#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * Our network namespace constructor/destructor lists */ static LIST_HEAD(pernet_list); static struct list_head *first_device = &pernet_list; DEFINE_MUTEX(net_mutex); LIST_HEAD(net_namespace_list); EXPORT_SYMBOL_GPL(net_namespace_list); struct net init_net = { .dev_base_head = LIST_HEAD_INIT(init_net.dev_base_head), }; EXPORT_SYMBOL(init_net); #define INITIAL_NET_GEN_PTRS 13 /* +1 for len +2 for rcu_head */ static unsigned int max_gen_ptrs = INITIAL_NET_GEN_PTRS; static struct net_generic *net_alloc_generic(void) { struct net_generic *ng; size_t generic_size = offsetof(struct net_generic, ptr[max_gen_ptrs]); ng = kzalloc(generic_size, GFP_KERNEL); if (ng) ng->len = max_gen_ptrs; return ng; } static int net_assign_generic(struct net *net, int id, void *data) { struct net_generic *ng, *old_ng; BUG_ON(!mutex_is_locked(&net_mutex)); BUG_ON(id == 0); old_ng = rcu_dereference_protected(net->gen, lockdep_is_held(&net_mutex)); ng = old_ng; if (old_ng->len >= id) goto assign; ng = net_alloc_generic(); if (ng == NULL) return -ENOMEM; /* * Some synchronisation notes: * * The net_generic explores the net->gen array inside rcu * read section. Besides once set the net->gen->ptr[x] * pointer never changes (see rules in netns/generic.h). * * That said, we simply duplicate this array and schedule * the old copy for kfree after a grace period. */ memcpy(&ng->ptr, &old_ng->ptr, old_ng->len * sizeof(void*)); rcu_assign_pointer(net->gen, ng); kfree_rcu(old_ng, rcu); assign: ng->ptr[id - 1] = data; return 0; } static int ops_init(const struct pernet_operations *ops, struct net *net) { int err = -ENOMEM; void *data = NULL; if (ops->id && ops->size) { data = kzalloc(ops->size, GFP_KERNEL); if (!data) goto out; err = net_assign_generic(net, *ops->id, data); if (err) goto cleanup; } err = 0; if (ops->init) err = ops->init(net); if (!err) return 0; cleanup: kfree(data); out: return err; } static void ops_free(const struct pernet_operations *ops, struct net *net) { if (ops->id && ops->size) { int id = *ops->id; kfree(net_generic(net, id)); } } static void ops_exit_list(const struct pernet_operations *ops, struct list_head *net_exit_list) { struct net *net; if (ops->exit) { list_for_each_entry(net, net_exit_list, exit_list) ops->exit(net); } if (ops->exit_batch) ops->exit_batch(net_exit_list); } static void ops_free_list(const struct pernet_operations *ops, struct list_head *net_exit_list) { struct net *net; if (ops->size && ops->id) { list_for_each_entry(net, net_exit_list, exit_list) ops_free(ops, net); } } static int alloc_netid(struct net *net, struct net *peer, int reqid) { int min = 0, max = 0; ASSERT_RTNL(); if (reqid >= 0) { min = reqid; max = reqid + 1; } return idr_alloc(&net->netns_ids, peer, min, max, GFP_KERNEL); } /* This function is used by idr_for_each(). If net is equal to peer, the * function returns the id so that idr_for_each() stops. Because we cannot * returns the id 0 (idr_for_each() will not stop), we return the magic value * NET_ID_ZERO (-1) for it. */ #define NET_ID_ZERO -1 static int net_eq_idr(int id, void *net, void *peer) { if (net_eq(net, peer)) return id ? : NET_ID_ZERO; return 0; } static int __peernet2id(struct net *net, struct net *peer, bool alloc) { int id = idr_for_each(&net->netns_ids, net_eq_idr, peer); ASSERT_RTNL(); /* Magic value for id 0. */ if (id == NET_ID_ZERO) return 0; if (id > 0) return id; if (alloc) return alloc_netid(net, peer, -1); return -ENOENT; } /* This function returns the id of a peer netns. If no id is assigned, one will * be allocated and returned. */ int peernet2id(struct net *net, struct net *peer) { bool alloc = atomic_read(&peer->count) == 0 ? false : true; int id; id = __peernet2id(net, peer, alloc); return id >= 0 ? id : NETNSA_NSID_NOT_ASSIGNED; } EXPORT_SYMBOL(peernet2id); struct net *get_net_ns_by_id(struct net *net, int id) { struct net *peer; if (id < 0) return NULL; rcu_read_lock(); peer = idr_find(&net->netns_ids, id); if (peer) get_net(peer); rcu_read_unlock(); return peer; } /* * setup_net runs the initializers for the network namespace object. */ static __net_init int setup_net(struct net *net, struct user_namespace *user_ns) { /* Must be called with net_mutex held */ const struct pernet_operations *ops, *saved_ops; int error = 0; LIST_HEAD(net_exit_list); atomic_set(&net->count, 1); atomic_set(&net->passive, 1); net->dev_base_seq = 1; net->user_ns = user_ns; idr_init(&net->netns_ids); list_for_each_entry(ops, &pernet_list, list) { error = ops_init(ops, net); if (error < 0) goto out_undo; } out: return error; out_undo: /* Walk through the list backwards calling the exit functions * for the pernet modules whose init functions did not fail. */ list_add(&net->exit_list, &net_exit_list); saved_ops = ops; list_for_each_entry_continue_reverse(ops, &pernet_list, list) ops_exit_list(ops, &net_exit_list); ops = saved_ops; list_for_each_entry_continue_reverse(ops, &pernet_list, list) ops_free_list(ops, &net_exit_list); rcu_barrier(); goto out; } #ifdef CONFIG_NET_NS static struct kmem_cache *net_cachep; static struct workqueue_struct *netns_wq; static struct net *net_alloc(void) { struct net *net = NULL; struct net_generic *ng; ng = net_alloc_generic(); if (!ng) goto out; net = kmem_cache_zalloc(net_cachep, GFP_KERNEL); if (!net) goto out_free; rcu_assign_pointer(net->gen, ng); out: return net; out_free: kfree(ng); goto out; } static void net_free(struct net *net) { kfree(rcu_access_pointer(net->gen)); kmem_cache_free(net_cachep, net); } void net_drop_ns(void *p) { struct net *ns = p; if (ns && atomic_dec_and_test(&ns->passive)) net_free(ns); } struct net *copy_net_ns(unsigned long flags, struct user_namespace *user_ns, struct net *old_net) { struct net *net; int rv; if (!(flags & CLONE_NEWNET)) return get_net(old_net); net = net_alloc(); if (!net) return ERR_PTR(-ENOMEM); get_user_ns(user_ns); mutex_lock(&net_mutex); rv = setup_net(net, user_ns); if (rv == 0) { rtnl_lock(); list_add_tail_rcu(&net->list, &net_namespace_list); rtnl_unlock(); } mutex_unlock(&net_mutex); if (rv < 0) { put_user_ns(user_ns); net_drop_ns(net); return ERR_PTR(rv); } return net; } static DEFINE_SPINLOCK(cleanup_list_lock); static LIST_HEAD(cleanup_list); /* Must hold cleanup_list_lock to touch */ static void cleanup_net(struct work_struct *work) { const struct pernet_operations *ops; struct net *net, *tmp; struct list_head net_kill_list; LIST_HEAD(net_exit_list); /* Atomically snapshot the list of namespaces to cleanup */ spin_lock_irq(&cleanup_list_lock); list_replace_init(&cleanup_list, &net_kill_list); spin_unlock_irq(&cleanup_list_lock); mutex_lock(&net_mutex); /* Don't let anyone else find us. */ rtnl_lock(); list_for_each_entry(net, &net_kill_list, cleanup_list) { list_del_rcu(&net->list); list_add_tail(&net->exit_list, &net_exit_list); for_each_net(tmp) { int id = __peernet2id(tmp, net, false); if (id >= 0) idr_remove(&tmp->netns_ids, id); } idr_destroy(&net->netns_ids); } rtnl_unlock(); /* * Another CPU might be rcu-iterating the list, wait for it. * This needs to be before calling the exit() notifiers, so * the rcu_barrier() below isn't sufficient alone. */ synchronize_rcu(); /* Run all of the network namespace exit methods */ list_for_each_entry_reverse(ops, &pernet_list, list) ops_exit_list(ops, &net_exit_list); /* Free the net generic variables */ list_for_each_entry_reverse(ops, &pernet_list, list) ops_free_list(ops, &net_exit_list); mutex_unlock(&net_mutex); /* Ensure there are no outstanding rcu callbacks using this * network namespace. */ rcu_barrier(); /* Finally it is safe to free my network namespace structure */ list_for_each_entry_safe(net, tmp, &net_exit_list, exit_list) { list_del_init(&net->exit_list); put_user_ns(net->user_ns); net_drop_ns(net); } } static DECLARE_WORK(net_cleanup_work, cleanup_net); void __put_net(struct net *net) { /* Cleanup the network namespace in process context */ unsigned long flags; spin_lock_irqsave(&cleanup_list_lock, flags); list_add(&net->cleanup_list, &cleanup_list); spin_unlock_irqrestore(&cleanup_list_lock, flags); queue_work(netns_wq, &net_cleanup_work); } EXPORT_SYMBOL_GPL(__put_net); struct net *get_net_ns_by_fd(int fd) { struct file *file; struct ns_common *ns; struct net *net; file = proc_ns_fget(fd); if (IS_ERR(file)) return ERR_CAST(file); ns = get_proc_ns(file_inode(file)); if (ns->ops == &netns_operations) net = get_net(container_of(ns, struct net, ns)); else net = ERR_PTR(-EINVAL); fput(file); return net; } #else struct net *get_net_ns_by_fd(int fd) { return ERR_PTR(-EINVAL); } #endif EXPORT_SYMBOL_GPL(get_net_ns_by_fd); struct net *get_net_ns_by_pid(pid_t pid) { struct task_struct *tsk; struct net *net; /* Lookup the network namespace */ net = ERR_PTR(-ESRCH); rcu_read_lock(); tsk = find_task_by_vpid(pid); if (tsk) { struct nsproxy *nsproxy; task_lock(tsk); nsproxy = tsk->nsproxy; if (nsproxy) net = get_net(nsproxy->net_ns); task_unlock(tsk); } rcu_read_unlock(); return net; } EXPORT_SYMBOL_GPL(get_net_ns_by_pid); static __net_init int net_ns_net_init(struct net *net) { #ifdef CONFIG_NET_NS net->ns.ops = &netns_operations; #endif return ns_alloc_inum(&net->ns); } static __net_exit void net_ns_net_exit(struct net *net) { ns_free_inum(&net->ns); } static struct pernet_operations __net_initdata net_ns_ops = { .init = net_ns_net_init, .exit = net_ns_net_exit, }; static struct nla_policy rtnl_net_policy[NETNSA_MAX + 1] = { [NETNSA_NONE] = { .type = NLA_UNSPEC }, [NETNSA_NSID] = { .type = NLA_S32 }, [NETNSA_PID] = { .type = NLA_U32 }, [NETNSA_FD] = { .type = NLA_U32 }, }; static int rtnl_net_newid(struct sk_buff *skb, struct nlmsghdr *nlh) { struct net *net = sock_net(skb->sk); struct nlattr *tb[NETNSA_MAX + 1]; struct net *peer; int nsid, err; err = nlmsg_parse(nlh, sizeof(struct rtgenmsg), tb, NETNSA_MAX, rtnl_net_policy); if (err < 0) return err; if (!tb[NETNSA_NSID]) return -EINVAL; nsid = nla_get_s32(tb[NETNSA_NSID]); if (tb[NETNSA_PID]) peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID])); else if (tb[NETNSA_FD]) peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD])); else return -EINVAL; if (IS_ERR(peer)) return PTR_ERR(peer); if (__peernet2id(net, peer, false) >= 0) { err = -EEXIST; goto out; } err = alloc_netid(net, peer, nsid); if (err > 0) err = 0; out: put_net(peer); return err; } static int rtnl_net_get_size(void) { return NLMSG_ALIGN(sizeof(struct rtgenmsg)) + nla_total_size(sizeof(s32)) /* NETNSA_NSID */ ; } static int rtnl_net_fill(struct sk_buff *skb, u32 portid, u32 seq, int flags, int cmd, struct net *net, struct net *peer) { struct nlmsghdr *nlh; struct rtgenmsg *rth; int id; ASSERT_RTNL(); nlh = nlmsg_put(skb, portid, seq, cmd, sizeof(*rth), flags); if (!nlh) return -EMSGSIZE; rth = nlmsg_data(nlh); rth->rtgen_family = AF_UNSPEC; id = __peernet2id(net, peer, false); if (id < 0) id = NETNSA_NSID_NOT_ASSIGNED; if (nla_put_s32(skb, NETNSA_NSID, id)) goto nla_put_failure; nlmsg_end(skb, nlh); return 0; nla_put_failure: nlmsg_cancel(skb, nlh); return -EMSGSIZE; } static int rtnl_net_getid(struct sk_buff *skb, struct nlmsghdr *nlh) { struct net *net = sock_net(skb->sk); struct nlattr *tb[NETNSA_MAX + 1]; struct sk_buff *msg; int err = -ENOBUFS; struct net *peer; err = nlmsg_parse(nlh, sizeof(struct rtgenmsg), tb, NETNSA_MAX, rtnl_net_policy); if (err < 0) return err; if (tb[NETNSA_PID]) peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID])); else if (tb[NETNSA_FD]) peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD])); else return -EINVAL; if (IS_ERR(peer)) return PTR_ERR(peer); msg = nlmsg_new(rtnl_net_get_size(), GFP_KERNEL); if (!msg) { err = -ENOMEM; goto out; } err = rtnl_net_fill(msg, NETLINK_CB(skb).portid, nlh->nlmsg_seq, 0, RTM_GETNSID, net, peer); if (err < 0) goto err_out; err = rtnl_unicast(msg, net, NETLINK_CB(skb).portid); goto out; err_out: nlmsg_free(msg); out: put_net(peer); return err; } static int __init net_ns_init(void) { struct net_generic *ng; #ifdef CONFIG_NET_NS net_cachep = kmem_cache_create("net_namespace", sizeof(struct net), SMP_CACHE_BYTES, SLAB_PANIC, NULL); /* Create workqueue for cleanup */ netns_wq = create_singlethread_workqueue("netns"); if (!netns_wq) panic("Could not create netns workq"); #endif ng = net_alloc_generic(); if (!ng) panic("Could not allocate generic netns"); rcu_assign_pointer(init_net.gen, ng); mutex_lock(&net_mutex); if (setup_net(&init_net, &init_user_ns)) panic("Could not setup the initial network namespace"); rtnl_lock(); list_add_tail_rcu(&init_net.list, &net_namespace_list); rtnl_unlock(); mutex_unlock(&net_mutex); register_pernet_subsys(&net_ns_ops); rtnl_register(PF_UNSPEC, RTM_NEWNSID, rtnl_net_newid, NULL, NULL); rtnl_register(PF_UNSPEC, RTM_GETNSID, rtnl_net_getid, NULL, NULL); return 0; } pure_initcall(net_ns_init); #ifdef CONFIG_NET_NS static int __register_pernet_operations(struct list_head *list, struct pernet_operations *ops) { struct net *net; int error; LIST_HEAD(net_exit_list); list_add_tail(&ops->list, list); if (ops->init || (ops->id && ops->size)) { for_each_net(net) { error = ops_init(ops, net); if (error) goto out_undo; list_add_tail(&net->exit_list, &net_exit_list); } } return 0; out_undo: /* If I have an error cleanup all namespaces I initialized */ list_del(&ops->list); ops_exit_list(ops, &net_exit_list); ops_free_list(ops, &net_exit_list); return error; } static void __unregister_pernet_operations(struct pernet_operations *ops) { struct net *net; LIST_HEAD(net_exit_list); list_del(&ops->list); for_each_net(net) list_add_tail(&net->exit_list, &net_exit_list); ops_exit_list(ops, &net_exit_list); ops_free_list(ops, &net_exit_list); } #else static int __register_pernet_operations(struct list_head *list, struct pernet_operations *ops) { return ops_init(ops, &init_net); } static void __unregister_pernet_operations(struct pernet_operations *ops) { LIST_HEAD(net_exit_list); list_add(&init_net.exit_list, &net_exit_list); ops_exit_list(ops, &net_exit_list); ops_free_list(ops, &net_exit_list); } #endif /* CONFIG_NET_NS */ static DEFINE_IDA(net_generic_ids); static int register_pernet_operations(struct list_head *list, struct pernet_operations *ops) { int error; if (ops->id) { again: error = ida_get_new_above(&net_generic_ids, 1, ops->id); if (error < 0) { if (error == -EAGAIN) { ida_pre_get(&net_generic_ids, GFP_KERNEL); goto again; } return error; } max_gen_ptrs = max_t(unsigned int, max_gen_ptrs, *ops->id); } error = __register_pernet_operations(list, ops); if (error) { rcu_barrier(); if (ops->id) ida_remove(&net_generic_ids, *ops->id); } return error; } static void unregister_pernet_operations(struct pernet_operations *ops) { __unregister_pernet_operations(ops); rcu_barrier(); if (ops->id) ida_remove(&net_generic_ids, *ops->id); } /** * register_pernet_subsys - register a network namespace subsystem * @ops: pernet operations structure for the subsystem * * Register a subsystem which has init and exit functions * that are called when network namespaces are created and * destroyed respectively. * * When registered all network namespace init functions are * called for every existing network namespace. Allowing kernel * modules to have a race free view of the set of network namespaces. * * When a new network namespace is created all of the init * methods are called in the order in which they were registered. * * When a network namespace is destroyed all of the exit methods * are called in the reverse of the order with which they were * registered. */ int register_pernet_subsys(struct pernet_operations *ops) { int error; mutex_lock(&net_mutex); error = register_pernet_operations(first_device, ops); mutex_unlock(&net_mutex); return error; } EXPORT_SYMBOL_GPL(register_pernet_subsys); /** * unregister_pernet_subsys - unregister a network namespace subsystem * @ops: pernet operations structure to manipulate * * Remove the pernet operations structure from the list to be * used when network namespaces are created or destroyed. In * addition run the exit method for all existing network * namespaces. */ void unregister_pernet_subsys(struct pernet_operations *ops) { mutex_lock(&net_mutex); unregister_pernet_operations(ops); mutex_unlock(&net_mutex); } EXPORT_SYMBOL_GPL(unregister_pernet_subsys); /** * register_pernet_device - register a network namespace device * @ops: pernet operations structure for the subsystem * * Register a device which has init and exit functions * that are called when network namespaces are created and * destroyed respectively. * * When registered all network namespace init functions are * called for every existing network namespace. Allowing kernel * modules to have a race free view of the set of network namespaces. * * When a new network namespace is created all of the init * methods are called in the order in which they were registered. * * When a network namespace is destroyed all of the exit methods * are called in the reverse of the order with which they were * registered. */ int register_pernet_device(struct pernet_operations *ops) { int error; mutex_lock(&net_mutex); error = register_pernet_operations(&pernet_list, ops); if (!error && (first_device == &pernet_list)) first_device = &ops->list; mutex_unlock(&net_mutex); return error; } EXPORT_SYMBOL_GPL(register_pernet_device); /** * unregister_pernet_device - unregister a network namespace netdevice * @ops: pernet operations structure to manipulate * * Remove the pernet operations structure from the list to be * used when network namespaces are created or destroyed. In * addition run the exit method for all existing network * namespaces. */ void unregister_pernet_device(struct pernet_operations *ops) { mutex_lock(&net_mutex); if (&ops->list == first_device) first_device = first_device->next; unregister_pernet_operations(ops); mutex_unlock(&net_mutex); } EXPORT_SYMBOL_GPL(unregister_pernet_device); #ifdef CONFIG_NET_NS static struct ns_common *netns_get(struct task_struct *task) { struct net *net = NULL; struct nsproxy *nsproxy; task_lock(task); nsproxy = task->nsproxy; if (nsproxy) net = get_net(nsproxy->net_ns); task_unlock(task); return net ? &net->ns : NULL; } static inline struct net *to_net_ns(struct ns_common *ns) { return container_of(ns, struct net, ns); } static void netns_put(struct ns_common *ns) { put_net(to_net_ns(ns)); } static int netns_install(struct nsproxy *nsproxy, struct ns_common *ns) { struct net *net = to_net_ns(ns); if (!ns_capable(net->user_ns, CAP_SYS_ADMIN) || !ns_capable(current_user_ns(), CAP_SYS_ADMIN)) return -EPERM; put_net(nsproxy->net_ns); nsproxy->net_ns = get_net(net); return 0; } const struct proc_ns_operations netns_operations = { .name = "net", .type = CLONE_NEWNET, .get = netns_get, .put = netns_put, .install = netns_install, }; #endif