From ceea5e3771ed2378668455fa21861bead7504df5 Mon Sep 17 00:00:00 2001 From: John Stultz Date: Thu, 8 Jun 2017 16:44:20 -0700 Subject: time: Fix clock->read(clock) race around clocksource changes In tests, which excercise switching of clocksources, a NULL pointer dereference can be observed on AMR64 platforms in the clocksource read() function: u64 clocksource_mmio_readl_down(struct clocksource *c) { return ~(u64)readl_relaxed(to_mmio_clksrc(c)->reg) & c->mask; } This is called from the core timekeeping code via: cycle_now = tkr->read(tkr->clock); tkr->read is the cached tkr->clock->read() function pointer. When the clocksource is changed then tkr->clock and tkr->read are updated sequentially. The code above results in a sequential load operation of tkr->read and tkr->clock as well. If the store to tkr->clock hits between the loads of tkr->read and tkr->clock, then the old read() function is called with the new clock pointer. As a consequence the read() function dereferences a different data structure and the resulting 'reg' pointer can point anywhere including NULL. This problem was introduced when the timekeeping code was switched over to use struct tk_read_base. Before that, it was theoretically possible as well when the compiler decided to reload clock in the code sequence: now = tk->clock->read(tk->clock); Add a helper function which avoids the issue by reading tk_read_base->clock once into a local variable clk and then issue the read function via clk->read(clk). This guarantees that the read() function always gets the proper clocksource pointer handed in. Since there is now no use for the tkr.read pointer, this patch also removes it, and to address stopping the fast timekeeper during suspend/resume, it introduces a dummy clocksource to use rather then just a dummy read function. Signed-off-by: John Stultz Acked-by: Ingo Molnar Cc: Prarit Bhargava Cc: Richard Cochran Cc: Stephen Boyd Cc: stable Cc: Miroslav Lichvar Cc: Daniel Mentz Link: http://lkml.kernel.org/r/1496965462-20003-2-git-send-email-john.stultz@linaro.org Signed-off-by: Thomas Gleixner --- include/linux/timekeeper_internal.h | 1 - 1 file changed, 1 deletion(-) (limited to 'include') diff --git a/include/linux/timekeeper_internal.h b/include/linux/timekeeper_internal.h index 110f4532188c..e9834ada4d0c 100644 --- a/include/linux/timekeeper_internal.h +++ b/include/linux/timekeeper_internal.h @@ -29,7 +29,6 @@ */ struct tk_read_base { struct clocksource *clock; - u64 (*read)(struct clocksource *cs); u64 mask; u64 cycle_last; u32 mult; -- cgit v1.2.3 From 3d88d56c5873f6eebe23e05c3da701960146b801 Mon Sep 17 00:00:00 2001 From: John Stultz Date: Thu, 8 Jun 2017 16:44:21 -0700 Subject: time: Fix CLOCK_MONOTONIC_RAW sub-nanosecond accounting Due to how the MONOTONIC_RAW accumulation logic was handled, there is the potential for a 1ns discontinuity when we do accumulations. This small discontinuity has for the most part gone un-noticed, but since ARM64 enabled CLOCK_MONOTONIC_RAW in their vDSO clock_gettime implementation, we've seen failures with the inconsistency-check test in kselftest. This patch addresses the issue by using the same sub-ns accumulation handling that CLOCK_MONOTONIC uses, which avoids the issue for in-kernel users. Since the ARM64 vDSO implementation has its own clock_gettime calculation logic, this patch reduces the frequency of errors, but failures are still seen. The ARM64 vDSO will need to be updated to include the sub-nanosecond xtime_nsec values in its calculation for this issue to be completely fixed. Signed-off-by: John Stultz Tested-by: Daniel Mentz Cc: Prarit Bhargava Cc: Kevin Brodsky Cc: Richard Cochran Cc: Stephen Boyd Cc: Will Deacon Cc: "stable #4 . 8+" Cc: Miroslav Lichvar Link: http://lkml.kernel.org/r/1496965462-20003-3-git-send-email-john.stultz@linaro.org Signed-off-by: Thomas Gleixner --- include/linux/timekeeper_internal.h | 4 ++-- kernel/time/timekeeping.c | 19 ++++++++++--------- 2 files changed, 12 insertions(+), 11 deletions(-) (limited to 'include') diff --git a/include/linux/timekeeper_internal.h b/include/linux/timekeeper_internal.h index e9834ada4d0c..f7043ccca81c 100644 --- a/include/linux/timekeeper_internal.h +++ b/include/linux/timekeeper_internal.h @@ -57,7 +57,7 @@ struct tk_read_base { * interval. * @xtime_remainder: Shifted nano seconds left over when rounding * @cycle_interval - * @raw_interval: Raw nano seconds accumulated per NTP interval. + * @raw_interval: Shifted raw nano seconds accumulated per NTP interval. * @ntp_error: Difference between accumulated time and NTP time in ntp * shifted nano seconds. * @ntp_error_shift: Shift conversion between clock shifted nano seconds and @@ -99,7 +99,7 @@ struct timekeeper { u64 cycle_interval; u64 xtime_interval; s64 xtime_remainder; - u32 raw_interval; + u64 raw_interval; /* The ntp_tick_length() value currently being used. * This cached copy ensures we consistently apply the tick * length for an entire tick, as ntp_tick_length may change diff --git a/kernel/time/timekeeping.c b/kernel/time/timekeeping.c index eff94cb8e89e..b602c48cb841 100644 --- a/kernel/time/timekeeping.c +++ b/kernel/time/timekeeping.c @@ -280,7 +280,7 @@ static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock) /* Go back from cycles -> shifted ns */ tk->xtime_interval = interval * clock->mult; tk->xtime_remainder = ntpinterval - tk->xtime_interval; - tk->raw_interval = (interval * clock->mult) >> clock->shift; + tk->raw_interval = interval * clock->mult; /* if changing clocks, convert xtime_nsec shift units */ if (old_clock) { @@ -1996,7 +1996,7 @@ static u64 logarithmic_accumulation(struct timekeeper *tk, u64 offset, u32 shift, unsigned int *clock_set) { u64 interval = tk->cycle_interval << shift; - u64 raw_nsecs; + u64 snsec_per_sec; /* If the offset is smaller than a shifted interval, do nothing */ if (offset < interval) @@ -2011,14 +2011,15 @@ static u64 logarithmic_accumulation(struct timekeeper *tk, u64 offset, *clock_set |= accumulate_nsecs_to_secs(tk); /* Accumulate raw time */ - raw_nsecs = (u64)tk->raw_interval << shift; - raw_nsecs += tk->raw_time.tv_nsec; - if (raw_nsecs >= NSEC_PER_SEC) { - u64 raw_secs = raw_nsecs; - raw_nsecs = do_div(raw_secs, NSEC_PER_SEC); - tk->raw_time.tv_sec += raw_secs; + tk->tkr_raw.xtime_nsec += (u64)tk->raw_time.tv_nsec << tk->tkr_raw.shift; + tk->tkr_raw.xtime_nsec += tk->raw_interval << shift; + snsec_per_sec = (u64)NSEC_PER_SEC << tk->tkr_raw.shift; + while (tk->tkr_raw.xtime_nsec >= snsec_per_sec) { + tk->tkr_raw.xtime_nsec -= snsec_per_sec; + tk->raw_time.tv_sec++; } - tk->raw_time.tv_nsec = raw_nsecs; + tk->raw_time.tv_nsec = tk->tkr_raw.xtime_nsec >> tk->tkr_raw.shift; + tk->tkr_raw.xtime_nsec -= (u64)tk->raw_time.tv_nsec << tk->tkr_raw.shift; /* Accumulate error between NTP and clock interval */ tk->ntp_error += tk->ntp_tick << shift; -- cgit v1.2.3