summaryrefslogtreecommitdiff
path: root/drivers/hwtracing/coresight/coresight-tmc-etr.c
blob: bafd73e71c4c793ca6a5360d361b278a93e718a8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
// SPDX-License-Identifier: GPL-2.0
/*
 * Copyright(C) 2016 Linaro Limited. All rights reserved.
 * Author: Mathieu Poirier <mathieu.poirier@linaro.org>
 */

#include <linux/coresight.h>
#include <linux/dma-mapping.h>
#include <linux/iommu.h>
#include <linux/slab.h>
#include <linux/vmalloc.h>
#include "coresight-catu.h"
#include "coresight-priv.h"
#include "coresight-tmc.h"

struct etr_flat_buf {
	struct device	*dev;
	dma_addr_t	daddr;
	void		*vaddr;
	size_t		size;
};

/*
 * The TMC ETR SG has a page size of 4K. The SG table contains pointers
 * to 4KB buffers. However, the OS may use a PAGE_SIZE different from
 * 4K (i.e, 16KB or 64KB). This implies that a single OS page could
 * contain more than one SG buffer and tables.
 *
 * A table entry has the following format:
 *
 * ---Bit31------------Bit4-------Bit1-----Bit0--
 * |     Address[39:12]    | SBZ |  Entry Type  |
 * ----------------------------------------------
 *
 * Address: Bits [39:12] of a physical page address. Bits [11:0] are
 *	    always zero.
 *
 * Entry type:
 *	b00 - Reserved.
 *	b01 - Last entry in the tables, points to 4K page buffer.
 *	b10 - Normal entry, points to 4K page buffer.
 *	b11 - Link. The address points to the base of next table.
 */

typedef u32 sgte_t;

#define ETR_SG_PAGE_SHIFT		12
#define ETR_SG_PAGE_SIZE		(1UL << ETR_SG_PAGE_SHIFT)
#define ETR_SG_PAGES_PER_SYSPAGE	(PAGE_SIZE / ETR_SG_PAGE_SIZE)
#define ETR_SG_PTRS_PER_PAGE		(ETR_SG_PAGE_SIZE / sizeof(sgte_t))
#define ETR_SG_PTRS_PER_SYSPAGE		(PAGE_SIZE / sizeof(sgte_t))

#define ETR_SG_ET_MASK			0x3
#define ETR_SG_ET_LAST			0x1
#define ETR_SG_ET_NORMAL		0x2
#define ETR_SG_ET_LINK			0x3

#define ETR_SG_ADDR_SHIFT		4

#define ETR_SG_ENTRY(addr, type) \
	(sgte_t)((((addr) >> ETR_SG_PAGE_SHIFT) << ETR_SG_ADDR_SHIFT) | \
		 (type & ETR_SG_ET_MASK))

#define ETR_SG_ADDR(entry) \
	(((dma_addr_t)(entry) >> ETR_SG_ADDR_SHIFT) << ETR_SG_PAGE_SHIFT)
#define ETR_SG_ET(entry)		((entry) & ETR_SG_ET_MASK)

/*
 * struct etr_sg_table : ETR SG Table
 * @sg_table:		Generic SG Table holding the data/table pages.
 * @hwaddr:		hwaddress used by the TMC, which is the base
 *			address of the table.
 */
struct etr_sg_table {
	struct tmc_sg_table	*sg_table;
	dma_addr_t		hwaddr;
};

/*
 * tmc_etr_sg_table_entries: Total number of table entries required to map
 * @nr_pages system pages.
 *
 * We need to map @nr_pages * ETR_SG_PAGES_PER_SYSPAGE data pages.
 * Each TMC page can map (ETR_SG_PTRS_PER_PAGE - 1) buffer pointers,
 * with the last entry pointing to another page of table entries.
 * If we spill over to a new page for mapping 1 entry, we could as
 * well replace the link entry of the previous page with the last entry.
 */
static inline unsigned long __attribute_const__
tmc_etr_sg_table_entries(int nr_pages)
{
	unsigned long nr_sgpages = nr_pages * ETR_SG_PAGES_PER_SYSPAGE;
	unsigned long nr_sglinks = nr_sgpages / (ETR_SG_PTRS_PER_PAGE - 1);
	/*
	 * If we spill over to a new page for 1 entry, we could as well
	 * make it the LAST entry in the previous page, skipping the Link
	 * address.
	 */
	if (nr_sglinks && (nr_sgpages % (ETR_SG_PTRS_PER_PAGE - 1) < 2))
		nr_sglinks--;
	return nr_sgpages + nr_sglinks;
}

/*
 * tmc_pages_get_offset:  Go through all the pages in the tmc_pages
 * and map the device address @addr to an offset within the virtual
 * contiguous buffer.
 */
static long
tmc_pages_get_offset(struct tmc_pages *tmc_pages, dma_addr_t addr)
{
	int i;
	dma_addr_t page_start;

	for (i = 0; i < tmc_pages->nr_pages; i++) {
		page_start = tmc_pages->daddrs[i];
		if (addr >= page_start && addr < (page_start + PAGE_SIZE))
			return i * PAGE_SIZE + (addr - page_start);
	}

	return -EINVAL;
}

/*
 * tmc_pages_free : Unmap and free the pages used by tmc_pages.
 * If the pages were not allocated in tmc_pages_alloc(), we would
 * simply drop the refcount.
 */
static void tmc_pages_free(struct tmc_pages *tmc_pages,
			   struct device *dev, enum dma_data_direction dir)
{
	int i;

	for (i = 0; i < tmc_pages->nr_pages; i++) {
		if (tmc_pages->daddrs && tmc_pages->daddrs[i])
			dma_unmap_page(dev, tmc_pages->daddrs[i],
					 PAGE_SIZE, dir);
		if (tmc_pages->pages && tmc_pages->pages[i])
			__free_page(tmc_pages->pages[i]);
	}

	kfree(tmc_pages->pages);
	kfree(tmc_pages->daddrs);
	tmc_pages->pages = NULL;
	tmc_pages->daddrs = NULL;
	tmc_pages->nr_pages = 0;
}

/*
 * tmc_pages_alloc : Allocate and map pages for a given @tmc_pages.
 * If @pages is not NULL, the list of page virtual addresses are
 * used as the data pages. The pages are then dma_map'ed for @dev
 * with dma_direction @dir.
 *
 * Returns 0 upon success, else the error number.
 */
static int tmc_pages_alloc(struct tmc_pages *tmc_pages,
			   struct device *dev, int node,
			   enum dma_data_direction dir, void **pages)
{
	int i, nr_pages;
	dma_addr_t paddr;
	struct page *page;

	nr_pages = tmc_pages->nr_pages;
	tmc_pages->daddrs = kcalloc(nr_pages, sizeof(*tmc_pages->daddrs),
					 GFP_KERNEL);
	if (!tmc_pages->daddrs)
		return -ENOMEM;
	tmc_pages->pages = kcalloc(nr_pages, sizeof(*tmc_pages->pages),
					 GFP_KERNEL);
	if (!tmc_pages->pages) {
		kfree(tmc_pages->daddrs);
		tmc_pages->daddrs = NULL;
		return -ENOMEM;
	}

	for (i = 0; i < nr_pages; i++) {
		if (pages && pages[i]) {
			page = virt_to_page(pages[i]);
			/* Hold a refcount on the page */
			get_page(page);
		} else {
			page = alloc_pages_node(node,
						GFP_KERNEL | __GFP_ZERO, 0);
		}
		paddr = dma_map_page(dev, page, 0, PAGE_SIZE, dir);
		if (dma_mapping_error(dev, paddr))
			goto err;
		tmc_pages->daddrs[i] = paddr;
		tmc_pages->pages[i] = page;
	}
	return 0;
err:
	tmc_pages_free(tmc_pages, dev, dir);
	return -ENOMEM;
}

static inline long
tmc_sg_get_data_page_offset(struct tmc_sg_table *sg_table, dma_addr_t addr)
{
	return tmc_pages_get_offset(&sg_table->data_pages, addr);
}

static inline void tmc_free_table_pages(struct tmc_sg_table *sg_table)
{
	if (sg_table->table_vaddr)
		vunmap(sg_table->table_vaddr);
	tmc_pages_free(&sg_table->table_pages, sg_table->dev, DMA_TO_DEVICE);
}

static void tmc_free_data_pages(struct tmc_sg_table *sg_table)
{
	if (sg_table->data_vaddr)
		vunmap(sg_table->data_vaddr);
	tmc_pages_free(&sg_table->data_pages, sg_table->dev, DMA_FROM_DEVICE);
}

void tmc_free_sg_table(struct tmc_sg_table *sg_table)
{
	tmc_free_table_pages(sg_table);
	tmc_free_data_pages(sg_table);
}

/*
 * Alloc pages for the table. Since this will be used by the device,
 * allocate the pages closer to the device (i.e, dev_to_node(dev)
 * rather than the CPU node).
 */
static int tmc_alloc_table_pages(struct tmc_sg_table *sg_table)
{
	int rc;
	struct tmc_pages *table_pages = &sg_table->table_pages;

	rc = tmc_pages_alloc(table_pages, sg_table->dev,
			     dev_to_node(sg_table->dev),
			     DMA_TO_DEVICE, NULL);
	if (rc)
		return rc;
	sg_table->table_vaddr = vmap(table_pages->pages,
				     table_pages->nr_pages,
				     VM_MAP,
				     PAGE_KERNEL);
	if (!sg_table->table_vaddr)
		rc = -ENOMEM;
	else
		sg_table->table_daddr = table_pages->daddrs[0];
	return rc;
}

static int tmc_alloc_data_pages(struct tmc_sg_table *sg_table, void **pages)
{
	int rc;

	/* Allocate data pages on the node requested by the caller */
	rc = tmc_pages_alloc(&sg_table->data_pages,
			     sg_table->dev, sg_table->node,
			     DMA_FROM_DEVICE, pages);
	if (!rc) {
		sg_table->data_vaddr = vmap(sg_table->data_pages.pages,
					    sg_table->data_pages.nr_pages,
					    VM_MAP,
					    PAGE_KERNEL);
		if (!sg_table->data_vaddr)
			rc = -ENOMEM;
	}
	return rc;
}

/*
 * tmc_alloc_sg_table: Allocate and setup dma pages for the TMC SG table
 * and data buffers. TMC writes to the data buffers and reads from the SG
 * Table pages.
 *
 * @dev		- Device to which page should be DMA mapped.
 * @node	- Numa node for mem allocations
 * @nr_tpages	- Number of pages for the table entries.
 * @nr_dpages	- Number of pages for Data buffer.
 * @pages	- Optional list of virtual address of pages.
 */
struct tmc_sg_table *tmc_alloc_sg_table(struct device *dev,
					int node,
					int nr_tpages,
					int nr_dpages,
					void **pages)
{
	long rc;
	struct tmc_sg_table *sg_table;

	sg_table = kzalloc(sizeof(*sg_table), GFP_KERNEL);
	if (!sg_table)
		return ERR_PTR(-ENOMEM);
	sg_table->data_pages.nr_pages = nr_dpages;
	sg_table->table_pages.nr_pages = nr_tpages;
	sg_table->node = node;
	sg_table->dev = dev;

	rc  = tmc_alloc_data_pages(sg_table, pages);
	if (!rc)
		rc = tmc_alloc_table_pages(sg_table);
	if (rc) {
		tmc_free_sg_table(sg_table);
		kfree(sg_table);
		return ERR_PTR(rc);
	}

	return sg_table;
}

/*
 * tmc_sg_table_sync_data_range: Sync the data buffer written
 * by the device from @offset upto a @size bytes.
 */
void tmc_sg_table_sync_data_range(struct tmc_sg_table *table,
				  u64 offset, u64 size)
{
	int i, index, start;
	int npages = DIV_ROUND_UP(size, PAGE_SIZE);
	struct device *dev = table->dev;
	struct tmc_pages *data = &table->data_pages;

	start = offset >> PAGE_SHIFT;
	for (i = start; i < (start + npages); i++) {
		index = i % data->nr_pages;
		dma_sync_single_for_cpu(dev, data->daddrs[index],
					PAGE_SIZE, DMA_FROM_DEVICE);
	}
}

/* tmc_sg_sync_table: Sync the page table */
void tmc_sg_table_sync_table(struct tmc_sg_table *sg_table)
{
	int i;
	struct device *dev = sg_table->dev;
	struct tmc_pages *table_pages = &sg_table->table_pages;

	for (i = 0; i < table_pages->nr_pages; i++)
		dma_sync_single_for_device(dev, table_pages->daddrs[i],
					   PAGE_SIZE, DMA_TO_DEVICE);
}

/*
 * tmc_sg_table_get_data: Get the buffer pointer for data @offset
 * in the SG buffer. The @bufpp is updated to point to the buffer.
 * Returns :
 *	the length of linear data available at @offset.
 *	or
 *	<= 0 if no data is available.
 */
ssize_t tmc_sg_table_get_data(struct tmc_sg_table *sg_table,
			      u64 offset, size_t len, char **bufpp)
{
	size_t size;
	int pg_idx = offset >> PAGE_SHIFT;
	int pg_offset = offset & (PAGE_SIZE - 1);
	struct tmc_pages *data_pages = &sg_table->data_pages;

	size = tmc_sg_table_buf_size(sg_table);
	if (offset >= size)
		return -EINVAL;

	/* Make sure we don't go beyond the end */
	len = (len < (size - offset)) ? len : size - offset;
	/* Respect the page boundaries */
	len = (len < (PAGE_SIZE - pg_offset)) ? len : (PAGE_SIZE - pg_offset);
	if (len > 0)
		*bufpp = page_address(data_pages->pages[pg_idx]) + pg_offset;
	return len;
}

#ifdef ETR_SG_DEBUG
/* Map a dma address to virtual address */
static unsigned long
tmc_sg_daddr_to_vaddr(struct tmc_sg_table *sg_table,
		      dma_addr_t addr, bool table)
{
	long offset;
	unsigned long base;
	struct tmc_pages *tmc_pages;

	if (table) {
		tmc_pages = &sg_table->table_pages;
		base = (unsigned long)sg_table->table_vaddr;
	} else {
		tmc_pages = &sg_table->data_pages;
		base = (unsigned long)sg_table->data_vaddr;
	}

	offset = tmc_pages_get_offset(tmc_pages, addr);
	if (offset < 0)
		return 0;
	return base + offset;
}

/* Dump the given sg_table */
static void tmc_etr_sg_table_dump(struct etr_sg_table *etr_table)
{
	sgte_t *ptr;
	int i = 0;
	dma_addr_t addr;
	struct tmc_sg_table *sg_table = etr_table->sg_table;

	ptr = (sgte_t *)tmc_sg_daddr_to_vaddr(sg_table,
					      etr_table->hwaddr, true);
	while (ptr) {
		addr = ETR_SG_ADDR(*ptr);
		switch (ETR_SG_ET(*ptr)) {
		case ETR_SG_ET_NORMAL:
			dev_dbg(sg_table->dev,
				"%05d: %p\t:[N] 0x%llx\n", i, ptr, addr);
			ptr++;
			break;
		case ETR_SG_ET_LINK:
			dev_dbg(sg_table->dev,
				"%05d: *** %p\t:{L} 0x%llx ***\n",
				 i, ptr, addr);
			ptr = (sgte_t *)tmc_sg_daddr_to_vaddr(sg_table,
							      addr, true);
			break;
		case ETR_SG_ET_LAST:
			dev_dbg(sg_table->dev,
				"%05d: ### %p\t:[L] 0x%llx ###\n",
				 i, ptr, addr);
			return;
		default:
			dev_dbg(sg_table->dev,
				"%05d: xxx %p\t:[INVALID] 0x%llx xxx\n",
				 i, ptr, addr);
			return;
		}
		i++;
	}
	dev_dbg(sg_table->dev, "******* End of Table *****\n");
}
#else
static inline void tmc_etr_sg_table_dump(struct etr_sg_table *etr_table) {}
#endif

/*
 * Populate the SG Table page table entries from table/data
 * pages allocated. Each Data page has ETR_SG_PAGES_PER_SYSPAGE SG pages.
 * So does a Table page. So we keep track of indices of the tables
 * in each system page and move the pointers accordingly.
 */
#define INC_IDX_ROUND(idx, size) ((idx) = ((idx) + 1) % (size))
static void tmc_etr_sg_table_populate(struct etr_sg_table *etr_table)
{
	dma_addr_t paddr;
	int i, type, nr_entries;
	int tpidx = 0; /* index to the current system table_page */
	int sgtidx = 0;	/* index to the sg_table within the current syspage */
	int sgtentry = 0; /* the entry within the sg_table */
	int dpidx = 0; /* index to the current system data_page */
	int spidx = 0; /* index to the SG page within the current data page */
	sgte_t *ptr; /* pointer to the table entry to fill */
	struct tmc_sg_table *sg_table = etr_table->sg_table;
	dma_addr_t *table_daddrs = sg_table->table_pages.daddrs;
	dma_addr_t *data_daddrs = sg_table->data_pages.daddrs;

	nr_entries = tmc_etr_sg_table_entries(sg_table->data_pages.nr_pages);
	/*
	 * Use the contiguous virtual address of the table to update entries.
	 */
	ptr = sg_table->table_vaddr;
	/*
	 * Fill all the entries, except the last entry to avoid special
	 * checks within the loop.
	 */
	for (i = 0; i < nr_entries - 1; i++) {
		if (sgtentry == ETR_SG_PTRS_PER_PAGE - 1) {
			/*
			 * Last entry in a sg_table page is a link address to
			 * the next table page. If this sg_table is the last
			 * one in the system page, it links to the first
			 * sg_table in the next system page. Otherwise, it
			 * links to the next sg_table page within the system
			 * page.
			 */
			if (sgtidx == ETR_SG_PAGES_PER_SYSPAGE - 1) {
				paddr = table_daddrs[tpidx + 1];
			} else {
				paddr = table_daddrs[tpidx] +
					(ETR_SG_PAGE_SIZE * (sgtidx + 1));
			}
			type = ETR_SG_ET_LINK;
		} else {
			/*
			 * Update the indices to the data_pages to point to the
			 * next sg_page in the data buffer.
			 */
			type = ETR_SG_ET_NORMAL;
			paddr = data_daddrs[dpidx] + spidx * ETR_SG_PAGE_SIZE;
			if (!INC_IDX_ROUND(spidx, ETR_SG_PAGES_PER_SYSPAGE))
				dpidx++;
		}
		*ptr++ = ETR_SG_ENTRY(paddr, type);
		/*
		 * Move to the next table pointer, moving the table page index
		 * if necessary
		 */
		if (!INC_IDX_ROUND(sgtentry, ETR_SG_PTRS_PER_PAGE)) {
			if (!INC_IDX_ROUND(sgtidx, ETR_SG_PAGES_PER_SYSPAGE))
				tpidx++;
		}
	}

	/* Set up the last entry, which is always a data pointer */
	paddr = data_daddrs[dpidx] + spidx * ETR_SG_PAGE_SIZE;
	*ptr++ = ETR_SG_ENTRY(paddr, ETR_SG_ET_LAST);
}

/*
 * tmc_init_etr_sg_table: Allocate a TMC ETR SG table, data buffer of @size and
 * populate the table.
 *
 * @dev		- Device pointer for the TMC
 * @node	- NUMA node where the memory should be allocated
 * @size	- Total size of the data buffer
 * @pages	- Optional list of page virtual address
 */
static struct etr_sg_table *
tmc_init_etr_sg_table(struct device *dev, int node,
		      unsigned long size, void **pages)
{
	int nr_entries, nr_tpages;
	int nr_dpages = size >> PAGE_SHIFT;
	struct tmc_sg_table *sg_table;
	struct etr_sg_table *etr_table;

	etr_table = kzalloc(sizeof(*etr_table), GFP_KERNEL);
	if (!etr_table)
		return ERR_PTR(-ENOMEM);
	nr_entries = tmc_etr_sg_table_entries(nr_dpages);
	nr_tpages = DIV_ROUND_UP(nr_entries, ETR_SG_PTRS_PER_SYSPAGE);

	sg_table = tmc_alloc_sg_table(dev, node, nr_tpages, nr_dpages, pages);
	if (IS_ERR(sg_table)) {
		kfree(etr_table);
		return ERR_CAST(sg_table);
	}

	etr_table->sg_table = sg_table;
	/* TMC should use table base address for DBA */
	etr_table->hwaddr = sg_table->table_daddr;
	tmc_etr_sg_table_populate(etr_table);
	/* Sync the table pages for the HW */
	tmc_sg_table_sync_table(sg_table);
	tmc_etr_sg_table_dump(etr_table);

	return etr_table;
}

/*
 * tmc_etr_alloc_flat_buf: Allocate a contiguous DMA buffer.
 */
static int tmc_etr_alloc_flat_buf(struct tmc_drvdata *drvdata,
				  struct etr_buf *etr_buf, int node,
				  void **pages)
{
	struct etr_flat_buf *flat_buf;

	/* We cannot reuse existing pages for flat buf */
	if (pages)
		return -EINVAL;

	flat_buf = kzalloc(sizeof(*flat_buf), GFP_KERNEL);
	if (!flat_buf)
		return -ENOMEM;

	flat_buf->vaddr = dma_alloc_coherent(drvdata->dev, etr_buf->size,
					     &flat_buf->daddr, GFP_KERNEL);
	if (!flat_buf->vaddr) {
		kfree(flat_buf);
		return -ENOMEM;
	}

	flat_buf->size = etr_buf->size;
	flat_buf->dev = drvdata->dev;
	etr_buf->hwaddr = flat_buf->daddr;
	etr_buf->mode = ETR_MODE_FLAT;
	etr_buf->private = flat_buf;
	return 0;
}

static void tmc_etr_free_flat_buf(struct etr_buf *etr_buf)
{
	struct etr_flat_buf *flat_buf = etr_buf->private;

	if (flat_buf && flat_buf->daddr)
		dma_free_coherent(flat_buf->dev, flat_buf->size,
				  flat_buf->vaddr, flat_buf->daddr);
	kfree(flat_buf);
}

static void tmc_etr_sync_flat_buf(struct etr_buf *etr_buf, u64 rrp, u64 rwp)
{
	/*
	 * Adjust the buffer to point to the beginning of the trace data
	 * and update the available trace data.
	 */
	etr_buf->offset = rrp - etr_buf->hwaddr;
	if (etr_buf->full)
		etr_buf->len = etr_buf->size;
	else
		etr_buf->len = rwp - rrp;
}

static ssize_t tmc_etr_get_data_flat_buf(struct etr_buf *etr_buf,
					 u64 offset, size_t len, char **bufpp)
{
	struct etr_flat_buf *flat_buf = etr_buf->private;

	*bufpp = (char *)flat_buf->vaddr + offset;
	/*
	 * tmc_etr_buf_get_data already adjusts the length to handle
	 * buffer wrapping around.
	 */
	return len;
}

static const struct etr_buf_operations etr_flat_buf_ops = {
	.alloc = tmc_etr_alloc_flat_buf,
	.free = tmc_etr_free_flat_buf,
	.sync = tmc_etr_sync_flat_buf,
	.get_data = tmc_etr_get_data_flat_buf,
};

/*
 * tmc_etr_alloc_sg_buf: Allocate an SG buf @etr_buf. Setup the parameters
 * appropriately.
 */
static int tmc_etr_alloc_sg_buf(struct tmc_drvdata *drvdata,
				struct etr_buf *etr_buf, int node,
				void **pages)
{
	struct etr_sg_table *etr_table;

	etr_table = tmc_init_etr_sg_table(drvdata->dev, node,
					  etr_buf->size, pages);
	if (IS_ERR(etr_table))
		return -ENOMEM;
	etr_buf->hwaddr = etr_table->hwaddr;
	etr_buf->mode = ETR_MODE_ETR_SG;
	etr_buf->private = etr_table;
	return 0;
}

static void tmc_etr_free_sg_buf(struct etr_buf *etr_buf)
{
	struct etr_sg_table *etr_table = etr_buf->private;

	if (etr_table) {
		tmc_free_sg_table(etr_table->sg_table);
		kfree(etr_table);
	}
}

static ssize_t tmc_etr_get_data_sg_buf(struct etr_buf *etr_buf, u64 offset,
				       size_t len, char **bufpp)
{
	struct etr_sg_table *etr_table = etr_buf->private;

	return tmc_sg_table_get_data(etr_table->sg_table, offset, len, bufpp);
}

static void tmc_etr_sync_sg_buf(struct etr_buf *etr_buf, u64 rrp, u64 rwp)
{
	long r_offset, w_offset;
	struct etr_sg_table *etr_table = etr_buf->private;
	struct tmc_sg_table *table = etr_table->sg_table;

	/* Convert hw address to offset in the buffer */
	r_offset = tmc_sg_get_data_page_offset(table, rrp);
	if (r_offset < 0) {
		dev_warn(table->dev,
			 "Unable to map RRP %llx to offset\n", rrp);
		etr_buf->len = 0;
		return;
	}

	w_offset = tmc_sg_get_data_page_offset(table, rwp);
	if (w_offset < 0) {
		dev_warn(table->dev,
			 "Unable to map RWP %llx to offset\n", rwp);
		etr_buf->len = 0;
		return;
	}

	etr_buf->offset = r_offset;
	if (etr_buf->full)
		etr_buf->len = etr_buf->size;
	else
		etr_buf->len = ((w_offset < r_offset) ? etr_buf->size : 0) +
				w_offset - r_offset;
	tmc_sg_table_sync_data_range(table, r_offset, etr_buf->len);
}

static const struct etr_buf_operations etr_sg_buf_ops = {
	.alloc = tmc_etr_alloc_sg_buf,
	.free = tmc_etr_free_sg_buf,
	.sync = tmc_etr_sync_sg_buf,
	.get_data = tmc_etr_get_data_sg_buf,
};

/*
 * TMC ETR could be connected to a CATU device, which can provide address
 * translation service. This is represented by the Output port of the TMC
 * (ETR) connected to the input port of the CATU.
 *
 * Returns	: coresight_device ptr for the CATU device if a CATU is found.
 *		: NULL otherwise.
 */
struct coresight_device *
tmc_etr_get_catu_device(struct tmc_drvdata *drvdata)
{
	int i;
	struct coresight_device *tmp, *etr = drvdata->csdev;

	if (!IS_ENABLED(CONFIG_CORESIGHT_CATU))
		return NULL;

	for (i = 0; i < etr->nr_outport; i++) {
		tmp = etr->conns[i].child_dev;
		if (tmp && coresight_is_catu_device(tmp))
			return tmp;
	}

	return NULL;
}

static inline void tmc_etr_enable_catu(struct tmc_drvdata *drvdata)
{
	struct coresight_device *catu = tmc_etr_get_catu_device(drvdata);

	if (catu && helper_ops(catu)->enable)
		helper_ops(catu)->enable(catu, drvdata->etr_buf);
}

static inline void tmc_etr_disable_catu(struct tmc_drvdata *drvdata)
{
	struct coresight_device *catu = tmc_etr_get_catu_device(drvdata);

	if (catu && helper_ops(catu)->disable)
		helper_ops(catu)->disable(catu, drvdata->etr_buf);
}

static const struct etr_buf_operations *etr_buf_ops[] = {
	[ETR_MODE_FLAT] = &etr_flat_buf_ops,
	[ETR_MODE_ETR_SG] = &etr_sg_buf_ops,
	[ETR_MODE_CATU] = &etr_catu_buf_ops,
};

static inline int tmc_etr_mode_alloc_buf(int mode,
					 struct tmc_drvdata *drvdata,
					 struct etr_buf *etr_buf, int node,
					 void **pages)
{
	int rc = -EINVAL;

	switch (mode) {
	case ETR_MODE_FLAT:
	case ETR_MODE_ETR_SG:
	case ETR_MODE_CATU:
		if (etr_buf_ops[mode]->alloc)
			rc = etr_buf_ops[mode]->alloc(drvdata, etr_buf,
						      node, pages);
		if (!rc)
			etr_buf->ops = etr_buf_ops[mode];
		return rc;
	default:
		return -EINVAL;
	}
}

/*
 * tmc_alloc_etr_buf: Allocate a buffer use by ETR.
 * @drvdata	: ETR device details.
 * @size	: size of the requested buffer.
 * @flags	: Required properties for the buffer.
 * @node	: Node for memory allocations.
 * @pages	: An optional list of pages.
 */
static struct etr_buf *tmc_alloc_etr_buf(struct tmc_drvdata *drvdata,
					 ssize_t size, int flags,
					 int node, void **pages)
{
	int rc = -ENOMEM;
	bool has_etr_sg, has_iommu;
	bool has_sg, has_catu;
	struct etr_buf *etr_buf;

	has_etr_sg = tmc_etr_has_cap(drvdata, TMC_ETR_SG);
	has_iommu = iommu_get_domain_for_dev(drvdata->dev);
	has_catu = !!tmc_etr_get_catu_device(drvdata);

	has_sg = has_catu || has_etr_sg;

	etr_buf = kzalloc(sizeof(*etr_buf), GFP_KERNEL);
	if (!etr_buf)
		return ERR_PTR(-ENOMEM);

	etr_buf->size = size;

	/*
	 * If we have to use an existing list of pages, we cannot reliably
	 * use a contiguous DMA memory (even if we have an IOMMU). Otherwise,
	 * we use the contiguous DMA memory if at least one of the following
	 * conditions is true:
	 *  a) The ETR cannot use Scatter-Gather.
	 *  b) we have a backing IOMMU
	 *  c) The requested memory size is smaller (< 1M).
	 *
	 * Fallback to available mechanisms.
	 *
	 */
	if (!pages &&
	    (!has_sg || has_iommu || size < SZ_1M))
		rc = tmc_etr_mode_alloc_buf(ETR_MODE_FLAT, drvdata,
					    etr_buf, node, pages);
	if (rc && has_etr_sg)
		rc = tmc_etr_mode_alloc_buf(ETR_MODE_ETR_SG, drvdata,
					    etr_buf, node, pages);
	if (rc && has_catu)
		rc = tmc_etr_mode_alloc_buf(ETR_MODE_CATU, drvdata,
					    etr_buf, node, pages);
	if (rc) {
		kfree(etr_buf);
		return ERR_PTR(rc);
	}

	dev_dbg(drvdata->dev, "allocated buffer of size %ldKB in mode %d\n",
		(unsigned long)size >> 10, etr_buf->mode);
	return etr_buf;
}

static void tmc_free_etr_buf(struct etr_buf *etr_buf)
{
	WARN_ON(!etr_buf->ops || !etr_buf->ops->free);
	etr_buf->ops->free(etr_buf);
	kfree(etr_buf);
}

/*
 * tmc_etr_buf_get_data: Get the pointer the trace data at @offset
 * with a maximum of @len bytes.
 * Returns: The size of the linear data available @pos, with *bufpp
 * updated to point to the buffer.
 */
static ssize_t tmc_etr_buf_get_data(struct etr_buf *etr_buf,
				    u64 offset, size_t len, char **bufpp)
{
	/* Adjust the length to limit this transaction to end of buffer */
	len = (len < (etr_buf->size - offset)) ? len : etr_buf->size - offset;

	return etr_buf->ops->get_data(etr_buf, (u64)offset, len, bufpp);
}

static inline s64
tmc_etr_buf_insert_barrier_packet(struct etr_buf *etr_buf, u64 offset)
{
	ssize_t len;
	char *bufp;

	len = tmc_etr_buf_get_data(etr_buf, offset,
				   CORESIGHT_BARRIER_PKT_SIZE, &bufp);
	if (WARN_ON(len < CORESIGHT_BARRIER_PKT_SIZE))
		return -EINVAL;
	coresight_insert_barrier_packet(bufp);
	return offset + CORESIGHT_BARRIER_PKT_SIZE;
}

/*
 * tmc_sync_etr_buf: Sync the trace buffer availability with drvdata.
 * Makes sure the trace data is synced to the memory for consumption.
 * @etr_buf->offset will hold the offset to the beginning of the trace data
 * within the buffer, with @etr_buf->len bytes to consume.
 */
static void tmc_sync_etr_buf(struct tmc_drvdata *drvdata)
{
	struct etr_buf *etr_buf = drvdata->etr_buf;
	u64 rrp, rwp;
	u32 status;

	rrp = tmc_read_rrp(drvdata);
	rwp = tmc_read_rwp(drvdata);
	status = readl_relaxed(drvdata->base + TMC_STS);
	etr_buf->full = status & TMC_STS_FULL;

	WARN_ON(!etr_buf->ops || !etr_buf->ops->sync);

	etr_buf->ops->sync(etr_buf, rrp, rwp);

	/* Insert barrier packets at the beginning, if there was an overflow */
	if (etr_buf->full)
		tmc_etr_buf_insert_barrier_packet(etr_buf, etr_buf->offset);
}

static void tmc_etr_enable_hw(struct tmc_drvdata *drvdata,
			      struct etr_buf *etr_buf)
{
	u32 axictl, sts;

	/* Callers should provide an appropriate buffer for use */
	if (WARN_ON(!etr_buf || drvdata->etr_buf))
		return;
	drvdata->etr_buf = etr_buf;

	/*
	 * If this ETR is connected to a CATU, enable it before we turn
	 * this on
	 */
	tmc_etr_enable_catu(drvdata);

	CS_UNLOCK(drvdata->base);

	/* Wait for TMCSReady bit to be set */
	tmc_wait_for_tmcready(drvdata);

	writel_relaxed(etr_buf->size / 4, drvdata->base + TMC_RSZ);
	writel_relaxed(TMC_MODE_CIRCULAR_BUFFER, drvdata->base + TMC_MODE);

	axictl = readl_relaxed(drvdata->base + TMC_AXICTL);
	axictl &= ~TMC_AXICTL_CLEAR_MASK;
	axictl |= (TMC_AXICTL_PROT_CTL_B1 | TMC_AXICTL_WR_BURST_16);
	axictl |= TMC_AXICTL_AXCACHE_OS;

	if (tmc_etr_has_cap(drvdata, TMC_ETR_AXI_ARCACHE)) {
		axictl &= ~TMC_AXICTL_ARCACHE_MASK;
		axictl |= TMC_AXICTL_ARCACHE_OS;
	}

	if (etr_buf->mode == ETR_MODE_ETR_SG) {
		if (WARN_ON(!tmc_etr_has_cap(drvdata, TMC_ETR_SG)))
			return;
		axictl |= TMC_AXICTL_SCT_GAT_MODE;
	}

	writel_relaxed(axictl, drvdata->base + TMC_AXICTL);
	tmc_write_dba(drvdata, etr_buf->hwaddr);
	/*
	 * If the TMC pointers must be programmed before the session,
	 * we have to set it properly (i.e, RRP/RWP to base address and
	 * STS to "not full").
	 */
	if (tmc_etr_has_cap(drvdata, TMC_ETR_SAVE_RESTORE)) {
		tmc_write_rrp(drvdata, etr_buf->hwaddr);
		tmc_write_rwp(drvdata, etr_buf->hwaddr);
		sts = readl_relaxed(drvdata->base + TMC_STS) & ~TMC_STS_FULL;
		writel_relaxed(sts, drvdata->base + TMC_STS);
	}

	writel_relaxed(TMC_FFCR_EN_FMT | TMC_FFCR_EN_TI |
		       TMC_FFCR_FON_FLIN | TMC_FFCR_FON_TRIG_EVT |
		       TMC_FFCR_TRIGON_TRIGIN,
		       drvdata->base + TMC_FFCR);
	writel_relaxed(drvdata->trigger_cntr, drvdata->base + TMC_TRG);
	tmc_enable_hw(drvdata);

	CS_LOCK(drvdata->base);
}

/*
 * Return the available trace data in the buffer (starts at etr_buf->offset,
 * limited by etr_buf->len) from @pos, with a maximum limit of @len,
 * also updating the @bufpp on where to find it. Since the trace data
 * starts at anywhere in the buffer, depending on the RRP, we adjust the
 * @len returned to handle buffer wrapping around.
 *
 * We are protected here by drvdata->reading != 0, which ensures the
 * sysfs_buf stays alive.
 */
ssize_t tmc_etr_get_sysfs_trace(struct tmc_drvdata *drvdata,
				loff_t pos, size_t len, char **bufpp)
{
	s64 offset;
	ssize_t actual = len;
	struct etr_buf *etr_buf = drvdata->sysfs_buf;

	if (pos + actual > etr_buf->len)
		actual = etr_buf->len - pos;
	if (actual <= 0)
		return actual;

	/* Compute the offset from which we read the data */
	offset = etr_buf->offset + pos;
	if (offset >= etr_buf->size)
		offset -= etr_buf->size;
	return tmc_etr_buf_get_data(etr_buf, offset, actual, bufpp);
}

static struct etr_buf *
tmc_etr_setup_sysfs_buf(struct tmc_drvdata *drvdata)
{
	return tmc_alloc_etr_buf(drvdata, drvdata->size,
				 0, cpu_to_node(0), NULL);
}

static void
tmc_etr_free_sysfs_buf(struct etr_buf *buf)
{
	if (buf)
		tmc_free_etr_buf(buf);
}

static void tmc_etr_sync_sysfs_buf(struct tmc_drvdata *drvdata)
{
	struct etr_buf *etr_buf = drvdata->etr_buf;

	if (WARN_ON(drvdata->sysfs_buf != etr_buf)) {
		tmc_etr_free_sysfs_buf(drvdata->sysfs_buf);
		drvdata->sysfs_buf = NULL;
	} else {
		tmc_sync_etr_buf(drvdata);
	}
}

static void tmc_etr_disable_hw(struct tmc_drvdata *drvdata)
{
	CS_UNLOCK(drvdata->base);

	tmc_flush_and_stop(drvdata);
	/*
	 * When operating in sysFS mode the content of the buffer needs to be
	 * read before the TMC is disabled.
	 */
	if (drvdata->mode == CS_MODE_SYSFS)
		tmc_etr_sync_sysfs_buf(drvdata);

	tmc_disable_hw(drvdata);

	CS_LOCK(drvdata->base);

	/* Disable CATU device if this ETR is connected to one */
	tmc_etr_disable_catu(drvdata);
	/* Reset the ETR buf used by hardware */
	drvdata->etr_buf = NULL;
}

static int tmc_enable_etr_sink_sysfs(struct coresight_device *csdev)
{
	int ret = 0;
	unsigned long flags;
	struct tmc_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent);
	struct etr_buf *sysfs_buf = NULL, *new_buf = NULL, *free_buf = NULL;

	/*
	 * If we are enabling the ETR from disabled state, we need to make
	 * sure we have a buffer with the right size. The etr_buf is not reset
	 * immediately after we stop the tracing in SYSFS mode as we wait for
	 * the user to collect the data. We may be able to reuse the existing
	 * buffer, provided the size matches. Any allocation has to be done
	 * with the lock released.
	 */
	spin_lock_irqsave(&drvdata->spinlock, flags);
	sysfs_buf = READ_ONCE(drvdata->sysfs_buf);
	if (!sysfs_buf || (sysfs_buf->size != drvdata->size)) {
		spin_unlock_irqrestore(&drvdata->spinlock, flags);

		/* Allocate memory with the locks released */
		free_buf = new_buf = tmc_etr_setup_sysfs_buf(drvdata);
		if (IS_ERR(new_buf))
			return PTR_ERR(new_buf);

		/* Let's try again */
		spin_lock_irqsave(&drvdata->spinlock, flags);
	}

	if (drvdata->reading || drvdata->mode == CS_MODE_PERF) {
		ret = -EBUSY;
		goto out;
	}

	/*
	 * In sysFS mode we can have multiple writers per sink.  Since this
	 * sink is already enabled no memory is needed and the HW need not be
	 * touched, even if the buffer size has changed.
	 */
	if (drvdata->mode == CS_MODE_SYSFS)
		goto out;

	/*
	 * If we don't have a buffer or it doesn't match the requested size,
	 * use the buffer allocated above. Otherwise reuse the existing buffer.
	 */
	sysfs_buf = READ_ONCE(drvdata->sysfs_buf);
	if (!sysfs_buf || (new_buf && sysfs_buf->size != new_buf->size)) {
		free_buf = sysfs_buf;
		drvdata->sysfs_buf = new_buf;
	}

	drvdata->mode = CS_MODE_SYSFS;
	tmc_etr_enable_hw(drvdata, drvdata->sysfs_buf);
out:
	spin_unlock_irqrestore(&drvdata->spinlock, flags);

	/* Free memory outside the spinlock if need be */
	if (free_buf)
		tmc_etr_free_sysfs_buf(free_buf);

	if (!ret)
		dev_info(drvdata->dev, "TMC-ETR enabled\n");

	return ret;
}

static int tmc_enable_etr_sink_perf(struct coresight_device *csdev)
{
	/* We don't support perf mode yet ! */
	return -EINVAL;
}

static int tmc_enable_etr_sink(struct coresight_device *csdev, u32 mode)
{
	switch (mode) {
	case CS_MODE_SYSFS:
		return tmc_enable_etr_sink_sysfs(csdev);
	case CS_MODE_PERF:
		return tmc_enable_etr_sink_perf(csdev);
	}

	/* We shouldn't be here */
	return -EINVAL;
}

static void tmc_disable_etr_sink(struct coresight_device *csdev)
{
	unsigned long flags;
	struct tmc_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent);

	spin_lock_irqsave(&drvdata->spinlock, flags);
	if (drvdata->reading) {
		spin_unlock_irqrestore(&drvdata->spinlock, flags);
		return;
	}

	/* Disable the TMC only if it needs to */
	if (drvdata->mode != CS_MODE_DISABLED) {
		tmc_etr_disable_hw(drvdata);
		drvdata->mode = CS_MODE_DISABLED;
	}

	spin_unlock_irqrestore(&drvdata->spinlock, flags);

	dev_info(drvdata->dev, "TMC-ETR disabled\n");
}

static const struct coresight_ops_sink tmc_etr_sink_ops = {
	.enable		= tmc_enable_etr_sink,
	.disable	= tmc_disable_etr_sink,
};

const struct coresight_ops tmc_etr_cs_ops = {
	.sink_ops	= &tmc_etr_sink_ops,
};

int tmc_read_prepare_etr(struct tmc_drvdata *drvdata)
{
	int ret = 0;
	unsigned long flags;

	/* config types are set a boot time and never change */
	if (WARN_ON_ONCE(drvdata->config_type != TMC_CONFIG_TYPE_ETR))
		return -EINVAL;

	spin_lock_irqsave(&drvdata->spinlock, flags);
	if (drvdata->reading) {
		ret = -EBUSY;
		goto out;
	}

	/*
	 * We can safely allow reads even if the ETR is operating in PERF mode,
	 * since the sysfs session is captured in mode specific data.
	 * If drvdata::sysfs_data is NULL the trace data has been read already.
	 */
	if (!drvdata->sysfs_buf) {
		ret = -EINVAL;
		goto out;
	}

	/* Disable the TMC if we are trying to read from a running session. */
	if (drvdata->mode == CS_MODE_SYSFS)
		tmc_etr_disable_hw(drvdata);

	drvdata->reading = true;
out:
	spin_unlock_irqrestore(&drvdata->spinlock, flags);

	return ret;
}

int tmc_read_unprepare_etr(struct tmc_drvdata *drvdata)
{
	unsigned long flags;
	struct etr_buf *sysfs_buf = NULL;

	/* config types are set a boot time and never change */
	if (WARN_ON_ONCE(drvdata->config_type != TMC_CONFIG_TYPE_ETR))
		return -EINVAL;

	spin_lock_irqsave(&drvdata->spinlock, flags);

	/* RE-enable the TMC if need be */
	if (drvdata->mode == CS_MODE_SYSFS) {
		/*
		 * The trace run will continue with the same allocated trace
		 * buffer. Since the tracer is still enabled drvdata::buf can't
		 * be NULL.
		 */
		tmc_etr_enable_hw(drvdata, drvdata->sysfs_buf);
	} else {
		/*
		 * The ETR is not tracing and the buffer was just read.
		 * As such prepare to free the trace buffer.
		 */
		sysfs_buf = drvdata->sysfs_buf;
		drvdata->sysfs_buf = NULL;
	}

	drvdata->reading = false;
	spin_unlock_irqrestore(&drvdata->spinlock, flags);

	/* Free allocated memory out side of the spinlock */
	if (sysfs_buf)
		tmc_etr_free_sysfs_buf(sysfs_buf);

	return 0;
}