// SPDX-License-Identifier: GPL-2.0-only /* * TI K3 DSP Remote Processor(s) driver * * Copyright (C) 2018-2022 Texas Instruments Incorporated - https://www.ti.com/ * Suman Anna */ #include #include #include #include #include #include #include #include #include #include #include "omap_remoteproc.h" #include "remoteproc_internal.h" #include "ti_sci_proc.h" #define KEYSTONE_RPROC_LOCAL_ADDRESS_MASK (SZ_16M - 1) /** * struct k3_dsp_mem - internal memory structure * @cpu_addr: MPU virtual address of the memory region * @bus_addr: Bus address used to access the memory region * @dev_addr: Device address of the memory region from DSP view * @size: Size of the memory region */ struct k3_dsp_mem { void __iomem *cpu_addr; phys_addr_t bus_addr; u32 dev_addr; size_t size; }; /** * struct k3_dsp_mem_data - memory definitions for a DSP * @name: name for this memory entry * @dev_addr: device address for the memory entry */ struct k3_dsp_mem_data { const char *name; const u32 dev_addr; }; /** * struct k3_dsp_dev_data - device data structure for a DSP * @mems: pointer to memory definitions for a DSP * @num_mems: number of memory regions in @mems * @boot_align_addr: boot vector address alignment granularity * @uses_lreset: flag to denote the need for local reset management */ struct k3_dsp_dev_data { const struct k3_dsp_mem_data *mems; u32 num_mems; u32 boot_align_addr; bool uses_lreset; }; /** * struct k3_dsp_rproc - k3 DSP remote processor driver structure * @dev: cached device pointer * @rproc: remoteproc device handle * @mem: internal memory regions data * @num_mems: number of internal memory regions * @rmem: reserved memory regions data * @num_rmems: number of reserved memory regions * @reset: reset control handle * @data: pointer to DSP-specific device data * @tsp: TI-SCI processor control handle * @ti_sci: TI-SCI handle * @ti_sci_id: TI-SCI device identifier * @mbox: mailbox channel handle * @client: mailbox client to request the mailbox channel */ struct k3_dsp_rproc { struct device *dev; struct rproc *rproc; struct k3_dsp_mem *mem; int num_mems; struct k3_dsp_mem *rmem; int num_rmems; struct reset_control *reset; const struct k3_dsp_dev_data *data; struct ti_sci_proc *tsp; const struct ti_sci_handle *ti_sci; u32 ti_sci_id; struct mbox_chan *mbox; struct mbox_client client; }; /** * k3_dsp_rproc_mbox_callback() - inbound mailbox message handler * @client: mailbox client pointer used for requesting the mailbox channel * @data: mailbox payload * * This handler is invoked by the OMAP mailbox driver whenever a mailbox * message is received. Usually, the mailbox payload simply contains * the index of the virtqueue that is kicked by the remote processor, * and we let remoteproc core handle it. * * In addition to virtqueue indices, we also have some out-of-band values * that indicate different events. Those values are deliberately very * large so they don't coincide with virtqueue indices. */ static void k3_dsp_rproc_mbox_callback(struct mbox_client *client, void *data) { struct k3_dsp_rproc *kproc = container_of(client, struct k3_dsp_rproc, client); struct device *dev = kproc->rproc->dev.parent; const char *name = kproc->rproc->name; u32 msg = omap_mbox_message(data); /* Do not forward messages from a detached core */ if (kproc->rproc->state == RPROC_DETACHED) return; dev_dbg(dev, "mbox msg: 0x%x\n", msg); switch (msg) { case RP_MBOX_CRASH: /* * remoteproc detected an exception, but error recovery is not * supported. So, just log this for now */ dev_err(dev, "K3 DSP rproc %s crashed\n", name); break; case RP_MBOX_ECHO_REPLY: dev_info(dev, "received echo reply from %s\n", name); break; default: /* silently handle all other valid messages */ if (msg >= RP_MBOX_READY && msg < RP_MBOX_END_MSG) return; if (msg > kproc->rproc->max_notifyid) { dev_dbg(dev, "dropping unknown message 0x%x", msg); return; } /* msg contains the index of the triggered vring */ if (rproc_vq_interrupt(kproc->rproc, msg) == IRQ_NONE) dev_dbg(dev, "no message was found in vqid %d\n", msg); } } /* * Kick the remote processor to notify about pending unprocessed messages. * The vqid usage is not used and is inconsequential, as the kick is performed * through a simulated GPIO (a bit in an IPC interrupt-triggering register), * the remote processor is expected to process both its Tx and Rx virtqueues. */ static void k3_dsp_rproc_kick(struct rproc *rproc, int vqid) { struct k3_dsp_rproc *kproc = rproc->priv; struct device *dev = rproc->dev.parent; mbox_msg_t msg = (mbox_msg_t)vqid; int ret; /* Do not forward messages to a detached core */ if (kproc->rproc->state == RPROC_DETACHED) return; /* send the index of the triggered virtqueue in the mailbox payload */ ret = mbox_send_message(kproc->mbox, (void *)msg); if (ret < 0) dev_err(dev, "failed to send mailbox message (%pe)\n", ERR_PTR(ret)); } /* Put the DSP processor into reset */ static int k3_dsp_rproc_reset(struct k3_dsp_rproc *kproc) { struct device *dev = kproc->dev; int ret; ret = reset_control_assert(kproc->reset); if (ret) { dev_err(dev, "local-reset assert failed (%pe)\n", ERR_PTR(ret)); return ret; } if (kproc->data->uses_lreset) return ret; ret = kproc->ti_sci->ops.dev_ops.put_device(kproc->ti_sci, kproc->ti_sci_id); if (ret) { dev_err(dev, "module-reset assert failed (%pe)\n", ERR_PTR(ret)); if (reset_control_deassert(kproc->reset)) dev_warn(dev, "local-reset deassert back failed\n"); } return ret; } /* Release the DSP processor from reset */ static int k3_dsp_rproc_release(struct k3_dsp_rproc *kproc) { struct device *dev = kproc->dev; int ret; if (kproc->data->uses_lreset) goto lreset; ret = kproc->ti_sci->ops.dev_ops.get_device(kproc->ti_sci, kproc->ti_sci_id); if (ret) { dev_err(dev, "module-reset deassert failed (%pe)\n", ERR_PTR(ret)); return ret; } lreset: ret = reset_control_deassert(kproc->reset); if (ret) { dev_err(dev, "local-reset deassert failed, (%pe)\n", ERR_PTR(ret)); if (kproc->ti_sci->ops.dev_ops.put_device(kproc->ti_sci, kproc->ti_sci_id)) dev_warn(dev, "module-reset assert back failed\n"); } return ret; } static int k3_dsp_rproc_request_mbox(struct rproc *rproc) { struct k3_dsp_rproc *kproc = rproc->priv; struct mbox_client *client = &kproc->client; struct device *dev = kproc->dev; int ret; client->dev = dev; client->tx_done = NULL; client->rx_callback = k3_dsp_rproc_mbox_callback; client->tx_block = false; client->knows_txdone = false; kproc->mbox = mbox_request_channel(client, 0); if (IS_ERR(kproc->mbox)) return dev_err_probe(dev, PTR_ERR(kproc->mbox), "mbox_request_channel failed\n"); /* * Ping the remote processor, this is only for sanity-sake for now; * there is no functional effect whatsoever. * * Note that the reply will _not_ arrive immediately: this message * will wait in the mailbox fifo until the remote processor is booted. */ ret = mbox_send_message(kproc->mbox, (void *)RP_MBOX_ECHO_REQUEST); if (ret < 0) { dev_err(dev, "mbox_send_message failed (%pe)\n", ERR_PTR(ret)); mbox_free_channel(kproc->mbox); return ret; } return 0; } /* * The C66x DSP cores have a local reset that affects only the CPU, and a * generic module reset that powers on the device and allows the DSP internal * memories to be accessed while the local reset is asserted. This function is * used to release the global reset on C66x DSPs to allow loading into the DSP * internal RAMs. The .prepare() ops is invoked by remoteproc core before any * firmware loading, and is followed by the .start() ops after loading to * actually let the C66x DSP cores run. This callback is invoked only in * remoteproc mode. */ static int k3_dsp_rproc_prepare(struct rproc *rproc) { struct k3_dsp_rproc *kproc = rproc->priv; struct device *dev = kproc->dev; int ret; ret = kproc->ti_sci->ops.dev_ops.get_device(kproc->ti_sci, kproc->ti_sci_id); if (ret) dev_err(dev, "module-reset deassert failed, cannot enable internal RAM loading (%pe)\n", ERR_PTR(ret)); return ret; } /* * This function implements the .unprepare() ops and performs the complimentary * operations to that of the .prepare() ops. The function is used to assert the * global reset on applicable C66x cores. This completes the second portion of * powering down the C66x DSP cores. The cores themselves are only halted in the * .stop() callback through the local reset, and the .unprepare() ops is invoked * by the remoteproc core after the remoteproc is stopped to balance the global * reset. This callback is invoked only in remoteproc mode. */ static int k3_dsp_rproc_unprepare(struct rproc *rproc) { struct k3_dsp_rproc *kproc = rproc->priv; struct device *dev = kproc->dev; int ret; ret = kproc->ti_sci->ops.dev_ops.put_device(kproc->ti_sci, kproc->ti_sci_id); if (ret) dev_err(dev, "module-reset assert failed (%pe)\n", ERR_PTR(ret)); return ret; } /* * Power up the DSP remote processor. * * This function will be invoked only after the firmware for this rproc * was loaded, parsed successfully, and all of its resource requirements * were met. This callback is invoked only in remoteproc mode. */ static int k3_dsp_rproc_start(struct rproc *rproc) { struct k3_dsp_rproc *kproc = rproc->priv; struct device *dev = kproc->dev; u32 boot_addr; int ret; boot_addr = rproc->bootaddr; if (boot_addr & (kproc->data->boot_align_addr - 1)) { dev_err(dev, "invalid boot address 0x%x, must be aligned on a 0x%x boundary\n", boot_addr, kproc->data->boot_align_addr); return -EINVAL; } dev_dbg(dev, "booting DSP core using boot addr = 0x%x\n", boot_addr); ret = ti_sci_proc_set_config(kproc->tsp, boot_addr, 0, 0); if (ret) return ret; ret = k3_dsp_rproc_release(kproc); if (ret) return ret; return 0; } /* * Stop the DSP remote processor. * * This function puts the DSP processor into reset, and finishes processing * of any pending messages. This callback is invoked only in remoteproc mode. */ static int k3_dsp_rproc_stop(struct rproc *rproc) { struct k3_dsp_rproc *kproc = rproc->priv; k3_dsp_rproc_reset(kproc); return 0; } /* * Attach to a running DSP remote processor (IPC-only mode) * * This rproc attach callback is a NOP. The remote processor is already booted, * and all required resources have been acquired during probe routine, so there * is no need to issue any TI-SCI commands to boot the DSP core. This callback * is invoked only in IPC-only mode and exists because rproc_validate() checks * for its existence. */ static int k3_dsp_rproc_attach(struct rproc *rproc) { return 0; } /* * Detach from a running DSP remote processor (IPC-only mode) * * This rproc detach callback is a NOP. The DSP core is not stopped and will be * left to continue to run its booted firmware. This callback is invoked only in * IPC-only mode and exists for sanity sake. */ static int k3_dsp_rproc_detach(struct rproc *rproc) { return 0; } /* * This function implements the .get_loaded_rsc_table() callback and is used * to provide the resource table for a booted DSP in IPC-only mode. The K3 DSP * firmwares follow a design-by-contract approach and are expected to have the * resource table at the base of the DDR region reserved for firmware usage. * This provides flexibility for the remote processor to be booted by different * bootloaders that may or may not have the ability to publish the resource table * address and size through a DT property. This callback is invoked only in * IPC-only mode. */ static struct resource_table *k3_dsp_get_loaded_rsc_table(struct rproc *rproc, size_t *rsc_table_sz) { struct k3_dsp_rproc *kproc = rproc->priv; struct device *dev = kproc->dev; if (!kproc->rmem[0].cpu_addr) { dev_err(dev, "memory-region #1 does not exist, loaded rsc table can't be found"); return ERR_PTR(-ENOMEM); } /* * NOTE: The resource table size is currently hard-coded to a maximum * of 256 bytes. The most common resource table usage for K3 firmwares * is to only have the vdev resource entry and an optional trace entry. * The exact size could be computed based on resource table address, but * the hard-coded value suffices to support the IPC-only mode. */ *rsc_table_sz = 256; return (struct resource_table *)kproc->rmem[0].cpu_addr; } /* * Custom function to translate a DSP device address (internal RAMs only) to a * kernel virtual address. The DSPs can access their RAMs at either an internal * address visible only from a DSP, or at the SoC-level bus address. Both these * addresses need to be looked through for translation. The translated addresses * can be used either by the remoteproc core for loading (when using kernel * remoteproc loader), or by any rpmsg bus drivers. */ static void *k3_dsp_rproc_da_to_va(struct rproc *rproc, u64 da, size_t len, bool *is_iomem) { struct k3_dsp_rproc *kproc = rproc->priv; void __iomem *va = NULL; phys_addr_t bus_addr; u32 dev_addr, offset; size_t size; int i; if (len == 0) return NULL; for (i = 0; i < kproc->num_mems; i++) { bus_addr = kproc->mem[i].bus_addr; dev_addr = kproc->mem[i].dev_addr; size = kproc->mem[i].size; if (da < KEYSTONE_RPROC_LOCAL_ADDRESS_MASK) { /* handle DSP-view addresses */ if (da >= dev_addr && ((da + len) <= (dev_addr + size))) { offset = da - dev_addr; va = kproc->mem[i].cpu_addr + offset; return (__force void *)va; } } else { /* handle SoC-view addresses */ if (da >= bus_addr && (da + len) <= (bus_addr + size)) { offset = da - bus_addr; va = kproc->mem[i].cpu_addr + offset; return (__force void *)va; } } } /* handle static DDR reserved memory regions */ for (i = 0; i < kproc->num_rmems; i++) { dev_addr = kproc->rmem[i].dev_addr; size = kproc->rmem[i].size; if (da >= dev_addr && ((da + len) <= (dev_addr + size))) { offset = da - dev_addr; va = kproc->rmem[i].cpu_addr + offset; return (__force void *)va; } } return NULL; } static const struct rproc_ops k3_dsp_rproc_ops = { .start = k3_dsp_rproc_start, .stop = k3_dsp_rproc_stop, .kick = k3_dsp_rproc_kick, .da_to_va = k3_dsp_rproc_da_to_va, }; static int k3_dsp_rproc_of_get_memories(struct platform_device *pdev, struct k3_dsp_rproc *kproc) { const struct k3_dsp_dev_data *data = kproc->data; struct device *dev = &pdev->dev; struct resource *res; int num_mems = 0; int i; num_mems = kproc->data->num_mems; kproc->mem = devm_kcalloc(kproc->dev, num_mems, sizeof(*kproc->mem), GFP_KERNEL); if (!kproc->mem) return -ENOMEM; for (i = 0; i < num_mems; i++) { res = platform_get_resource_byname(pdev, IORESOURCE_MEM, data->mems[i].name); if (!res) { dev_err(dev, "found no memory resource for %s\n", data->mems[i].name); return -EINVAL; } if (!devm_request_mem_region(dev, res->start, resource_size(res), dev_name(dev))) { dev_err(dev, "could not request %s region for resource\n", data->mems[i].name); return -EBUSY; } kproc->mem[i].cpu_addr = devm_ioremap_wc(dev, res->start, resource_size(res)); if (!kproc->mem[i].cpu_addr) { dev_err(dev, "failed to map %s memory\n", data->mems[i].name); return -ENOMEM; } kproc->mem[i].bus_addr = res->start; kproc->mem[i].dev_addr = data->mems[i].dev_addr; kproc->mem[i].size = resource_size(res); dev_dbg(dev, "memory %8s: bus addr %pa size 0x%zx va %pK da 0x%x\n", data->mems[i].name, &kproc->mem[i].bus_addr, kproc->mem[i].size, kproc->mem[i].cpu_addr, kproc->mem[i].dev_addr); } kproc->num_mems = num_mems; return 0; } static void k3_dsp_mem_release(void *data) { struct device *dev = data; of_reserved_mem_device_release(dev); } static int k3_dsp_reserved_mem_init(struct k3_dsp_rproc *kproc) { struct device *dev = kproc->dev; struct device_node *np = dev->of_node; struct device_node *rmem_np; struct reserved_mem *rmem; int num_rmems; int ret, i; num_rmems = of_property_count_elems_of_size(np, "memory-region", sizeof(phandle)); if (num_rmems < 0) { dev_err(dev, "device does not reserved memory regions (%pe)\n", ERR_PTR(num_rmems)); return -EINVAL; } if (num_rmems < 2) { dev_err(dev, "device needs at least two memory regions to be defined, num = %d\n", num_rmems); return -EINVAL; } /* use reserved memory region 0 for vring DMA allocations */ ret = of_reserved_mem_device_init_by_idx(dev, np, 0); if (ret) { dev_err(dev, "device cannot initialize DMA pool (%pe)\n", ERR_PTR(ret)); return ret; } ret = devm_add_action_or_reset(dev, k3_dsp_mem_release, dev); if (ret) return ret; num_rmems--; kproc->rmem = devm_kcalloc(dev, num_rmems, sizeof(*kproc->rmem), GFP_KERNEL); if (!kproc->rmem) return -ENOMEM; /* use remaining reserved memory regions for static carveouts */ for (i = 0; i < num_rmems; i++) { rmem_np = of_parse_phandle(np, "memory-region", i + 1); if (!rmem_np) return -EINVAL; rmem = of_reserved_mem_lookup(rmem_np); if (!rmem) { of_node_put(rmem_np); return -EINVAL; } of_node_put(rmem_np); kproc->rmem[i].bus_addr = rmem->base; /* 64-bit address regions currently not supported */ kproc->rmem[i].dev_addr = (u32)rmem->base; kproc->rmem[i].size = rmem->size; kproc->rmem[i].cpu_addr = devm_ioremap_wc(dev, rmem->base, rmem->size); if (!kproc->rmem[i].cpu_addr) { dev_err(dev, "failed to map reserved memory#%d at %pa of size %pa\n", i + 1, &rmem->base, &rmem->size); return -ENOMEM; } dev_dbg(dev, "reserved memory%d: bus addr %pa size 0x%zx va %pK da 0x%x\n", i + 1, &kproc->rmem[i].bus_addr, kproc->rmem[i].size, kproc->rmem[i].cpu_addr, kproc->rmem[i].dev_addr); } kproc->num_rmems = num_rmems; return 0; } static void k3_dsp_release_tsp(void *data) { struct ti_sci_proc *tsp = data; ti_sci_proc_release(tsp); } static int k3_dsp_rproc_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct device_node *np = dev->of_node; const struct k3_dsp_dev_data *data; struct k3_dsp_rproc *kproc; struct rproc *rproc; const char *fw_name; bool p_state = false; int ret = 0; data = of_device_get_match_data(dev); if (!data) return -ENODEV; ret = rproc_of_parse_firmware(dev, 0, &fw_name); if (ret) return dev_err_probe(dev, ret, "failed to parse firmware-name property\n"); rproc = devm_rproc_alloc(dev, dev_name(dev), &k3_dsp_rproc_ops, fw_name, sizeof(*kproc)); if (!rproc) return -ENOMEM; rproc->has_iommu = false; rproc->recovery_disabled = true; if (data->uses_lreset) { rproc->ops->prepare = k3_dsp_rproc_prepare; rproc->ops->unprepare = k3_dsp_rproc_unprepare; } kproc = rproc->priv; kproc->rproc = rproc; kproc->dev = dev; kproc->data = data; ret = k3_dsp_rproc_request_mbox(rproc); if (ret) return ret; kproc->ti_sci = devm_ti_sci_get_by_phandle(dev, "ti,sci"); if (IS_ERR(kproc->ti_sci)) return dev_err_probe(dev, PTR_ERR(kproc->ti_sci), "failed to get ti-sci handle\n"); ret = of_property_read_u32(np, "ti,sci-dev-id", &kproc->ti_sci_id); if (ret) return dev_err_probe(dev, ret, "missing 'ti,sci-dev-id' property\n"); kproc->reset = devm_reset_control_get_exclusive(dev, NULL); if (IS_ERR(kproc->reset)) return dev_err_probe(dev, PTR_ERR(kproc->reset), "failed to get reset\n"); kproc->tsp = ti_sci_proc_of_get_tsp(dev, kproc->ti_sci); if (IS_ERR(kproc->tsp)) return dev_err_probe(dev, PTR_ERR(kproc->tsp), "failed to construct ti-sci proc control\n"); ret = ti_sci_proc_request(kproc->tsp); if (ret < 0) { dev_err_probe(dev, ret, "ti_sci_proc_request failed\n"); return ret; } ret = devm_add_action_or_reset(dev, k3_dsp_release_tsp, kproc->tsp); if (ret) return ret; ret = k3_dsp_rproc_of_get_memories(pdev, kproc); if (ret) return ret; ret = k3_dsp_reserved_mem_init(kproc); if (ret) return dev_err_probe(dev, ret, "reserved memory init failed\n"); ret = kproc->ti_sci->ops.dev_ops.is_on(kproc->ti_sci, kproc->ti_sci_id, NULL, &p_state); if (ret) return dev_err_probe(dev, ret, "failed to get initial state, mode cannot be determined\n"); /* configure J721E devices for either remoteproc or IPC-only mode */ if (p_state) { dev_info(dev, "configured DSP for IPC-only mode\n"); rproc->state = RPROC_DETACHED; /* override rproc ops with only required IPC-only mode ops */ rproc->ops->prepare = NULL; rproc->ops->unprepare = NULL; rproc->ops->start = NULL; rproc->ops->stop = NULL; rproc->ops->attach = k3_dsp_rproc_attach; rproc->ops->detach = k3_dsp_rproc_detach; rproc->ops->get_loaded_rsc_table = k3_dsp_get_loaded_rsc_table; } else { dev_info(dev, "configured DSP for remoteproc mode\n"); /* * ensure the DSP local reset is asserted to ensure the DSP * doesn't execute bogus code in .prepare() when the module * reset is released. */ if (data->uses_lreset) { ret = reset_control_status(kproc->reset); if (ret < 0) { return dev_err_probe(dev, ret, "failed to get reset status\n"); } else if (ret == 0) { dev_warn(dev, "local reset is deasserted for device\n"); k3_dsp_rproc_reset(kproc); } } } ret = devm_rproc_add(dev, rproc); if (ret) return dev_err_probe(dev, ret, "failed to add register device with remoteproc core\n"); platform_set_drvdata(pdev, kproc); return 0; } static void k3_dsp_rproc_remove(struct platform_device *pdev) { struct k3_dsp_rproc *kproc = platform_get_drvdata(pdev); struct rproc *rproc = kproc->rproc; struct device *dev = &pdev->dev; int ret; if (rproc->state == RPROC_ATTACHED) { ret = rproc_detach(rproc); if (ret) dev_err(dev, "failed to detach proc (%pe)\n", ERR_PTR(ret)); } mbox_free_channel(kproc->mbox); } static const struct k3_dsp_mem_data c66_mems[] = { { .name = "l2sram", .dev_addr = 0x800000 }, { .name = "l1pram", .dev_addr = 0xe00000 }, { .name = "l1dram", .dev_addr = 0xf00000 }, }; /* C71x cores only have a L1P Cache, there are no L1P SRAMs */ static const struct k3_dsp_mem_data c71_mems[] = { { .name = "l2sram", .dev_addr = 0x800000 }, { .name = "l1dram", .dev_addr = 0xe00000 }, }; static const struct k3_dsp_mem_data c7xv_mems[] = { { .name = "l2sram", .dev_addr = 0x800000 }, }; static const struct k3_dsp_dev_data c66_data = { .mems = c66_mems, .num_mems = ARRAY_SIZE(c66_mems), .boot_align_addr = SZ_1K, .uses_lreset = true, }; static const struct k3_dsp_dev_data c71_data = { .mems = c71_mems, .num_mems = ARRAY_SIZE(c71_mems), .boot_align_addr = SZ_2M, .uses_lreset = false, }; static const struct k3_dsp_dev_data c7xv_data = { .mems = c7xv_mems, .num_mems = ARRAY_SIZE(c7xv_mems), .boot_align_addr = SZ_2M, .uses_lreset = false, }; static const struct of_device_id k3_dsp_of_match[] = { { .compatible = "ti,j721e-c66-dsp", .data = &c66_data, }, { .compatible = "ti,j721e-c71-dsp", .data = &c71_data, }, { .compatible = "ti,j721s2-c71-dsp", .data = &c71_data, }, { .compatible = "ti,am62a-c7xv-dsp", .data = &c7xv_data, }, { /* sentinel */ }, }; MODULE_DEVICE_TABLE(of, k3_dsp_of_match); static struct platform_driver k3_dsp_rproc_driver = { .probe = k3_dsp_rproc_probe, .remove_new = k3_dsp_rproc_remove, .driver = { .name = "k3-dsp-rproc", .of_match_table = k3_dsp_of_match, }, }; module_platform_driver(k3_dsp_rproc_driver); MODULE_AUTHOR("Suman Anna "); MODULE_LICENSE("GPL v2"); MODULE_DESCRIPTION("TI K3 DSP Remoteproc driver");