// SPDX-License-Identifier: GPL-2.0-or-later /* * VMA-specific functions. */ #include "vma_internal.h" #include "vma.h" static inline bool is_mergeable_vma(struct vma_merge_struct *vmg, bool merge_next) { struct vm_area_struct *vma = merge_next ? vmg->next : vmg->prev; if (!mpol_equal(vmg->policy, vma_policy(vma))) return false; /* * VM_SOFTDIRTY should not prevent from VMA merging, if we * match the flags but dirty bit -- the caller should mark * merged VMA as dirty. If dirty bit won't be excluded from * comparison, we increase pressure on the memory system forcing * the kernel to generate new VMAs when old one could be * extended instead. */ if ((vma->vm_flags ^ vmg->flags) & ~VM_SOFTDIRTY) return false; if (vma->vm_file != vmg->file) return false; if (!is_mergeable_vm_userfaultfd_ctx(vma, vmg->uffd_ctx)) return false; if (!anon_vma_name_eq(anon_vma_name(vma), vmg->anon_name)) return false; return true; } static inline bool is_mergeable_anon_vma(struct anon_vma *anon_vma1, struct anon_vma *anon_vma2, struct vm_area_struct *vma) { /* * The list_is_singular() test is to avoid merging VMA cloned from * parents. This can improve scalability caused by anon_vma lock. */ if ((!anon_vma1 || !anon_vma2) && (!vma || list_is_singular(&vma->anon_vma_chain))) return true; return anon_vma1 == anon_vma2; } /* Are the anon_vma's belonging to each VMA compatible with one another? */ static inline bool are_anon_vmas_compatible(struct vm_area_struct *vma1, struct vm_area_struct *vma2) { return is_mergeable_anon_vma(vma1->anon_vma, vma2->anon_vma, NULL); } /* * init_multi_vma_prep() - Initializer for struct vma_prepare * @vp: The vma_prepare struct * @vma: The vma that will be altered once locked * @next: The next vma if it is to be adjusted * @remove: The first vma to be removed * @remove2: The second vma to be removed */ static void init_multi_vma_prep(struct vma_prepare *vp, struct vm_area_struct *vma, struct vm_area_struct *next, struct vm_area_struct *remove, struct vm_area_struct *remove2) { memset(vp, 0, sizeof(struct vma_prepare)); vp->vma = vma; vp->anon_vma = vma->anon_vma; vp->remove = remove; vp->remove2 = remove2; vp->adj_next = next; if (!vp->anon_vma && next) vp->anon_vma = next->anon_vma; vp->file = vma->vm_file; if (vp->file) vp->mapping = vma->vm_file->f_mapping; } /* * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) * in front of (at a lower virtual address and file offset than) the vma. * * We cannot merge two vmas if they have differently assigned (non-NULL) * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. * * We don't check here for the merged mmap wrapping around the end of pagecache * indices (16TB on ia32) because do_mmap() does not permit mmap's which * wrap, nor mmaps which cover the final page at index -1UL. * * We assume the vma may be removed as part of the merge. */ static bool can_vma_merge_before(struct vma_merge_struct *vmg) { pgoff_t pglen = PHYS_PFN(vmg->end - vmg->start); if (is_mergeable_vma(vmg, /* merge_next = */ true) && is_mergeable_anon_vma(vmg->anon_vma, vmg->next->anon_vma, vmg->next)) { if (vmg->next->vm_pgoff == vmg->pgoff + pglen) return true; } return false; } /* * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) * beyond (at a higher virtual address and file offset than) the vma. * * We cannot merge two vmas if they have differently assigned (non-NULL) * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. * * We assume that vma is not removed as part of the merge. */ static bool can_vma_merge_after(struct vma_merge_struct *vmg) { if (is_mergeable_vma(vmg, /* merge_next = */ false) && is_mergeable_anon_vma(vmg->anon_vma, vmg->prev->anon_vma, vmg->prev)) { if (vmg->prev->vm_pgoff + vma_pages(vmg->prev) == vmg->pgoff) return true; } return false; } static void __vma_link_file(struct vm_area_struct *vma, struct address_space *mapping) { if (vma_is_shared_maywrite(vma)) mapping_allow_writable(mapping); flush_dcache_mmap_lock(mapping); vma_interval_tree_insert(vma, &mapping->i_mmap); flush_dcache_mmap_unlock(mapping); } /* * Requires inode->i_mapping->i_mmap_rwsem */ static void __remove_shared_vm_struct(struct vm_area_struct *vma, struct address_space *mapping) { if (vma_is_shared_maywrite(vma)) mapping_unmap_writable(mapping); flush_dcache_mmap_lock(mapping); vma_interval_tree_remove(vma, &mapping->i_mmap); flush_dcache_mmap_unlock(mapping); } /* * vma_prepare() - Helper function for handling locking VMAs prior to altering * @vp: The initialized vma_prepare struct */ static void vma_prepare(struct vma_prepare *vp) { if (vp->file) { uprobe_munmap(vp->vma, vp->vma->vm_start, vp->vma->vm_end); if (vp->adj_next) uprobe_munmap(vp->adj_next, vp->adj_next->vm_start, vp->adj_next->vm_end); i_mmap_lock_write(vp->mapping); if (vp->insert && vp->insert->vm_file) { /* * Put into interval tree now, so instantiated pages * are visible to arm/parisc __flush_dcache_page * throughout; but we cannot insert into address * space until vma start or end is updated. */ __vma_link_file(vp->insert, vp->insert->vm_file->f_mapping); } } if (vp->anon_vma) { anon_vma_lock_write(vp->anon_vma); anon_vma_interval_tree_pre_update_vma(vp->vma); if (vp->adj_next) anon_vma_interval_tree_pre_update_vma(vp->adj_next); } if (vp->file) { flush_dcache_mmap_lock(vp->mapping); vma_interval_tree_remove(vp->vma, &vp->mapping->i_mmap); if (vp->adj_next) vma_interval_tree_remove(vp->adj_next, &vp->mapping->i_mmap); } } /* * vma_complete- Helper function for handling the unlocking after altering VMAs, * or for inserting a VMA. * * @vp: The vma_prepare struct * @vmi: The vma iterator * @mm: The mm_struct */ static void vma_complete(struct vma_prepare *vp, struct vma_iterator *vmi, struct mm_struct *mm) { if (vp->file) { if (vp->adj_next) vma_interval_tree_insert(vp->adj_next, &vp->mapping->i_mmap); vma_interval_tree_insert(vp->vma, &vp->mapping->i_mmap); flush_dcache_mmap_unlock(vp->mapping); } if (vp->remove && vp->file) { __remove_shared_vm_struct(vp->remove, vp->mapping); if (vp->remove2) __remove_shared_vm_struct(vp->remove2, vp->mapping); } else if (vp->insert) { /* * split_vma has split insert from vma, and needs * us to insert it before dropping the locks * (it may either follow vma or precede it). */ vma_iter_store(vmi, vp->insert); mm->map_count++; } if (vp->anon_vma) { anon_vma_interval_tree_post_update_vma(vp->vma); if (vp->adj_next) anon_vma_interval_tree_post_update_vma(vp->adj_next); anon_vma_unlock_write(vp->anon_vma); } if (vp->file) { i_mmap_unlock_write(vp->mapping); uprobe_mmap(vp->vma); if (vp->adj_next) uprobe_mmap(vp->adj_next); } if (vp->remove) { again: vma_mark_detached(vp->remove, true); if (vp->file) { uprobe_munmap(vp->remove, vp->remove->vm_start, vp->remove->vm_end); fput(vp->file); } if (vp->remove->anon_vma) anon_vma_merge(vp->vma, vp->remove); mm->map_count--; mpol_put(vma_policy(vp->remove)); if (!vp->remove2) WARN_ON_ONCE(vp->vma->vm_end < vp->remove->vm_end); vm_area_free(vp->remove); /* * In mprotect's case 6 (see comments on vma_merge), * we are removing both mid and next vmas */ if (vp->remove2) { vp->remove = vp->remove2; vp->remove2 = NULL; goto again; } } if (vp->insert && vp->file) uprobe_mmap(vp->insert); } /* * init_vma_prep() - Initializer wrapper for vma_prepare struct * @vp: The vma_prepare struct * @vma: The vma that will be altered once locked */ static void init_vma_prep(struct vma_prepare *vp, struct vm_area_struct *vma) { init_multi_vma_prep(vp, vma, NULL, NULL, NULL); } /* * Can the proposed VMA be merged with the left (previous) VMA taking into * account the start position of the proposed range. */ static bool can_vma_merge_left(struct vma_merge_struct *vmg) { return vmg->prev && vmg->prev->vm_end == vmg->start && can_vma_merge_after(vmg); } /* * Can the proposed VMA be merged with the right (next) VMA taking into * account the end position of the proposed range. * * In addition, if we can merge with the left VMA, ensure that left and right * anon_vma's are also compatible. */ static bool can_vma_merge_right(struct vma_merge_struct *vmg, bool can_merge_left) { if (!vmg->next || vmg->end != vmg->next->vm_start || !can_vma_merge_before(vmg)) return false; if (!can_merge_left) return true; /* * If we can merge with prev (left) and next (right), indicating that * each VMA's anon_vma is compatible with the proposed anon_vma, this * does not mean prev and next are compatible with EACH OTHER. * * We therefore check this in addition to mergeability to either side. */ return are_anon_vmas_compatible(vmg->prev, vmg->next); } /* * Close a vm structure and free it. */ void remove_vma(struct vm_area_struct *vma, bool unreachable) { might_sleep(); vma_close(vma); if (vma->vm_file) fput(vma->vm_file); mpol_put(vma_policy(vma)); if (unreachable) __vm_area_free(vma); else vm_area_free(vma); } /* * Get rid of page table information in the indicated region. * * Called with the mm semaphore held. */ void unmap_region(struct ma_state *mas, struct vm_area_struct *vma, struct vm_area_struct *prev, struct vm_area_struct *next) { struct mm_struct *mm = vma->vm_mm; struct mmu_gather tlb; lru_add_drain(); tlb_gather_mmu(&tlb, mm); update_hiwater_rss(mm); unmap_vmas(&tlb, mas, vma, vma->vm_start, vma->vm_end, vma->vm_end, /* mm_wr_locked = */ true); mas_set(mas, vma->vm_end); free_pgtables(&tlb, mas, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS, next ? next->vm_start : USER_PGTABLES_CEILING, /* mm_wr_locked = */ true); tlb_finish_mmu(&tlb); } /* * __split_vma() bypasses sysctl_max_map_count checking. We use this where it * has already been checked or doesn't make sense to fail. * VMA Iterator will point to the original VMA. */ static int __split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma, unsigned long addr, int new_below) { struct vma_prepare vp; struct vm_area_struct *new; int err; WARN_ON(vma->vm_start >= addr); WARN_ON(vma->vm_end <= addr); if (vma->vm_ops && vma->vm_ops->may_split) { err = vma->vm_ops->may_split(vma, addr); if (err) return err; } new = vm_area_dup(vma); if (!new) return -ENOMEM; if (new_below) { new->vm_end = addr; } else { new->vm_start = addr; new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT); } err = -ENOMEM; vma_iter_config(vmi, new->vm_start, new->vm_end); if (vma_iter_prealloc(vmi, new)) goto out_free_vma; err = vma_dup_policy(vma, new); if (err) goto out_free_vmi; err = anon_vma_clone(new, vma); if (err) goto out_free_mpol; if (new->vm_file) get_file(new->vm_file); if (new->vm_ops && new->vm_ops->open) new->vm_ops->open(new); vma_start_write(vma); vma_start_write(new); init_vma_prep(&vp, vma); vp.insert = new; vma_prepare(&vp); vma_adjust_trans_huge(vma, vma->vm_start, addr, 0); if (new_below) { vma->vm_start = addr; vma->vm_pgoff += (addr - new->vm_start) >> PAGE_SHIFT; } else { vma->vm_end = addr; } /* vma_complete stores the new vma */ vma_complete(&vp, vmi, vma->vm_mm); validate_mm(vma->vm_mm); /* Success. */ if (new_below) vma_next(vmi); else vma_prev(vmi); return 0; out_free_mpol: mpol_put(vma_policy(new)); out_free_vmi: vma_iter_free(vmi); out_free_vma: vm_area_free(new); return err; } /* * Split a vma into two pieces at address 'addr', a new vma is allocated * either for the first part or the tail. */ static int split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma, unsigned long addr, int new_below) { if (vma->vm_mm->map_count >= sysctl_max_map_count) return -ENOMEM; return __split_vma(vmi, vma, addr, new_below); } /* * vma has some anon_vma assigned, and is already inserted on that * anon_vma's interval trees. * * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the * vma must be removed from the anon_vma's interval trees using * anon_vma_interval_tree_pre_update_vma(). * * After the update, the vma will be reinserted using * anon_vma_interval_tree_post_update_vma(). * * The entire update must be protected by exclusive mmap_lock and by * the root anon_vma's mutex. */ void anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma) { struct anon_vma_chain *avc; list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root); } void anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma) { struct anon_vma_chain *avc; list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root); } /* * dup_anon_vma() - Helper function to duplicate anon_vma * @dst: The destination VMA * @src: The source VMA * @dup: Pointer to the destination VMA when successful. * * Returns: 0 on success. */ static int dup_anon_vma(struct vm_area_struct *dst, struct vm_area_struct *src, struct vm_area_struct **dup) { /* * Easily overlooked: when mprotect shifts the boundary, make sure the * expanding vma has anon_vma set if the shrinking vma had, to cover any * anon pages imported. */ if (src->anon_vma && !dst->anon_vma) { int ret; vma_assert_write_locked(dst); dst->anon_vma = src->anon_vma; ret = anon_vma_clone(dst, src); if (ret) return ret; *dup = dst; } return 0; } #ifdef CONFIG_DEBUG_VM_MAPLE_TREE void validate_mm(struct mm_struct *mm) { int bug = 0; int i = 0; struct vm_area_struct *vma; VMA_ITERATOR(vmi, mm, 0); mt_validate(&mm->mm_mt); for_each_vma(vmi, vma) { #ifdef CONFIG_DEBUG_VM_RB struct anon_vma *anon_vma = vma->anon_vma; struct anon_vma_chain *avc; #endif unsigned long vmi_start, vmi_end; bool warn = 0; vmi_start = vma_iter_addr(&vmi); vmi_end = vma_iter_end(&vmi); if (VM_WARN_ON_ONCE_MM(vma->vm_end != vmi_end, mm)) warn = 1; if (VM_WARN_ON_ONCE_MM(vma->vm_start != vmi_start, mm)) warn = 1; if (warn) { pr_emerg("issue in %s\n", current->comm); dump_stack(); dump_vma(vma); pr_emerg("tree range: %px start %lx end %lx\n", vma, vmi_start, vmi_end - 1); vma_iter_dump_tree(&vmi); } #ifdef CONFIG_DEBUG_VM_RB if (anon_vma) { anon_vma_lock_read(anon_vma); list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) anon_vma_interval_tree_verify(avc); anon_vma_unlock_read(anon_vma); } #endif i++; } if (i != mm->map_count) { pr_emerg("map_count %d vma iterator %d\n", mm->map_count, i); bug = 1; } VM_BUG_ON_MM(bug, mm); } #endif /* CONFIG_DEBUG_VM_MAPLE_TREE */ /* Actually perform the VMA merge operation. */ static int commit_merge(struct vma_merge_struct *vmg, struct vm_area_struct *adjust, struct vm_area_struct *remove, struct vm_area_struct *remove2, long adj_start, bool expanded) { struct vma_prepare vp; init_multi_vma_prep(&vp, vmg->vma, adjust, remove, remove2); VM_WARN_ON(vp.anon_vma && adjust && adjust->anon_vma && vp.anon_vma != adjust->anon_vma); if (expanded) { /* Note: vma iterator must be pointing to 'start'. */ vma_iter_config(vmg->vmi, vmg->start, vmg->end); } else { vma_iter_config(vmg->vmi, adjust->vm_start + adj_start, adjust->vm_end); } if (vma_iter_prealloc(vmg->vmi, vmg->vma)) return -ENOMEM; vma_prepare(&vp); vma_adjust_trans_huge(vmg->vma, vmg->start, vmg->end, adj_start); vma_set_range(vmg->vma, vmg->start, vmg->end, vmg->pgoff); if (expanded) vma_iter_store(vmg->vmi, vmg->vma); if (adj_start) { adjust->vm_start += adj_start; adjust->vm_pgoff += PHYS_PFN(adj_start); if (adj_start < 0) { WARN_ON(expanded); vma_iter_store(vmg->vmi, adjust); } } vma_complete(&vp, vmg->vmi, vmg->vma->vm_mm); return 0; } /* We can only remove VMAs when merging if they do not have a close hook. */ static bool can_merge_remove_vma(struct vm_area_struct *vma) { return !vma->vm_ops || !vma->vm_ops->close; } /* * vma_merge_existing_range - Attempt to merge VMAs based on a VMA having its * attributes modified. * * @vmg: Describes the modifications being made to a VMA and associated * metadata. * * When the attributes of a range within a VMA change, then it might be possible * for immediately adjacent VMAs to be merged into that VMA due to having * identical properties. * * This function checks for the existence of any such mergeable VMAs and updates * the maple tree describing the @vmg->vma->vm_mm address space to account for * this, as well as any VMAs shrunk/expanded/deleted as a result of this merge. * * As part of this operation, if a merge occurs, the @vmg object will have its * vma, start, end, and pgoff fields modified to execute the merge. Subsequent * calls to this function should reset these fields. * * Returns: The merged VMA if merge succeeds, or NULL otherwise. * * ASSUMPTIONS: * - The caller must assign the VMA to be modifed to @vmg->vma. * - The caller must have set @vmg->prev to the previous VMA, if there is one. * - The caller must not set @vmg->next, as we determine this. * - The caller must hold a WRITE lock on the mm_struct->mmap_lock. * - vmi must be positioned within [@vmg->vma->vm_start, @vmg->vma->vm_end). */ static struct vm_area_struct *vma_merge_existing_range(struct vma_merge_struct *vmg) { struct vm_area_struct *vma = vmg->vma; struct vm_area_struct *prev = vmg->prev; struct vm_area_struct *next, *res; struct vm_area_struct *anon_dup = NULL; struct vm_area_struct *adjust = NULL; unsigned long start = vmg->start; unsigned long end = vmg->end; bool left_side = vma && start == vma->vm_start; bool right_side = vma && end == vma->vm_end; int err = 0; long adj_start = 0; bool merge_will_delete_vma, merge_will_delete_next; bool merge_left, merge_right, merge_both; bool expanded; mmap_assert_write_locked(vmg->mm); VM_WARN_ON(!vma); /* We are modifying a VMA, so caller must specify. */ VM_WARN_ON(vmg->next); /* We set this. */ VM_WARN_ON(prev && start <= prev->vm_start); VM_WARN_ON(start >= end); /* * If vma == prev, then we are offset into a VMA. Otherwise, if we are * not, we must span a portion of the VMA. */ VM_WARN_ON(vma && ((vma != prev && vmg->start != vma->vm_start) || vmg->end > vma->vm_end)); /* The vmi must be positioned within vmg->vma. */ VM_WARN_ON(vma && !(vma_iter_addr(vmg->vmi) >= vma->vm_start && vma_iter_addr(vmg->vmi) < vma->vm_end)); vmg->state = VMA_MERGE_NOMERGE; /* * If a special mapping or if the range being modified is neither at the * furthermost left or right side of the VMA, then we have no chance of * merging and should abort. */ if (vmg->flags & VM_SPECIAL || (!left_side && !right_side)) return NULL; if (left_side) merge_left = can_vma_merge_left(vmg); else merge_left = false; if (right_side) { next = vmg->next = vma_iter_next_range(vmg->vmi); vma_iter_prev_range(vmg->vmi); merge_right = can_vma_merge_right(vmg, merge_left); } else { merge_right = false; next = NULL; } if (merge_left) /* If merging prev, position iterator there. */ vma_prev(vmg->vmi); else if (!merge_right) /* If we have nothing to merge, abort. */ return NULL; merge_both = merge_left && merge_right; /* If we span the entire VMA, a merge implies it will be deleted. */ merge_will_delete_vma = left_side && right_side; /* * If we need to remove vma in its entirety but are unable to do so, * we have no sensible recourse but to abort the merge. */ if (merge_will_delete_vma && !can_merge_remove_vma(vma)) return NULL; /* * If we merge both VMAs, then next is also deleted. This implies * merge_will_delete_vma also. */ merge_will_delete_next = merge_both; /* * If we cannot delete next, then we can reduce the operation to merging * prev and vma (thereby deleting vma). */ if (merge_will_delete_next && !can_merge_remove_vma(next)) { merge_will_delete_next = false; merge_right = false; merge_both = false; } /* No matter what happens, we will be adjusting vma. */ vma_start_write(vma); if (merge_left) vma_start_write(prev); if (merge_right) vma_start_write(next); if (merge_both) { /* * |<----->| * |-------*********-------| * prev vma next * extend delete delete */ vmg->vma = prev; vmg->start = prev->vm_start; vmg->end = next->vm_end; vmg->pgoff = prev->vm_pgoff; /* * We already ensured anon_vma compatibility above, so now it's * simply a case of, if prev has no anon_vma object, which of * next or vma contains the anon_vma we must duplicate. */ err = dup_anon_vma(prev, next->anon_vma ? next : vma, &anon_dup); } else if (merge_left) { /* * |<----->| OR * |<--------->| * |-------************* * prev vma * extend shrink/delete */ vmg->vma = prev; vmg->start = prev->vm_start; vmg->pgoff = prev->vm_pgoff; if (!merge_will_delete_vma) { adjust = vma; adj_start = vmg->end - vma->vm_start; } err = dup_anon_vma(prev, vma, &anon_dup); } else { /* merge_right */ /* * |<----->| OR * |<--------->| * *************-------| * vma next * shrink/delete extend */ pgoff_t pglen = PHYS_PFN(vmg->end - vmg->start); VM_WARN_ON(!merge_right); /* If we are offset into a VMA, then prev must be vma. */ VM_WARN_ON(vmg->start > vma->vm_start && prev && vma != prev); if (merge_will_delete_vma) { vmg->vma = next; vmg->end = next->vm_end; vmg->pgoff = next->vm_pgoff - pglen; } else { /* * We shrink vma and expand next. * * IMPORTANT: This is the ONLY case where the final * merged VMA is NOT vmg->vma, but rather vmg->next. */ vmg->start = vma->vm_start; vmg->end = start; vmg->pgoff = vma->vm_pgoff; adjust = next; adj_start = -(vma->vm_end - start); } err = dup_anon_vma(next, vma, &anon_dup); } if (err) goto abort; /* * In nearly all cases, we expand vmg->vma. There is one exception - * merge_right where we partially span the VMA. In this case we shrink * the end of vmg->vma and adjust the start of vmg->next accordingly. */ expanded = !merge_right || merge_will_delete_vma; if (commit_merge(vmg, adjust, merge_will_delete_vma ? vma : NULL, merge_will_delete_next ? next : NULL, adj_start, expanded)) { if (anon_dup) unlink_anon_vmas(anon_dup); vmg->state = VMA_MERGE_ERROR_NOMEM; return NULL; } res = merge_left ? prev : next; khugepaged_enter_vma(res, vmg->flags); vmg->state = VMA_MERGE_SUCCESS; return res; abort: vma_iter_set(vmg->vmi, start); vma_iter_load(vmg->vmi); vmg->state = VMA_MERGE_ERROR_NOMEM; return NULL; } /* * vma_merge_new_range - Attempt to merge a new VMA into address space * * @vmg: Describes the VMA we are adding, in the range @vmg->start to @vmg->end * (exclusive), which we try to merge with any adjacent VMAs if possible. * * We are about to add a VMA to the address space starting at @vmg->start and * ending at @vmg->end. There are three different possible scenarios: * * 1. There is a VMA with identical properties immediately adjacent to the * proposed new VMA [@vmg->start, @vmg->end) either before or after it - * EXPAND that VMA: * * Proposed: |-----| or |-----| * Existing: |----| |----| * * 2. There are VMAs with identical properties immediately adjacent to the * proposed new VMA [@vmg->start, @vmg->end) both before AND after it - * EXPAND the former and REMOVE the latter: * * Proposed: |-----| * Existing: |----| |----| * * 3. There are no VMAs immediately adjacent to the proposed new VMA or those * VMAs do not have identical attributes - NO MERGE POSSIBLE. * * In instances where we can merge, this function returns the expanded VMA which * will have its range adjusted accordingly and the underlying maple tree also * adjusted. * * Returns: In instances where no merge was possible, NULL. Otherwise, a pointer * to the VMA we expanded. * * This function adjusts @vmg to provide @vmg->next if not already specified, * and adjusts [@vmg->start, @vmg->end) to span the expanded range. * * ASSUMPTIONS: * - The caller must hold a WRITE lock on the mm_struct->mmap_lock. * - The caller must have determined that [@vmg->start, @vmg->end) is empty, other than VMAs that will be unmapped should the operation succeed. * - The caller must have specified the previous vma in @vmg->prev. * - The caller must have specified the next vma in @vmg->next. * - The caller must have positioned the vmi at or before the gap. */ struct vm_area_struct *vma_merge_new_range(struct vma_merge_struct *vmg) { struct vm_area_struct *prev = vmg->prev; struct vm_area_struct *next = vmg->next; unsigned long start = vmg->start; unsigned long end = vmg->end; pgoff_t pgoff = vmg->pgoff; pgoff_t pglen = PHYS_PFN(end - start); bool can_merge_left, can_merge_right; bool just_expand = vmg->merge_flags & VMG_FLAG_JUST_EXPAND; mmap_assert_write_locked(vmg->mm); VM_WARN_ON(vmg->vma); /* vmi must point at or before the gap. */ VM_WARN_ON(vma_iter_addr(vmg->vmi) > end); vmg->state = VMA_MERGE_NOMERGE; /* Special VMAs are unmergeable, also if no prev/next. */ if ((vmg->flags & VM_SPECIAL) || (!prev && !next)) return NULL; can_merge_left = can_vma_merge_left(vmg); can_merge_right = !just_expand && can_vma_merge_right(vmg, can_merge_left); /* If we can merge with the next VMA, adjust vmg accordingly. */ if (can_merge_right) { vmg->end = next->vm_end; vmg->vma = next; vmg->pgoff = next->vm_pgoff - pglen; } /* If we can merge with the previous VMA, adjust vmg accordingly. */ if (can_merge_left) { vmg->start = prev->vm_start; vmg->vma = prev; vmg->pgoff = prev->vm_pgoff; /* * If this merge would result in removal of the next VMA but we * are not permitted to do so, reduce the operation to merging * prev and vma. */ if (can_merge_right && !can_merge_remove_vma(next)) vmg->end = end; /* In expand-only case we are already positioned at prev. */ if (!just_expand) { /* Equivalent to going to the previous range. */ vma_prev(vmg->vmi); } } /* * Now try to expand adjacent VMA(s). This takes care of removing the * following VMA if we have VMAs on both sides. */ if (vmg->vma && !vma_expand(vmg)) { khugepaged_enter_vma(vmg->vma, vmg->flags); vmg->state = VMA_MERGE_SUCCESS; return vmg->vma; } /* If expansion failed, reset state. Allows us to retry merge later. */ if (!just_expand) { vmg->vma = NULL; vmg->start = start; vmg->end = end; vmg->pgoff = pgoff; if (vmg->vma == prev) vma_iter_set(vmg->vmi, start); } return NULL; } /* * vma_expand - Expand an existing VMA * * @vmg: Describes a VMA expansion operation. * * Expand @vma to vmg->start and vmg->end. Can expand off the start and end. * Will expand over vmg->next if it's different from vmg->vma and vmg->end == * vmg->next->vm_end. Checking if the vmg->vma can expand and merge with * vmg->next needs to be handled by the caller. * * Returns: 0 on success. * * ASSUMPTIONS: * - The caller must hold a WRITE lock on vmg->vma->mm->mmap_lock. * - The caller must have set @vmg->vma and @vmg->next. */ int vma_expand(struct vma_merge_struct *vmg) { struct vm_area_struct *anon_dup = NULL; bool remove_next = false; struct vm_area_struct *vma = vmg->vma; struct vm_area_struct *next = vmg->next; mmap_assert_write_locked(vmg->mm); vma_start_write(vma); if (next && (vma != next) && (vmg->end == next->vm_end)) { int ret; remove_next = true; /* This should already have been checked by this point. */ VM_WARN_ON(!can_merge_remove_vma(next)); vma_start_write(next); ret = dup_anon_vma(vma, next, &anon_dup); if (ret) return ret; } /* Not merging but overwriting any part of next is not handled. */ VM_WARN_ON(next && !remove_next && next != vma && vmg->end > next->vm_start); /* Only handles expanding */ VM_WARN_ON(vma->vm_start < vmg->start || vma->vm_end > vmg->end); if (commit_merge(vmg, NULL, remove_next ? next : NULL, NULL, 0, true)) goto nomem; return 0; nomem: vmg->state = VMA_MERGE_ERROR_NOMEM; if (anon_dup) unlink_anon_vmas(anon_dup); return -ENOMEM; } /* * vma_shrink() - Reduce an existing VMAs memory area * @vmi: The vma iterator * @vma: The VMA to modify * @start: The new start * @end: The new end * * Returns: 0 on success, -ENOMEM otherwise */ int vma_shrink(struct vma_iterator *vmi, struct vm_area_struct *vma, unsigned long start, unsigned long end, pgoff_t pgoff) { struct vma_prepare vp; WARN_ON((vma->vm_start != start) && (vma->vm_end != end)); if (vma->vm_start < start) vma_iter_config(vmi, vma->vm_start, start); else vma_iter_config(vmi, end, vma->vm_end); if (vma_iter_prealloc(vmi, NULL)) return -ENOMEM; vma_start_write(vma); init_vma_prep(&vp, vma); vma_prepare(&vp); vma_adjust_trans_huge(vma, start, end, 0); vma_iter_clear(vmi); vma_set_range(vma, start, end, pgoff); vma_complete(&vp, vmi, vma->vm_mm); validate_mm(vma->vm_mm); return 0; } static inline void vms_clear_ptes(struct vma_munmap_struct *vms, struct ma_state *mas_detach, bool mm_wr_locked) { struct mmu_gather tlb; if (!vms->clear_ptes) /* Nothing to do */ return; /* * We can free page tables without write-locking mmap_lock because VMAs * were isolated before we downgraded mmap_lock. */ mas_set(mas_detach, 1); lru_add_drain(); tlb_gather_mmu(&tlb, vms->vma->vm_mm); update_hiwater_rss(vms->vma->vm_mm); unmap_vmas(&tlb, mas_detach, vms->vma, vms->start, vms->end, vms->vma_count, mm_wr_locked); mas_set(mas_detach, 1); /* start and end may be different if there is no prev or next vma. */ free_pgtables(&tlb, mas_detach, vms->vma, vms->unmap_start, vms->unmap_end, mm_wr_locked); tlb_finish_mmu(&tlb); vms->clear_ptes = false; } void vms_clean_up_area(struct vma_munmap_struct *vms, struct ma_state *mas_detach) { struct vm_area_struct *vma; if (!vms->nr_pages) return; vms_clear_ptes(vms, mas_detach, true); mas_set(mas_detach, 0); mas_for_each(mas_detach, vma, ULONG_MAX) vma_close(vma); } /* * vms_complete_munmap_vmas() - Finish the munmap() operation * @vms: The vma munmap struct * @mas_detach: The maple state of the detached vmas * * This updates the mm_struct, unmaps the region, frees the resources * used for the munmap() and may downgrade the lock - if requested. Everything * needed to be done once the vma maple tree is updated. */ void vms_complete_munmap_vmas(struct vma_munmap_struct *vms, struct ma_state *mas_detach) { struct vm_area_struct *vma; struct mm_struct *mm; mm = current->mm; mm->map_count -= vms->vma_count; mm->locked_vm -= vms->locked_vm; if (vms->unlock) mmap_write_downgrade(mm); if (!vms->nr_pages) return; vms_clear_ptes(vms, mas_detach, !vms->unlock); /* Update high watermark before we lower total_vm */ update_hiwater_vm(mm); /* Stat accounting */ WRITE_ONCE(mm->total_vm, READ_ONCE(mm->total_vm) - vms->nr_pages); /* Paranoid bookkeeping */ VM_WARN_ON(vms->exec_vm > mm->exec_vm); VM_WARN_ON(vms->stack_vm > mm->stack_vm); VM_WARN_ON(vms->data_vm > mm->data_vm); mm->exec_vm -= vms->exec_vm; mm->stack_vm -= vms->stack_vm; mm->data_vm -= vms->data_vm; /* Remove and clean up vmas */ mas_set(mas_detach, 0); mas_for_each(mas_detach, vma, ULONG_MAX) remove_vma(vma, /* unreachable = */ false); vm_unacct_memory(vms->nr_accounted); validate_mm(mm); if (vms->unlock) mmap_read_unlock(mm); __mt_destroy(mas_detach->tree); } /* * vms_gather_munmap_vmas() - Put all VMAs within a range into a maple tree * for removal at a later date. Handles splitting first and last if necessary * and marking the vmas as isolated. * * @vms: The vma munmap struct * @mas_detach: The maple state tracking the detached tree * * Return: 0 on success, error otherwise */ int vms_gather_munmap_vmas(struct vma_munmap_struct *vms, struct ma_state *mas_detach) { struct vm_area_struct *next = NULL; int error; /* * If we need to split any vma, do it now to save pain later. * Does it split the first one? */ if (vms->start > vms->vma->vm_start) { /* * Make sure that map_count on return from munmap() will * not exceed its limit; but let map_count go just above * its limit temporarily, to help free resources as expected. */ if (vms->end < vms->vma->vm_end && vms->vma->vm_mm->map_count >= sysctl_max_map_count) { error = -ENOMEM; goto map_count_exceeded; } /* Don't bother splitting the VMA if we can't unmap it anyway */ if (!can_modify_vma(vms->vma)) { error = -EPERM; goto start_split_failed; } error = __split_vma(vms->vmi, vms->vma, vms->start, 1); if (error) goto start_split_failed; } vms->prev = vma_prev(vms->vmi); if (vms->prev) vms->unmap_start = vms->prev->vm_end; /* * Detach a range of VMAs from the mm. Using next as a temp variable as * it is always overwritten. */ for_each_vma_range(*(vms->vmi), next, vms->end) { long nrpages; if (!can_modify_vma(next)) { error = -EPERM; goto modify_vma_failed; } /* Does it split the end? */ if (next->vm_end > vms->end) { error = __split_vma(vms->vmi, next, vms->end, 0); if (error) goto end_split_failed; } vma_start_write(next); mas_set(mas_detach, vms->vma_count++); error = mas_store_gfp(mas_detach, next, GFP_KERNEL); if (error) goto munmap_gather_failed; vma_mark_detached(next, true); nrpages = vma_pages(next); vms->nr_pages += nrpages; if (next->vm_flags & VM_LOCKED) vms->locked_vm += nrpages; if (next->vm_flags & VM_ACCOUNT) vms->nr_accounted += nrpages; if (is_exec_mapping(next->vm_flags)) vms->exec_vm += nrpages; else if (is_stack_mapping(next->vm_flags)) vms->stack_vm += nrpages; else if (is_data_mapping(next->vm_flags)) vms->data_vm += nrpages; if (unlikely(vms->uf)) { /* * If userfaultfd_unmap_prep returns an error the vmas * will remain split, but userland will get a * highly unexpected error anyway. This is no * different than the case where the first of the two * __split_vma fails, but we don't undo the first * split, despite we could. This is unlikely enough * failure that it's not worth optimizing it for. */ error = userfaultfd_unmap_prep(next, vms->start, vms->end, vms->uf); if (error) goto userfaultfd_error; } #ifdef CONFIG_DEBUG_VM_MAPLE_TREE BUG_ON(next->vm_start < vms->start); BUG_ON(next->vm_start > vms->end); #endif } vms->next = vma_next(vms->vmi); if (vms->next) vms->unmap_end = vms->next->vm_start; #if defined(CONFIG_DEBUG_VM_MAPLE_TREE) /* Make sure no VMAs are about to be lost. */ { MA_STATE(test, mas_detach->tree, 0, 0); struct vm_area_struct *vma_mas, *vma_test; int test_count = 0; vma_iter_set(vms->vmi, vms->start); rcu_read_lock(); vma_test = mas_find(&test, vms->vma_count - 1); for_each_vma_range(*(vms->vmi), vma_mas, vms->end) { BUG_ON(vma_mas != vma_test); test_count++; vma_test = mas_next(&test, vms->vma_count - 1); } rcu_read_unlock(); BUG_ON(vms->vma_count != test_count); } #endif while (vma_iter_addr(vms->vmi) > vms->start) vma_iter_prev_range(vms->vmi); vms->clear_ptes = true; return 0; userfaultfd_error: munmap_gather_failed: end_split_failed: modify_vma_failed: reattach_vmas(mas_detach); start_split_failed: map_count_exceeded: return error; } /* * do_vmi_align_munmap() - munmap the aligned region from @start to @end. * @vmi: The vma iterator * @vma: The starting vm_area_struct * @mm: The mm_struct * @start: The aligned start address to munmap. * @end: The aligned end address to munmap. * @uf: The userfaultfd list_head * @unlock: Set to true to drop the mmap_lock. unlocking only happens on * success. * * Return: 0 on success and drops the lock if so directed, error and leaves the * lock held otherwise. */ int do_vmi_align_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma, struct mm_struct *mm, unsigned long start, unsigned long end, struct list_head *uf, bool unlock) { struct maple_tree mt_detach; MA_STATE(mas_detach, &mt_detach, 0, 0); mt_init_flags(&mt_detach, vmi->mas.tree->ma_flags & MT_FLAGS_LOCK_MASK); mt_on_stack(mt_detach); struct vma_munmap_struct vms; int error; init_vma_munmap(&vms, vmi, vma, start, end, uf, unlock); error = vms_gather_munmap_vmas(&vms, &mas_detach); if (error) goto gather_failed; error = vma_iter_clear_gfp(vmi, start, end, GFP_KERNEL); if (error) goto clear_tree_failed; /* Point of no return */ vms_complete_munmap_vmas(&vms, &mas_detach); return 0; clear_tree_failed: reattach_vmas(&mas_detach); gather_failed: validate_mm(mm); return error; } /* * do_vmi_munmap() - munmap a given range. * @vmi: The vma iterator * @mm: The mm_struct * @start: The start address to munmap * @len: The length of the range to munmap * @uf: The userfaultfd list_head * @unlock: set to true if the user wants to drop the mmap_lock on success * * This function takes a @mas that is either pointing to the previous VMA or set * to MA_START and sets it up to remove the mapping(s). The @len will be * aligned. * * Return: 0 on success and drops the lock if so directed, error and leaves the * lock held otherwise. */ int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm, unsigned long start, size_t len, struct list_head *uf, bool unlock) { unsigned long end; struct vm_area_struct *vma; if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start) return -EINVAL; end = start + PAGE_ALIGN(len); if (end == start) return -EINVAL; /* Find the first overlapping VMA */ vma = vma_find(vmi, end); if (!vma) { if (unlock) mmap_write_unlock(mm); return 0; } return do_vmi_align_munmap(vmi, vma, mm, start, end, uf, unlock); } /* * We are about to modify one or multiple of a VMA's flags, policy, userfaultfd * context and anonymous VMA name within the range [start, end). * * As a result, we might be able to merge the newly modified VMA range with an * adjacent VMA with identical properties. * * If no merge is possible and the range does not span the entirety of the VMA, * we then need to split the VMA to accommodate the change. * * The function returns either the merged VMA, the original VMA if a split was * required instead, or an error if the split failed. */ static struct vm_area_struct *vma_modify(struct vma_merge_struct *vmg) { struct vm_area_struct *vma = vmg->vma; struct vm_area_struct *merged; /* First, try to merge. */ merged = vma_merge_existing_range(vmg); if (merged) return merged; /* Split any preceding portion of the VMA. */ if (vma->vm_start < vmg->start) { int err = split_vma(vmg->vmi, vma, vmg->start, 1); if (err) return ERR_PTR(err); } /* Split any trailing portion of the VMA. */ if (vma->vm_end > vmg->end) { int err = split_vma(vmg->vmi, vma, vmg->end, 0); if (err) return ERR_PTR(err); } return vma; } struct vm_area_struct *vma_modify_flags( struct vma_iterator *vmi, struct vm_area_struct *prev, struct vm_area_struct *vma, unsigned long start, unsigned long end, unsigned long new_flags) { VMG_VMA_STATE(vmg, vmi, prev, vma, start, end); vmg.flags = new_flags; return vma_modify(&vmg); } struct vm_area_struct *vma_modify_flags_name(struct vma_iterator *vmi, struct vm_area_struct *prev, struct vm_area_struct *vma, unsigned long start, unsigned long end, unsigned long new_flags, struct anon_vma_name *new_name) { VMG_VMA_STATE(vmg, vmi, prev, vma, start, end); vmg.flags = new_flags; vmg.anon_name = new_name; return vma_modify(&vmg); } struct vm_area_struct *vma_modify_policy(struct vma_iterator *vmi, struct vm_area_struct *prev, struct vm_area_struct *vma, unsigned long start, unsigned long end, struct mempolicy *new_pol) { VMG_VMA_STATE(vmg, vmi, prev, vma, start, end); vmg.policy = new_pol; return vma_modify(&vmg); } struct vm_area_struct *vma_modify_flags_uffd(struct vma_iterator *vmi, struct vm_area_struct *prev, struct vm_area_struct *vma, unsigned long start, unsigned long end, unsigned long new_flags, struct vm_userfaultfd_ctx new_ctx) { VMG_VMA_STATE(vmg, vmi, prev, vma, start, end); vmg.flags = new_flags; vmg.uffd_ctx = new_ctx; return vma_modify(&vmg); } /* * Expand vma by delta bytes, potentially merging with an immediately adjacent * VMA with identical properties. */ struct vm_area_struct *vma_merge_extend(struct vma_iterator *vmi, struct vm_area_struct *vma, unsigned long delta) { VMG_VMA_STATE(vmg, vmi, vma, vma, vma->vm_end, vma->vm_end + delta); vmg.next = vma_iter_next_rewind(vmi, NULL); vmg.vma = NULL; /* We use the VMA to populate VMG fields only. */ return vma_merge_new_range(&vmg); } void unlink_file_vma_batch_init(struct unlink_vma_file_batch *vb) { vb->count = 0; } static void unlink_file_vma_batch_process(struct unlink_vma_file_batch *vb) { struct address_space *mapping; int i; mapping = vb->vmas[0]->vm_file->f_mapping; i_mmap_lock_write(mapping); for (i = 0; i < vb->count; i++) { VM_WARN_ON_ONCE(vb->vmas[i]->vm_file->f_mapping != mapping); __remove_shared_vm_struct(vb->vmas[i], mapping); } i_mmap_unlock_write(mapping); unlink_file_vma_batch_init(vb); } void unlink_file_vma_batch_add(struct unlink_vma_file_batch *vb, struct vm_area_struct *vma) { if (vma->vm_file == NULL) return; if ((vb->count > 0 && vb->vmas[0]->vm_file != vma->vm_file) || vb->count == ARRAY_SIZE(vb->vmas)) unlink_file_vma_batch_process(vb); vb->vmas[vb->count] = vma; vb->count++; } void unlink_file_vma_batch_final(struct unlink_vma_file_batch *vb) { if (vb->count > 0) unlink_file_vma_batch_process(vb); } /* * Unlink a file-based vm structure from its interval tree, to hide * vma from rmap and vmtruncate before freeing its page tables. */ void unlink_file_vma(struct vm_area_struct *vma) { struct file *file = vma->vm_file; if (file) { struct address_space *mapping = file->f_mapping; i_mmap_lock_write(mapping); __remove_shared_vm_struct(vma, mapping); i_mmap_unlock_write(mapping); } } void vma_link_file(struct vm_area_struct *vma) { struct file *file = vma->vm_file; struct address_space *mapping; if (file) { mapping = file->f_mapping; i_mmap_lock_write(mapping); __vma_link_file(vma, mapping); i_mmap_unlock_write(mapping); } } int vma_link(struct mm_struct *mm, struct vm_area_struct *vma) { VMA_ITERATOR(vmi, mm, 0); vma_iter_config(&vmi, vma->vm_start, vma->vm_end); if (vma_iter_prealloc(&vmi, vma)) return -ENOMEM; vma_start_write(vma); vma_iter_store(&vmi, vma); vma_link_file(vma); mm->map_count++; validate_mm(mm); return 0; } /* * Copy the vma structure to a new location in the same mm, * prior to moving page table entries, to effect an mremap move. */ struct vm_area_struct *copy_vma(struct vm_area_struct **vmap, unsigned long addr, unsigned long len, pgoff_t pgoff, bool *need_rmap_locks) { struct vm_area_struct *vma = *vmap; unsigned long vma_start = vma->vm_start; struct mm_struct *mm = vma->vm_mm; struct vm_area_struct *new_vma; bool faulted_in_anon_vma = true; VMA_ITERATOR(vmi, mm, addr); VMG_VMA_STATE(vmg, &vmi, NULL, vma, addr, addr + len); /* * If anonymous vma has not yet been faulted, update new pgoff * to match new location, to increase its chance of merging. */ if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) { pgoff = addr >> PAGE_SHIFT; faulted_in_anon_vma = false; } new_vma = find_vma_prev(mm, addr, &vmg.prev); if (new_vma && new_vma->vm_start < addr + len) return NULL; /* should never get here */ vmg.vma = NULL; /* New VMA range. */ vmg.pgoff = pgoff; vmg.next = vma_iter_next_rewind(&vmi, NULL); new_vma = vma_merge_new_range(&vmg); if (new_vma) { /* * Source vma may have been merged into new_vma */ if (unlikely(vma_start >= new_vma->vm_start && vma_start < new_vma->vm_end)) { /* * The only way we can get a vma_merge with * self during an mremap is if the vma hasn't * been faulted in yet and we were allowed to * reset the dst vma->vm_pgoff to the * destination address of the mremap to allow * the merge to happen. mremap must change the * vm_pgoff linearity between src and dst vmas * (in turn preventing a vma_merge) to be * safe. It is only safe to keep the vm_pgoff * linear if there are no pages mapped yet. */ VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma); *vmap = vma = new_vma; } *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff); } else { new_vma = vm_area_dup(vma); if (!new_vma) goto out; vma_set_range(new_vma, addr, addr + len, pgoff); if (vma_dup_policy(vma, new_vma)) goto out_free_vma; if (anon_vma_clone(new_vma, vma)) goto out_free_mempol; if (new_vma->vm_file) get_file(new_vma->vm_file); if (new_vma->vm_ops && new_vma->vm_ops->open) new_vma->vm_ops->open(new_vma); if (vma_link(mm, new_vma)) goto out_vma_link; *need_rmap_locks = false; } return new_vma; out_vma_link: vma_close(new_vma); if (new_vma->vm_file) fput(new_vma->vm_file); unlink_anon_vmas(new_vma); out_free_mempol: mpol_put(vma_policy(new_vma)); out_free_vma: vm_area_free(new_vma); out: return NULL; } /* * Rough compatibility check to quickly see if it's even worth looking * at sharing an anon_vma. * * They need to have the same vm_file, and the flags can only differ * in things that mprotect may change. * * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that * we can merge the two vma's. For example, we refuse to merge a vma if * there is a vm_ops->close() function, because that indicates that the * driver is doing some kind of reference counting. But that doesn't * really matter for the anon_vma sharing case. */ static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b) { return a->vm_end == b->vm_start && mpol_equal(vma_policy(a), vma_policy(b)) && a->vm_file == b->vm_file && !((a->vm_flags ^ b->vm_flags) & ~(VM_ACCESS_FLAGS | VM_SOFTDIRTY)) && b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT); } /* * Do some basic sanity checking to see if we can re-use the anon_vma * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be * the same as 'old', the other will be the new one that is trying * to share the anon_vma. * * NOTE! This runs with mmap_lock held for reading, so it is possible that * the anon_vma of 'old' is concurrently in the process of being set up * by another page fault trying to merge _that_. But that's ok: if it * is being set up, that automatically means that it will be a singleton * acceptable for merging, so we can do all of this optimistically. But * we do that READ_ONCE() to make sure that we never re-load the pointer. * * IOW: that the "list_is_singular()" test on the anon_vma_chain only * matters for the 'stable anon_vma' case (ie the thing we want to avoid * is to return an anon_vma that is "complex" due to having gone through * a fork). * * We also make sure that the two vma's are compatible (adjacent, * and with the same memory policies). That's all stable, even with just * a read lock on the mmap_lock. */ static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b) { if (anon_vma_compatible(a, b)) { struct anon_vma *anon_vma = READ_ONCE(old->anon_vma); if (anon_vma && list_is_singular(&old->anon_vma_chain)) return anon_vma; } return NULL; } /* * find_mergeable_anon_vma is used by anon_vma_prepare, to check * neighbouring vmas for a suitable anon_vma, before it goes off * to allocate a new anon_vma. It checks because a repetitive * sequence of mprotects and faults may otherwise lead to distinct * anon_vmas being allocated, preventing vma merge in subsequent * mprotect. */ struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma) { struct anon_vma *anon_vma = NULL; struct vm_area_struct *prev, *next; VMA_ITERATOR(vmi, vma->vm_mm, vma->vm_end); /* Try next first. */ next = vma_iter_load(&vmi); if (next) { anon_vma = reusable_anon_vma(next, vma, next); if (anon_vma) return anon_vma; } prev = vma_prev(&vmi); VM_BUG_ON_VMA(prev != vma, vma); prev = vma_prev(&vmi); /* Try prev next. */ if (prev) anon_vma = reusable_anon_vma(prev, prev, vma); /* * We might reach here with anon_vma == NULL if we can't find * any reusable anon_vma. * There's no absolute need to look only at touching neighbours: * we could search further afield for "compatible" anon_vmas. * But it would probably just be a waste of time searching, * or lead to too many vmas hanging off the same anon_vma. * We're trying to allow mprotect remerging later on, * not trying to minimize memory used for anon_vmas. */ return anon_vma; } static bool vm_ops_needs_writenotify(const struct vm_operations_struct *vm_ops) { return vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite); } static bool vma_is_shared_writable(struct vm_area_struct *vma) { return (vma->vm_flags & (VM_WRITE | VM_SHARED)) == (VM_WRITE | VM_SHARED); } static bool vma_fs_can_writeback(struct vm_area_struct *vma) { /* No managed pages to writeback. */ if (vma->vm_flags & VM_PFNMAP) return false; return vma->vm_file && vma->vm_file->f_mapping && mapping_can_writeback(vma->vm_file->f_mapping); } /* * Does this VMA require the underlying folios to have their dirty state * tracked? */ bool vma_needs_dirty_tracking(struct vm_area_struct *vma) { /* Only shared, writable VMAs require dirty tracking. */ if (!vma_is_shared_writable(vma)) return false; /* Does the filesystem need to be notified? */ if (vm_ops_needs_writenotify(vma->vm_ops)) return true; /* * Even if the filesystem doesn't indicate a need for writenotify, if it * can writeback, dirty tracking is still required. */ return vma_fs_can_writeback(vma); } /* * Some shared mappings will want the pages marked read-only * to track write events. If so, we'll downgrade vm_page_prot * to the private version (using protection_map[] without the * VM_SHARED bit). */ bool vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot) { /* If it was private or non-writable, the write bit is already clear */ if (!vma_is_shared_writable(vma)) return false; /* The backer wishes to know when pages are first written to? */ if (vm_ops_needs_writenotify(vma->vm_ops)) return true; /* The open routine did something to the protections that pgprot_modify * won't preserve? */ if (pgprot_val(vm_page_prot) != pgprot_val(vm_pgprot_modify(vm_page_prot, vma->vm_flags))) return false; /* * Do we need to track softdirty? hugetlb does not support softdirty * tracking yet. */ if (vma_soft_dirty_enabled(vma) && !is_vm_hugetlb_page(vma)) return true; /* Do we need write faults for uffd-wp tracking? */ if (userfaultfd_wp(vma)) return true; /* Can the mapping track the dirty pages? */ return vma_fs_can_writeback(vma); } static DEFINE_MUTEX(mm_all_locks_mutex); static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma) { if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) { /* * The LSB of head.next can't change from under us * because we hold the mm_all_locks_mutex. */ down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_lock); /* * We can safely modify head.next after taking the * anon_vma->root->rwsem. If some other vma in this mm shares * the same anon_vma we won't take it again. * * No need of atomic instructions here, head.next * can't change from under us thanks to the * anon_vma->root->rwsem. */ if (__test_and_set_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) BUG(); } } static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping) { if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { /* * AS_MM_ALL_LOCKS can't change from under us because * we hold the mm_all_locks_mutex. * * Operations on ->flags have to be atomic because * even if AS_MM_ALL_LOCKS is stable thanks to the * mm_all_locks_mutex, there may be other cpus * changing other bitflags in parallel to us. */ if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags)) BUG(); down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_lock); } } /* * This operation locks against the VM for all pte/vma/mm related * operations that could ever happen on a certain mm. This includes * vmtruncate, try_to_unmap, and all page faults. * * The caller must take the mmap_lock in write mode before calling * mm_take_all_locks(). The caller isn't allowed to release the * mmap_lock until mm_drop_all_locks() returns. * * mmap_lock in write mode is required in order to block all operations * that could modify pagetables and free pages without need of * altering the vma layout. It's also needed in write mode to avoid new * anon_vmas to be associated with existing vmas. * * A single task can't take more than one mm_take_all_locks() in a row * or it would deadlock. * * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in * mapping->flags avoid to take the same lock twice, if more than one * vma in this mm is backed by the same anon_vma or address_space. * * We take locks in following order, accordingly to comment at beginning * of mm/rmap.c: * - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for * hugetlb mapping); * - all vmas marked locked * - all i_mmap_rwsem locks; * - all anon_vma->rwseml * * We can take all locks within these types randomly because the VM code * doesn't nest them and we protected from parallel mm_take_all_locks() by * mm_all_locks_mutex. * * mm_take_all_locks() and mm_drop_all_locks are expensive operations * that may have to take thousand of locks. * * mm_take_all_locks() can fail if it's interrupted by signals. */ int mm_take_all_locks(struct mm_struct *mm) { struct vm_area_struct *vma; struct anon_vma_chain *avc; VMA_ITERATOR(vmi, mm, 0); mmap_assert_write_locked(mm); mutex_lock(&mm_all_locks_mutex); /* * vma_start_write() does not have a complement in mm_drop_all_locks() * because vma_start_write() is always asymmetrical; it marks a VMA as * being written to until mmap_write_unlock() or mmap_write_downgrade() * is reached. */ for_each_vma(vmi, vma) { if (signal_pending(current)) goto out_unlock; vma_start_write(vma); } vma_iter_init(&vmi, mm, 0); for_each_vma(vmi, vma) { if (signal_pending(current)) goto out_unlock; if (vma->vm_file && vma->vm_file->f_mapping && is_vm_hugetlb_page(vma)) vm_lock_mapping(mm, vma->vm_file->f_mapping); } vma_iter_init(&vmi, mm, 0); for_each_vma(vmi, vma) { if (signal_pending(current)) goto out_unlock; if (vma->vm_file && vma->vm_file->f_mapping && !is_vm_hugetlb_page(vma)) vm_lock_mapping(mm, vma->vm_file->f_mapping); } vma_iter_init(&vmi, mm, 0); for_each_vma(vmi, vma) { if (signal_pending(current)) goto out_unlock; if (vma->anon_vma) list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) vm_lock_anon_vma(mm, avc->anon_vma); } return 0; out_unlock: mm_drop_all_locks(mm); return -EINTR; } static void vm_unlock_anon_vma(struct anon_vma *anon_vma) { if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) { /* * The LSB of head.next can't change to 0 from under * us because we hold the mm_all_locks_mutex. * * We must however clear the bitflag before unlocking * the vma so the users using the anon_vma->rb_root will * never see our bitflag. * * No need of atomic instructions here, head.next * can't change from under us until we release the * anon_vma->root->rwsem. */ if (!__test_and_clear_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) BUG(); anon_vma_unlock_write(anon_vma); } } static void vm_unlock_mapping(struct address_space *mapping) { if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { /* * AS_MM_ALL_LOCKS can't change to 0 from under us * because we hold the mm_all_locks_mutex. */ i_mmap_unlock_write(mapping); if (!test_and_clear_bit(AS_MM_ALL_LOCKS, &mapping->flags)) BUG(); } } /* * The mmap_lock cannot be released by the caller until * mm_drop_all_locks() returns. */ void mm_drop_all_locks(struct mm_struct *mm) { struct vm_area_struct *vma; struct anon_vma_chain *avc; VMA_ITERATOR(vmi, mm, 0); mmap_assert_write_locked(mm); BUG_ON(!mutex_is_locked(&mm_all_locks_mutex)); for_each_vma(vmi, vma) { if (vma->anon_vma) list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) vm_unlock_anon_vma(avc->anon_vma); if (vma->vm_file && vma->vm_file->f_mapping) vm_unlock_mapping(vma->vm_file->f_mapping); } mutex_unlock(&mm_all_locks_mutex); }