summaryrefslogtreecommitdiff
path: root/Documentation/PCI/pci.rst
blob: f4d2662871ab1cc1554220cc074340e5e562f649 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
.. SPDX-License-Identifier: GPL-2.0

==============================
How To Write Linux PCI Drivers
==============================

:Authors: - Martin Mares <mj@ucw.cz>
          - Grant Grundler <grundler@parisc-linux.org>

The world of PCI is vast and full of (mostly unpleasant) surprises.
Since each CPU architecture implements different chip-sets and PCI devices
have different requirements (erm, "features"), the result is the PCI support
in the Linux kernel is not as trivial as one would wish. This short paper
tries to introduce all potential driver authors to Linux APIs for
PCI device drivers.

A more complete resource is the third edition of "Linux Device Drivers"
by Jonathan Corbet, Alessandro Rubini, and Greg Kroah-Hartman.
LDD3 is available for free (under Creative Commons License) from:
https://lwn.net/Kernel/LDD3/.

However, keep in mind that all documents are subject to "bit rot".
Refer to the source code if things are not working as described here.

Please send questions/comments/patches about Linux PCI API to the
"Linux PCI" <linux-pci@atrey.karlin.mff.cuni.cz> mailing list.


Structure of PCI drivers
========================
PCI drivers "discover" PCI devices in a system via pci_register_driver().
Actually, it's the other way around. When the PCI generic code discovers
a new device, the driver with a matching "description" will be notified.
Details on this below.

pci_register_driver() leaves most of the probing for devices to
the PCI layer and supports online insertion/removal of devices [thus
supporting hot-pluggable PCI, CardBus, and Express-Card in a single driver].
pci_register_driver() call requires passing in a table of function
pointers and thus dictates the high level structure of a driver.

Once the driver knows about a PCI device and takes ownership, the
driver generally needs to perform the following initialization:

  - Enable the device
  - Request MMIO/IOP resources
  - Set the DMA mask size (for both coherent and streaming DMA)
  - Allocate and initialize shared control data (pci_allocate_coherent())
  - Access device configuration space (if needed)
  - Register IRQ handler (request_irq())
  - Initialize non-PCI (i.e. LAN/SCSI/etc parts of the chip)
  - Enable DMA/processing engines

When done using the device, and perhaps the module needs to be unloaded,
the driver needs to take the following steps:

  - Disable the device from generating IRQs
  - Release the IRQ (free_irq())
  - Stop all DMA activity
  - Release DMA buffers (both streaming and coherent)
  - Unregister from other subsystems (e.g. scsi or netdev)
  - Release MMIO/IOP resources
  - Disable the device

Most of these topics are covered in the following sections.
For the rest look at LDD3 or <linux/pci.h> .

If the PCI subsystem is not configured (CONFIG_PCI is not set), most of
the PCI functions described below are defined as inline functions either
completely empty or just returning an appropriate error codes to avoid
lots of ifdefs in the drivers.


pci_register_driver() call
==========================

PCI device drivers call ``pci_register_driver()`` during their
initialization with a pointer to a structure describing the driver
(``struct pci_driver``):

.. kernel-doc:: include/linux/pci.h
   :functions: pci_driver

The ID table is an array of ``struct pci_device_id`` entries ending with an
all-zero entry.  Definitions with static const are generally preferred.

.. kernel-doc:: include/linux/mod_devicetable.h
   :functions: pci_device_id

Most drivers only need ``PCI_DEVICE()`` or ``PCI_DEVICE_CLASS()`` to set up
a pci_device_id table.

New PCI IDs may be added to a device driver pci_ids table at runtime
as shown below::

  echo "vendor device subvendor subdevice class class_mask driver_data" > \
  /sys/bus/pci/drivers/{driver}/new_id

All fields are passed in as hexadecimal values (no leading 0x).
The vendor and device fields are mandatory, the others are optional. Users
need pass only as many optional fields as necessary:

  - subvendor and subdevice fields default to PCI_ANY_ID (FFFFFFFF)
  - class and classmask fields default to 0
  - driver_data defaults to 0UL.
  - override_only field defaults to 0.

Note that driver_data must match the value used by any of the pci_device_id
entries defined in the driver. This makes the driver_data field mandatory
if all the pci_device_id entries have a non-zero driver_data value.

Once added, the driver probe routine will be invoked for any unclaimed
PCI devices listed in its (newly updated) pci_ids list.

When the driver exits, it just calls pci_unregister_driver() and the PCI layer
automatically calls the remove hook for all devices handled by the driver.


"Attributes" for driver functions/data
--------------------------------------

Please mark the initialization and cleanup functions where appropriate
(the corresponding macros are defined in <linux/init.h>):

	======		=================================================
	__init		Initialization code. Thrown away after the driver
			initializes.
	__exit		Exit code. Ignored for non-modular drivers.
	======		=================================================

Tips on when/where to use the above attributes:
	- The module_init()/module_exit() functions (and all
	  initialization functions called _only_ from these)
	  should be marked __init/__exit.

	- Do not mark the struct pci_driver.

	- Do NOT mark a function if you are not sure which mark to use.
	  Better to not mark the function than mark the function wrong.


How to find PCI devices manually
================================

PCI drivers should have a really good reason for not using the
pci_register_driver() interface to search for PCI devices.
The main reason PCI devices are controlled by multiple drivers
is because one PCI device implements several different HW services.
E.g. combined serial/parallel port/floppy controller.

A manual search may be performed using the following constructs:

Searching by vendor and device ID::

	struct pci_dev *dev = NULL;
	while (dev = pci_get_device(VENDOR_ID, DEVICE_ID, dev))
		configure_device(dev);

Searching by class ID (iterate in a similar way)::

	pci_get_class(CLASS_ID, dev)

Searching by both vendor/device and subsystem vendor/device ID::

	pci_get_subsys(VENDOR_ID,DEVICE_ID, SUBSYS_VENDOR_ID, SUBSYS_DEVICE_ID, dev).

You can use the constant PCI_ANY_ID as a wildcard replacement for
VENDOR_ID or DEVICE_ID.  This allows searching for any device from a
specific vendor, for example.

These functions are hotplug-safe. They increment the reference count on
the pci_dev that they return. You must eventually (possibly at module unload)
decrement the reference count on these devices by calling pci_dev_put().


Device Initialization Steps
===========================

As noted in the introduction, most PCI drivers need the following steps
for device initialization:

  - Enable the device
  - Request MMIO/IOP resources
  - Set the DMA mask size (for both coherent and streaming DMA)
  - Allocate and initialize shared control data (pci_allocate_coherent())
  - Access device configuration space (if needed)
  - Register IRQ handler (request_irq())
  - Initialize non-PCI (i.e. LAN/SCSI/etc parts of the chip)
  - Enable DMA/processing engines.

The driver can access PCI config space registers at any time.
(Well, almost. When running BIST, config space can go away...but
that will just result in a PCI Bus Master Abort and config reads
will return garbage).


Enable the PCI device
---------------------
Before touching any device registers, the driver needs to enable
the PCI device by calling pci_enable_device(). This will:

  - wake up the device if it was in suspended state,
  - allocate I/O and memory regions of the device (if BIOS did not),
  - allocate an IRQ (if BIOS did not).

.. note::
   pci_enable_device() can fail! Check the return value.

.. warning::
   OS BUG: we don't check resource allocations before enabling those
   resources. The sequence would make more sense if we called
   pci_request_resources() before calling pci_enable_device().
   Currently, the device drivers can't detect the bug when two
   devices have been allocated the same range. This is not a common
   problem and unlikely to get fixed soon.

   This has been discussed before but not changed as of 2.6.19:
   https://lore.kernel.org/r/20060302180025.GC28895@flint.arm.linux.org.uk/


pci_set_master() will enable DMA by setting the bus master bit
in the PCI_COMMAND register. It also fixes the latency timer value if
it's set to something bogus by the BIOS.  pci_clear_master() will
disable DMA by clearing the bus master bit.

If the PCI device can use the PCI Memory-Write-Invalidate transaction,
call pci_set_mwi().  This enables the PCI_COMMAND bit for Mem-Wr-Inval
and also ensures that the cache line size register is set correctly.
Check the return value of pci_set_mwi() as not all architectures
or chip-sets may support Memory-Write-Invalidate.  Alternatively,
if Mem-Wr-Inval would be nice to have but is not required, call
pci_try_set_mwi() to have the system do its best effort at enabling
Mem-Wr-Inval.


Request MMIO/IOP resources
--------------------------
Memory (MMIO), and I/O port addresses should NOT be read directly
from the PCI device config space. Use the values in the pci_dev structure
as the PCI "bus address" might have been remapped to a "host physical"
address by the arch/chip-set specific kernel support.

See Documentation/driver-api/io-mapping.rst for how to access device registers
or device memory.

The device driver needs to call pci_request_region() to verify
no other device is already using the same address resource.
Conversely, drivers should call pci_release_region() AFTER
calling pci_disable_device().
The idea is to prevent two devices colliding on the same address range.

.. tip::
   See OS BUG comment above. Currently (2.6.19), The driver can only
   determine MMIO and IO Port resource availability _after_ calling
   pci_enable_device().

Generic flavors of pci_request_region() are request_mem_region()
(for MMIO ranges) and request_region() (for IO Port ranges).
Use these for address resources that are not described by "normal" PCI
BARs.

Also see pci_request_selected_regions() below.


Set the DMA mask size
---------------------
.. note::
   If anything below doesn't make sense, please refer to
   Documentation/core-api/dma-api.rst. This section is just a reminder that
   drivers need to indicate DMA capabilities of the device and is not
   an authoritative source for DMA interfaces.

While all drivers should explicitly indicate the DMA capability
(e.g. 32 or 64 bit) of the PCI bus master, devices with more than
32-bit bus master capability for streaming data need the driver
to "register" this capability by calling dma_set_mask() with
appropriate parameters.  In general this allows more efficient DMA
on systems where System RAM exists above 4G _physical_ address.

Drivers for all PCI-X and PCIe compliant devices must call
dma_set_mask() as they are 64-bit DMA devices.

Similarly, drivers must also "register" this capability if the device
can directly address "coherent memory" in System RAM above 4G physical
address by calling dma_set_coherent_mask().
Again, this includes drivers for all PCI-X and PCIe compliant devices.
Many 64-bit "PCI" devices (before PCI-X) and some PCI-X devices are
64-bit DMA capable for payload ("streaming") data but not control
("coherent") data.


Setup shared control data
-------------------------
Once the DMA masks are set, the driver can allocate "coherent" (a.k.a. shared)
memory.  See Documentation/core-api/dma-api.rst for a full description of
the DMA APIs. This section is just a reminder that it needs to be done
before enabling DMA on the device.


Initialize device registers
---------------------------
Some drivers will need specific "capability" fields programmed
or other "vendor specific" register initialized or reset.
E.g. clearing pending interrupts.


Register IRQ handler
--------------------
While calling request_irq() is the last step described here,
this is often just another intermediate step to initialize a device.
This step can often be deferred until the device is opened for use.

All interrupt handlers for IRQ lines should be registered with IRQF_SHARED
and use the devid to map IRQs to devices (remember that all PCI IRQ lines
can be shared).

request_irq() will associate an interrupt handler and device handle
with an interrupt number. Historically interrupt numbers represent
IRQ lines which run from the PCI device to the Interrupt controller.
With MSI and MSI-X (more below) the interrupt number is a CPU "vector".

request_irq() also enables the interrupt. Make sure the device is
quiesced and does not have any interrupts pending before registering
the interrupt handler.

MSI and MSI-X are PCI capabilities. Both are "Message Signaled Interrupts"
which deliver interrupts to the CPU via a DMA write to a Local APIC.
The fundamental difference between MSI and MSI-X is how multiple
"vectors" get allocated. MSI requires contiguous blocks of vectors
while MSI-X can allocate several individual ones.

MSI capability can be enabled by calling pci_alloc_irq_vectors() with the
PCI_IRQ_MSI and/or PCI_IRQ_MSIX flags before calling request_irq(). This
causes the PCI support to program CPU vector data into the PCI device
capability registers. Many architectures, chip-sets, or BIOSes do NOT
support MSI or MSI-X and a call to pci_alloc_irq_vectors with just
the PCI_IRQ_MSI and PCI_IRQ_MSIX flags will fail, so try to always
specify PCI_IRQ_INTX as well.

Drivers that have different interrupt handlers for MSI/MSI-X and
legacy INTx should chose the right one based on the msi_enabled
and msix_enabled flags in the pci_dev structure after calling
pci_alloc_irq_vectors.

There are (at least) two really good reasons for using MSI:

1) MSI is an exclusive interrupt vector by definition.
   This means the interrupt handler doesn't have to verify
   its device caused the interrupt.

2) MSI avoids DMA/IRQ race conditions. DMA to host memory is guaranteed
   to be visible to the host CPU(s) when the MSI is delivered. This
   is important for both data coherency and avoiding stale control data.
   This guarantee allows the driver to omit MMIO reads to flush
   the DMA stream.

See drivers/infiniband/hw/mthca/ or drivers/net/tg3.c for examples
of MSI/MSI-X usage.


PCI device shutdown
===================

When a PCI device driver is being unloaded, most of the following
steps need to be performed:

  - Disable the device from generating IRQs
  - Release the IRQ (free_irq())
  - Stop all DMA activity
  - Release DMA buffers (both streaming and coherent)
  - Unregister from other subsystems (e.g. scsi or netdev)
  - Disable device from responding to MMIO/IO Port addresses
  - Release MMIO/IO Port resource(s)


Stop IRQs on the device
-----------------------
How to do this is chip/device specific. If it's not done, it opens
the possibility of a "screaming interrupt" if (and only if)
the IRQ is shared with another device.

When the shared IRQ handler is "unhooked", the remaining devices
using the same IRQ line will still need the IRQ enabled. Thus if the
"unhooked" device asserts IRQ line, the system will respond assuming
it was one of the remaining devices asserted the IRQ line. Since none
of the other devices will handle the IRQ, the system will "hang" until
it decides the IRQ isn't going to get handled and masks the IRQ (100,000
iterations later). Once the shared IRQ is masked, the remaining devices
will stop functioning properly. Not a nice situation.

This is another reason to use MSI or MSI-X if it's available.
MSI and MSI-X are defined to be exclusive interrupts and thus
are not susceptible to the "screaming interrupt" problem.


Release the IRQ
---------------
Once the device is quiesced (no more IRQs), one can call free_irq().
This function will return control once any pending IRQs are handled,
"unhook" the drivers IRQ handler from that IRQ, and finally release
the IRQ if no one else is using it.


Stop all DMA activity
---------------------
It's extremely important to stop all DMA operations BEFORE attempting
to deallocate DMA control data. Failure to do so can result in memory
corruption, hangs, and on some chip-sets a hard crash.

Stopping DMA after stopping the IRQs can avoid races where the
IRQ handler might restart DMA engines.

While this step sounds obvious and trivial, several "mature" drivers
didn't get this step right in the past.


Release DMA buffers
-------------------
Once DMA is stopped, clean up streaming DMA first.
I.e. unmap data buffers and return buffers to "upstream"
owners if there is one.

Then clean up "coherent" buffers which contain the control data.

See Documentation/core-api/dma-api.rst for details on unmapping interfaces.


Unregister from other subsystems
--------------------------------
Most low level PCI device drivers support some other subsystem
like USB, ALSA, SCSI, NetDev, Infiniband, etc. Make sure your
driver isn't losing resources from that other subsystem.
If this happens, typically the symptom is an Oops (panic) when
the subsystem attempts to call into a driver that has been unloaded.


Disable Device from responding to MMIO/IO Port addresses
--------------------------------------------------------
io_unmap() MMIO or IO Port resources and then call pci_disable_device().
This is the symmetric opposite of pci_enable_device().
Do not access device registers after calling pci_disable_device().


Release MMIO/IO Port Resource(s)
--------------------------------
Call pci_release_region() to mark the MMIO or IO Port range as available.
Failure to do so usually results in the inability to reload the driver.


How to access PCI config space
==============================

You can use `pci_(read|write)_config_(byte|word|dword)` to access the config
space of a device represented by `struct pci_dev *`. All these functions return
0 when successful or an error code (`PCIBIOS_...`) which can be translated to a
text string by pcibios_strerror. Most drivers expect that accesses to valid PCI
devices don't fail.

If you don't have a struct pci_dev available, you can call
`pci_bus_(read|write)_config_(byte|word|dword)` to access a given device
and function on that bus.

If you access fields in the standard portion of the config header, please
use symbolic names of locations and bits declared in <linux/pci.h>.

If you need to access Extended PCI Capability registers, just call
pci_find_capability() for the particular capability and it will find the
corresponding register block for you.


Other interesting functions
===========================

=============================	================================================
pci_get_domain_bus_and_slot()	Find pci_dev corresponding to given domain,
				bus and slot and number. If the device is
				found, its reference count is increased.
pci_set_power_state()		Set PCI Power Management state (0=D0 ... 3=D3)
pci_find_capability()		Find specified capability in device's capability
				list.
pci_resource_start()		Returns bus start address for a given PCI region
pci_resource_end()		Returns bus end address for a given PCI region
pci_resource_len()		Returns the byte length of a PCI region
pci_set_drvdata()		Set private driver data pointer for a pci_dev
pci_get_drvdata()		Return private driver data pointer for a pci_dev
pci_set_mwi()			Enable Memory-Write-Invalidate transactions.
pci_clear_mwi()			Disable Memory-Write-Invalidate transactions.
=============================	================================================


Miscellaneous hints
===================

When displaying PCI device names to the user (for example when a driver wants
to tell the user what card has it found), please use pci_name(pci_dev).

Always refer to the PCI devices by a pointer to the pci_dev structure.
All PCI layer functions use this identification and it's the only
reasonable one. Don't use bus/slot/function numbers except for very
special purposes -- on systems with multiple primary buses their semantics
can be pretty complex.

Don't try to turn on Fast Back to Back writes in your driver.  All devices
on the bus need to be capable of doing it, so this is something which needs
to be handled by platform and generic code, not individual drivers.


Vendor and device identifications
=================================

Do not add new device or vendor IDs to include/linux/pci_ids.h unless they
are shared across multiple drivers.  You can add private definitions in
your driver if they're helpful, or just use plain hex constants.

The device IDs are arbitrary hex numbers (vendor controlled) and normally used
only in a single location, the pci_device_id table.

Please DO submit new vendor/device IDs to https://pci-ids.ucw.cz/.
There's a mirror of the pci.ids file at https://github.com/pciutils/pciids.


Obsolete functions
==================

There are several functions which you might come across when trying to
port an old driver to the new PCI interface.  They are no longer present
in the kernel as they aren't compatible with hotplug or PCI domains or
having sane locking.

=================	===========================================
pci_find_device()	Superseded by pci_get_device()
pci_find_subsys()	Superseded by pci_get_subsys()
pci_find_slot()		Superseded by pci_get_domain_bus_and_slot()
pci_get_slot()		Superseded by pci_get_domain_bus_and_slot()
=================	===========================================

The alternative is the traditional PCI device driver that walks PCI
device lists. This is still possible but discouraged.


MMIO Space and "Write Posting"
==============================

Converting a driver from using I/O Port space to using MMIO space
often requires some additional changes. Specifically, "write posting"
needs to be handled. Many drivers (e.g. tg3, acenic, sym53c8xx_2)
already do this. I/O Port space guarantees write transactions reach the PCI
device before the CPU can continue. Writes to MMIO space allow the CPU
to continue before the transaction reaches the PCI device. HW weenies
call this "Write Posting" because the write completion is "posted" to
the CPU before the transaction has reached its destination.

Thus, timing sensitive code should add readl() where the CPU is
expected to wait before doing other work.  The classic "bit banging"
sequence works fine for I/O Port space::

       for (i = 8; --i; val >>= 1) {
               outb(val & 1, ioport_reg);      /* write bit */
               udelay(10);
       }

The same sequence for MMIO space should be::

       for (i = 8; --i; val >>= 1) {
               writeb(val & 1, mmio_reg);      /* write bit */
               readb(safe_mmio_reg);           /* flush posted write */
               udelay(10);
       }

It is important that "safe_mmio_reg" not have any side effects that
interferes with the correct operation of the device.

Another case to watch out for is when resetting a PCI device. Use PCI
Configuration space reads to flush the writel(). This will gracefully
handle the PCI master abort on all platforms if the PCI device is
expected to not respond to a readl().  Most x86 platforms will allow
MMIO reads to master abort (a.k.a. "Soft Fail") and return garbage
(e.g. ~0). But many RISC platforms will crash (a.k.a."Hard Fail").