// SPDX-License-Identifier: GPL-2.0-or-later /* * linux/drivers/mmc/core/mmc_ops.h * * Copyright 2006-2007 Pierre Ossman */ #include #include #include #include #include #include #include #include "core.h" #include "card.h" #include "host.h" #include "mmc_ops.h" #define MMC_BKOPS_TIMEOUT_MS (120 * 1000) /* 120s */ #define MMC_SANITIZE_TIMEOUT_MS (240 * 1000) /* 240s */ #define MMC_OP_COND_PERIOD_US (4 * 1000) /* 4ms */ #define MMC_OP_COND_TIMEOUT_MS 1000 /* 1s */ static const u8 tuning_blk_pattern_4bit[] = { 0xff, 0x0f, 0xff, 0x00, 0xff, 0xcc, 0xc3, 0xcc, 0xc3, 0x3c, 0xcc, 0xff, 0xfe, 0xff, 0xfe, 0xef, 0xff, 0xdf, 0xff, 0xdd, 0xff, 0xfb, 0xff, 0xfb, 0xbf, 0xff, 0x7f, 0xff, 0x77, 0xf7, 0xbd, 0xef, 0xff, 0xf0, 0xff, 0xf0, 0x0f, 0xfc, 0xcc, 0x3c, 0xcc, 0x33, 0xcc, 0xcf, 0xff, 0xef, 0xff, 0xee, 0xff, 0xfd, 0xff, 0xfd, 0xdf, 0xff, 0xbf, 0xff, 0xbb, 0xff, 0xf7, 0xff, 0xf7, 0x7f, 0x7b, 0xde, }; static const u8 tuning_blk_pattern_8bit[] = { 0xff, 0xff, 0x00, 0xff, 0xff, 0xff, 0x00, 0x00, 0xff, 0xff, 0xcc, 0xcc, 0xcc, 0x33, 0xcc, 0xcc, 0xcc, 0x33, 0x33, 0xcc, 0xcc, 0xcc, 0xff, 0xff, 0xff, 0xee, 0xff, 0xff, 0xff, 0xee, 0xee, 0xff, 0xff, 0xff, 0xdd, 0xff, 0xff, 0xff, 0xdd, 0xdd, 0xff, 0xff, 0xff, 0xbb, 0xff, 0xff, 0xff, 0xbb, 0xbb, 0xff, 0xff, 0xff, 0x77, 0xff, 0xff, 0xff, 0x77, 0x77, 0xff, 0x77, 0xbb, 0xdd, 0xee, 0xff, 0xff, 0xff, 0xff, 0x00, 0xff, 0xff, 0xff, 0x00, 0x00, 0xff, 0xff, 0xcc, 0xcc, 0xcc, 0x33, 0xcc, 0xcc, 0xcc, 0x33, 0x33, 0xcc, 0xcc, 0xcc, 0xff, 0xff, 0xff, 0xee, 0xff, 0xff, 0xff, 0xee, 0xee, 0xff, 0xff, 0xff, 0xdd, 0xff, 0xff, 0xff, 0xdd, 0xdd, 0xff, 0xff, 0xff, 0xbb, 0xff, 0xff, 0xff, 0xbb, 0xbb, 0xff, 0xff, 0xff, 0x77, 0xff, 0xff, 0xff, 0x77, 0x77, 0xff, 0x77, 0xbb, 0xdd, 0xee, }; struct mmc_busy_data { struct mmc_card *card; bool retry_crc_err; enum mmc_busy_cmd busy_cmd; }; struct mmc_op_cond_busy_data { struct mmc_host *host; u32 ocr; struct mmc_command *cmd; }; int __mmc_send_status(struct mmc_card *card, u32 *status, unsigned int retries) { int err; struct mmc_command cmd = {}; cmd.opcode = MMC_SEND_STATUS; if (!mmc_host_is_spi(card->host)) cmd.arg = card->rca << 16; cmd.flags = MMC_RSP_SPI_R2 | MMC_RSP_R1 | MMC_CMD_AC; err = mmc_wait_for_cmd(card->host, &cmd, retries); if (err) return err; /* NOTE: callers are required to understand the difference * between "native" and SPI format status words! */ if (status) *status = cmd.resp[0]; return 0; } EXPORT_SYMBOL_GPL(__mmc_send_status); int mmc_send_status(struct mmc_card *card, u32 *status) { return __mmc_send_status(card, status, MMC_CMD_RETRIES); } EXPORT_SYMBOL_GPL(mmc_send_status); static int _mmc_select_card(struct mmc_host *host, struct mmc_card *card) { struct mmc_command cmd = {}; cmd.opcode = MMC_SELECT_CARD; if (card) { cmd.arg = card->rca << 16; cmd.flags = MMC_RSP_R1 | MMC_CMD_AC; } else { cmd.arg = 0; cmd.flags = MMC_RSP_NONE | MMC_CMD_AC; } return mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES); } int mmc_select_card(struct mmc_card *card) { return _mmc_select_card(card->host, card); } int mmc_deselect_cards(struct mmc_host *host) { return _mmc_select_card(host, NULL); } /* * Write the value specified in the device tree or board code into the optional * 16 bit Driver Stage Register. This can be used to tune raise/fall times and * drive strength of the DAT and CMD outputs. The actual meaning of a given * value is hardware dependant. * The presence of the DSR register can be determined from the CSD register, * bit 76. */ int mmc_set_dsr(struct mmc_host *host) { struct mmc_command cmd = {}; cmd.opcode = MMC_SET_DSR; cmd.arg = (host->dsr << 16) | 0xffff; cmd.flags = MMC_RSP_NONE | MMC_CMD_AC; return mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES); } int __mmc_go_idle(struct mmc_host *host) { struct mmc_command cmd = {}; int err; cmd.opcode = MMC_GO_IDLE_STATE; cmd.arg = 0; cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_NONE | MMC_CMD_BC; err = mmc_wait_for_cmd(host, &cmd, 0); mmc_delay(1); return err; } int mmc_go_idle(struct mmc_host *host) { int err; /* * Non-SPI hosts need to prevent chipselect going active during * GO_IDLE; that would put chips into SPI mode. Remind them of * that in case of hardware that won't pull up DAT3/nCS otherwise. * * SPI hosts ignore ios.chip_select; it's managed according to * rules that must accommodate non-MMC slaves which this layer * won't even know about. */ if (!mmc_host_is_spi(host)) { mmc_set_chip_select(host, MMC_CS_HIGH); mmc_delay(1); } err = __mmc_go_idle(host); if (!mmc_host_is_spi(host)) { mmc_set_chip_select(host, MMC_CS_DONTCARE); mmc_delay(1); } host->use_spi_crc = 0; return err; } static int __mmc_send_op_cond_cb(void *cb_data, bool *busy) { struct mmc_op_cond_busy_data *data = cb_data; struct mmc_host *host = data->host; struct mmc_command *cmd = data->cmd; u32 ocr = data->ocr; int err = 0; err = mmc_wait_for_cmd(host, cmd, 0); if (err) return err; if (mmc_host_is_spi(host)) { if (!(cmd->resp[0] & R1_SPI_IDLE)) { *busy = false; return 0; } } else { if (cmd->resp[0] & MMC_CARD_BUSY) { *busy = false; return 0; } } *busy = true; /* * According to eMMC specification v5.1 section 6.4.3, we * should issue CMD1 repeatedly in the idle state until * the eMMC is ready. Otherwise some eMMC devices seem to enter * the inactive mode after mmc_init_card() issued CMD0 when * the eMMC device is busy. */ if (!ocr && !mmc_host_is_spi(host)) cmd->arg = cmd->resp[0] | BIT(30); return 0; } int mmc_send_op_cond(struct mmc_host *host, u32 ocr, u32 *rocr) { struct mmc_command cmd = {}; int err = 0; struct mmc_op_cond_busy_data cb_data = { .host = host, .ocr = ocr, .cmd = &cmd }; cmd.opcode = MMC_SEND_OP_COND; cmd.arg = mmc_host_is_spi(host) ? 0 : ocr; cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R3 | MMC_CMD_BCR; err = __mmc_poll_for_busy(host, MMC_OP_COND_PERIOD_US, MMC_OP_COND_TIMEOUT_MS, &__mmc_send_op_cond_cb, &cb_data); if (err) return err; if (rocr && !mmc_host_is_spi(host)) *rocr = cmd.resp[0]; return err; } int mmc_set_relative_addr(struct mmc_card *card) { struct mmc_command cmd = {}; cmd.opcode = MMC_SET_RELATIVE_ADDR; cmd.arg = card->rca << 16; cmd.flags = MMC_RSP_R1 | MMC_CMD_AC; return mmc_wait_for_cmd(card->host, &cmd, MMC_CMD_RETRIES); } static int mmc_send_cxd_native(struct mmc_host *host, u32 arg, u32 *cxd, int opcode) { int err; struct mmc_command cmd = {}; cmd.opcode = opcode; cmd.arg = arg; cmd.flags = MMC_RSP_R2 | MMC_CMD_AC; err = mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES); if (err) return err; memcpy(cxd, cmd.resp, sizeof(u32) * 4); return 0; } /* * NOTE: void *buf, caller for the buf is required to use DMA-capable * buffer or on-stack buffer (with some overhead in callee). */ int mmc_send_adtc_data(struct mmc_card *card, struct mmc_host *host, u32 opcode, u32 args, void *buf, unsigned len) { struct mmc_request mrq = {}; struct mmc_command cmd = {}; struct mmc_data data = {}; struct scatterlist sg; mrq.cmd = &cmd; mrq.data = &data; cmd.opcode = opcode; cmd.arg = args; /* NOTE HACK: the MMC_RSP_SPI_R1 is always correct here, but we * rely on callers to never use this with "native" calls for reading * CSD or CID. Native versions of those commands use the R2 type, * not R1 plus a data block. */ cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC; data.blksz = len; data.blocks = 1; data.flags = MMC_DATA_READ; data.sg = &sg; data.sg_len = 1; sg_init_one(&sg, buf, len); if (opcode == MMC_SEND_CSD || opcode == MMC_SEND_CID) { /* * The spec states that CSR and CID accesses have a timeout * of 64 clock cycles. */ data.timeout_ns = 0; data.timeout_clks = 64; } else mmc_set_data_timeout(&data, card); mmc_wait_for_req(host, &mrq); if (cmd.error) return cmd.error; if (data.error) return data.error; return 0; } static int mmc_spi_send_cxd(struct mmc_host *host, u32 *cxd, u32 opcode) { int ret, i; __be32 *cxd_tmp; cxd_tmp = kzalloc(16, GFP_KERNEL); if (!cxd_tmp) return -ENOMEM; ret = mmc_send_adtc_data(NULL, host, opcode, 0, cxd_tmp, 16); if (ret) goto err; for (i = 0; i < 4; i++) cxd[i] = be32_to_cpu(cxd_tmp[i]); err: kfree(cxd_tmp); return ret; } int mmc_send_csd(struct mmc_card *card, u32 *csd) { if (mmc_host_is_spi(card->host)) return mmc_spi_send_cxd(card->host, csd, MMC_SEND_CSD); return mmc_send_cxd_native(card->host, card->rca << 16, csd, MMC_SEND_CSD); } int mmc_send_cid(struct mmc_host *host, u32 *cid) { if (mmc_host_is_spi(host)) return mmc_spi_send_cxd(host, cid, MMC_SEND_CID); return mmc_send_cxd_native(host, 0, cid, MMC_ALL_SEND_CID); } int mmc_get_ext_csd(struct mmc_card *card, u8 **new_ext_csd) { int err; u8 *ext_csd; if (!card || !new_ext_csd) return -EINVAL; if (!mmc_can_ext_csd(card)) return -EOPNOTSUPP; /* * As the ext_csd is so large and mostly unused, we don't store the * raw block in mmc_card. */ ext_csd = kzalloc(512, GFP_KERNEL); if (!ext_csd) return -ENOMEM; err = mmc_send_adtc_data(card, card->host, MMC_SEND_EXT_CSD, 0, ext_csd, 512); if (err) kfree(ext_csd); else *new_ext_csd = ext_csd; return err; } EXPORT_SYMBOL_GPL(mmc_get_ext_csd); int mmc_spi_read_ocr(struct mmc_host *host, int highcap, u32 *ocrp) { struct mmc_command cmd = {}; int err; cmd.opcode = MMC_SPI_READ_OCR; cmd.arg = highcap ? (1 << 30) : 0; cmd.flags = MMC_RSP_SPI_R3; err = mmc_wait_for_cmd(host, &cmd, 0); *ocrp = cmd.resp[1]; return err; } int mmc_spi_set_crc(struct mmc_host *host, int use_crc) { struct mmc_command cmd = {}; int err; cmd.opcode = MMC_SPI_CRC_ON_OFF; cmd.flags = MMC_RSP_SPI_R1; cmd.arg = use_crc; err = mmc_wait_for_cmd(host, &cmd, 0); if (!err) host->use_spi_crc = use_crc; return err; } static int mmc_switch_status_error(struct mmc_host *host, u32 status) { if (mmc_host_is_spi(host)) { if (status & R1_SPI_ILLEGAL_COMMAND) return -EBADMSG; } else { if (R1_STATUS(status)) pr_warn("%s: unexpected status %#x after switch\n", mmc_hostname(host), status); if (status & R1_SWITCH_ERROR) return -EBADMSG; } return 0; } /* Caller must hold re-tuning */ int mmc_switch_status(struct mmc_card *card, bool crc_err_fatal) { u32 status; int err; err = mmc_send_status(card, &status); if (!crc_err_fatal && err == -EILSEQ) return 0; if (err) return err; return mmc_switch_status_error(card->host, status); } static int mmc_busy_cb(void *cb_data, bool *busy) { struct mmc_busy_data *data = cb_data; struct mmc_host *host = data->card->host; u32 status = 0; int err; if (data->busy_cmd != MMC_BUSY_IO && host->ops->card_busy) { *busy = host->ops->card_busy(host); return 0; } err = mmc_send_status(data->card, &status); if (data->retry_crc_err && err == -EILSEQ) { *busy = true; return 0; } if (err) return err; switch (data->busy_cmd) { case MMC_BUSY_CMD6: err = mmc_switch_status_error(host, status); break; case MMC_BUSY_ERASE: err = R1_STATUS(status) ? -EIO : 0; break; case MMC_BUSY_HPI: case MMC_BUSY_EXTR_SINGLE: case MMC_BUSY_IO: break; default: err = -EINVAL; } if (err) return err; *busy = !mmc_ready_for_data(status); return 0; } int __mmc_poll_for_busy(struct mmc_host *host, unsigned int period_us, unsigned int timeout_ms, int (*busy_cb)(void *cb_data, bool *busy), void *cb_data) { int err; unsigned long timeout; unsigned int udelay = period_us ? period_us : 32, udelay_max = 32768; bool expired = false; bool busy = false; timeout = jiffies + msecs_to_jiffies(timeout_ms) + 1; do { /* * Due to the possibility of being preempted while polling, * check the expiration time first. */ expired = time_after(jiffies, timeout); err = (*busy_cb)(cb_data, &busy); if (err) return err; /* Timeout if the device still remains busy. */ if (expired && busy) { pr_err("%s: Card stuck being busy! %s\n", mmc_hostname(host), __func__); return -ETIMEDOUT; } /* Throttle the polling rate to avoid hogging the CPU. */ if (busy) { usleep_range(udelay, udelay * 2); if (udelay < udelay_max) udelay *= 2; } } while (busy); return 0; } EXPORT_SYMBOL_GPL(__mmc_poll_for_busy); int mmc_poll_for_busy(struct mmc_card *card, unsigned int timeout_ms, bool retry_crc_err, enum mmc_busy_cmd busy_cmd) { struct mmc_host *host = card->host; struct mmc_busy_data cb_data; cb_data.card = card; cb_data.retry_crc_err = retry_crc_err; cb_data.busy_cmd = busy_cmd; return __mmc_poll_for_busy(host, 0, timeout_ms, &mmc_busy_cb, &cb_data); } EXPORT_SYMBOL_GPL(mmc_poll_for_busy); bool mmc_prepare_busy_cmd(struct mmc_host *host, struct mmc_command *cmd, unsigned int timeout_ms) { /* * If the max_busy_timeout of the host is specified, make sure it's * enough to fit the used timeout_ms. In case it's not, let's instruct * the host to avoid HW busy detection, by converting to a R1 response * instead of a R1B. Note, some hosts requires R1B, which also means * they are on their own when it comes to deal with the busy timeout. */ if (!(host->caps & MMC_CAP_NEED_RSP_BUSY) && host->max_busy_timeout && (timeout_ms > host->max_busy_timeout)) { cmd->flags = MMC_CMD_AC | MMC_RSP_SPI_R1 | MMC_RSP_R1; return false; } cmd->flags = MMC_CMD_AC | MMC_RSP_SPI_R1B | MMC_RSP_R1B; cmd->busy_timeout = timeout_ms; return true; } EXPORT_SYMBOL_GPL(mmc_prepare_busy_cmd); /** * __mmc_switch - modify EXT_CSD register * @card: the MMC card associated with the data transfer * @set: cmd set values * @index: EXT_CSD register index * @value: value to program into EXT_CSD register * @timeout_ms: timeout (ms) for operation performed by register write, * timeout of zero implies maximum possible timeout * @timing: new timing to change to * @send_status: send status cmd to poll for busy * @retry_crc_err: retry when CRC errors when polling with CMD13 for busy * @retries: number of retries * * Modifies the EXT_CSD register for selected card. */ int __mmc_switch(struct mmc_card *card, u8 set, u8 index, u8 value, unsigned int timeout_ms, unsigned char timing, bool send_status, bool retry_crc_err, unsigned int retries) { struct mmc_host *host = card->host; int err; struct mmc_command cmd = {}; bool use_r1b_resp; unsigned char old_timing = host->ios.timing; mmc_retune_hold(host); if (!timeout_ms) { pr_warn("%s: unspecified timeout for CMD6 - use generic\n", mmc_hostname(host)); timeout_ms = card->ext_csd.generic_cmd6_time; } cmd.opcode = MMC_SWITCH; cmd.arg = (MMC_SWITCH_MODE_WRITE_BYTE << 24) | (index << 16) | (value << 8) | set; use_r1b_resp = mmc_prepare_busy_cmd(host, &cmd, timeout_ms); err = mmc_wait_for_cmd(host, &cmd, retries); if (err) goto out; /*If SPI or used HW busy detection above, then we don't need to poll. */ if (((host->caps & MMC_CAP_WAIT_WHILE_BUSY) && use_r1b_resp) || mmc_host_is_spi(host)) goto out_tim; /* * If the host doesn't support HW polling via the ->card_busy() ops and * when it's not allowed to poll by using CMD13, then we need to rely on * waiting the stated timeout to be sufficient. */ if (!send_status && !host->ops->card_busy) { mmc_delay(timeout_ms); goto out_tim; } /* Let's try to poll to find out when the command is completed. */ err = mmc_poll_for_busy(card, timeout_ms, retry_crc_err, MMC_BUSY_CMD6); if (err) goto out; out_tim: /* Switch to new timing before check switch status. */ if (timing) mmc_set_timing(host, timing); if (send_status) { err = mmc_switch_status(card, true); if (err && timing) mmc_set_timing(host, old_timing); } out: mmc_retune_release(host); return err; } int mmc_switch(struct mmc_card *card, u8 set, u8 index, u8 value, unsigned int timeout_ms) { return __mmc_switch(card, set, index, value, timeout_ms, 0, true, false, MMC_CMD_RETRIES); } EXPORT_SYMBOL_GPL(mmc_switch); int mmc_send_tuning(struct mmc_host *host, u32 opcode, int *cmd_error) { struct mmc_request mrq = {}; struct mmc_command cmd = {}; struct mmc_data data = {}; struct scatterlist sg; struct mmc_ios *ios = &host->ios; const u8 *tuning_block_pattern; int size, err = 0; u8 *data_buf; if (ios->bus_width == MMC_BUS_WIDTH_8) { tuning_block_pattern = tuning_blk_pattern_8bit; size = sizeof(tuning_blk_pattern_8bit); } else if (ios->bus_width == MMC_BUS_WIDTH_4) { tuning_block_pattern = tuning_blk_pattern_4bit; size = sizeof(tuning_blk_pattern_4bit); } else return -EINVAL; data_buf = kzalloc(size, GFP_KERNEL); if (!data_buf) return -ENOMEM; mrq.cmd = &cmd; mrq.data = &data; cmd.opcode = opcode; cmd.flags = MMC_RSP_R1 | MMC_CMD_ADTC; data.blksz = size; data.blocks = 1; data.flags = MMC_DATA_READ; /* * According to the tuning specs, Tuning process * is normally shorter 40 executions of CMD19, * and timeout value should be shorter than 150 ms */ data.timeout_ns = 150 * NSEC_PER_MSEC; data.sg = &sg; data.sg_len = 1; sg_init_one(&sg, data_buf, size); mmc_wait_for_req(host, &mrq); if (cmd_error) *cmd_error = cmd.error; if (cmd.error) { err = cmd.error; goto out; } if (data.error) { err = data.error; goto out; } if (memcmp(data_buf, tuning_block_pattern, size)) err = -EIO; out: kfree(data_buf); return err; } EXPORT_SYMBOL_GPL(mmc_send_tuning); int mmc_send_abort_tuning(struct mmc_host *host, u32 opcode) { struct mmc_command cmd = {}; /* * eMMC specification specifies that CMD12 can be used to stop a tuning * command, but SD specification does not, so do nothing unless it is * eMMC. */ if (opcode != MMC_SEND_TUNING_BLOCK_HS200) return 0; cmd.opcode = MMC_STOP_TRANSMISSION; cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC; /* * For drivers that override R1 to R1b, set an arbitrary timeout based * on the tuning timeout i.e. 150ms. */ cmd.busy_timeout = 150; return mmc_wait_for_cmd(host, &cmd, 0); } EXPORT_SYMBOL_GPL(mmc_send_abort_tuning); static int mmc_send_bus_test(struct mmc_card *card, struct mmc_host *host, u8 opcode, u8 len) { struct mmc_request mrq = {}; struct mmc_command cmd = {}; struct mmc_data data = {}; struct scatterlist sg; u8 *data_buf; u8 *test_buf; int i, err; static u8 testdata_8bit[8] = { 0x55, 0xaa, 0, 0, 0, 0, 0, 0 }; static u8 testdata_4bit[4] = { 0x5a, 0, 0, 0 }; /* dma onto stack is unsafe/nonportable, but callers to this * routine normally provide temporary on-stack buffers ... */ data_buf = kmalloc(len, GFP_KERNEL); if (!data_buf) return -ENOMEM; if (len == 8) test_buf = testdata_8bit; else if (len == 4) test_buf = testdata_4bit; else { pr_err("%s: Invalid bus_width %d\n", mmc_hostname(host), len); kfree(data_buf); return -EINVAL; } if (opcode == MMC_BUS_TEST_W) memcpy(data_buf, test_buf, len); mrq.cmd = &cmd; mrq.data = &data; cmd.opcode = opcode; cmd.arg = 0; /* NOTE HACK: the MMC_RSP_SPI_R1 is always correct here, but we * rely on callers to never use this with "native" calls for reading * CSD or CID. Native versions of those commands use the R2 type, * not R1 plus a data block. */ cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC; data.blksz = len; data.blocks = 1; if (opcode == MMC_BUS_TEST_R) data.flags = MMC_DATA_READ; else data.flags = MMC_DATA_WRITE; data.sg = &sg; data.sg_len = 1; mmc_set_data_timeout(&data, card); sg_init_one(&sg, data_buf, len); mmc_wait_for_req(host, &mrq); err = 0; if (opcode == MMC_BUS_TEST_R) { for (i = 0; i < len / 4; i++) if ((test_buf[i] ^ data_buf[i]) != 0xff) { err = -EIO; break; } } kfree(data_buf); if (cmd.error) return cmd.error; if (data.error) return data.error; return err; } int mmc_bus_test(struct mmc_card *card, u8 bus_width) { int width; if (bus_width == MMC_BUS_WIDTH_8) width = 8; else if (bus_width == MMC_BUS_WIDTH_4) width = 4; else if (bus_width == MMC_BUS_WIDTH_1) return 0; /* no need for test */ else return -EINVAL; /* * Ignore errors from BUS_TEST_W. BUS_TEST_R will fail if there * is a problem. This improves chances that the test will work. */ mmc_send_bus_test(card, card->host, MMC_BUS_TEST_W, width); return mmc_send_bus_test(card, card->host, MMC_BUS_TEST_R, width); } static int mmc_send_hpi_cmd(struct mmc_card *card) { unsigned int busy_timeout_ms = card->ext_csd.out_of_int_time; struct mmc_host *host = card->host; bool use_r1b_resp = false; struct mmc_command cmd = {}; int err; cmd.opcode = card->ext_csd.hpi_cmd; cmd.arg = card->rca << 16 | 1; cmd.flags = MMC_RSP_R1 | MMC_CMD_AC; if (cmd.opcode == MMC_STOP_TRANSMISSION) use_r1b_resp = mmc_prepare_busy_cmd(host, &cmd, busy_timeout_ms); err = mmc_wait_for_cmd(host, &cmd, 0); if (err) { pr_warn("%s: HPI error %d. Command response %#x\n", mmc_hostname(host), err, cmd.resp[0]); return err; } /* No need to poll when using HW busy detection. */ if (host->caps & MMC_CAP_WAIT_WHILE_BUSY && use_r1b_resp) return 0; /* Let's poll to find out when the HPI request completes. */ return mmc_poll_for_busy(card, busy_timeout_ms, false, MMC_BUSY_HPI); } /** * mmc_interrupt_hpi - Issue for High priority Interrupt * @card: the MMC card associated with the HPI transfer * * Issued High Priority Interrupt, and check for card status * until out-of prg-state. */ static int mmc_interrupt_hpi(struct mmc_card *card) { int err; u32 status; if (!card->ext_csd.hpi_en) { pr_info("%s: HPI enable bit unset\n", mmc_hostname(card->host)); return 1; } err = mmc_send_status(card, &status); if (err) { pr_err("%s: Get card status fail\n", mmc_hostname(card->host)); goto out; } switch (R1_CURRENT_STATE(status)) { case R1_STATE_IDLE: case R1_STATE_READY: case R1_STATE_STBY: case R1_STATE_TRAN: /* * In idle and transfer states, HPI is not needed and the caller * can issue the next intended command immediately */ goto out; case R1_STATE_PRG: break; default: /* In all other states, it's illegal to issue HPI */ pr_debug("%s: HPI cannot be sent. Card state=%d\n", mmc_hostname(card->host), R1_CURRENT_STATE(status)); err = -EINVAL; goto out; } err = mmc_send_hpi_cmd(card); out: return err; } int mmc_can_ext_csd(struct mmc_card *card) { return (card && card->csd.mmca_vsn > CSD_SPEC_VER_3); } static int mmc_read_bkops_status(struct mmc_card *card) { int err; u8 *ext_csd; err = mmc_get_ext_csd(card, &ext_csd); if (err) return err; card->ext_csd.raw_bkops_status = ext_csd[EXT_CSD_BKOPS_STATUS]; card->ext_csd.raw_exception_status = ext_csd[EXT_CSD_EXP_EVENTS_STATUS]; kfree(ext_csd); return 0; } /** * mmc_run_bkops - Run BKOPS for supported cards * @card: MMC card to run BKOPS for * * Run background operations synchronously for cards having manual BKOPS * enabled and in case it reports urgent BKOPS level. */ void mmc_run_bkops(struct mmc_card *card) { int err; if (!card->ext_csd.man_bkops_en) return; err = mmc_read_bkops_status(card); if (err) { pr_err("%s: Failed to read bkops status: %d\n", mmc_hostname(card->host), err); return; } if (!card->ext_csd.raw_bkops_status || card->ext_csd.raw_bkops_status < EXT_CSD_BKOPS_LEVEL_2) return; mmc_retune_hold(card->host); /* * For urgent BKOPS status, LEVEL_2 and higher, let's execute * synchronously. Future wise, we may consider to start BKOPS, for less * urgent levels by using an asynchronous background task, when idle. */ err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BKOPS_START, 1, MMC_BKOPS_TIMEOUT_MS); /* * If the BKOPS timed out, the card is probably still busy in the * R1_STATE_PRG. Rather than continue to wait, let's try to abort * it with a HPI command to get back into R1_STATE_TRAN. */ if (err == -ETIMEDOUT && !mmc_interrupt_hpi(card)) pr_warn("%s: BKOPS aborted\n", mmc_hostname(card->host)); else if (err) pr_warn("%s: Error %d running bkops\n", mmc_hostname(card->host), err); mmc_retune_release(card->host); } EXPORT_SYMBOL(mmc_run_bkops); static int mmc_cmdq_switch(struct mmc_card *card, bool enable) { u8 val = enable ? EXT_CSD_CMDQ_MODE_ENABLED : 0; int err; if (!card->ext_csd.cmdq_support) return -EOPNOTSUPP; err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_CMDQ_MODE_EN, val, card->ext_csd.generic_cmd6_time); if (!err) card->ext_csd.cmdq_en = enable; return err; } int mmc_cmdq_enable(struct mmc_card *card) { return mmc_cmdq_switch(card, true); } EXPORT_SYMBOL_GPL(mmc_cmdq_enable); int mmc_cmdq_disable(struct mmc_card *card) { return mmc_cmdq_switch(card, false); } EXPORT_SYMBOL_GPL(mmc_cmdq_disable); int mmc_sanitize(struct mmc_card *card, unsigned int timeout_ms) { struct mmc_host *host = card->host; int err; if (!mmc_can_sanitize(card)) { pr_warn("%s: Sanitize not supported\n", mmc_hostname(host)); return -EOPNOTSUPP; } if (!timeout_ms) timeout_ms = MMC_SANITIZE_TIMEOUT_MS; pr_debug("%s: Sanitize in progress...\n", mmc_hostname(host)); mmc_retune_hold(host); err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_SANITIZE_START, 1, timeout_ms, 0, true, false, 0); if (err) pr_err("%s: Sanitize failed err=%d\n", mmc_hostname(host), err); /* * If the sanitize operation timed out, the card is probably still busy * in the R1_STATE_PRG. Rather than continue to wait, let's try to abort * it with a HPI command to get back into R1_STATE_TRAN. */ if (err == -ETIMEDOUT && !mmc_interrupt_hpi(card)) pr_warn("%s: Sanitize aborted\n", mmc_hostname(host)); mmc_retune_release(host); pr_debug("%s: Sanitize completed\n", mmc_hostname(host)); return err; } EXPORT_SYMBOL_GPL(mmc_sanitize);