summaryrefslogtreecommitdiff
path: root/drivers/net/ethernet/freescale/fec_ptp.c
blob: a4eb6edb850adda55df0b3b5eedb26b570be06f8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
// SPDX-License-Identifier: GPL-2.0
/*
 * Fast Ethernet Controller (ENET) PTP driver for MX6x.
 *
 * Copyright (C) 2012 Freescale Semiconductor, Inc.
 */

#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/string.h>
#include <linux/ptrace.h>
#include <linux/errno.h>
#include <linux/ioport.h>
#include <linux/slab.h>
#include <linux/interrupt.h>
#include <linux/pci.h>
#include <linux/delay.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/skbuff.h>
#include <linux/spinlock.h>
#include <linux/workqueue.h>
#include <linux/bitops.h>
#include <linux/io.h>
#include <linux/irq.h>
#include <linux/clk.h>
#include <linux/platform_device.h>
#include <linux/phy.h>
#include <linux/fec.h>
#include <linux/of.h>
#include <linux/of_gpio.h>
#include <linux/of_net.h>

#include "fec.h"

/* FEC 1588 register bits */
#define FEC_T_CTRL_SLAVE                0x00002000
#define FEC_T_CTRL_CAPTURE              0x00000800
#define FEC_T_CTRL_RESTART              0x00000200
#define FEC_T_CTRL_PERIOD_RST           0x00000030
#define FEC_T_CTRL_PERIOD_EN		0x00000010
#define FEC_T_CTRL_ENABLE               0x00000001

#define FEC_T_INC_MASK                  0x0000007f
#define FEC_T_INC_OFFSET                0
#define FEC_T_INC_CORR_MASK             0x00007f00
#define FEC_T_INC_CORR_OFFSET           8

#define FEC_T_CTRL_PINPER		0x00000080
#define FEC_T_TF0_MASK			0x00000001
#define FEC_T_TF0_OFFSET		0
#define FEC_T_TF1_MASK			0x00000002
#define FEC_T_TF1_OFFSET		1
#define FEC_T_TF2_MASK			0x00000004
#define FEC_T_TF2_OFFSET		2
#define FEC_T_TF3_MASK			0x00000008
#define FEC_T_TF3_OFFSET		3
#define FEC_T_TDRE_MASK			0x00000001
#define FEC_T_TDRE_OFFSET		0
#define FEC_T_TMODE_MASK		0x0000003C
#define FEC_T_TMODE_OFFSET		2
#define FEC_T_TIE_MASK			0x00000040
#define FEC_T_TIE_OFFSET		6
#define FEC_T_TF_MASK			0x00000080
#define FEC_T_TF_OFFSET			7

#define FEC_ATIME_CTRL		0x400
#define FEC_ATIME		0x404
#define FEC_ATIME_EVT_OFFSET	0x408
#define FEC_ATIME_EVT_PERIOD	0x40c
#define FEC_ATIME_CORR		0x410
#define FEC_ATIME_INC		0x414
#define FEC_TS_TIMESTAMP	0x418

#define FEC_TGSR		0x604
#define FEC_TCSR(n)		(0x608 + n * 0x08)
#define FEC_TCCR(n)		(0x60C + n * 0x08)
#define MAX_TIMER_CHANNEL	3
#define FEC_TMODE_TOGGLE	0x05
#define FEC_HIGH_PULSE		0x0F

#define FEC_CC_MULT	(1 << 31)
#define FEC_COUNTER_PERIOD	(1 << 31)
#define PPS_OUPUT_RELOAD_PERIOD	NSEC_PER_SEC
#define FEC_CHANNLE_0		0
#define DEFAULT_PPS_CHANNEL	FEC_CHANNLE_0

#define FEC_PTP_MAX_NSEC_PERIOD		4000000000ULL
#define FEC_PTP_MAX_NSEC_COUNTER	0x80000000ULL

/**
 * fec_ptp_read - read raw cycle counter (to be used by time counter)
 * @cc: the cyclecounter structure
 *
 * this function reads the cyclecounter registers and is called by the
 * cyclecounter structure used to construct a ns counter from the
 * arbitrary fixed point registers
 */
static u64 fec_ptp_read(const struct cyclecounter *cc)
{
	struct fec_enet_private *fep =
		container_of(cc, struct fec_enet_private, cc);
	u32 tempval;

	tempval = readl(fep->hwp + FEC_ATIME_CTRL);
	tempval |= FEC_T_CTRL_CAPTURE;
	writel(tempval, fep->hwp + FEC_ATIME_CTRL);

	if (fep->quirks & FEC_QUIRK_BUG_CAPTURE)
		udelay(1);

	return readl(fep->hwp + FEC_ATIME);
}

/**
 * fec_ptp_enable_pps
 * @fep: the fec_enet_private structure handle
 * @enable: enable the channel pps output
 *
 * This function enble the PPS ouput on the timer channel.
 */
static int fec_ptp_enable_pps(struct fec_enet_private *fep, uint enable)
{
	unsigned long flags;
	u32 val, tempval;
	struct timespec64 ts;
	u64 ns;

	spin_lock_irqsave(&fep->tmreg_lock, flags);

	if (fep->pps_enable == enable) {
		spin_unlock_irqrestore(&fep->tmreg_lock, flags);
		return 0;
	}

	if (enable) {
		/* clear capture or output compare interrupt status if have.
		 */
		writel(FEC_T_TF_MASK, fep->hwp + FEC_TCSR(fep->pps_channel));

		/* It is recommended to double check the TMODE field in the
		 * TCSR register to be cleared before the first compare counter
		 * is written into TCCR register. Just add a double check.
		 */
		val = readl(fep->hwp + FEC_TCSR(fep->pps_channel));
		do {
			val &= ~(FEC_T_TMODE_MASK);
			writel(val, fep->hwp + FEC_TCSR(fep->pps_channel));
			val = readl(fep->hwp + FEC_TCSR(fep->pps_channel));
		} while (val & FEC_T_TMODE_MASK);

		/* Dummy read counter to update the counter */
		timecounter_read(&fep->tc);
		/* We want to find the first compare event in the next
		 * second point. So we need to know what the ptp time
		 * is now and how many nanoseconds is ahead to get next second.
		 * The remaining nanosecond ahead before the next second would be
		 * NSEC_PER_SEC - ts.tv_nsec. Add the remaining nanoseconds
		 * to current timer would be next second.
		 */
		tempval = fec_ptp_read(&fep->cc);
		/* Convert the ptp local counter to 1588 timestamp */
		ns = timecounter_cyc2time(&fep->tc, tempval);
		ts = ns_to_timespec64(ns);

		/* The tempval is  less than 3 seconds, and  so val is less than
		 * 4 seconds. No overflow for 32bit calculation.
		 */
		val = NSEC_PER_SEC - (u32)ts.tv_nsec + tempval;

		/* Need to consider the situation that the current time is
		 * very close to the second point, which means NSEC_PER_SEC
		 * - ts.tv_nsec is close to be zero(For example 20ns); Since the timer
		 * is still running when we calculate the first compare event, it is
		 * possible that the remaining nanoseonds run out before the compare
		 * counter is calculated and written into TCCR register. To avoid
		 * this possibility, we will set the compare event to be the next
		 * of next second. The current setting is 31-bit timer and wrap
		 * around over 2 seconds. So it is okay to set the next of next
		 * seond for the timer.
		 */
		val += NSEC_PER_SEC;

		/* We add (2 * NSEC_PER_SEC - (u32)ts.tv_nsec) to current
		 * ptp counter, which maybe cause 32-bit wrap. Since the
		 * (NSEC_PER_SEC - (u32)ts.tv_nsec) is less than 2 second.
		 * We can ensure the wrap will not cause issue. If the offset
		 * is bigger than fep->cc.mask would be a error.
		 */
		val &= fep->cc.mask;
		writel(val, fep->hwp + FEC_TCCR(fep->pps_channel));

		/* Calculate the second the compare event timestamp */
		fep->next_counter = (val + fep->reload_period) & fep->cc.mask;

		/* * Enable compare event when overflow */
		val = readl(fep->hwp + FEC_ATIME_CTRL);
		val |= FEC_T_CTRL_PINPER;
		writel(val, fep->hwp + FEC_ATIME_CTRL);

		/* Compare channel setting. */
		val = readl(fep->hwp + FEC_TCSR(fep->pps_channel));
		val |= (1 << FEC_T_TF_OFFSET | 1 << FEC_T_TIE_OFFSET);
		val &= ~(1 << FEC_T_TDRE_OFFSET);
		val &= ~(FEC_T_TMODE_MASK);
		val |= (FEC_HIGH_PULSE << FEC_T_TMODE_OFFSET);
		writel(val, fep->hwp + FEC_TCSR(fep->pps_channel));

		/* Write the second compare event timestamp and calculate
		 * the third timestamp. Refer the TCCR register detail in the spec.
		 */
		writel(fep->next_counter, fep->hwp + FEC_TCCR(fep->pps_channel));
		fep->next_counter = (fep->next_counter + fep->reload_period) & fep->cc.mask;
	} else {
		writel(0, fep->hwp + FEC_TCSR(fep->pps_channel));
	}

	fep->pps_enable = enable;
	spin_unlock_irqrestore(&fep->tmreg_lock, flags);

	return 0;
}

static int fec_ptp_pps_perout(struct fec_enet_private *fep)
{
	u32 compare_val, ptp_hc, temp_val;
	u64 curr_time;
	unsigned long flags;

	spin_lock_irqsave(&fep->tmreg_lock, flags);

	/* Update time counter */
	timecounter_read(&fep->tc);

	/* Get the current ptp hardware time counter */
	ptp_hc = fec_ptp_read(&fep->cc);

	/* Convert the ptp local counter to 1588 timestamp */
	curr_time = timecounter_cyc2time(&fep->tc, ptp_hc);

	/* If the pps start time less than current time add 100ms, just return.
	 * Because the software might not able to set the comparison time into
	 * the FEC_TCCR register in time and missed the start time.
	 */
	if (fep->perout_stime < curr_time + 100 * NSEC_PER_MSEC) {
		dev_err(&fep->pdev->dev, "Current time is too close to the start time!\n");
		spin_unlock_irqrestore(&fep->tmreg_lock, flags);
		return -1;
	}

	compare_val = fep->perout_stime - curr_time + ptp_hc;
	compare_val &= fep->cc.mask;

	writel(compare_val, fep->hwp + FEC_TCCR(fep->pps_channel));
	fep->next_counter = (compare_val + fep->reload_period) & fep->cc.mask;

	/* Enable compare event when overflow */
	temp_val = readl(fep->hwp + FEC_ATIME_CTRL);
	temp_val |= FEC_T_CTRL_PINPER;
	writel(temp_val, fep->hwp + FEC_ATIME_CTRL);

	/* Compare channel setting. */
	temp_val = readl(fep->hwp + FEC_TCSR(fep->pps_channel));
	temp_val |= (1 << FEC_T_TF_OFFSET | 1 << FEC_T_TIE_OFFSET);
	temp_val &= ~(1 << FEC_T_TDRE_OFFSET);
	temp_val &= ~(FEC_T_TMODE_MASK);
	temp_val |= (FEC_TMODE_TOGGLE << FEC_T_TMODE_OFFSET);
	writel(temp_val, fep->hwp + FEC_TCSR(fep->pps_channel));

	/* Write the second compare event timestamp and calculate
	 * the third timestamp. Refer the TCCR register detail in the spec.
	 */
	writel(fep->next_counter, fep->hwp + FEC_TCCR(fep->pps_channel));
	fep->next_counter = (fep->next_counter + fep->reload_period) & fep->cc.mask;
	spin_unlock_irqrestore(&fep->tmreg_lock, flags);

	return 0;
}

static enum hrtimer_restart fec_ptp_pps_perout_handler(struct hrtimer *timer)
{
	struct fec_enet_private *fep = container_of(timer,
					struct fec_enet_private, perout_timer);

	fec_ptp_pps_perout(fep);

	return HRTIMER_NORESTART;
}

/**
 * fec_ptp_start_cyclecounter - create the cycle counter from hw
 * @ndev: network device
 *
 * this function initializes the timecounter and cyclecounter
 * structures for use in generated a ns counter from the arbitrary
 * fixed point cycles registers in the hardware.
 */
void fec_ptp_start_cyclecounter(struct net_device *ndev)
{
	struct fec_enet_private *fep = netdev_priv(ndev);
	unsigned long flags;
	int inc;

	inc = 1000000000 / fep->cycle_speed;

	/* grab the ptp lock */
	spin_lock_irqsave(&fep->tmreg_lock, flags);

	/* 1ns counter */
	writel(inc << FEC_T_INC_OFFSET, fep->hwp + FEC_ATIME_INC);

	/* use 31-bit timer counter */
	writel(FEC_COUNTER_PERIOD, fep->hwp + FEC_ATIME_EVT_PERIOD);

	writel(FEC_T_CTRL_ENABLE | FEC_T_CTRL_PERIOD_RST,
		fep->hwp + FEC_ATIME_CTRL);

	memset(&fep->cc, 0, sizeof(fep->cc));
	fep->cc.read = fec_ptp_read;
	fep->cc.mask = CLOCKSOURCE_MASK(31);
	fep->cc.shift = 31;
	fep->cc.mult = FEC_CC_MULT;

	/* reset the ns time counter */
	timecounter_init(&fep->tc, &fep->cc, 0);

	spin_unlock_irqrestore(&fep->tmreg_lock, flags);
}

/**
 * fec_ptp_adjfine - adjust ptp cycle frequency
 * @ptp: the ptp clock structure
 * @scaled_ppm: scaled parts per million adjustment from base
 *
 * Adjust the frequency of the ptp cycle counter by the
 * indicated amount from the base frequency.
 *
 * Scaled parts per million is ppm with a 16-bit binary fractional field.
 *
 * Because ENET hardware frequency adjust is complex,
 * using software method to do that.
 */
static int fec_ptp_adjfine(struct ptp_clock_info *ptp, long scaled_ppm)
{
	s32 ppb = scaled_ppm_to_ppb(scaled_ppm);
	unsigned long flags;
	int neg_adj = 0;
	u32 i, tmp;
	u32 corr_inc, corr_period;
	u32 corr_ns;
	u64 lhs, rhs;

	struct fec_enet_private *fep =
	    container_of(ptp, struct fec_enet_private, ptp_caps);

	if (ppb == 0)
		return 0;

	if (ppb < 0) {
		ppb = -ppb;
		neg_adj = 1;
	}

	/* In theory, corr_inc/corr_period = ppb/NSEC_PER_SEC;
	 * Try to find the corr_inc  between 1 to fep->ptp_inc to
	 * meet adjustment requirement.
	 */
	lhs = NSEC_PER_SEC;
	rhs = (u64)ppb * (u64)fep->ptp_inc;
	for (i = 1; i <= fep->ptp_inc; i++) {
		if (lhs >= rhs) {
			corr_inc = i;
			corr_period = div_u64(lhs, rhs);
			break;
		}
		lhs += NSEC_PER_SEC;
	}
	/* Not found? Set it to high value - double speed
	 * correct in every clock step.
	 */
	if (i > fep->ptp_inc) {
		corr_inc = fep->ptp_inc;
		corr_period = 1;
	}

	if (neg_adj)
		corr_ns = fep->ptp_inc - corr_inc;
	else
		corr_ns = fep->ptp_inc + corr_inc;

	spin_lock_irqsave(&fep->tmreg_lock, flags);

	tmp = readl(fep->hwp + FEC_ATIME_INC) & FEC_T_INC_MASK;
	tmp |= corr_ns << FEC_T_INC_CORR_OFFSET;
	writel(tmp, fep->hwp + FEC_ATIME_INC);
	corr_period = corr_period > 1 ? corr_period - 1 : corr_period;
	writel(corr_period, fep->hwp + FEC_ATIME_CORR);
	/* dummy read to update the timer. */
	timecounter_read(&fep->tc);

	spin_unlock_irqrestore(&fep->tmreg_lock, flags);

	return 0;
}

/**
 * fec_ptp_adjtime
 * @ptp: the ptp clock structure
 * @delta: offset to adjust the cycle counter by
 *
 * adjust the timer by resetting the timecounter structure.
 */
static int fec_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
{
	struct fec_enet_private *fep =
	    container_of(ptp, struct fec_enet_private, ptp_caps);
	unsigned long flags;

	spin_lock_irqsave(&fep->tmreg_lock, flags);
	timecounter_adjtime(&fep->tc, delta);
	spin_unlock_irqrestore(&fep->tmreg_lock, flags);

	return 0;
}

/**
 * fec_ptp_gettime
 * @ptp: the ptp clock structure
 * @ts: timespec structure to hold the current time value
 *
 * read the timecounter and return the correct value on ns,
 * after converting it into a struct timespec.
 */
static int fec_ptp_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts)
{
	struct fec_enet_private *fep =
	    container_of(ptp, struct fec_enet_private, ptp_caps);
	u64 ns;
	unsigned long flags;

	mutex_lock(&fep->ptp_clk_mutex);
	/* Check the ptp clock */
	if (!fep->ptp_clk_on) {
		mutex_unlock(&fep->ptp_clk_mutex);
		return -EINVAL;
	}
	spin_lock_irqsave(&fep->tmreg_lock, flags);
	ns = timecounter_read(&fep->tc);
	spin_unlock_irqrestore(&fep->tmreg_lock, flags);
	mutex_unlock(&fep->ptp_clk_mutex);

	*ts = ns_to_timespec64(ns);

	return 0;
}

/**
 * fec_ptp_settime
 * @ptp: the ptp clock structure
 * @ts: the timespec containing the new time for the cycle counter
 *
 * reset the timecounter to use a new base value instead of the kernel
 * wall timer value.
 */
static int fec_ptp_settime(struct ptp_clock_info *ptp,
			   const struct timespec64 *ts)
{
	struct fec_enet_private *fep =
	    container_of(ptp, struct fec_enet_private, ptp_caps);

	u64 ns;
	unsigned long flags;
	u32 counter;

	mutex_lock(&fep->ptp_clk_mutex);
	/* Check the ptp clock */
	if (!fep->ptp_clk_on) {
		mutex_unlock(&fep->ptp_clk_mutex);
		return -EINVAL;
	}

	ns = timespec64_to_ns(ts);
	/* Get the timer value based on timestamp.
	 * Update the counter with the masked value.
	 */
	counter = ns & fep->cc.mask;

	spin_lock_irqsave(&fep->tmreg_lock, flags);
	writel(counter, fep->hwp + FEC_ATIME);
	timecounter_init(&fep->tc, &fep->cc, ns);
	spin_unlock_irqrestore(&fep->tmreg_lock, flags);
	mutex_unlock(&fep->ptp_clk_mutex);
	return 0;
}

static int fec_ptp_pps_disable(struct fec_enet_private *fep, uint channel)
{
	unsigned long flags;

	spin_lock_irqsave(&fep->tmreg_lock, flags);
	writel(0, fep->hwp + FEC_TCSR(channel));
	spin_unlock_irqrestore(&fep->tmreg_lock, flags);

	return 0;
}

/**
 * fec_ptp_enable
 * @ptp: the ptp clock structure
 * @rq: the requested feature to change
 * @on: whether to enable or disable the feature
 *
 */
static int fec_ptp_enable(struct ptp_clock_info *ptp,
			  struct ptp_clock_request *rq, int on)
{
	struct fec_enet_private *fep =
	    container_of(ptp, struct fec_enet_private, ptp_caps);
	ktime_t timeout;
	struct timespec64 start_time, period;
	u64 curr_time, delta, period_ns;
	unsigned long flags;
	int ret = 0;

	if (rq->type == PTP_CLK_REQ_PPS) {
		fep->pps_channel = DEFAULT_PPS_CHANNEL;
		fep->reload_period = PPS_OUPUT_RELOAD_PERIOD;

		ret = fec_ptp_enable_pps(fep, on);

		return ret;
	} else if (rq->type == PTP_CLK_REQ_PEROUT) {
		/* Reject requests with unsupported flags */
		if (rq->perout.flags)
			return -EOPNOTSUPP;

		if (rq->perout.index != DEFAULT_PPS_CHANNEL)
			return -EOPNOTSUPP;

		fep->pps_channel = DEFAULT_PPS_CHANNEL;
		period.tv_sec = rq->perout.period.sec;
		period.tv_nsec = rq->perout.period.nsec;
		period_ns = timespec64_to_ns(&period);

		/* FEC PTP timer only has 31 bits, so if the period exceed
		 * 4s is not supported.
		 */
		if (period_ns > FEC_PTP_MAX_NSEC_PERIOD) {
			dev_err(&fep->pdev->dev, "The period must equal to or less than 4s!\n");
			return -EOPNOTSUPP;
		}

		fep->reload_period = div_u64(period_ns, 2);
		if (on && fep->reload_period) {
			/* Convert 1588 timestamp to ns*/
			start_time.tv_sec = rq->perout.start.sec;
			start_time.tv_nsec = rq->perout.start.nsec;
			fep->perout_stime = timespec64_to_ns(&start_time);

			mutex_lock(&fep->ptp_clk_mutex);
			if (!fep->ptp_clk_on) {
				dev_err(&fep->pdev->dev, "Error: PTP clock is closed!\n");
				mutex_unlock(&fep->ptp_clk_mutex);
				return -EOPNOTSUPP;
			}
			spin_lock_irqsave(&fep->tmreg_lock, flags);
			/* Read current timestamp */
			curr_time = timecounter_read(&fep->tc);
			spin_unlock_irqrestore(&fep->tmreg_lock, flags);
			mutex_unlock(&fep->ptp_clk_mutex);

			/* Calculate time difference */
			delta = fep->perout_stime - curr_time;

			if (fep->perout_stime <= curr_time) {
				dev_err(&fep->pdev->dev, "Start time must larger than current time!\n");
				return -EINVAL;
			}

			/* Because the timer counter of FEC only has 31-bits, correspondingly,
			 * the time comparison register FEC_TCCR also only low 31 bits can be
			 * set. If the start time of pps signal exceeds current time more than
			 * 0x80000000 ns, a software timer is used and the timer expires about
			 * 1 second before the start time to be able to set FEC_TCCR.
			 */
			if (delta > FEC_PTP_MAX_NSEC_COUNTER) {
				timeout = ns_to_ktime(delta - NSEC_PER_SEC);
				hrtimer_start(&fep->perout_timer, timeout, HRTIMER_MODE_REL);
			} else {
				return fec_ptp_pps_perout(fep);
			}
		} else {
			fec_ptp_pps_disable(fep, fep->pps_channel);
		}

		return 0;
	} else {
		return -EOPNOTSUPP;
	}
}

int fec_ptp_set(struct net_device *ndev, struct kernel_hwtstamp_config *config,
		struct netlink_ext_ack *extack)
{
	struct fec_enet_private *fep = netdev_priv(ndev);

	switch (config->tx_type) {
	case HWTSTAMP_TX_OFF:
		fep->hwts_tx_en = 0;
		break;
	case HWTSTAMP_TX_ON:
		fep->hwts_tx_en = 1;
		break;
	default:
		return -ERANGE;
	}

	switch (config->rx_filter) {
	case HWTSTAMP_FILTER_NONE:
		fep->hwts_rx_en = 0;
		break;

	default:
		fep->hwts_rx_en = 1;
		config->rx_filter = HWTSTAMP_FILTER_ALL;
		break;
	}

	return 0;
}

void fec_ptp_get(struct net_device *ndev, struct kernel_hwtstamp_config *config)
{
	struct fec_enet_private *fep = netdev_priv(ndev);

	config->flags = 0;
	config->tx_type = fep->hwts_tx_en ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF;
	config->rx_filter = (fep->hwts_rx_en ?
			     HWTSTAMP_FILTER_ALL : HWTSTAMP_FILTER_NONE);
}

/*
 * fec_time_keep - call timecounter_read every second to avoid timer overrun
 *                 because ENET just support 32bit counter, will timeout in 4s
 */
static void fec_time_keep(struct work_struct *work)
{
	struct delayed_work *dwork = to_delayed_work(work);
	struct fec_enet_private *fep = container_of(dwork, struct fec_enet_private, time_keep);
	unsigned long flags;

	mutex_lock(&fep->ptp_clk_mutex);
	if (fep->ptp_clk_on) {
		spin_lock_irqsave(&fep->tmreg_lock, flags);
		timecounter_read(&fep->tc);
		spin_unlock_irqrestore(&fep->tmreg_lock, flags);
	}
	mutex_unlock(&fep->ptp_clk_mutex);

	schedule_delayed_work(&fep->time_keep, HZ);
}

/* This function checks the pps event and reloads the timer compare counter. */
static irqreturn_t fec_pps_interrupt(int irq, void *dev_id)
{
	struct net_device *ndev = dev_id;
	struct fec_enet_private *fep = netdev_priv(ndev);
	u32 val;
	u8 channel = fep->pps_channel;
	struct ptp_clock_event event;

	val = readl(fep->hwp + FEC_TCSR(channel));
	if (val & FEC_T_TF_MASK) {
		/* Write the next next compare(not the next according the spec)
		 * value to the register
		 */
		writel(fep->next_counter, fep->hwp + FEC_TCCR(channel));
		do {
			writel(val, fep->hwp + FEC_TCSR(channel));
		} while (readl(fep->hwp + FEC_TCSR(channel)) & FEC_T_TF_MASK);

		/* Update the counter; */
		fep->next_counter = (fep->next_counter + fep->reload_period) &
				fep->cc.mask;

		event.type = PTP_CLOCK_PPS;
		ptp_clock_event(fep->ptp_clock, &event);
		return IRQ_HANDLED;
	}

	return IRQ_NONE;
}

/**
 * fec_ptp_init
 * @pdev: The FEC network adapter
 * @irq_idx: the interrupt index
 *
 * This function performs the required steps for enabling ptp
 * support. If ptp support has already been loaded it simply calls the
 * cyclecounter init routine and exits.
 */

void fec_ptp_init(struct platform_device *pdev, int irq_idx)
{
	struct net_device *ndev = platform_get_drvdata(pdev);
	struct fec_enet_private *fep = netdev_priv(ndev);
	int irq;
	int ret;

	fep->ptp_caps.owner = THIS_MODULE;
	strscpy(fep->ptp_caps.name, "fec ptp", sizeof(fep->ptp_caps.name));

	fep->ptp_caps.max_adj = 250000000;
	fep->ptp_caps.n_alarm = 0;
	fep->ptp_caps.n_ext_ts = 0;
	fep->ptp_caps.n_per_out = 1;
	fep->ptp_caps.n_pins = 0;
	fep->ptp_caps.pps = 1;
	fep->ptp_caps.adjfine = fec_ptp_adjfine;
	fep->ptp_caps.adjtime = fec_ptp_adjtime;
	fep->ptp_caps.gettime64 = fec_ptp_gettime;
	fep->ptp_caps.settime64 = fec_ptp_settime;
	fep->ptp_caps.enable = fec_ptp_enable;

	fep->cycle_speed = clk_get_rate(fep->clk_ptp);
	if (!fep->cycle_speed) {
		fep->cycle_speed = NSEC_PER_SEC;
		dev_err(&fep->pdev->dev, "clk_ptp clock rate is zero\n");
	}
	fep->ptp_inc = NSEC_PER_SEC / fep->cycle_speed;

	spin_lock_init(&fep->tmreg_lock);

	fec_ptp_start_cyclecounter(ndev);

	INIT_DELAYED_WORK(&fep->time_keep, fec_time_keep);

	hrtimer_init(&fep->perout_timer, CLOCK_REALTIME, HRTIMER_MODE_REL);
	fep->perout_timer.function = fec_ptp_pps_perout_handler;

	irq = platform_get_irq_byname_optional(pdev, "pps");
	if (irq < 0)
		irq = platform_get_irq_optional(pdev, irq_idx);
	/* Failure to get an irq is not fatal,
	 * only the PTP_CLOCK_PPS clock events should stop
	 */
	if (irq >= 0) {
		ret = devm_request_irq(&pdev->dev, irq, fec_pps_interrupt,
				       0, pdev->name, ndev);
		if (ret < 0)
			dev_warn(&pdev->dev, "request for pps irq failed(%d)\n",
				 ret);
	}

	fep->ptp_clock = ptp_clock_register(&fep->ptp_caps, &pdev->dev);
	if (IS_ERR(fep->ptp_clock)) {
		fep->ptp_clock = NULL;
		dev_err(&pdev->dev, "ptp_clock_register failed\n");
	}

	schedule_delayed_work(&fep->time_keep, HZ);
}

void fec_ptp_save_state(struct fec_enet_private *fep)
{
	unsigned long flags;
	u32 atime_inc_corr;

	spin_lock_irqsave(&fep->tmreg_lock, flags);

	fep->ptp_saved_state.pps_enable = fep->pps_enable;

	fep->ptp_saved_state.ns_phc = timecounter_read(&fep->tc);
	fep->ptp_saved_state.ns_sys = ktime_get_ns();

	fep->ptp_saved_state.at_corr = readl(fep->hwp + FEC_ATIME_CORR);
	atime_inc_corr = readl(fep->hwp + FEC_ATIME_INC) & FEC_T_INC_CORR_MASK;
	fep->ptp_saved_state.at_inc_corr = (u8)(atime_inc_corr >> FEC_T_INC_CORR_OFFSET);

	spin_unlock_irqrestore(&fep->tmreg_lock, flags);
}

/* Restore PTP functionality after a reset */
void fec_ptp_restore_state(struct fec_enet_private *fep)
{
	u32 atime_inc = readl(fep->hwp + FEC_ATIME_INC) & FEC_T_INC_MASK;
	unsigned long flags;
	u32 counter;
	u64 ns;

	spin_lock_irqsave(&fep->tmreg_lock, flags);

	/* Reset turned it off, so adjust our status flag */
	fep->pps_enable = 0;

	writel(fep->ptp_saved_state.at_corr, fep->hwp + FEC_ATIME_CORR);
	atime_inc |= ((u32)fep->ptp_saved_state.at_inc_corr) << FEC_T_INC_CORR_OFFSET;
	writel(atime_inc, fep->hwp + FEC_ATIME_INC);

	ns = ktime_get_ns() - fep->ptp_saved_state.ns_sys + fep->ptp_saved_state.ns_phc;
	counter = ns & fep->cc.mask;
	writel(counter, fep->hwp + FEC_ATIME);
	timecounter_init(&fep->tc, &fep->cc, ns);

	spin_unlock_irqrestore(&fep->tmreg_lock, flags);

	/* Restart PPS if needed */
	if (fep->ptp_saved_state.pps_enable) {
		/* Re-enable PPS */
		fec_ptp_enable_pps(fep, 1);
	}
}

void fec_ptp_stop(struct platform_device *pdev)
{
	struct net_device *ndev = platform_get_drvdata(pdev);
	struct fec_enet_private *fep = netdev_priv(ndev);

	if (fep->pps_enable)
		fec_ptp_enable_pps(fep, 0);

	cancel_delayed_work_sync(&fep->time_keep);
	hrtimer_cancel(&fep->perout_timer);
	if (fep->ptp_clock)
		ptp_clock_unregister(fep->ptp_clock);
}