, thread_num, core_num, pkg_num); c = GET_CORE(core_base, core_num, pkg_num); p = GET_PKG(pkg_base, pkg_num); t->cpu_id = cpu_id; if (thread_num == 0) { t->flags |= CPU_IS_FIRST_THREAD_IN_CORE; if (cpu_is_first_core_in_package(cpu_id)) t->flags |= CPU_IS_FIRST_CORE_IN_PACKAGE; } c->core_id = core_num; p->package_id = pkg_num; } int initialize_counters(int cpu_id) { int my_thread_id, my_core_id, my_package_id; my_package_id = get_physical_package_id(cpu_id); my_core_id = get_core_id(cpu_id); my_thread_id = get_cpu_position_in_core(cpu_id); if (!my_thread_id) topo.num_cores++; init_counter(EVEN_COUNTERS, my_thread_id, my_core_id, my_package_id, cpu_id); init_counter(ODD_COUNTERS, my_thread_id, my_core_id, my_package_id, cpu_id); return 0; } void allocate_output_buffer() { output_buffer = calloc(1, (1 + topo.num_cpus) * 1024); outp = output_buffer; if (outp == NULL) err(-1, "calloc output buffer"); } void allocate_fd_percpu(void) { fd_percpu = calloc(topo.max_cpu_num + 1, sizeof(int)); if (fd_percpu == NULL) err(-1, "calloc fd_percpu"); } void allocate_irq_buffers(void) { irq_column_2_cpu = calloc(topo.num_cpus, sizeof(int)); if (irq_column_2_cpu == NULL) err(-1, "calloc %d", topo.num_cpus); irqs_per_cpu = calloc(topo.max_cpu_num + 1, sizeof(int)); if (irqs_per_cpu == NULL) err(-1, "calloc %d", topo.max_cpu_num + 1); } void setup_all_buffers(void) { topology_probe(); allocate_irq_buffers(); allocate_fd_percpu(); allocate_counters(&thread_even, &core_even, &package_even); allocate_counters(&thread_odd, &core_odd, &package_odd); allocate_output_buffer(); for_all_proc_cpus(initialize_counters); } void set_base_cpu(void) { base_cpu = sched_getcpu(); if (base_cpu < 0) err(-ENODEV, "No valid cpus found"); if (debug > 1) fprintf(outf, "base_cpu = %d\n", base_cpu); } void turbostat_init() { setup_all_buffers(); set_base_cpu(); check_dev_msr(); check_permissions(); process_cpuid(); if (debug) for_all_cpus(print_hwp, ODD_COUNTERS); if (debug) for_all_cpus(print_epb, ODD_COUNTERS); if (debug) for_all_cpus(print_perf_limit, ODD_COUNTERS); if (debug) for_all_cpus(print_rapl, ODD_COUNTERS); for_all_cpus(set_temperature_target, ODD_COUNTERS); if (debug) for_all_cpus(print_thermal, ODD_COUNTERS); if (debug && do_irtl_snb) print_irtl(); } int fork_it(char **argv) { pid_t child_pid; int status; status = for_all_cpus(get_counters, EVEN_COUNTERS); if (status) exit(status); /* clear affinity side-effect of get_counters() */ sched_setaffinity(0, cpu_present_setsize, cpu_present_set); gettimeofday(&tv_even, (struct timezone *)NULL); child_pid = fork(); if (!child_pid) { /* child */ execvp(argv[0], argv); } else { /* parent */ if (child_pid == -1) err(1, "fork"); signal(SIGINT, SIG_IGN); signal(SIGQUIT, SIG_IGN); if (waitpid(child_pid, &status, 0) == -1) err(status, "waitpid"); } /* * n.b. fork_it() does not check for errors from for_all_cpus() * because re-starting is problematic when forking */ for_all_cpus(get_counters, ODD_COUNTERS); gettimeofday(&tv_odd, (struct timezone *)NULL); timersub(&tv_odd, &tv_even, &tv_delta); if (for_all_cpus_2(delta_cpu, ODD_COUNTERS, EVEN_COUNTERS)) fprintf(outf, "%s: Counter reset detected\n", progname); else { compute_average(EVEN_COUNTERS); format_all_counters(EVEN_COUNTERS); } fprintf(outf, "%.6f sec\n", tv_delta.tv_sec + tv_delta.tv_usec/1000000.0); flush_output_stderr(); return status; } int get_and_dump_counters(void) { int status; status = for_all_cpus(get_counters, ODD_COUNTERS); if (status) return status; status = for_all_cpus(dump_counters, ODD_COUNTERS); if (status) return status; flush_output_stdout(); return status; } void print_version() { fprintf(outf, "turbostat version 4.14 22 Apr 2016" " - Len Brown \n"); } void cmdline(int argc, char **argv) { int opt; int option_index = 0; static struct option long_options[] = { {"Counter", required_argument, 0, 'C'}, {"counter", required_argument, 0, 'c'}, {"Dump", no_argument, 0, 'D'}, {"debug", no_argument, 0, 'd'}, {"interval", required_argument, 0, 'i'}, {"help", no_argument, 0, 'h'}, {"Joules", no_argument, 0, 'J'}, {"MSR", required_argument, 0, 'M'}, {"msr", required_argument, 0, 'm'}, {"out", required_argument, 0, 'o'}, {"Package", no_argument, 0, 'p'}, {"processor", no_argument, 0, 'p'}, {"Summary", no_argument, 0, 'S'}, {"TCC", required_argument, 0, 'T'}, {"version", no_argument, 0, 'v' }, {0, 0, 0, 0 } }; progname = argv[0]; while ((opt = getopt_long_only(argc, argv, "+C:c:Ddhi:JM:m:o:PpST:v", long_options, &option_index)) != -1) { switch (opt) { case 'C': sscanf(optarg, "%x", &extra_delta_offset64); break; case 'c': sscanf(optarg, "%x", &extra_delta_offset32); break; case 'D': dump_only++; break; case 'd': debug++; break; case 'h': default: help(); exit(1); case 'i': { double interval = strtod(optarg, NULL); if (interval < 0.001) { fprintf(outf, "interval %f seconds is too small\n", interval); exit(2); } interval_ts.tv_sec = interval; interval_ts.tv_nsec = (interval - interval_ts.tv_sec) * 1000000000; } break; case 'J': rapl_joules++; break; case 'M': sscanf(optarg, "%x", &extra_msr_offset64); break; case 'm': sscanf(optarg, "%x", &extra_msr_offset32); break; case 'o': outf = fopen_or_die(optarg, "w"); break; case 'P': show_pkg_only++; break; case 'p': show_core_only++; break; case 'S': summary_only++; break; case 'T': tcc_activation_temp_override = atoi(optarg); break; case 'v': print_version(); exit(0); break; } } } int main(int argc, char **argv) { outf = stderr; cmdline(argc, argv); if (debug) print_version(); turbostat_init(); /* dump counters and exit */ if (dump_only) return get_and_dump_counters(); /* * if any params left, it must be a command to fork */ if (argc - optind) return fork_it(argv + optind); else turbostat_loop(); return 0; }