summaryrefslogtreecommitdiff
path: root/mm/hugetlb_vmemmap.c
AgeCommit message (Collapse)AuthorFilesLines
2023-12-12mm: hugetlb_vmemmap: move mmap lock to vmemmap_remap_range()Muchun Song1-13/+4
All the users of vmemmap_remap_range() will hold the mmap lock and release it once it returns, it is naturally to move the lock to vmemmap_remap_range() to simplify the code and the users. Link: https://lkml.kernel.org/r/20231205030853.3921-1-songmuchun@bytedance.com Signed-off-by: Muchun Song <songmuchun@bytedance.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-12-12mm: hugetlb_vmemmap: add check of CONFIG_MEMORY_HOTPLUG backMuchun Song1-1/+1
The compiler will optimize the code as much as possible if we add the check of CONFIG_MEMORY_HOTPLUG back. Link: https://lkml.kernel.org/r/20231205030530.3802-1-songmuchun@bytedance.com Signed-off-by: Muchun Song <songmuchun@bytedance.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-12-10mm: hugetlb_vmemmap: convert page to folioMuchun Song1-26/+25
There are still some places where it does not be converted to folio, this patch convert all of them to folio. And this patch also does some trival cleanup to fix the code style problems. Link: https://lkml.kernel.org/r/20231127084645.27017-5-songmuchun@bytedance.com Signed-off-by: Muchun Song <songmuchun@bytedance.com> Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com> Cc: Kefeng Wang <wangkefeng.wang@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-12-10mm: hugetlb_vmemmap: move PageVmemmapSelfHosted() check to ↵Muchun Song1-46/+24
split_vmemmap_huge_pmd() To check a page whether it is self-hosted needs to traverse the page table (e.g. pmd_off_k()), however, we already have done this in the next calling of vmemmap_remap_range(). Moving PageVmemmapSelfHosted() check to vmemmap_pmd_entry() could simplify the code a bit. Link: https://lkml.kernel.org/r/20231127084645.27017-4-songmuchun@bytedance.com Signed-off-by: Muchun Song <songmuchun@bytedance.com> Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com> Cc: Kefeng Wang <wangkefeng.wang@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-12-10mm: hugetlb_vmemmap: use walk_page_range_novma() to simplify the codeMuchun Song1-109/+39
It is unnecessary to implement a series of dedicated page table walking helpers since there is already a general one walk_page_range_novma(). So use it to simplify the code. Link: https://lkml.kernel.org/r/20231127084645.27017-3-songmuchun@bytedance.com Signed-off-by: Muchun Song <songmuchun@bytedance.com> Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com> Cc: Kefeng Wang <wangkefeng.wang@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-25hugetlb_vmemmap: use folio argument for hugetlb_vmemmap_* functionsUsama Arif1-24/+26
Most function calls in hugetlb.c are made with folio arguments. This brings hugetlb_vmemmap calls inline with them by using folio instead of head struct page. Head struct page is still needed within these functions. The set/clear/test functions for hugepages are also changed to folio versions. Link: https://lkml.kernel.org/r/20231011144557.1720481-2-usama.arif@bytedance.com Signed-off-by: Usama Arif <usama.arif@bytedance.com> Reviewed-by: Muchun Song <songmuchun@bytedance.com> Cc: Fam Zheng <fam.zheng@bytedance.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Punit Agrawal <punit.agrawal@bytedance.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-25hugetlb: batch TLB flushes when restoring vmemmapMike Kravetz1-15/+24
Update the internal hugetlb restore vmemmap code path such that TLB flushing can be batched. Use the existing mechanism of passing the VMEMMAP_REMAP_NO_TLB_FLUSH flag to indicate flushing should not be performed for individual pages. The routine hugetlb_vmemmap_restore_folios is the only user of this new mechanism, and it will perform a global flush after all vmemmap is restored. Link: https://lkml.kernel.org/r/20231019023113.345257-9-mike.kravetz@oracle.com Signed-off-by: Joao Martins <joao.m.martins@oracle.com> Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com> Reviewed-by: Muchun Song <songmuchun@bytedance.com> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Barry Song <21cnbao@gmail.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: James Houghton <jthoughton@google.com> Cc: Konrad Dybcio <konradybcio@kernel.org> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Naoya Horiguchi <naoya.horiguchi@linux.dev> Cc: Oscar Salvador <osalvador@suse.de> Cc: Sergey Senozhatsky <senozhatsky@chromium.org> Cc: Usama Arif <usama.arif@bytedance.com> Cc: Xiongchun Duan <duanxiongchun@bytedance.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-25hugetlb: batch TLB flushes when freeing vmemmapJoao Martins1-11/+38
Now that a list of pages is deduplicated at once, the TLB flush can be batched for all vmemmap pages that got remapped. Expand the flags field value to pass whether to skip the TLB flush on remap of the PTE. The TLB flush is global as we don't have guarantees from caller that the set of folios is contiguous, or to add complexity in composing a list of kVAs to flush. Modified by Mike Kravetz to perform TLB flush on single folio if an error is encountered. Link: https://lkml.kernel.org/r/20231019023113.345257-8-mike.kravetz@oracle.com Signed-off-by: Joao Martins <joao.m.martins@oracle.com> Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com> Reviewed-by: Muchun Song <songmuchun@bytedance.com> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Barry Song <21cnbao@gmail.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: James Houghton <jthoughton@google.com> Cc: Konrad Dybcio <konradybcio@kernel.org> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Naoya Horiguchi <naoya.horiguchi@linux.dev> Cc: Oscar Salvador <osalvador@suse.de> Cc: Sergey Senozhatsky <senozhatsky@chromium.org> Cc: Usama Arif <usama.arif@bytedance.com> Cc: Xiongchun Duan <duanxiongchun@bytedance.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-25hugetlb: batch PMD split for bulk vmemmap dedupJoao Martins1-4/+88
In an effort to minimize amount of TLB flushes, batch all PMD splits belonging to a range of pages in order to perform only 1 (global) TLB flush. Add a flags field to the walker and pass whether it's a bulk allocation or just a single page to decide to remap. First value (VMEMMAP_SPLIT_NO_TLB_FLUSH) designates the request to not do the TLB flush when we split the PMD. Rebased and updated by Mike Kravetz Link: https://lkml.kernel.org/r/20231019023113.345257-7-mike.kravetz@oracle.com Signed-off-by: Joao Martins <joao.m.martins@oracle.com> Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com> Reviewed-by: Muchun Song <songmuchun@bytedance.com> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Barry Song <21cnbao@gmail.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: James Houghton <jthoughton@google.com> Cc: Konrad Dybcio <konradybcio@kernel.org> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Naoya Horiguchi <naoya.horiguchi@linux.dev> Cc: Oscar Salvador <osalvador@suse.de> Cc: Sergey Senozhatsky <senozhatsky@chromium.org> Cc: Usama Arif <usama.arif@bytedance.com> Cc: Xiongchun Duan <duanxiongchun@bytedance.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-25hugetlb: batch freeing of vmemmap pagesMike Kravetz1-26/+56
Now that batching of hugetlb vmemmap optimization processing is possible, batch the freeing of vmemmap pages. When freeing vmemmap pages for a hugetlb page, we add them to a list that is freed after the entire batch has been processed. This enhances the ability to return contiguous ranges of memory to the low level allocators. Link: https://lkml.kernel.org/r/20231019023113.345257-6-mike.kravetz@oracle.com Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com> Reviewed-by: Muchun Song <songmuchun@bytedance.com> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Barry Song <21cnbao@gmail.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: James Houghton <jthoughton@google.com> Cc: Joao Martins <joao.m.martins@oracle.com> Cc: Konrad Dybcio <konradybcio@kernel.org> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Naoya Horiguchi <naoya.horiguchi@linux.dev> Cc: Oscar Salvador <osalvador@suse.de> Cc: Sergey Senozhatsky <senozhatsky@chromium.org> Cc: Usama Arif <usama.arif@bytedance.com> Cc: Xiongchun Duan <duanxiongchun@bytedance.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-25hugetlb: perform vmemmap restoration on a list of pagesMike Kravetz1-0/+38
The routine update_and_free_pages_bulk already performs vmemmap restoration on the list of hugetlb pages in a separate step. In preparation for more functionality to be added in this step, create a new routine hugetlb_vmemmap_restore_folios() that will restore vmemmap for a list of folios. This new routine must provide sufficient feedback about errors and actual restoration performed so that update_and_free_pages_bulk can perform optimally. Special care must be taken when encountering an error from hugetlb_vmemmap_restore_folios. We want to continue making as much forward progress as possible. A new routine bulk_vmemmap_restore_error handles this specific situation. Link: https://lkml.kernel.org/r/20231019023113.345257-5-mike.kravetz@oracle.com Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com> Reviewed-by: Muchun Song <songmuchun@bytedance.com> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Barry Song <21cnbao@gmail.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: James Houghton <jthoughton@google.com> Cc: Joao Martins <joao.m.martins@oracle.com> Cc: Konrad Dybcio <konradybcio@kernel.org> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Naoya Horiguchi <naoya.horiguchi@linux.dev> Cc: Oscar Salvador <osalvador@suse.de> Cc: Sergey Senozhatsky <senozhatsky@chromium.org> Cc: Usama Arif <usama.arif@bytedance.com> Cc: Xiongchun Duan <duanxiongchun@bytedance.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-25hugetlb: perform vmemmap optimization on a list of pagesMike Kravetz1-0/+11
When adding hugetlb pages to the pool, we first create a list of the allocated pages before adding to the pool. Pass this list of pages to a new routine hugetlb_vmemmap_optimize_folios() for vmemmap optimization. Due to significant differences in vmemmmap initialization for bootmem allocated hugetlb pages, a new routine prep_and_add_bootmem_folios is created. We also modify the routine vmemmap_should_optimize() to check for pages that are already optimized. There are code paths that might request vmemmap optimization twice and we want to make sure this is not attempted. Link: https://lkml.kernel.org/r/20231019023113.345257-4-mike.kravetz@oracle.com Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com> Reviewed-by: Muchun Song <songmuchun@bytedance.com> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Barry Song <21cnbao@gmail.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: James Houghton <jthoughton@google.com> Cc: Joao Martins <joao.m.martins@oracle.com> Cc: Konrad Dybcio <konradybcio@kernel.org> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Naoya Horiguchi <naoya.horiguchi@linux.dev> Cc: Oscar Salvador <osalvador@suse.de> Cc: Sergey Senozhatsky <senozhatsky@chromium.org> Cc: Usama Arif <usama.arif@bytedance.com> Cc: Xiongchun Duan <duanxiongchun@bytedance.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-04mm: hugetlb: skip initialization of gigantic tail struct pages if freed by HVOUsama Arif1-1/+1
The new boot flow when it comes to initialization of gigantic pages is as follows: - At boot time, for a gigantic page during __alloc_bootmem_hugepage, the region after the first struct page is marked as noinit. - This results in only the first struct page to be initialized in reserve_bootmem_region. As the tail struct pages are not initialized at this point, there can be a significant saving in boot time if HVO succeeds later on. - Later on in the boot, the head page is prepped and the first HUGETLB_VMEMMAP_RESERVE_SIZE / sizeof(struct page) - 1 tail struct pages are initialized. - HVO is attempted. If it is not successful, then the rest of the tail struct pages are initialized. If it is successful, no more tail struct pages need to be initialized saving significant boot time. The WARN_ON for increased ref count in gather_bootmem_prealloc was changed to a VM_BUG_ON. This is OK as there should be no speculative references this early in boot process. The VM_BUG_ON's are there just in case such code is introduced. [akpm@linux-foundation.org: make it nicer for 80 cols] Link: https://lkml.kernel.org/r/20230913105401.519709-5-usama.arif@bytedance.com Signed-off-by: Usama Arif <usama.arif@bytedance.com> Reviewed-by: Muchun Song <songmuchun@bytedance.com> Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com> Cc: Fam Zheng <fam.zheng@bytedance.com> Cc: Mike Rapoport (IBM) <rppt@kernel.org> Cc: Punit Agrawal <punit.agrawal@bytedance.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-04mm: hugetlb_vmemmap: use nid of the head page to reallocate itUsama Arif1-1/+1
Patch series "mm: hugetlb: Skip initialization of gigantic tail struct pages if freed by HVO", v5. This series moves the boot time initialization of tail struct pages of a gigantic page to later on in the boot. Only the HUGETLB_VMEMMAP_RESERVE_SIZE / sizeof(struct page) - 1 tail struct pages are initialized at the start. If HVO is successful, then no more tail struct pages need to be initialized. For a 1G hugepage, this series avoid initialization of 262144 - 63 = 262081 struct pages per hugepage. When tested on a 512G system (allocating 500 1G hugepages), the kexec-boot times with DEFERRED_STRUCT_PAGE_INIT enabled are: - with patches, HVO enabled: 1.32 seconds - with patches, HVO disabled: 2.15 seconds - without patches, HVO enabled: 3.90 seconds - without patches, HVO disabled: 3.58 seconds This represents an approximately 70% reduction in boot time and will significantly reduce server downtime when using a large number of gigantic pages. This patch (of 4): If tail page prep and initialization is skipped, then the "start" page will not contain the correct nid. Use the nid from first vmemap page. Link: https://lkml.kernel.org/r/20230913105401.519709-1-usama.arif@bytedance.com Link: https://lkml.kernel.org/r/20230913105401.519709-2-usama.arif@bytedance.com Signed-off-by: Usama Arif <usama.arif@bytedance.com> Reviewed-by: Muchun Song <songmuchun@bytedance.com> Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com> Cc: Fam Zheng <fam.zheng@bytedance.com> Cc: Mike Rapoport (IBM) <rppt@kernel.org> Cc: Punit Agrawal <punit.agrawal@bytedance.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-04mm: hugetlb_vmemmap: allow alloc vmemmap pages fallback to other nodesYuan Can1-2/+1
In vmemmap_remap_free(), a new head vmemmap page is allocated to avoid breaking a contiguous block of struct page memory, however, the allocation can always fail when the given node is movable node. Remove the __GFP_THISNODE to help avoid fragmentation. Link: https://lkml.kernel.org/r/20230906093157.9737-1-yuancan@huawei.com Signed-off-by: Yuan Can <yuancan@huawei.com> Suggested-by: Mike Kravetz <mike.kravetz@oracle.com> Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com> Suggested-by: Muchun Song <songmuchun@bytedance.com> Reviewed-by: Muchun Song <songmuchun@bytedance.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-04mm: hugetlb_vmemmap: fix hugetlb page number decrease failed on movable nodesYuan Can1-1/+1
The decreasing of hugetlb pages number failed with the following message given: sh: page allocation failure: order:0, mode:0x204cc0(GFP_KERNEL|__GFP_RETRY_MAYFAIL|__GFP_THISNODE) CPU: 1 PID: 112 Comm: sh Not tainted 6.5.0-rc7-... #45 Hardware name: linux,dummy-virt (DT) Call trace: dump_backtrace.part.6+0x84/0xe4 show_stack+0x18/0x24 dump_stack_lvl+0x48/0x60 dump_stack+0x18/0x24 warn_alloc+0x100/0x1bc __alloc_pages_slowpath.constprop.107+0xa40/0xad8 __alloc_pages+0x244/0x2d0 hugetlb_vmemmap_restore+0x104/0x1e4 __update_and_free_hugetlb_folio+0x44/0x1f4 update_and_free_hugetlb_folio+0x20/0x68 update_and_free_pages_bulk+0x4c/0xac set_max_huge_pages+0x198/0x334 nr_hugepages_store_common+0x118/0x178 nr_hugepages_store+0x18/0x24 kobj_attr_store+0x18/0x2c sysfs_kf_write+0x40/0x54 kernfs_fop_write_iter+0x164/0x1dc vfs_write+0x3a8/0x460 ksys_write+0x6c/0x100 __arm64_sys_write+0x1c/0x28 invoke_syscall+0x44/0x100 el0_svc_common.constprop.1+0x6c/0xe4 do_el0_svc+0x38/0x94 el0_svc+0x28/0x74 el0t_64_sync_handler+0xa0/0xc4 el0t_64_sync+0x174/0x178 Mem-Info: ... The reason is that the hugetlb pages being released are allocated from movable nodes, and with hugetlb_optimize_vmemmap enabled, vmemmap pages need to be allocated from the same node during the hugetlb pages releasing. With GFP_KERNEL and __GFP_THISNODE set, allocating from movable node is always failed. Fix this problem by removing __GFP_THISNODE. Link: https://lkml.kernel.org/r/20230905124503.24899-1-yuancan@huawei.com Fixes: ad2fa3717b74 ("mm: hugetlb: alloc the vmemmap pages associated with each HugeTLB page") Signed-off-by: Yuan Can <yuancan@huawei.com> Reviewed-by: Muchun Song <songmuchun@bytedance.com> Cc: Kefeng Wang <wangkefeng.wang@huawei.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-04hugetlb: set hugetlb page flag before optimizing vmemmapMike Kravetz1-0/+3
Currently, vmemmap optimization of hugetlb pages is performed before the hugetlb flag (previously hugetlb destructor) is set identifying it as a hugetlb folio. This means there is a window of time where an ordinary folio does not have all associated vmemmap present. The core mm only expects vmemmap to be potentially optimized for hugetlb and device dax. This can cause problems in code such as memory error handling that may want to write to tail struct pages. There is only one call to perform hugetlb vmemmap optimization today. To fix this issue, simply set the hugetlb flag before that call. There was a similar issue in the free hugetlb path that was previously addressed. The two routines that optimize or restore hugetlb vmemmap should only be passed hugetlb folios/pages. To catch any callers not following this rule, add VM_WARN_ON calls to the routines. In the hugetlb free code paths, some calls could be made to restore vmemmap after clearing the hugetlb flag. This was 'safe' as in these cases vmemmap was already present and the call was a NOOP. However, for consistency these calls where eliminated so that we can add the VM_WARN_ON checks. Link: https://lkml.kernel.org/r/20230829213734.69673-1-mike.kravetz@oracle.com Fixes: f41f2ed43ca5 ("mm: hugetlb: free the vmemmap pages associated with each HugeTLB page") Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com> Reviewed-by: Muchun Song <songmuchun@bytedance.com> Cc: James Houghton <jthoughton@google.com> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Naoya Horiguchi <naoya.horiguchi@linux.dev> Cc: Usama Arif <usama.arif@bytedance.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-08-18mm: hugetlb_vmemmap: fix a race between vmemmap pmd splitMuchun Song1-20/+14
The local variable @page in __split_vmemmap_huge_pmd() to obtain a pmd page without holding page_table_lock may possiblely get the page table page instead of a huge pmd page. The effect may be in set_pte_at() since we may pass an invalid page struct, if set_pte_at() wants to access the page struct (e.g. CONFIG_PAGE_TABLE_CHECK is enabled), it may crash the kernel. So fix it. And inline __split_vmemmap_huge_pmd() since it only has one user. Link: https://lkml.kernel.org/r/20230707033859.16148-1-songmuchun@bytedance.com Fixes: d8d55f5616cf ("mm: sparsemem: use page table lock to protect kernel pmd operations") Signed-off-by: Muchun Song <songmuchun@bytedance.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-06-19mm: ptep_get() conversionRyan Roberts1-3/+3
Convert all instances of direct pte_t* dereferencing to instead use ptep_get() helper. This means that by default, the accesses change from a C dereference to a READ_ONCE(). This is technically the correct thing to do since where pgtables are modified by HW (for access/dirty) they are volatile and therefore we should always ensure READ_ONCE() semantics. But more importantly, by always using the helper, it can be overridden by the architecture to fully encapsulate the contents of the pte. Arch code is deliberately not converted, as the arch code knows best. It is intended that arch code (arm64) will override the default with its own implementation that can (e.g.) hide certain bits from the core code, or determine young/dirty status by mixing in state from another source. Conversion was done using Coccinelle: ---- // $ make coccicheck \ // COCCI=ptepget.cocci \ // SPFLAGS="--include-headers" \ // MODE=patch virtual patch @ depends on patch @ pte_t *v; @@ - *v + ptep_get(v) ---- Then reviewed and hand-edited to avoid multiple unnecessary calls to ptep_get(), instead opting to store the result of a single call in a variable, where it is correct to do so. This aims to negate any cost of READ_ONCE() and will benefit arch-overrides that may be more complex. Included is a fix for an issue in an earlier version of this patch that was pointed out by kernel test robot. The issue arose because config MMU=n elides definition of the ptep helper functions, including ptep_get(). HUGETLB_PAGE=n configs still define a simple huge_ptep_clear_flush() for linking purposes, which dereferences the ptep. So when both configs are disabled, this caused a build error because ptep_get() is not defined. Fix by continuing to do a direct dereference when MMU=n. This is safe because for this config the arch code cannot be trying to virtualize the ptes because none of the ptep helpers are defined. Link: https://lkml.kernel.org/r/20230612151545.3317766-4-ryan.roberts@arm.com Reported-by: kernel test robot <lkp@intel.com> Link: https://lore.kernel.org/oe-kbuild-all/202305120142.yXsNEo6H-lkp@intel.com/ Signed-off-by: Ryan Roberts <ryan.roberts@arm.com> Cc: Adrian Hunter <adrian.hunter@intel.com> Cc: Alexander Potapenko <glider@google.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Alex Williamson <alex.williamson@redhat.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Andrey Konovalov <andreyknvl@gmail.com> Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com> Cc: Christian Brauner <brauner@kernel.org> Cc: Christoph Hellwig <hch@infradead.org> Cc: Daniel Vetter <daniel@ffwll.ch> Cc: Dave Airlie <airlied@gmail.com> Cc: Dimitri Sivanich <dimitri.sivanich@hpe.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Ian Rogers <irogers@google.com> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: Jérôme Glisse <jglisse@redhat.com> Cc: Jiri Olsa <jolsa@kernel.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Lorenzo Stoakes <lstoakes@gmail.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mike Rapoport (IBM) <rppt@kernel.org> Cc: Muchun Song <muchun.song@linux.dev> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Naoya Horiguchi <naoya.horiguchi@nec.com> Cc: Oleksandr Tyshchenko <oleksandr_tyshchenko@epam.com> Cc: Pavel Tatashin <pasha.tatashin@soleen.com> Cc: Roman Gushchin <roman.gushchin@linux.dev> Cc: SeongJae Park <sj@kernel.org> Cc: Shakeel Butt <shakeelb@google.com> Cc: Uladzislau Rezki (Sony) <urezki@gmail.com> Cc: Vincenzo Frascino <vincenzo.frascino@arm.com> Cc: Yu Zhao <yuzhao@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-06-09mm: hugetlb_vmemmap: provide stronger vmemmap allocation guaranteesPasha Tatashin1-6/+5
HugeTLB pages have a struct page optimizations where struct pages for tail pages are freed. However, when HugeTLB pages are destroyed, the memory for struct pages (vmemmap) need to be allocated again. Currently, __GFP_NORETRY flag is used to allocate the memory for vmemmap, but given that this flag makes very little effort to actually reclaim memory the returning of huge pages back to the system can be problem. Lets use __GFP_RETRY_MAYFAIL instead. This flag is also performs graceful reclaim without causing ooms, but at least it may perform a few retries, and will fail only when there is genuinely little amount of unused memory in the system. Freeing a 1G page requires 16M of free memory. A machine might need to be reconfigured from one task to another, and release a large number of 1G pages back to the system if allocating 16M fails, the release won't work. Link: https://lkml.kernel.org/r/20230508234059.2529638-1-pasha.tatashin@soleen.com Signed-off-by: Pasha Tatashin <pasha.tatashin@soleen.com> Suggested-by: David Rientjes <rientjes@google.com> Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Muchun Song <muchun.song@linux.dev> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-04-18mm, page_alloc: use check_pages_enabled static key to check tail pagesVlastimil Babka1-1/+1
Commit 700d2e9a36b9 ("mm, page_alloc: reduce page alloc/free sanity checks") has introduced a new static key check_pages_enabled to control when struct pages are sanity checked during allocation and freeing. Mel Gorman suggested that free_tail_pages_check() could use this static key as well, instead of relying on CONFIG_DEBUG_VM. That makes sense, so do that. Also rename the function to free_tail_page_prepare() because it works on a single tail page and has a struct page preparation component as well as the optional checking component. Also remove some unnecessary unlikely() within static_branch_unlikely() statements that Mel pointed out for commit 700d2e9a36b9. Link: https://lkml.kernel.org/r/20230405142840.11068-1-vbabka@suse.cz Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Suggested-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Mel Gorman <mgorman@techsingularity.net> Cc: Alexander Halbuer <halbuer@sra.uni-hannover.de> Cc: Kees Cook <keescook@chromium.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-03-28mm: prefer xxx_page() alloc/free functions for order-0 pagesLorenzo Stoakes1-1/+1
Update instances of alloc_pages(..., 0), __get_free_pages(..., 0) and __free_pages(..., 0) to use alloc_page(), __get_free_page() and __free_page() respectively in core code. Link: https://lkml.kernel.org/r/50c48ca4789f1da2a65795f2346f5ae3eff7d665.1678710232.git.lstoakes@gmail.com Signed-off-by: Lorenzo Stoakes <lstoakes@gmail.com> Reviewed-by: David Hildenbrand <david@redhat.com> Reviewed-by: Mike Rapoport (IBM) <rppt@kernel.org> Acked-by: Mel Gorman <mgorman@techsingularity.net> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Christoph Hellwig <hch@infradead.org> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Uladzislau Rezki (Sony) <urezki@gmail.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-03-28mm: hugetlb_vmemmap: simplify hugetlb_vmemmap_init() a bitMuchun Song1-8/+6
The check of IS_ENABLED(CONFIG_PROC_SYSCTL) is unnecessary since register_sysctl_init() will be empty in this case. So, there is no warnings after removing the check. Link: https://lkml.kernel.org/r/20230223065947.64134-1-songmuchun@bytedance.com Signed-off-by: Muchun Song <songmuchun@bytedance.com> Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-02-21sysctl: fix proc_dobool() usabilityOndrej Mosnacek1-1/+1
Currently proc_dobool expects a (bool *) in table->data, but sizeof(int) in table->maxsize, because it uses do_proc_dointvec() directly. This is unsafe for at least two reasons: 1. A sysctl table definition may use { .data = &variable, .maxsize = sizeof(variable) }, not realizing that this makes the sysctl unusable (see the Fixes: tag) and that they need to use the completely counterintuitive sizeof(int) instead. 2. proc_dobool() will currently try to parse an array of values if given .maxsize >= 2*sizeof(int), but will try to write values of type bool by offsets of sizeof(int), so it will not work correctly with neither an (int *) nor a (bool *). There is no .maxsize validation to prevent this. Fix this by: 1. Constraining proc_dobool() to allow only one value and .maxsize == sizeof(bool). 2. Wrapping the original struct ctl_table in a temporary one with .data pointing to a local int variable and .maxsize set to sizeof(int) and passing this one to proc_dointvec(), converting the value to/from bool as needed (using proc_dou8vec_minmax() as an example). 3. Extending sysctl_check_table() to enforce proc_dobool() expectations. 4. Fixing the proc_dobool() docstring (it was just copy-pasted from proc_douintvec, apparently...). 5. Converting all existing proc_dobool() users to set .maxsize to sizeof(bool) instead of sizeof(int). Fixes: 83efeeeb3d04 ("tty: Allow TIOCSTI to be disabled") Fixes: a2071573d634 ("sysctl: introduce new proc handler proc_dobool") Signed-off-by: Ondrej Mosnacek <omosnace@redhat.com> Acked-by: Kees Cook <keescook@chromium.org> Signed-off-by: Luis Chamberlain <mcgrof@kernel.org>
2022-11-30mm/hugetlb_vmemmap: remap head page to newly allocated pageJoao Martins1-7/+34
Today with `hugetlb_free_vmemmap=on` the struct page memory that is freed back to page allocator is as following: for a 2M hugetlb page it will reuse the first 4K vmemmap page to remap the remaining 7 vmemmap pages, and for a 1G hugetlb it will remap the remaining 4095 vmemmap pages. Essentially, that means that it breaks the first 4K of a potentially contiguous chunk of memory of 32K (for 2M hugetlb pages) or 16M (for 1G hugetlb pages). For this reason the memory that it's free back to page allocator cannot be used for hugetlb to allocate huge pages of the same size, but rather only of a smaller huge page size: Trying to assign a 64G node to hugetlb (on a 128G 2node guest, each node having 64G): * Before allocation: Free pages count per migrate type at order 0 1 2 3 4 5 6 7 8 9 10 ... Node 0, zone Normal, type Movable 340 100 32 15 1 2 0 0 0 1 15558 $ echo 32768 > /sys/devices/system/node/node0/hugepages/hugepages-2048kB/nr_hugepages $ cat /sys/devices/system/node/node0/hugepages/hugepages-2048kB/nr_hugepages 31987 * After: Node 0, zone Normal, type Movable 30893 32006 31515 7 0 0 0 0 0 0 0 Notice how the memory freed back are put back into 4K / 8K / 16K page pools. And it allocates a total of 31987 pages (63974M). To fix this behaviour rather than remapping second vmemmap page (thus breaking the contiguous block of memory backing the struct pages) repopulate the first vmemmap page with a new one. We allocate and copy from the currently mapped vmemmap page, and then remap it later on. The same algorithm works if there's a pre initialized walk::reuse_page and the head page doesn't need to be skipped and instead we remap it when the @addr being changed is the @reuse_addr. The new head page is allocated in vmemmap_remap_free() given that on restore there's no need for functional change. Note that, because right now one hugepage is remapped at a time, thus only one free 4K page at a time is needed to remap the head page. Should it fail to allocate said new page, it reuses the one that's already mapped just like before. As a result, for every 64G of contiguous hugepages it can give back 1G more of contiguous memory per 64G, while needing in total 128M new 4K pages (for 2M hugetlb) or 256k (for 1G hugetlb). After the changes, try to assign a 64G node to hugetlb (on a 128G 2node guest, each node with 64G): * Before allocation Free pages count per migrate type at order 0 1 2 3 4 5 6 7 8 9 10 ... Node 0, zone Normal, type Movable 1 1 1 0 0 1 0 0 1 1 15564 $ echo 32768 > /sys/devices/system/node/node0/hugepages/hugepages-2048kB/nr_hugepages $ cat /sys/devices/system/node/node0/hugepages/hugepages-2048kB/nr_hugepages 32394 * After: Node 0, zone Normal, type Movable 0 50 97 108 96 81 70 46 18 0 0 In the example above, 407 more hugeltb 2M pages are allocated i.e. 814M out of the 32394 (64788M) allocated. So the memory freed back is indeed being used back in hugetlb and there's no massive order-0..order-2 pages accumulated unused. [joao.m.martins@oracle.com: v3] Link: https://lkml.kernel.org/r/20221109200623.96867-1-joao.m.martins@oracle.com [joao.m.martins@oracle.com: add smp_wmb() to ensure page contents are visible prior to PTE write] Link: https://lkml.kernel.org/r/20221110121214.6297-1-joao.m.martins@oracle.com Link: https://lkml.kernel.org/r/20221107153922.77094-1-joao.m.martins@oracle.com Signed-off-by: Joao Martins <joao.m.martins@oracle.com> Reviewed-by: Muchun Song <songmuchun@bytedance.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-11-30mm: hugetlb_vmemmap: remove redundant list_del()Muchun Song1-3/+1
The ->lru field will be assigned to a new value in __free_page(). So it is unnecessary to delete it from the @list. Just remove it to simplify the code. Link: https://lkml.kernel.org/r/20221027033641.66709-1-songmuchun@bytedance.com Signed-off-by: Muchun Song <songmuchun@bytedance.com> Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-11-08mm: hugetlb_vmemmap: include missing linux/moduleparam.hVasily Gorbik1-0/+1
The kernel test robot reported build failures with a 'randconfig' on s390: >> mm/hugetlb_vmemmap.c:421:11: error: a function declaration without a prototype is deprecated in all versions of C [-Werror,-Wstrict-prototypes] core_param(hugetlb_free_vmemmap, vmemmap_optimize_enabled, bool, 0); ^ Link: https://lore.kernel.org/linux-mm/202210300751.rG3UDsuc-lkp@intel.com/ Link: https://lkml.kernel.org/r/patch.git-296b83ca939b.your-ad-here.call-01667411912-ext-5073@work.hours Fixes: 30152245c63b ("mm: hugetlb_vmemmap: replace early_param() with core_param()") Signed-off-by: Vasily Gorbik <gor@linux.ibm.com> Reported-by: kernel test robot <lkp@intel.com> Reviewed-by: Muchun Song <songmuchun@bytedance.com> Cc: Gerald Schaefer <gerald.schaefer@linux.ibm.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-09-11mm: hugetlb_vmemmap: simplify reset_struct_pages()Muchun Song1-3/+2
We can choose to copy three contiguous tail pages' content to the first three pages instead of copying one by one to simplify the code and reduce code size from 229 bytes to 63 bytes. The BUILD_BUG_ON() aims to avoid out-of-bounds accesses. Link: https://lkml.kernel.org/r/20220819035532.6189-1-songmuchun@bytedance.com Signed-off-by: Muchun Song <songmuchun@bytedance.com> Reviewed-by: Miaohe Lin <linmiaohe@huawei.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-09-11mm: hugetlb_vmemmap: add missing smp_wmb() before set_pte_at()Miaohe Lin1-0/+5
The memory barrier smp_wmb() is needed to make sure that preceding stores to the page contents become visible before the below set_pte_at() write. Link: https://lkml.kernel.org/r/20220816130553.31406-5-linmiaohe@huawei.com Signed-off-by: Miaohe Lin <linmiaohe@huawei.com> Reviewed-by: Yin Fengwei <fengwei.yin@intel.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Muchun Song <songmuchun@bytedance.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-08-08mm: hugetlb_vmemmap: use PTRS_PER_PTE instead of PMD_SIZE / PAGE_SIZEMuchun Song1-1/+1
There is already a macro PTRS_PER_PTE to represent the number of page table entries, just use it. Link: https://lkml.kernel.org/r/20220628092235.91270-9-songmuchun@bytedance.com Signed-off-by: Muchun Song <songmuchun@bytedance.com> Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: David Hildenbrand <david@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Oscar Salvador <osalvador@suse.de> Cc: Will Deacon <will@kernel.org> Cc: Xiongchun Duan <duanxiongchun@bytedance.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-08-08mm: hugetlb_vmemmap: improve hugetlb_vmemmap code readabilityMuchun Song1-83/+60
There is a discussion about the name of hugetlb_vmemmap_alloc/free in thread [1]. The suggestion suggested by David is rename "alloc/free" to "optimize/restore" to make functionalities clearer to users, "optimize" means the function will optimize vmemmap pages, while "restore" means restoring its vmemmap pages discared before. This commit does this. Another discussion is the confusion RESERVE_VMEMMAP_NR isn't used explicitly for vmemmap_addr but implicitly for vmemmap_end in hugetlb_vmemmap_alloc/free. David suggested we can compute what hugetlb_vmemmap_init() does now at runtime. We do not need to worry for the overhead of computing at runtime since the calculation is simple enough and those functions are not in a hot path. This commit has the following improvements: 1) The function suffixed name ("optimize/restore") is more expressive. 2) The logic becomes less weird in hugetlb_vmemmap_optimize/restore(). 3) The hugetlb_vmemmap_init() does not need to be exported anymore. 4) A ->optimize_vmemmap_pages field in struct hstate is killed. 5) There is only one place where checks is_power_of_2(sizeof(struct page)) instead of two places. 6) Add more comments for hugetlb_vmemmap_optimize/restore(). 7) For external users, hugetlb_optimize_vmemmap_pages() is used for detecting if the HugeTLB's vmemmap pages is optimizable originally. In this commit, it is killed and we introduce a new helper hugetlb_vmemmap_optimizable() to replace it. The name is more expressive. Link: https://lore.kernel.org/all/20220404074652.68024-2-songmuchun@bytedance.com/ [1] Link: https://lkml.kernel.org/r/20220628092235.91270-7-songmuchun@bytedance.com Signed-off-by: Muchun Song <songmuchun@bytedance.com> Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: David Hildenbrand <david@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Oscar Salvador <osalvador@suse.de> Cc: Will Deacon <will@kernel.org> Cc: Xiongchun Duan <duanxiongchun@bytedance.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-08-08mm: hugetlb_vmemmap: replace early_param() with core_param()Muchun Song1-8/+2
After the following commit: 78f39084b41d ("mm: hugetlb_vmemmap: add hugetlb_optimize_vmemmap sysctl") There is no order requirement between the parameter of "hugetlb_free_vmemmap" and "hugepages" since we have removed the check of whether HVO is enabled from hugetlb_vmemmap_init(). Therefore we can safely replace early_param() with core_param() to simplify the code. Link: https://lkml.kernel.org/r/20220628092235.91270-6-songmuchun@bytedance.com Signed-off-by: Muchun Song <songmuchun@bytedance.com> Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: David Hildenbrand <david@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Oscar Salvador <osalvador@suse.de> Cc: Will Deacon <will@kernel.org> Cc: Xiongchun Duan <duanxiongchun@bytedance.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-08-08mm: hugetlb_vmemmap: move vmemmap code related to HugeTLB to hugetlb_vmemmap.cMuchun Song1-1/+398
When I first introduced vmemmap manipulation functions related to HugeTLB, I thought those functions may be reused by other modules (e.g. using similar approach to optimize vmemmap pages, unfortunately, the DAX used the same approach but does not use those functions). After two years, we didn't see any other users. So move those functions to hugetlb_vmemmap.c. Code movement without any functional change. Link: https://lkml.kernel.org/r/20220628092235.91270-5-songmuchun@bytedance.com Signed-off-by: Muchun Song <songmuchun@bytedance.com> Reviewed-by: Oscar Salvador <osalvador@suse.de> Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: David Hildenbrand <david@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Will Deacon <will@kernel.org> Cc: Xiongchun Duan <duanxiongchun@bytedance.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-08-08mm: hugetlb_vmemmap: introduce the name HVOMuchun Song1-4/+4
It it inconvenient to mention the feature of optimizing vmemmap pages associated with HugeTLB pages when communicating with others since there is no specific or abbreviated name for it when it is first introduced. Let us give it a name HVO (HugeTLB Vmemmap Optimization) from now. This commit also updates the document about "hugetlb_free_vmemmap" by the way discussed in thread [1]. Link: https://lore.kernel.org/all/21aae898-d54d-cc4b-a11f-1bb7fddcfffa@redhat.com/ [1] Link: https://lkml.kernel.org/r/20220628092235.91270-4-songmuchun@bytedance.com Signed-off-by: Muchun Song <songmuchun@bytedance.com> Reviewed-by: Oscar Salvador <osalvador@suse.de> Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: David Hildenbrand <david@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Will Deacon <will@kernel.org> Cc: Xiongchun Duan <duanxiongchun@bytedance.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-08-08mm: hugetlb_vmemmap: optimize vmemmap_optimize_mode handlingMuchun Song1-58/+7
We hold an another reference to hugetlb_optimize_vmemmap_key when making vmemmap_optimize_mode on, because we use static_key to tell memory_hotplug that memory_hotplug.memmap_on_memory should be overridden. However, this rule has gone when we have introduced PageVmemmapSelfHosted. Therefore, we could simplify vmemmap_optimize_mode handling by not holding an another reference to hugetlb_optimize_vmemmap_key. This also means that we not incur the extra page_fixed_fake_head checks if there are no vmemmap optinmized hugetlb pages after this change. Link: https://lkml.kernel.org/r/20220628092235.91270-3-songmuchun@bytedance.com Signed-off-by: Muchun Song <songmuchun@bytedance.com> Reviewed-by: Oscar Salvador <osalvador@suse.de> Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: David Hildenbrand <david@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Will Deacon <will@kernel.org> Cc: Xiongchun Duan <duanxiongchun@bytedance.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-07-03mm: memory_hotplug: make hugetlb_optimize_vmemmap compatible with ↵Muchun Song1-8/+58
memmap_on_memory For now, the feature of hugetlb_free_vmemmap is not compatible with the feature of memory_hotplug.memmap_on_memory, and hugetlb_free_vmemmap takes precedence over memory_hotplug.memmap_on_memory. However, someone wants to make memory_hotplug.memmap_on_memory takes precedence over hugetlb_free_vmemmap since memmap_on_memory makes it more likely to succeed memory hotplug in close-to-OOM situations. So the decision of making hugetlb_free_vmemmap take precedence is not wise and elegant. The proper approach is to have hugetlb_vmemmap.c do the check whether the section which the HugeTLB pages belong to can be optimized. If the section's vmemmap pages are allocated from the added memory block itself, hugetlb_free_vmemmap should refuse to optimize the vmemmap, otherwise, do the optimization. Then both kernel parameters are compatible. So this patch introduces VmemmapSelfHosted to mask any non-optimizable vmemmap pages. The hugetlb_vmemmap can use this flag to detect if a vmemmap page can be optimized. [songmuchun@bytedance.com: walk vmemmap page tables to avoid false-positive] Link: https://lkml.kernel.org/r/20220620110616.12056-3-songmuchun@bytedance.com Link: https://lkml.kernel.org/r/20220617135650.74901-3-songmuchun@bytedance.com Signed-off-by: Muchun Song <songmuchun@bytedance.com> Co-developed-by: Oscar Salvador <osalvador@suse.de> Signed-off-by: Oscar Salvador <osalvador@suse.de> Acked-by: David Hildenbrand <david@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Paul E. McKenney <paulmck@kernel.org> Cc: Xiongchun Duan <duanxiongchun@bytedance.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-06-27docs: rename Documentation/vm to Documentation/mmMike Rapoport1-1/+1
so it will be consistent with code mm directory and with Documentation/admin-guide/mm and won't be confused with virtual machines. Signed-off-by: Mike Rapoport <rppt@linux.ibm.com> Suggested-by: Matthew Wilcox <willy@infradead.org> Tested-by: Ira Weiny <ira.weiny@intel.com> Acked-by: Jonathan Corbet <corbet@lwn.net> Acked-by: Wu XiangCheng <bobwxc@email.cn>
2022-06-01mm: hugetlb_vmemmap: fix CONFIG_HUGETLB_PAGE_FREE_VMEMMAP_DEFAULT_ONMuchun Song1-1/+1
The following: commit 47010c040dec ("mm: hugetlb_vmemmap: cleanup CONFIG_HUGETLB_PAGE_FREE_VMEMMAP*") forgot to update CONFIG_HUGETLB_PAGE_FREE_VMEMMAP_DEFAULT_ON used in vmemmap_optimize_mode to CONFIG_HUGETLB_PAGE_OPTIMIZE_VMEMMAP_DEFAULT_ON. The result is we cannot enable hugetlb_optimize_vmemmap at boot time when we configure CONFIG_HUGETLB_PAGE_OPTIMIZE_VMEMMAP_DEFAULT_ON. Fix it. Link: https://lkml.kernel.org/r/20220527081948.68832-1-songmuchun@bytedance.com Fixes: 47010c040dec ("mm: hugetlb_vmemmap: cleanup CONFIG_HUGETLB_PAGE_FREE_VMEMMAP*") Signed-off-by: Muchun Song <songmuchun@bytedance.com> Reported-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Mike Kravetz <mike.kravetz@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-05-13mm: hugetlb_vmemmap: add hugetlb_optimize_vmemmap sysctlMuchun Song1-9/+84
We must add hugetlb_free_vmemmap=on (or "off") to the boot cmdline and reboot the server to enable or disable the feature of optimizing vmemmap pages associated with HugeTLB pages. However, rebooting usually takes a long time. So add a sysctl to enable or disable the feature at runtime without rebooting. Why we need this? There are 3 use cases. 1) The feature of minimizing overhead of struct page associated with each HugeTLB is disabled by default without passing "hugetlb_free_vmemmap=on" to the boot cmdline. When we (ByteDance) deliver the servers to the users who want to enable this feature, they have to configure the grub (change boot cmdline) and reboot the servers, whereas rebooting usually takes a long time (we have thousands of servers). It's a very bad experience for the users. So we need a approach to enable this feature after rebooting. This is a use case in our practical environment. 2) Some use cases are that HugeTLB pages are allocated 'on the fly' instead of being pulled from the HugeTLB pool, those workloads would be affected with this feature enabled. Those workloads could be identified by the characteristics of they never explicitly allocating huge pages with 'nr_hugepages' but only set 'nr_overcommit_hugepages' and then let the pages be allocated from the buddy allocator at fault time. We can confirm it is a real use case from the commit 099730d67417. For those workloads, the page fault time could be ~2x slower than before. We suspect those users want to disable this feature if the system has enabled this before and they don't think the memory savings benefit is enough to make up for the performance drop. 3) If the workload which wants vmemmap pages to be optimized and the workload which wants to set 'nr_overcommit_hugepages' and does not want the extera overhead at fault time when the overcommitted pages be allocated from the buddy allocator are deployed in the same server. The user could enable this feature and set 'nr_hugepages' and 'nr_overcommit_hugepages', then disable the feature. In this case, the overcommited HugeTLB pages will not encounter the extra overhead at fault time. Link: https://lkml.kernel.org/r/20220512041142.39501-5-songmuchun@bytedance.com Signed-off-by: Muchun Song <songmuchun@bytedance.com> Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Luis Chamberlain <mcgrof@kernel.org> Cc: Kees Cook <keescook@chromium.org> Cc: Iurii Zaikin <yzaikin@google.com> Cc: Oscar Salvador <osalvador@suse.de> Cc: David Hildenbrand <david@redhat.com> Cc: Masahiro Yamada <masahiroy@kernel.org> Cc: Xiongchun Duan <duanxiongchun@bytedance.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-05-13mm: hugetlb_vmemmap: use kstrtobool for hugetlb_vmemmap param parsingMuchun Song1-5/+5
Use kstrtobool rather than open coding "on" and "off" parsing in mm/hugetlb_vmemmap.c, which is more powerful to handle all kinds of parameters like 'Yy1Nn0' or [oO][NnFf] for "on" and "off". Link: https://lkml.kernel.org/r/20220512041142.39501-4-songmuchun@bytedance.com Signed-off-by: Muchun Song <songmuchun@bytedance.com> Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com> Cc: David Hildenbrand <david@redhat.com> Cc: Iurii Zaikin <yzaikin@google.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Kees Cook <keescook@chromium.org> Cc: Luis Chamberlain <mcgrof@kernel.org> Cc: Masahiro Yamada <masahiroy@kernel.org> Cc: Oscar Salvador <osalvador@suse.de> Cc: Xiongchun Duan <duanxiongchun@bytedance.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-05-13mm: hugetlb_vmemmap: disable hugetlb_optimize_vmemmap when struct page ↵Muchun Song1-6/+6
crosses page boundaries Patch series "add hugetlb_optimize_vmemmap sysctl", v11. This series aims to add hugetlb_optimize_vmemmap sysctl to enable or disable the feature of optimizing vmemmap pages associated with HugeTLB pages. This patch (of 4): If the size of "struct page" is not the power of two but with the feature of minimizing overhead of struct page associated with each HugeTLB is enabled, then the vmemmap pages of HugeTLB will be corrupted after remapping (panic is about to happen in theory). But this only exists when !CONFIG_MEMCG && !CONFIG_SLUB on x86_64. However, it is not a conventional configuration nowadays. So it is not a real word issue, just the result of a code review. But we cannot prevent anyone from configuring that combined configure. This hugetlb_optimize_vmemmap should be disable in this case to fix this issue. Link: https://lkml.kernel.org/r/20220512041142.39501-1-songmuchun@bytedance.com Link: https://lkml.kernel.org/r/20220512041142.39501-2-songmuchun@bytedance.com Signed-off-by: Muchun Song <songmuchun@bytedance.com> Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com> Cc: David Hildenbrand <david@redhat.com> Cc: Iurii Zaikin <yzaikin@google.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Kees Cook <keescook@chromium.org> Cc: Luis Chamberlain <mcgrof@kernel.org> Cc: Masahiro Yamada <masahiroy@kernel.org> Cc: Oscar Salvador <osalvador@suse.de> Cc: Xiongchun Duan <duanxiongchun@bytedance.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-04-28mm/hugetlb_vmemmap: move comment block to Documentation/vmJoao Martins1-167/+1
In preparation for device-dax for using hugetlbfs compound page tail deduplication technique, move the comment block explanation into a common place in Documentation/vm. Link: https://lkml.kernel.org/r/20220420155310.9712-4-joao.m.martins@oracle.com Signed-off-by: Joao Martins <joao.m.martins@oracle.com> Reviewed-by: Muchun Song <songmuchun@bytedance.com> Reviewed-by: Dan Williams <dan.j.williams@intel.com> Suggested-by: Dan Williams <dan.j.williams@intel.com> Cc: Muchun Song <songmuchun@bytedance.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Christoph Hellwig <hch@lst.de> Cc: Jane Chu <jane.chu@oracle.com> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Matthew Wilcox <willy@infradead.org> Cc: Vishal Verma <vishal.l.verma@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-04-28mm: hugetlb_vmemmap: cleanup CONFIG_HUGETLB_PAGE_FREE_VMEMMAP*Muchun Song1-2/+2
The word of "free" is not expressive enough to express the feature of optimizing vmemmap pages associated with each HugeTLB, rename this keywork to "optimize". In this patch , cheanup configs to make code more expressive. Link: https://lkml.kernel.org/r/20220404074652.68024-4-songmuchun@bytedance.com Signed-off-by: Muchun Song <songmuchun@bytedance.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: David Hildenbrand <david@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-04-28mm: hugetlb_vmemmap: cleanup hugetlb_free_vmemmap_enabled*Muchun Song1-5/+5
The word of "free" is not expressive enough to express the feature of optimizing vmemmap pages associated with each HugeTLB, rename this keywork to "optimize". In this patch , cheanup the static key and hugetlb_free_vmemmap_enabled() to make code more expressive. Link: https://lkml.kernel.org/r/20220404074652.68024-3-songmuchun@bytedance.com Signed-off-by: Muchun Song <songmuchun@bytedance.com> Cc: David Hildenbrand <david@redhat.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-04-28mm: hugetlb_vmemmap: cleanup hugetlb_vmemmap related functionsMuchun Song1-22/+20
Patch series "cleanup hugetlb_vmemmap". The word of "free" is not expressive enough to express the feature of optimizing vmemmap pages associated with each HugeTLB, rename this keywork to "optimize" is more clear. In this series, cheanup related codes to make it more clear and expressive. This is suggested by David. This patch (of 3): The word of "free" is not expressive enough to express the feature of optimizing vmemmap pages associated with each HugeTLB, rename this keywork to "optimize". And some function names are prefixed with "huge_page" instead of "hugetlb", it is easily to be confused with THP. In this patch, cheanup related functions to make code more clear and expressive. Link: https://lkml.kernel.org/r/20220404074652.68024-1-songmuchun@bytedance.com Link: https://lkml.kernel.org/r/20220404074652.68024-2-songmuchun@bytedance.com Signed-off-by: Muchun Song <songmuchun@bytedance.com> Cc: David Hildenbrand <david@redhat.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-03-22mm: hugetlb: replace hugetlb_free_vmemmap_enabled with a static_keyMuchun Song1-6/+6
The page_fixed_fake_head() is used throughout memory management and the conditional check requires checking a global variable, although the overhead of this check may be small, it increases when the memory cache comes under pressure. Also, the global variable will not be modified after system boot, so it is very appropriate to use static key machanism. Link: https://lkml.kernel.org/r/20211101031651.75851-3-songmuchun@bytedance.com Signed-off-by: Muchun Song <songmuchun@bytedance.com> Reviewed-by: Barry Song <song.bao.hua@hisilicon.com> Cc: Bodeddula Balasubramaniam <bodeddub@amazon.com> Cc: Chen Huang <chenhuang5@huawei.com> Cc: David Hildenbrand <david@redhat.com> Cc: Fam Zheng <fam.zheng@bytedance.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Matthew Wilcox <willy@infradead.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Oscar Salvador <osalvador@suse.de> Cc: Qi Zheng <zhengqi.arch@bytedance.com> Cc: Xiongchun Duan <duanxiongchun@bytedance.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-03-22mm: hugetlb: free the 2nd vmemmap page associated with each HugeTLB pageMuchun Song1-28/+34
Patch series "Free the 2nd vmemmap page associated with each HugeTLB page", v7. This series can minimize the overhead of struct page for 2MB HugeTLB pages significantly. It further reduces the overhead of struct page by 12.5% for a 2MB HugeTLB compared to the previous approach, which means 2GB per 1TB HugeTLB. It is a nice gain. Comments and reviews are welcome. Thanks. The main implementation and details can refer to the commit log of patch 1. In this series, I have changed the following four helpers, the following table shows the impact of the overhead of those helpers. +------------------+-----------------------+ | APIs | head page | tail page | +------------------+-----------+-----------+ | PageHead() | Y | N | +------------------+-----------+-----------+ | PageTail() | Y | N | +------------------+-----------+-----------+ | PageCompound() | N | N | +------------------+-----------+-----------+ | compound_head() | Y | N | +------------------+-----------+-----------+ Y: Overhead is increased. N: Overhead is _NOT_ increased. It shows that the overhead of those helpers on a tail page don't change between "hugetlb_free_vmemmap=on" and "hugetlb_free_vmemmap=off". But the overhead on a head page will be increased when "hugetlb_free_vmemmap=on" (except PageCompound()). So I believe that Matthew Wilcox's folio series will help with this. The users of PageHead() and PageTail() are much less than compound_head() and most users of PageTail() are VM_BUG_ON(), so I have done some tests about the overhead of compound_head() on head pages. I have tested the overhead of calling compound_head() on a head page, which is 2.11ns (Measure the call time of 10 million times compound_head(), and then average). For a head page whose address is not aligned with PAGE_SIZE or a non-compound page, the overhead of compound_head() is 2.54ns which is increased by 20%. For a head page whose address is aligned with PAGE_SIZE, the overhead of compound_head() is 2.97ns which is increased by 40%. Most pages are the former. I do not think the overhead is significant since the overhead of compound_head() itself is low. This patch (of 5): This patch minimizes the overhead of struct page for 2MB HugeTLB pages significantly. It further reduces the overhead of struct page by 12.5% for a 2MB HugeTLB compared to the previous approach, which means 2GB per 1TB HugeTLB (2MB type). After the feature of "Free sonme vmemmap pages of HugeTLB page" is enabled, the mapping of the vmemmap addresses associated with a 2MB HugeTLB page becomes the figure below. HugeTLB struct pages(8 pages) page frame(8 pages) +-----------+ ---virt_to_page---> +-----------+ mapping to +-----------+---> PG_head | | | 0 | -------------> | 0 | | | +-----------+ +-----------+ | | | 1 | -------------> | 1 | | | +-----------+ +-----------+ | | | 2 | ----------------^ ^ ^ ^ ^ ^ | | +-----------+ | | | | | | | | 3 | ------------------+ | | | | | | +-----------+ | | | | | | | 4 | --------------------+ | | | | 2MB | +-----------+ | | | | | | 5 | ----------------------+ | | | | +-----------+ | | | | | 6 | ------------------------+ | | | +-----------+ | | | | 7 | --------------------------+ | | +-----------+ | | | | | | +-----------+ As we can see, the 2nd vmemmap page frame (indexed by 1) is reused and remaped. However, the 2nd vmemmap page frame is also can be freed to the buddy allocator, then we can change the mapping from the figure above to the figure below. HugeTLB struct pages(8 pages) page frame(8 pages) +-----------+ ---virt_to_page---> +-----------+ mapping to +-----------+---> PG_head | | | 0 | -------------> | 0 | | | +-----------+ +-----------+ | | | 1 | ---------------^ ^ ^ ^ ^ ^ ^ | | +-----------+ | | | | | | | | | 2 | -----------------+ | | | | | | | +-----------+ | | | | | | | | 3 | -------------------+ | | | | | | +-----------+ | | | | | | | 4 | ---------------------+ | | | | 2MB | +-----------+ | | | | | | 5 | -----------------------+ | | | | +-----------+ | | | | | 6 | -------------------------+ | | | +-----------+ | | | | 7 | ---------------------------+ | | +-----------+ | | | | | | +-----------+ After we do this, all tail vmemmap pages (1-7) are mapped to the head vmemmap page frame (0). In other words, there are more than one page struct with PG_head associated with each HugeTLB page. We __know__ that there is only one head page struct, the tail page structs with PG_head are fake head page structs. We need an approach to distinguish between those two different types of page structs so that compound_head(), PageHead() and PageTail() can work properly if the parameter is the tail page struct but with PG_head. The following code snippet describes how to distinguish between real and fake head page struct. if (test_bit(PG_head, &page->flags)) { unsigned long head = READ_ONCE(page[1].compound_head); if (head & 1) { if (head == (unsigned long)page + 1) ==> head page struct else ==> tail page struct } else ==> head page struct } We can safely access the field of the @page[1] with PG_head because the @page is a compound page composed with at least two contiguous pages. [songmuchun@bytedance.com: restore lost comment changes] Link: https://lkml.kernel.org/r/20211101031651.75851-1-songmuchun@bytedance.com Link: https://lkml.kernel.org/r/20211101031651.75851-2-songmuchun@bytedance.com Signed-off-by: Muchun Song <songmuchun@bytedance.com> Reviewed-by: Barry Song <song.bao.hua@hisilicon.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Oscar Salvador <osalvador@suse.de> Cc: Michal Hocko <mhocko@suse.com> Cc: David Hildenbrand <david@redhat.com> Cc: Chen Huang <chenhuang5@huawei.com> Cc: Bodeddula Balasubramaniam <bodeddub@amazon.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Matthew Wilcox <willy@infradead.org> Cc: Xiongchun Duan <duanxiongchun@bytedance.com> Cc: Fam Zheng <fam.zheng@bytedance.com> Cc: Qi Zheng <zhengqi.arch@bytedance.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-06-30mm: hugetlb: introduce CONFIG_HUGETLB_PAGE_FREE_VMEMMAP_DEFAULT_ONMuchun Song1-2/+4
When using HUGETLB_PAGE_FREE_VMEMMAP, the freeing unused vmemmap pages associated with each HugeTLB page is default off. Now the vmemmap is PMD mapped. So there is no side effect when this feature is enabled with no HugeTLB pages in the system. Someone may want to enable this feature in the compiler time instead of using boot command line. So add a config to make it default on when someone do not want to enable it via command line. Link: https://lkml.kernel.org/r/20210616094915.34432-4-songmuchun@bytedance.com Signed-off-by: Muchun Song <songmuchun@bytedance.com> Cc: Chen Huang <chenhuang5@huawei.com> Cc: David Hildenbrand <david@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Michal Hocko <mhocko@suse.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Oscar Salvador <osalvador@suse.de> Cc: Xiongchun Duan <duanxiongchun@bytedance.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-06-30mm: sparsemem: split the huge PMD mapping of vmemmap pagesMuchun Song1-3/+2
Patch series "Split huge PMD mapping of vmemmap pages", v4. In order to reduce the difficulty of code review in series[1]. We disable huge PMD mapping of vmemmap pages when that feature is enabled. In this series, we do not disable huge PMD mapping of vmemmap pages anymore. We will split huge PMD mapping when needed. When HugeTLB pages are freed from the pool we do not attempt coalasce and move back to a PMD mapping because it is much more complex. [1] https://lore.kernel.org/linux-doc/20210510030027.56044-1-songmuchun@bytedance.com/ This patch (of 3): In [1], PMD mappings of vmemmap pages were disabled if the the feature hugetlb_free_vmemmap was enabled. This was done to simplify the initial implementation of vmmemap freeing for hugetlb pages. Now, remove this simplification by allowing PMD mapping and switching to PTE mappings as needed for allocated hugetlb pages. When a hugetlb page is allocated, the vmemmap page tables are walked to free vmemmap pages. During this walk, split huge PMD mappings to PTE mappings as required. In the unlikely case PTE pages can not be allocated, return error(ENOMEM) and do not optimize vmemmap of the hugetlb page. When HugeTLB pages are freed from the pool, we do not attempt to coalesce and move back to a PMD mapping because it is much more complex. [1] https://lkml.kernel.org/r/20210510030027.56044-8-songmuchun@bytedance.com Link: https://lkml.kernel.org/r/20210616094915.34432-1-songmuchun@bytedance.com Link: https://lkml.kernel.org/r/20210616094915.34432-2-songmuchun@bytedance.com Signed-off-by: Muchun Song <songmuchun@bytedance.com> Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com> Cc: Oscar Salvador <osalvador@suse.de> Cc: Michal Hocko <mhocko@suse.com> Cc: David Hildenbrand <david@redhat.com> Cc: Chen Huang <chenhuang5@huawei.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Xiongchun Duan <duanxiongchun@bytedance.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-06-30mm: hugetlb: introduce nr_free_vmemmap_pages in the struct hstateMuchun Song1-0/+33
All the infrastructure is ready, so we introduce nr_free_vmemmap_pages field in the hstate to indicate how many vmemmap pages associated with a HugeTLB page that can be freed to buddy allocator. And initialize it in the hugetlb_vmemmap_init(). This patch is actual enablement of the feature. There are only (RESERVE_VMEMMAP_SIZE / sizeof(struct page)) struct page structs that can be used when CONFIG_HUGETLB_PAGE_FREE_VMEMMAP, so add a BUILD_BUG_ON to catch invalid usage of the tail struct page. Link: https://lkml.kernel.org/r/20210510030027.56044-10-songmuchun@bytedance.com Signed-off-by: Muchun Song <songmuchun@bytedance.com> Acked-by: Mike Kravetz <mike.kravetz@oracle.com> Reviewed-by: Oscar Salvador <osalvador@suse.de> Reviewed-by: Miaohe Lin <linmiaohe@huawei.com> Tested-by: Chen Huang <chenhuang5@huawei.com> Tested-by: Bodeddula Balasubramaniam <bodeddub@amazon.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Andy Lutomirski <luto@kernel.org> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Barry Song <song.bao.hua@hisilicon.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: HORIGUCHI NAOYA <naoya.horiguchi@nec.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Joao Martins <joao.m.martins@oracle.com> Cc: Joerg Roedel <jroedel@suse.de> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Matthew Wilcox <willy@infradead.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Mina Almasry <almasrymina@google.com> Cc: Oliver Neukum <oneukum@suse.com> Cc: Paul E. McKenney <paulmck@kernel.org> Cc: Pawan Gupta <pawan.kumar.gupta@linux.intel.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Randy Dunlap <rdunlap@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Xiongchun Duan <duanxiongchun@bytedance.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>