// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2015 Broadcom */ /** * DOC: VC4 CRTC module * * In VC4, the Pixel Valve is what most closely corresponds to the * DRM's concept of a CRTC. The PV generates video timings from the * encoder's clock plus its configuration. It pulls scaled pixels from * the HVS at that timing, and feeds it to the encoder. * * However, the DRM CRTC also collects the configuration of all the * DRM planes attached to it. As a result, the CRTC is also * responsible for writing the display list for the HVS channel that * the CRTC will use. * * The 2835 has 3 different pixel valves. pv0 in the audio power * domain feeds DSI0 or DPI, while pv1 feeds DS1 or SMI. pv2 in the * image domain can feed either HDMI or the SDTV controller. The * pixel valve chooses from the CPRMAN clocks (HSM for HDMI, VEC for * SDTV, etc.) according to which output type is chosen in the mux. * * For power management, the pixel valve's registers are all clocked * by the AXI clock, while the timings and FIFOs make use of the * output-specific clock. Since the encoders also directly consume * the CPRMAN clocks, and know what timings they need, they are the * ones that set the clock. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "vc4_drv.h" #include "vc4_hdmi.h" #include "vc4_regs.h" #define HVS_FIFO_LATENCY_PIX 6 #define CRTC_WRITE(offset, val) \ do { \ kunit_fail_current_test("Accessing a register in a unit test!\n"); \ writel(val, vc4_crtc->regs + (offset)); \ } while (0) #define CRTC_READ(offset) \ ({ \ kunit_fail_current_test("Accessing a register in a unit test!\n"); \ readl(vc4_crtc->regs + (offset)); \ }) static const struct debugfs_reg32 crtc_regs[] = { VC4_REG32(PV_CONTROL), VC4_REG32(PV_V_CONTROL), VC4_REG32(PV_VSYNCD_EVEN), VC4_REG32(PV_HORZA), VC4_REG32(PV_HORZB), VC4_REG32(PV_VERTA), VC4_REG32(PV_VERTB), VC4_REG32(PV_VERTA_EVEN), VC4_REG32(PV_VERTB_EVEN), VC4_REG32(PV_INTEN), VC4_REG32(PV_INTSTAT), VC4_REG32(PV_STAT), VC4_REG32(PV_HACT_ACT), }; static unsigned int vc4_crtc_get_cob_allocation(struct vc4_dev *vc4, unsigned int channel) { struct vc4_hvs *hvs = vc4->hvs; u32 dispbase, top, base; /* Top/base are supposed to be 4-pixel aligned, but the * Raspberry Pi firmware fills the low bits (which are * presumably ignored). */ if (vc4->gen >= VC4_GEN_6_C) { dispbase = HVS_READ(SCALER6_DISPX_COB(channel)); top = VC4_GET_FIELD(dispbase, SCALER6_DISPX_COB_TOP) & ~3; base = VC4_GET_FIELD(dispbase, SCALER6_DISPX_COB_BASE) & ~3; } else { dispbase = HVS_READ(SCALER_DISPBASEX(channel)); top = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_TOP) & ~3; base = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_BASE) & ~3; } return top - base + 4; } static bool vc4_crtc_get_scanout_position(struct drm_crtc *crtc, bool in_vblank_irq, int *vpos, int *hpos, ktime_t *stime, ktime_t *etime, const struct drm_display_mode *mode) { struct drm_device *dev = crtc->dev; struct vc4_dev *vc4 = to_vc4_dev(dev); struct vc4_hvs *hvs = vc4->hvs; struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); struct vc4_crtc_state *vc4_crtc_state = to_vc4_crtc_state(crtc->state); unsigned int channel = vc4_crtc_state->assigned_channel; unsigned int cob_size; u32 val; int fifo_lines; int vblank_lines; bool ret = false; /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */ /* Get optional system timestamp before query. */ if (stime) *stime = ktime_get(); /* * Read vertical scanline which is currently composed for our * pixelvalve by the HVS, and also the scaler status. */ if (vc4->gen >= VC4_GEN_6_C) val = HVS_READ(SCALER6_DISPX_STATUS(channel)); else val = HVS_READ(SCALER_DISPSTATX(channel)); /* Get optional system timestamp after query. */ if (etime) *etime = ktime_get(); /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */ /* Vertical position of hvs composed scanline. */ if (vc4->gen >= VC4_GEN_6_C) *vpos = VC4_GET_FIELD(val, SCALER6_DISPX_STATUS_YLINE); else *vpos = VC4_GET_FIELD(val, SCALER_DISPSTATX_LINE); *hpos = 0; if (mode->flags & DRM_MODE_FLAG_INTERLACE) { *vpos /= 2; /* Use hpos to correct for field offset in interlaced mode. */ if (vc4_hvs_get_fifo_frame_count(hvs, channel) % 2) *hpos += mode->crtc_htotal / 2; } cob_size = vc4_crtc_get_cob_allocation(vc4, channel); /* This is the offset we need for translating hvs -> pv scanout pos. */ fifo_lines = cob_size / mode->crtc_hdisplay; if (fifo_lines > 0) ret = true; /* HVS more than fifo_lines into frame for compositing? */ if (*vpos > fifo_lines) { /* * We are in active scanout and can get some meaningful results * from HVS. The actual PV scanout can not trail behind more * than fifo_lines as that is the fifo's capacity. Assume that * in active scanout the HVS and PV work in lockstep wrt. HVS * refilling the fifo and PV consuming from the fifo, ie. * whenever the PV consumes and frees up a scanline in the * fifo, the HVS will immediately refill it, therefore * incrementing vpos. Therefore we choose HVS read position - * fifo size in scanlines as a estimate of the real scanout * position of the PV. */ *vpos -= fifo_lines + 1; return ret; } /* * Less: This happens when we are in vblank and the HVS, after getting * the VSTART restart signal from the PV, just started refilling its * fifo with new lines from the top-most lines of the new framebuffers. * The PV does not scan out in vblank, so does not remove lines from * the fifo, so the fifo will be full quickly and the HVS has to pause. * We can't get meaningful readings wrt. scanline position of the PV * and need to make things up in a approximative but consistent way. */ vblank_lines = mode->vtotal - mode->vdisplay; if (in_vblank_irq) { /* * Assume the irq handler got called close to first * line of vblank, so PV has about a full vblank * scanlines to go, and as a base timestamp use the * one taken at entry into vblank irq handler, so it * is not affected by random delays due to lock * contention on event_lock or vblank_time lock in * the core. */ *vpos = -vblank_lines; if (stime) *stime = vc4_crtc->t_vblank; if (etime) *etime = vc4_crtc->t_vblank; /* * If the HVS fifo is not yet full then we know for certain * we are at the very beginning of vblank, as the hvs just * started refilling, and the stime and etime timestamps * truly correspond to start of vblank. * * Unfortunately there's no way to report this to upper levels * and make it more useful. */ } else { /* * No clue where we are inside vblank. Return a vpos of zero, * which will cause calling code to just return the etime * timestamp uncorrected. At least this is no worse than the * standard fallback. */ *vpos = 0; } return ret; } static u32 vc4_get_fifo_full_level(struct vc4_crtc *vc4_crtc, u32 format) { const struct vc4_crtc_data *crtc_data = vc4_crtc_to_vc4_crtc_data(vc4_crtc); const struct vc4_pv_data *pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc); struct vc4_dev *vc4 = to_vc4_dev(vc4_crtc->base.dev); /* * NOTE: Could we use register 0x68 (PV_HW_CFG1) to get the FIFO * size? */ u32 fifo_len_bytes = pv_data->fifo_depth; /* * Pixels are pulled from the HVS if the number of bytes is * lower than the FIFO full level. * * The latency of the pixel fetch mechanism is 6 pixels, so we * need to convert those 6 pixels in bytes, depending on the * format, and then subtract that from the length of the FIFO * to make sure we never end up in a situation where the FIFO * is full. */ switch (format) { case PV_CONTROL_FORMAT_DSIV_16: case PV_CONTROL_FORMAT_DSIC_16: return fifo_len_bytes - 2 * HVS_FIFO_LATENCY_PIX; case PV_CONTROL_FORMAT_DSIV_18: return fifo_len_bytes - 14; case PV_CONTROL_FORMAT_24: case PV_CONTROL_FORMAT_DSIV_24: default: /* * For some reason, the pixelvalve4 doesn't work with * the usual formula and will only work with 32. */ if (crtc_data->hvs_output == 5) return 32; /* * It looks like in some situations, we will overflow * the PixelValve FIFO (with the bit 10 of PV stat being * set) and stall the HVS / PV, eventually resulting in * a page flip timeout. * * Displaying the video overlay during a playback with * Kodi on an RPi3 seems to be a great solution with a * failure rate around 50%. * * Removing 1 from the FIFO full level however * seems to completely remove that issue. */ if (vc4->gen == VC4_GEN_4) return fifo_len_bytes - 3 * HVS_FIFO_LATENCY_PIX - 1; return fifo_len_bytes - 3 * HVS_FIFO_LATENCY_PIX; } } static u32 vc4_crtc_get_fifo_full_level_bits(struct vc4_crtc *vc4_crtc, u32 format) { u32 level = vc4_get_fifo_full_level(vc4_crtc, format); u32 ret = 0; ret |= VC4_SET_FIELD((level >> 6), PV5_CONTROL_FIFO_LEVEL_HIGH); return ret | VC4_SET_FIELD(level & 0x3f, PV_CONTROL_FIFO_LEVEL); } /* * Returns the encoder attached to the CRTC. * * VC4 can only scan out to one encoder at a time, while the DRM core * allows drivers to push pixels to more than one encoder from the * same CRTC. */ struct drm_encoder *vc4_get_crtc_encoder(struct drm_crtc *crtc, struct drm_crtc_state *state) { struct drm_encoder *encoder; WARN_ON(hweight32(state->encoder_mask) > 1); drm_for_each_encoder_mask(encoder, crtc->dev, state->encoder_mask) return encoder; return NULL; } static void vc4_crtc_pixelvalve_reset(struct drm_crtc *crtc) { struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); struct drm_device *dev = crtc->dev; int idx; if (!drm_dev_enter(dev, &idx)) return; /* The PV needs to be disabled before it can be flushed */ CRTC_WRITE(PV_CONTROL, CRTC_READ(PV_CONTROL) & ~PV_CONTROL_EN); CRTC_WRITE(PV_CONTROL, CRTC_READ(PV_CONTROL) | PV_CONTROL_FIFO_CLR); drm_dev_exit(idx); } static void vc4_crtc_config_pv(struct drm_crtc *crtc, struct drm_encoder *encoder, struct drm_atomic_state *state) { struct drm_device *dev = crtc->dev; struct vc4_dev *vc4 = to_vc4_dev(dev); struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder); struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); const struct vc4_pv_data *pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc); struct drm_crtc_state *crtc_state = crtc->state; struct drm_display_mode *mode = &crtc_state->adjusted_mode; bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE; bool is_hdmi = vc4_encoder->type == VC4_ENCODER_TYPE_HDMI0 || vc4_encoder->type == VC4_ENCODER_TYPE_HDMI1; u32 pixel_rep = ((mode->flags & DRM_MODE_FLAG_DBLCLK) && !is_hdmi) ? 2 : 1; bool is_dsi = (vc4_encoder->type == VC4_ENCODER_TYPE_DSI0 || vc4_encoder->type == VC4_ENCODER_TYPE_DSI1); bool is_dsi1 = vc4_encoder->type == VC4_ENCODER_TYPE_DSI1; bool is_vec = vc4_encoder->type == VC4_ENCODER_TYPE_VEC; u32 format = is_dsi1 ? PV_CONTROL_FORMAT_DSIV_24 : PV_CONTROL_FORMAT_24; u8 ppc = pv_data->pixels_per_clock; u16 vert_bp = mode->crtc_vtotal - mode->crtc_vsync_end; u16 vert_sync = mode->crtc_vsync_end - mode->crtc_vsync_start; u16 vert_fp = mode->crtc_vsync_start - mode->crtc_vdisplay; bool debug_dump_regs = false; int idx; if (!drm_dev_enter(dev, &idx)) return; if (debug_dump_regs) { struct drm_printer p = drm_info_printer(&vc4_crtc->pdev->dev); dev_info(&vc4_crtc->pdev->dev, "CRTC %d regs before:\n", drm_crtc_index(crtc)); drm_print_regset32(&p, &vc4_crtc->regset); } vc4_crtc_pixelvalve_reset(crtc); CRTC_WRITE(PV_HORZA, VC4_SET_FIELD((mode->htotal - mode->hsync_end) * pixel_rep / ppc, PV_HORZA_HBP) | VC4_SET_FIELD((mode->hsync_end - mode->hsync_start) * pixel_rep / ppc, PV_HORZA_HSYNC)); CRTC_WRITE(PV_HORZB, VC4_SET_FIELD((mode->hsync_start - mode->hdisplay) * pixel_rep / ppc, PV_HORZB_HFP) | VC4_SET_FIELD(mode->hdisplay * pixel_rep / ppc, PV_HORZB_HACTIVE)); if (interlace) { bool odd_field_first = false; u32 field_delay = mode->htotal * pixel_rep / (2 * ppc); u16 vert_bp_even = vert_bp; u16 vert_fp_even = vert_fp; if (is_vec) { /* VEC (composite output) */ ++field_delay; if (mode->htotal == 858) { /* 525-line mode (NTSC or PAL-M) */ odd_field_first = true; } } if (odd_field_first) ++vert_fp_even; else ++vert_bp; CRTC_WRITE(PV_VERTA_EVEN, VC4_SET_FIELD(vert_bp_even, PV_VERTA_VBP) | VC4_SET_FIELD(vert_sync, PV_VERTA_VSYNC)); CRTC_WRITE(PV_VERTB_EVEN, VC4_SET_FIELD(vert_fp_even, PV_VERTB_VFP) | VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE)); /* We set up first field even mode for HDMI and VEC's PAL. * For NTSC, we need first field odd. */ CRTC_WRITE(PV_V_CONTROL, PV_VCONTROL_CONTINUOUS | (vc4->gen >= VC4_GEN_6_C ? PV_VCONTROL_ODD_TIMING : 0) | (is_dsi ? PV_VCONTROL_DSI : 0) | PV_VCONTROL_INTERLACE | (odd_field_first ? PV_VCONTROL_ODD_FIRST : VC4_SET_FIELD(field_delay, PV_VCONTROL_ODD_DELAY))); CRTC_WRITE(PV_VSYNCD_EVEN, (odd_field_first ? field_delay : 0)); } else { CRTC_WRITE(PV_V_CONTROL, PV_VCONTROL_CONTINUOUS | (vc4->gen >= VC4_GEN_6_C ? PV_VCONTROL_ODD_TIMING : 0) | (is_dsi ? PV_VCONTROL_DSI : 0)); CRTC_WRITE(PV_VSYNCD_EVEN, 0); } CRTC_WRITE(PV_VERTA, VC4_SET_FIELD(vert_bp, PV_VERTA_VBP) | VC4_SET_FIELD(vert_sync, PV_VERTA_VSYNC)); CRTC_WRITE(PV_VERTB, VC4_SET_FIELD(vert_fp, PV_VERTB_VFP) | VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE)); if (is_dsi) CRTC_WRITE(PV_HACT_ACT, mode->hdisplay * pixel_rep); if (vc4->gen >= VC4_GEN_5) CRTC_WRITE(PV_MUX_CFG, VC4_SET_FIELD(PV_MUX_CFG_RGB_PIXEL_MUX_MODE_NO_SWAP, PV_MUX_CFG_RGB_PIXEL_MUX_MODE)); if (vc4->gen >= VC4_GEN_6_C) CRTC_WRITE(PV_PIPE_INIT_CTRL, VC4_SET_FIELD(1, PV_PIPE_INIT_CTRL_PV_INIT_WIDTH) | VC4_SET_FIELD(1, PV_PIPE_INIT_CTRL_PV_INIT_IDLE) | PV_PIPE_INIT_CTRL_PV_INIT_EN); CRTC_WRITE(PV_CONTROL, PV_CONTROL_FIFO_CLR | vc4_crtc_get_fifo_full_level_bits(vc4_crtc, format) | VC4_SET_FIELD(format, PV_CONTROL_FORMAT) | VC4_SET_FIELD(pixel_rep - 1, PV_CONTROL_PIXEL_REP) | PV_CONTROL_CLR_AT_START | PV_CONTROL_TRIGGER_UNDERFLOW | PV_CONTROL_WAIT_HSTART | VC4_SET_FIELD(vc4_encoder->clock_select, PV_CONTROL_CLK_SELECT)); if (debug_dump_regs) { struct drm_printer p = drm_info_printer(&vc4_crtc->pdev->dev); dev_info(&vc4_crtc->pdev->dev, "CRTC %d regs after:\n", drm_crtc_index(crtc)); drm_print_regset32(&p, &vc4_crtc->regset); } drm_dev_exit(idx); } static void require_hvs_enabled(struct drm_device *dev) { struct vc4_dev *vc4 = to_vc4_dev(dev); struct vc4_hvs *hvs = vc4->hvs; if (vc4->gen >= VC4_GEN_6_C) WARN_ON_ONCE(!(HVS_READ(SCALER6_CONTROL) & SCALER6_CONTROL_HVS_EN)); else WARN_ON_ONCE(!(HVS_READ(SCALER_DISPCTRL) & SCALER_DISPCTRL_ENABLE)); } static int vc4_crtc_disable(struct drm_crtc *crtc, struct drm_encoder *encoder, struct drm_atomic_state *state, unsigned int channel) { struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder); struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); struct drm_device *dev = crtc->dev; struct vc4_dev *vc4 = to_vc4_dev(dev); int idx, ret; if (!drm_dev_enter(dev, &idx)) return -ENODEV; CRTC_WRITE(PV_V_CONTROL, CRTC_READ(PV_V_CONTROL) & ~PV_VCONTROL_VIDEN); ret = wait_for(!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN), 1); WARN_ONCE(ret, "Timeout waiting for !PV_VCONTROL_VIDEN\n"); /* * This delay is needed to avoid to get a pixel stuck in an * unflushable FIFO between the pixelvalve and the HDMI * controllers on the BCM2711. * * Timing is fairly sensitive here, so mdelay is the safest * approach. * * If it was to be reworked, the stuck pixel happens on a * BCM2711 when changing mode with a good probability, so a * script that changes mode on a regular basis should trigger * the bug after less than 10 attempts. It manifests itself with * every pixels being shifted by one to the right, and thus the * last pixel of a line actually being displayed as the first * pixel on the next line. */ mdelay(20); if (vc4_encoder && vc4_encoder->post_crtc_disable) vc4_encoder->post_crtc_disable(encoder, state); vc4_crtc_pixelvalve_reset(crtc); vc4_hvs_stop_channel(vc4->hvs, channel); if (vc4_encoder && vc4_encoder->post_crtc_powerdown) vc4_encoder->post_crtc_powerdown(encoder, state); drm_dev_exit(idx); return 0; } int vc4_crtc_disable_at_boot(struct drm_crtc *crtc) { struct drm_device *drm = crtc->dev; struct vc4_dev *vc4 = to_vc4_dev(drm); struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); enum vc4_encoder_type encoder_type; const struct vc4_pv_data *pv_data; struct drm_encoder *encoder; struct vc4_hdmi *vc4_hdmi; unsigned encoder_sel; int channel; int ret; if (!(of_device_is_compatible(vc4_crtc->pdev->dev.of_node, "brcm,bcm2711-pixelvalve2") || of_device_is_compatible(vc4_crtc->pdev->dev.of_node, "brcm,bcm2711-pixelvalve4") || of_device_is_compatible(vc4_crtc->pdev->dev.of_node, "brcm,bcm2712-pixelvalve0") || of_device_is_compatible(vc4_crtc->pdev->dev.of_node, "brcm,bcm2712-pixelvalve1"))) return 0; if (!(CRTC_READ(PV_CONTROL) & PV_CONTROL_EN)) return 0; if (!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN)) return 0; channel = vc4_hvs_get_fifo_from_output(vc4->hvs, vc4_crtc->data->hvs_output); if (channel < 0) return 0; encoder_sel = VC4_GET_FIELD(CRTC_READ(PV_CONTROL), PV_CONTROL_CLK_SELECT); if (WARN_ON(encoder_sel != 0)) return 0; pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc); encoder_type = pv_data->encoder_types[encoder_sel]; encoder = vc4_find_encoder_by_type(drm, encoder_type); if (WARN_ON(!encoder)) return 0; vc4_hdmi = encoder_to_vc4_hdmi(encoder); ret = pm_runtime_resume_and_get(&vc4_hdmi->pdev->dev); if (ret) return ret; ret = vc4_crtc_disable(crtc, encoder, NULL, channel); if (ret) return ret; /* * post_crtc_powerdown will have called pm_runtime_put, so we * don't need it here otherwise we'll get the reference counting * wrong. */ return 0; } void vc4_crtc_send_vblank(struct drm_crtc *crtc) { struct drm_device *dev = crtc->dev; unsigned long flags; if (!crtc->state || !crtc->state->event) return; spin_lock_irqsave(&dev->event_lock, flags); drm_crtc_send_vblank_event(crtc, crtc->state->event); crtc->state->event = NULL; spin_unlock_irqrestore(&dev->event_lock, flags); } static void vc4_crtc_atomic_disable(struct drm_crtc *crtc, struct drm_atomic_state *state) { struct drm_crtc_state *old_state = drm_atomic_get_old_crtc_state(state, crtc); struct vc4_crtc_state *old_vc4_state = to_vc4_crtc_state(old_state); struct drm_encoder *encoder = vc4_get_crtc_encoder(crtc, old_state); struct drm_device *dev = crtc->dev; drm_dbg(dev, "Disabling CRTC %s (%u) connected to Encoder %s (%u)", crtc->name, crtc->base.id, encoder->name, encoder->base.id); require_hvs_enabled(dev); /* Disable vblank irq handling before crtc is disabled. */ drm_crtc_vblank_off(crtc); vc4_crtc_disable(crtc, encoder, state, old_vc4_state->assigned_channel); /* * Make sure we issue a vblank event after disabling the CRTC if * someone was waiting it. */ vc4_crtc_send_vblank(crtc); } static void vc4_crtc_atomic_enable(struct drm_crtc *crtc, struct drm_atomic_state *state) { struct drm_crtc_state *new_state = drm_atomic_get_new_crtc_state(state, crtc); struct drm_device *dev = crtc->dev; struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); struct drm_encoder *encoder = vc4_get_crtc_encoder(crtc, new_state); struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder); int idx; drm_dbg(dev, "Enabling CRTC %s (%u) connected to Encoder %s (%u)", crtc->name, crtc->base.id, encoder->name, encoder->base.id); if (!drm_dev_enter(dev, &idx)) return; require_hvs_enabled(dev); /* Enable vblank irq handling before crtc is started otherwise * drm_crtc_get_vblank() fails in vc4_crtc_update_dlist(). */ drm_crtc_vblank_on(crtc); vc4_hvs_atomic_enable(crtc, state); if (vc4_encoder->pre_crtc_configure) vc4_encoder->pre_crtc_configure(encoder, state); vc4_crtc_config_pv(crtc, encoder, state); CRTC_WRITE(PV_CONTROL, CRTC_READ(PV_CONTROL) | PV_CONTROL_EN); if (vc4_encoder->pre_crtc_enable) vc4_encoder->pre_crtc_enable(encoder, state); /* When feeding the transposer block the pixelvalve is unneeded and * should not be enabled. */ CRTC_WRITE(PV_V_CONTROL, CRTC_READ(PV_V_CONTROL) | PV_VCONTROL_VIDEN); if (vc4_encoder->post_crtc_enable) vc4_encoder->post_crtc_enable(encoder, state); drm_dev_exit(idx); } static enum drm_mode_status vc4_crtc_mode_valid(struct drm_crtc *crtc, const struct drm_display_mode *mode) { /* Do not allow doublescan modes from user space */ if (mode->flags & DRM_MODE_FLAG_DBLSCAN) { DRM_DEBUG_KMS("[CRTC:%d] Doublescan mode rejected.\n", crtc->base.id); return MODE_NO_DBLESCAN; } return MODE_OK; } void vc4_crtc_get_margins(struct drm_crtc_state *state, unsigned int *left, unsigned int *right, unsigned int *top, unsigned int *bottom) { struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state); struct drm_connector_state *conn_state; struct drm_connector *conn; int i; *left = vc4_state->margins.left; *right = vc4_state->margins.right; *top = vc4_state->margins.top; *bottom = vc4_state->margins.bottom; /* We have to interate over all new connector states because * vc4_crtc_get_margins() might be called before * vc4_crtc_atomic_check() which means margins info in vc4_crtc_state * might be outdated. */ for_each_new_connector_in_state(state->state, conn, conn_state, i) { if (conn_state->crtc != state->crtc) continue; *left = conn_state->tv.margins.left; *right = conn_state->tv.margins.right; *top = conn_state->tv.margins.top; *bottom = conn_state->tv.margins.bottom; break; } } int vc4_crtc_atomic_check(struct drm_crtc *crtc, struct drm_atomic_state *state) { struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state, crtc); struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc_state); struct drm_connector *conn; struct drm_connector_state *conn_state; struct drm_encoder *encoder; int ret, i; ret = vc4_hvs_atomic_check(crtc, state); if (ret) return ret; encoder = vc4_get_crtc_encoder(crtc, crtc_state); if (encoder) { const struct drm_display_mode *mode = &crtc_state->adjusted_mode; struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder); if (vc4_encoder->type == VC4_ENCODER_TYPE_HDMI0) { vc4_state->hvs_load = max(mode->clock * mode->hdisplay / mode->htotal + 8000, mode->clock * 9 / 10) * 1000; } else { vc4_state->hvs_load = mode->clock * 1000; } } for_each_new_connector_in_state(state, conn, conn_state, i) { if (conn_state->crtc != crtc) continue; if (memcmp(&vc4_state->margins, &conn_state->tv.margins, sizeof(vc4_state->margins))) { memcpy(&vc4_state->margins, &conn_state->tv.margins, sizeof(vc4_state->margins)); /* * Need to force the dlist entries for all planes to be * updated so that the dest rectangles are changed. */ crtc_state->zpos_changed = true; } break; } return 0; } static int vc4_enable_vblank(struct drm_crtc *crtc) { struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); struct drm_device *dev = crtc->dev; int idx; if (!drm_dev_enter(dev, &idx)) return -ENODEV; CRTC_WRITE(PV_INTEN, PV_INT_VFP_START); drm_dev_exit(idx); return 0; } static void vc4_disable_vblank(struct drm_crtc *crtc) { struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); struct drm_device *dev = crtc->dev; int idx; if (!drm_dev_enter(dev, &idx)) return; CRTC_WRITE(PV_INTEN, 0); drm_dev_exit(idx); } static void vc4_crtc_handle_page_flip(struct vc4_crtc *vc4_crtc) { struct drm_crtc *crtc = &vc4_crtc->base; struct drm_device *dev = crtc->dev; struct vc4_dev *vc4 = to_vc4_dev(dev); struct vc4_hvs *hvs = vc4->hvs; unsigned int current_dlist; u32 chan = vc4_crtc->current_hvs_channel; unsigned long flags; spin_lock_irqsave(&dev->event_lock, flags); spin_lock(&vc4_crtc->irq_lock); if (vc4->gen >= VC4_GEN_6_C) current_dlist = VC4_GET_FIELD(HVS_READ(SCALER6_DISPX_DL(chan)), SCALER6_DISPX_DL_LACT); else current_dlist = HVS_READ(SCALER_DISPLACTX(chan)); if (vc4_crtc->event && (vc4_crtc->current_dlist == current_dlist || vc4_crtc->feeds_txp)) { drm_crtc_send_vblank_event(crtc, vc4_crtc->event); vc4_crtc->event = NULL; drm_crtc_vblank_put(crtc); /* Wait for the page flip to unmask the underrun to ensure that * the display list was updated by the hardware. Before that * happens, the HVS will be using the previous display list with * the CRTC and encoder already reconfigured, leading to * underruns. This can be seen when reconfiguring the CRTC. */ if (vc4->gen < VC4_GEN_6_C) vc4_hvs_unmask_underrun(hvs, chan); } spin_unlock(&vc4_crtc->irq_lock); spin_unlock_irqrestore(&dev->event_lock, flags); } void vc4_crtc_handle_vblank(struct vc4_crtc *crtc) { crtc->t_vblank = ktime_get(); drm_crtc_handle_vblank(&crtc->base); vc4_crtc_handle_page_flip(crtc); } static irqreturn_t vc4_crtc_irq_handler(int irq, void *data) { struct vc4_crtc *vc4_crtc = data; u32 stat = CRTC_READ(PV_INTSTAT); irqreturn_t ret = IRQ_NONE; if (stat & PV_INT_VFP_START) { CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START); vc4_crtc_handle_vblank(vc4_crtc); ret = IRQ_HANDLED; } return ret; } struct vc4_async_flip_state { struct drm_crtc *crtc; struct drm_framebuffer *fb; struct drm_framebuffer *old_fb; struct drm_pending_vblank_event *event; union { struct dma_fence_cb fence; struct vc4_seqno_cb seqno; } cb; }; /* Called when the V3D execution for the BO being flipped to is done, so that * we can actually update the plane's address to point to it. */ static void vc4_async_page_flip_complete(struct vc4_async_flip_state *flip_state) { struct drm_crtc *crtc = flip_state->crtc; struct drm_device *dev = crtc->dev; struct drm_plane *plane = crtc->primary; vc4_plane_async_set_fb(plane, flip_state->fb); if (flip_state->event) { unsigned long flags; spin_lock_irqsave(&dev->event_lock, flags); drm_crtc_send_vblank_event(crtc, flip_state->event); spin_unlock_irqrestore(&dev->event_lock, flags); } drm_crtc_vblank_put(crtc); drm_framebuffer_put(flip_state->fb); if (flip_state->old_fb) drm_framebuffer_put(flip_state->old_fb); kfree(flip_state); } static void vc4_async_page_flip_seqno_complete(struct vc4_seqno_cb *cb) { struct vc4_async_flip_state *flip_state = container_of(cb, struct vc4_async_flip_state, cb.seqno); struct vc4_bo *bo = NULL; if (flip_state->old_fb) { struct drm_gem_dma_object *dma_bo = drm_fb_dma_get_gem_obj(flip_state->old_fb, 0); bo = to_vc4_bo(&dma_bo->base); } vc4_async_page_flip_complete(flip_state); /* * Decrement the BO usecnt in order to keep the inc/dec * calls balanced when the planes are updated through * the async update path. * * FIXME: we should move to generic async-page-flip when * it's available, so that we can get rid of this * hand-made cleanup_fb() logic. */ if (bo) vc4_bo_dec_usecnt(bo); } static void vc4_async_page_flip_fence_complete(struct dma_fence *fence, struct dma_fence_cb *cb) { struct vc4_async_flip_state *flip_state = container_of(cb, struct vc4_async_flip_state, cb.fence); vc4_async_page_flip_complete(flip_state); dma_fence_put(fence); } static int vc4_async_set_fence_cb(struct drm_device *dev, struct vc4_async_flip_state *flip_state) { struct drm_framebuffer *fb = flip_state->fb; struct drm_gem_dma_object *dma_bo = drm_fb_dma_get_gem_obj(fb, 0); struct vc4_dev *vc4 = to_vc4_dev(dev); struct dma_fence *fence; int ret; if (vc4->gen == VC4_GEN_4) { struct vc4_bo *bo = to_vc4_bo(&dma_bo->base); return vc4_queue_seqno_cb(dev, &flip_state->cb.seqno, bo->seqno, vc4_async_page_flip_seqno_complete); } ret = dma_resv_get_singleton(dma_bo->base.resv, DMA_RESV_USAGE_READ, &fence); if (ret) return ret; /* If there's no fence, complete the page flip immediately */ if (!fence) { vc4_async_page_flip_fence_complete(fence, &flip_state->cb.fence); return 0; } /* If the fence has already been completed, complete the page flip */ if (dma_fence_add_callback(fence, &flip_state->cb.fence, vc4_async_page_flip_fence_complete)) vc4_async_page_flip_fence_complete(fence, &flip_state->cb.fence); return 0; } static int vc4_async_page_flip_common(struct drm_crtc *crtc, struct drm_framebuffer *fb, struct drm_pending_vblank_event *event, uint32_t flags) { struct drm_device *dev = crtc->dev; struct drm_plane *plane = crtc->primary; struct vc4_async_flip_state *flip_state; flip_state = kzalloc(sizeof(*flip_state), GFP_KERNEL); if (!flip_state) return -ENOMEM; drm_framebuffer_get(fb); flip_state->fb = fb; flip_state->crtc = crtc; flip_state->event = event; /* Save the current FB before it's replaced by the new one in * drm_atomic_set_fb_for_plane(). We'll need the old FB in * vc4_async_page_flip_complete() to decrement the BO usecnt and keep * it consistent. * FIXME: we should move to generic async-page-flip when it's * available, so that we can get rid of this hand-made cleanup_fb() * logic. */ flip_state->old_fb = plane->state->fb; if (flip_state->old_fb) drm_framebuffer_get(flip_state->old_fb); WARN_ON(drm_crtc_vblank_get(crtc) != 0); /* Immediately update the plane's legacy fb pointer, so that later * modeset prep sees the state that will be present when the semaphore * is released. */ drm_atomic_set_fb_for_plane(plane->state, fb); vc4_async_set_fence_cb(dev, flip_state); /* Driver takes ownership of state on successful async commit. */ return 0; } /* Implements async (non-vblank-synced) page flips. * * The page flip ioctl needs to return immediately, so we grab the * modeset semaphore on the pipe, and queue the address update for * when V3D is done with the BO being flipped to. */ static int vc4_async_page_flip(struct drm_crtc *crtc, struct drm_framebuffer *fb, struct drm_pending_vblank_event *event, uint32_t flags) { struct drm_device *dev = crtc->dev; struct vc4_dev *vc4 = to_vc4_dev(dev); struct drm_gem_dma_object *dma_bo = drm_fb_dma_get_gem_obj(fb, 0); struct vc4_bo *bo = to_vc4_bo(&dma_bo->base); int ret; if (WARN_ON_ONCE(vc4->gen > VC4_GEN_4)) return -ENODEV; /* * Increment the BO usecnt here, so that we never end up with an * unbalanced number of vc4_bo_{dec,inc}_usecnt() calls when the * plane is later updated through the non-async path. * * FIXME: we should move to generic async-page-flip when * it's available, so that we can get rid of this * hand-made prepare_fb() logic. */ ret = vc4_bo_inc_usecnt(bo); if (ret) return ret; ret = vc4_async_page_flip_common(crtc, fb, event, flags); if (ret) { vc4_bo_dec_usecnt(bo); return ret; } return 0; } static int vc5_async_page_flip(struct drm_crtc *crtc, struct drm_framebuffer *fb, struct drm_pending_vblank_event *event, uint32_t flags) { return vc4_async_page_flip_common(crtc, fb, event, flags); } int vc4_page_flip(struct drm_crtc *crtc, struct drm_framebuffer *fb, struct drm_pending_vblank_event *event, uint32_t flags, struct drm_modeset_acquire_ctx *ctx) { if (flags & DRM_MODE_PAGE_FLIP_ASYNC) { struct drm_device *dev = crtc->dev; struct vc4_dev *vc4 = to_vc4_dev(dev); if (vc4->gen > VC4_GEN_4) return vc5_async_page_flip(crtc, fb, event, flags); else return vc4_async_page_flip(crtc, fb, event, flags); } else { return drm_atomic_helper_page_flip(crtc, fb, event, flags, ctx); } } struct drm_crtc_state *vc4_crtc_duplicate_state(struct drm_crtc *crtc) { struct vc4_crtc_state *vc4_state, *old_vc4_state; vc4_state = kzalloc(sizeof(*vc4_state), GFP_KERNEL); if (!vc4_state) return NULL; old_vc4_state = to_vc4_crtc_state(crtc->state); vc4_state->margins = old_vc4_state->margins; vc4_state->assigned_channel = old_vc4_state->assigned_channel; __drm_atomic_helper_crtc_duplicate_state(crtc, &vc4_state->base); return &vc4_state->base; } void vc4_crtc_destroy_state(struct drm_crtc *crtc, struct drm_crtc_state *state) { struct vc4_dev *vc4 = to_vc4_dev(crtc->dev); struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state); if (drm_mm_node_allocated(&vc4_state->mm)) { unsigned long flags; spin_lock_irqsave(&vc4->hvs->mm_lock, flags); drm_mm_remove_node(&vc4_state->mm); spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags); } drm_atomic_helper_crtc_destroy_state(crtc, state); } void vc4_crtc_reset(struct drm_crtc *crtc) { struct vc4_crtc_state *vc4_crtc_state; if (crtc->state) vc4_crtc_destroy_state(crtc, crtc->state); vc4_crtc_state = kzalloc(sizeof(*vc4_crtc_state), GFP_KERNEL); if (!vc4_crtc_state) { crtc->state = NULL; return; } vc4_crtc_state->assigned_channel = VC4_HVS_CHANNEL_DISABLED; __drm_atomic_helper_crtc_reset(crtc, &vc4_crtc_state->base); } int vc4_crtc_late_register(struct drm_crtc *crtc) { struct drm_device *drm = crtc->dev; struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); const struct vc4_crtc_data *crtc_data = vc4_crtc_to_vc4_crtc_data(vc4_crtc); vc4_debugfs_add_regset32(drm, crtc_data->debugfs_name, &vc4_crtc->regset); return 0; } static const struct drm_crtc_funcs vc4_crtc_funcs = { .set_config = drm_atomic_helper_set_config, .page_flip = vc4_page_flip, .set_property = NULL, .cursor_set = NULL, /* handled by drm_mode_cursor_universal */ .cursor_move = NULL, /* handled by drm_mode_cursor_universal */ .reset = vc4_crtc_reset, .atomic_duplicate_state = vc4_crtc_duplicate_state, .atomic_destroy_state = vc4_crtc_destroy_state, .enable_vblank = vc4_enable_vblank, .disable_vblank = vc4_disable_vblank, .get_vblank_timestamp = drm_crtc_vblank_helper_get_vblank_timestamp, .late_register = vc4_crtc_late_register, }; static const struct drm_crtc_helper_funcs vc4_crtc_helper_funcs = { .mode_valid = vc4_crtc_mode_valid, .atomic_check = vc4_crtc_atomic_check, .atomic_begin = vc4_hvs_atomic_begin, .atomic_flush = vc4_hvs_atomic_flush, .atomic_enable = vc4_crtc_atomic_enable, .atomic_disable = vc4_crtc_atomic_disable, .get_scanout_position = vc4_crtc_get_scanout_position, }; const struct vc4_pv_data bcm2835_pv0_data = { .base = { .name = "pixelvalve-0", .debugfs_name = "crtc0_regs", .hvs_available_channels = BIT(0), .hvs_output = 0, }, .fifo_depth = 64, .pixels_per_clock = 1, .encoder_types = { [PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI0, [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_DPI, }, }; const struct vc4_pv_data bcm2835_pv1_data = { .base = { .name = "pixelvalve-1", .debugfs_name = "crtc1_regs", .hvs_available_channels = BIT(2), .hvs_output = 2, }, .fifo_depth = 64, .pixels_per_clock = 1, .encoder_types = { [PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI1, [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_SMI, }, }; const struct vc4_pv_data bcm2835_pv2_data = { .base = { .name = "pixelvalve-2", .debugfs_name = "crtc2_regs", .hvs_available_channels = BIT(1), .hvs_output = 1, }, .fifo_depth = 64, .pixels_per_clock = 1, .encoder_types = { [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_HDMI0, [PV_CONTROL_CLK_SELECT_VEC] = VC4_ENCODER_TYPE_VEC, }, }; const struct vc4_pv_data bcm2711_pv0_data = { .base = { .name = "pixelvalve-0", .debugfs_name = "crtc0_regs", .hvs_available_channels = BIT(0), .hvs_output = 0, }, .fifo_depth = 64, .pixels_per_clock = 1, .encoder_types = { [0] = VC4_ENCODER_TYPE_DSI0, [1] = VC4_ENCODER_TYPE_DPI, }, }; const struct vc4_pv_data bcm2711_pv1_data = { .base = { .name = "pixelvalve-1", .debugfs_name = "crtc1_regs", .hvs_available_channels = BIT(0) | BIT(1) | BIT(2), .hvs_output = 3, }, .fifo_depth = 64, .pixels_per_clock = 1, .encoder_types = { [0] = VC4_ENCODER_TYPE_DSI1, [1] = VC4_ENCODER_TYPE_SMI, }, }; const struct vc4_pv_data bcm2711_pv2_data = { .base = { .name = "pixelvalve-2", .debugfs_name = "crtc2_regs", .hvs_available_channels = BIT(0) | BIT(1) | BIT(2), .hvs_output = 4, }, .fifo_depth = 256, .pixels_per_clock = 2, .encoder_types = { [0] = VC4_ENCODER_TYPE_HDMI0, }, }; const struct vc4_pv_data bcm2711_pv3_data = { .base = { .name = "pixelvalve-3", .debugfs_name = "crtc3_regs", .hvs_available_channels = BIT(1), .hvs_output = 1, }, .fifo_depth = 64, .pixels_per_clock = 1, .encoder_types = { [PV_CONTROL_CLK_SELECT_VEC] = VC4_ENCODER_TYPE_VEC, }, }; const struct vc4_pv_data bcm2711_pv4_data = { .base = { .name = "pixelvalve-4", .debugfs_name = "crtc4_regs", .hvs_available_channels = BIT(0) | BIT(1) | BIT(2), .hvs_output = 5, }, .fifo_depth = 64, .pixels_per_clock = 2, .encoder_types = { [0] = VC4_ENCODER_TYPE_HDMI1, }, }; const struct vc4_pv_data bcm2712_pv0_data = { .base = { .debugfs_name = "crtc0_regs", .hvs_available_channels = BIT(0), .hvs_output = 0, }, .fifo_depth = 64, .pixels_per_clock = 1, .encoder_types = { [0] = VC4_ENCODER_TYPE_HDMI0, }, }; const struct vc4_pv_data bcm2712_pv1_data = { .base = { .debugfs_name = "crtc1_regs", .hvs_available_channels = BIT(1), .hvs_output = 1, }, .fifo_depth = 64, .pixels_per_clock = 1, .encoder_types = { [0] = VC4_ENCODER_TYPE_HDMI1, }, }; static const struct of_device_id vc4_crtc_dt_match[] = { { .compatible = "brcm,bcm2835-pixelvalve0", .data = &bcm2835_pv0_data }, { .compatible = "brcm,bcm2835-pixelvalve1", .data = &bcm2835_pv1_data }, { .compatible = "brcm,bcm2835-pixelvalve2", .data = &bcm2835_pv2_data }, { .compatible = "brcm,bcm2711-pixelvalve0", .data = &bcm2711_pv0_data }, { .compatible = "brcm,bcm2711-pixelvalve1", .data = &bcm2711_pv1_data }, { .compatible = "brcm,bcm2711-pixelvalve2", .data = &bcm2711_pv2_data }, { .compatible = "brcm,bcm2711-pixelvalve3", .data = &bcm2711_pv3_data }, { .compatible = "brcm,bcm2711-pixelvalve4", .data = &bcm2711_pv4_data }, { .compatible = "brcm,bcm2712-pixelvalve0", .data = &bcm2712_pv0_data }, { .compatible = "brcm,bcm2712-pixelvalve1", .data = &bcm2712_pv1_data }, {} }; static void vc4_set_crtc_possible_masks(struct drm_device *drm, struct drm_crtc *crtc) { struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); const struct vc4_pv_data *pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc); const enum vc4_encoder_type *encoder_types = pv_data->encoder_types; struct drm_encoder *encoder; drm_for_each_encoder(encoder, drm) { struct vc4_encoder *vc4_encoder; int i; if (encoder->encoder_type == DRM_MODE_ENCODER_VIRTUAL) continue; vc4_encoder = to_vc4_encoder(encoder); for (i = 0; i < ARRAY_SIZE(pv_data->encoder_types); i++) { if (vc4_encoder->type == encoder_types[i]) { vc4_encoder->clock_select = i; encoder->possible_crtcs |= drm_crtc_mask(crtc); break; } } } } /** * __vc4_crtc_init - Initializes a CRTC * @drm: DRM Device * @pdev: CRTC Platform Device * @vc4_crtc: CRTC Object to Initialize * @data: Configuration data associated with this CRTC * @primary_plane: Primary plane for CRTC * @crtc_funcs: Callbacks for the new CRTC * @crtc_helper_funcs: Helper Callbacks for the new CRTC * @feeds_txp: Is this CRTC connected to the TXP? * * Initializes our private CRTC structure. This function is mostly * relevant for KUnit testing, all other users should use * vc4_crtc_init() instead. * * Returns: * 0 on success, a negative error code on failure. */ int __vc4_crtc_init(struct drm_device *drm, struct platform_device *pdev, struct vc4_crtc *vc4_crtc, const struct vc4_crtc_data *data, struct drm_plane *primary_plane, const struct drm_crtc_funcs *crtc_funcs, const struct drm_crtc_helper_funcs *crtc_helper_funcs, bool feeds_txp) { struct vc4_dev *vc4 = to_vc4_dev(drm); struct drm_crtc *crtc = &vc4_crtc->base; unsigned int i; int ret; vc4_crtc->data = data; vc4_crtc->pdev = pdev; vc4_crtc->feeds_txp = feeds_txp; spin_lock_init(&vc4_crtc->irq_lock); ret = drmm_crtc_init_with_planes(drm, crtc, primary_plane, NULL, crtc_funcs, data->name); if (ret) return ret; drm_crtc_helper_add(crtc, crtc_helper_funcs); if (vc4->gen == VC4_GEN_4) { drm_mode_crtc_set_gamma_size(crtc, ARRAY_SIZE(vc4_crtc->lut_r)); drm_crtc_enable_color_mgmt(crtc, 0, false, crtc->gamma_size); /* We support CTM, but only for one CRTC at a time. It's therefore * implemented as private driver state in vc4_kms, not here. */ drm_crtc_enable_color_mgmt(crtc, 0, true, crtc->gamma_size); } for (i = 0; i < crtc->gamma_size; i++) { vc4_crtc->lut_r[i] = i; vc4_crtc->lut_g[i] = i; vc4_crtc->lut_b[i] = i; } return 0; } int vc4_crtc_init(struct drm_device *drm, struct platform_device *pdev, struct vc4_crtc *vc4_crtc, const struct vc4_crtc_data *data, const struct drm_crtc_funcs *crtc_funcs, const struct drm_crtc_helper_funcs *crtc_helper_funcs, bool feeds_txp) { struct drm_plane *primary_plane; /* For now, we create just the primary and the legacy cursor * planes. We should be able to stack more planes on easily, * but to do that we would need to compute the bandwidth * requirement of the plane configuration, and reject ones * that will take too much. */ primary_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_PRIMARY, 0); if (IS_ERR(primary_plane)) { dev_err(drm->dev, "failed to construct primary plane\n"); return PTR_ERR(primary_plane); } return __vc4_crtc_init(drm, pdev, vc4_crtc, data, primary_plane, crtc_funcs, crtc_helper_funcs, feeds_txp); } static int vc4_crtc_bind(struct device *dev, struct device *master, void *data) { struct platform_device *pdev = to_platform_device(dev); struct drm_device *drm = dev_get_drvdata(master); const struct vc4_pv_data *pv_data; struct vc4_crtc *vc4_crtc; struct drm_crtc *crtc; int ret; vc4_crtc = drmm_kzalloc(drm, sizeof(*vc4_crtc), GFP_KERNEL); if (!vc4_crtc) return -ENOMEM; crtc = &vc4_crtc->base; pv_data = of_device_get_match_data(dev); if (!pv_data) return -ENODEV; vc4_crtc->regs = vc4_ioremap_regs(pdev, 0); if (IS_ERR(vc4_crtc->regs)) return PTR_ERR(vc4_crtc->regs); vc4_crtc->regset.base = vc4_crtc->regs; vc4_crtc->regset.regs = crtc_regs; vc4_crtc->regset.nregs = ARRAY_SIZE(crtc_regs); ret = vc4_crtc_init(drm, pdev, vc4_crtc, &pv_data->base, &vc4_crtc_funcs, &vc4_crtc_helper_funcs, false); if (ret) return ret; vc4_set_crtc_possible_masks(drm, crtc); CRTC_WRITE(PV_INTEN, 0); CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START); ret = devm_request_irq(dev, platform_get_irq(pdev, 0), vc4_crtc_irq_handler, IRQF_SHARED, "vc4 crtc", vc4_crtc); if (ret) return ret; platform_set_drvdata(pdev, vc4_crtc); return 0; } static void vc4_crtc_unbind(struct device *dev, struct device *master, void *data) { struct platform_device *pdev = to_platform_device(dev); struct vc4_crtc *vc4_crtc = dev_get_drvdata(dev); CRTC_WRITE(PV_INTEN, 0); platform_set_drvdata(pdev, NULL); } static const struct component_ops vc4_crtc_ops = { .bind = vc4_crtc_bind, .unbind = vc4_crtc_unbind, }; static int vc4_crtc_dev_probe(struct platform_device *pdev) { return component_add(&pdev->dev, &vc4_crtc_ops); } static void vc4_crtc_dev_remove(struct platform_device *pdev) { component_del(&pdev->dev, &vc4_crtc_ops); } struct platform_driver vc4_crtc_driver = { .probe = vc4_crtc_dev_probe, .remove = vc4_crtc_dev_remove, .driver = { .name = "vc4_crtc", .of_match_table = vc4_crtc_dt_match, }, };