Age | Commit message (Collapse) | Author | Files | Lines |
|
While s390x makes sure to never have PMD-mapped THP in processes that use
KVM -- by remapping them using PTEs in
thp_split_walk_pmd_entry()->split_huge_pmd() -- there is still the
possibility of having PTE-mapped THPs (large folios) mapped into guest
memory.
This would happen if user space allocates memory before calling
KVM_CREATE_VM (which would call s390_enable_sie()). With upstream QEMU,
this currently doesn't happen, because guest memory is setup and
conditionally preallocated after KVM_CREATE_VM.
Could it happen with shmem/file-backed memory when another process
allocated memory in the pagecache? Likely, although currently not a
common setup.
Trying to split any PTE-mapped large folios sounds like the right and
future-proof thing to do here. So let's call split_folio() and handle the
return values accordingly.
Reviewed-by: Claudio Imbrenda <imbrenda@linux.ibm.com>
Signed-off-by: David Hildenbrand <david@redhat.com>
Link: https://lore.kernel.org/r/20240508182955.358628-4-david@redhat.com
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Alexander Gordeev <agordeev@linux.ibm.com>
|
|
Let's factor out handling of LRU cache draining and convert the if-else
chain to a switch-case.
Reviewed-by: Claudio Imbrenda <imbrenda@linux.ibm.com>
Signed-off-by: David Hildenbrand <david@redhat.com>
Link: https://lore.kernel.org/r/20240508182955.358628-3-david@redhat.com
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Alexander Gordeev <agordeev@linux.ibm.com>
|
|
folio_wait_writeback() requires that no spinlocks are held and that
a folio reference is held, as documented. After we dropped the PTL, the
folio could get freed concurrently. So grab a temporary reference.
Fixes: 214d9bbcd3a6 ("s390/mm: provide memory management functions for protected KVM guests")
Reviewed-by: Claudio Imbrenda <imbrenda@linux.ibm.com>
Signed-off-by: David Hildenbrand <david@redhat.com>
Link: https://lore.kernel.org/r/20240508182955.358628-2-david@redhat.com
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Alexander Gordeev <agordeev@linux.ibm.com>
|
|
Patch series "Introduce mseal", v10.
This patchset proposes a new mseal() syscall for the Linux kernel.
In a nutshell, mseal() protects the VMAs of a given virtual memory range
against modifications, such as changes to their permission bits.
Modern CPUs support memory permissions, such as the read/write (RW) and
no-execute (NX) bits. Linux has supported NX since the release of kernel
version 2.6.8 in August 2004 [1]. The memory permission feature improves
the security stance on memory corruption bugs, as an attacker cannot
simply write to arbitrary memory and point the code to it. The memory
must be marked with the X bit, or else an exception will occur.
Internally, the kernel maintains the memory permissions in a data
structure called VMA (vm_area_struct). mseal() additionally protects the
VMA itself against modifications of the selected seal type.
Memory sealing is useful to mitigate memory corruption issues where a
corrupted pointer is passed to a memory management system. For example,
such an attacker primitive can break control-flow integrity guarantees
since read-only memory that is supposed to be trusted can become writable
or .text pages can get remapped. Memory sealing can automatically be
applied by the runtime loader to seal .text and .rodata pages and
applications can additionally seal security critical data at runtime. A
similar feature already exists in the XNU kernel with the
VM_FLAGS_PERMANENT [3] flag and on OpenBSD with the mimmutable syscall
[4]. Also, Chrome wants to adopt this feature for their CFI work [2] and
this patchset has been designed to be compatible with the Chrome use case.
Two system calls are involved in sealing the map: mmap() and mseal().
The new mseal() is an syscall on 64 bit CPU, and with following signature:
int mseal(void addr, size_t len, unsigned long flags)
addr/len: memory range.
flags: reserved.
mseal() blocks following operations for the given memory range.
1> Unmapping, moving to another location, and shrinking the size,
via munmap() and mremap(), can leave an empty space, therefore can
be replaced with a VMA with a new set of attributes.
2> Moving or expanding a different VMA into the current location,
via mremap().
3> Modifying a VMA via mmap(MAP_FIXED).
4> Size expansion, via mremap(), does not appear to pose any specific
risks to sealed VMAs. It is included anyway because the use case is
unclear. In any case, users can rely on merging to expand a sealed VMA.
5> mprotect() and pkey_mprotect().
6> Some destructive madvice() behaviors (e.g. MADV_DONTNEED) for anonymous
memory, when users don't have write permission to the memory. Those
behaviors can alter region contents by discarding pages, effectively a
memset(0) for anonymous memory.
The idea that inspired this patch comes from Stephen Röttger’s work in
V8 CFI [5]. Chrome browser in ChromeOS will be the first user of this
API.
Indeed, the Chrome browser has very specific requirements for sealing,
which are distinct from those of most applications. For example, in the
case of libc, sealing is only applied to read-only (RO) or read-execute
(RX) memory segments (such as .text and .RELRO) to prevent them from
becoming writable, the lifetime of those mappings are tied to the lifetime
of the process.
Chrome wants to seal two large address space reservations that are managed
by different allocators. The memory is mapped RW- and RWX respectively
but write access to it is restricted using pkeys (or in the future ARM
permission overlay extensions). The lifetime of those mappings are not
tied to the lifetime of the process, therefore, while the memory is
sealed, the allocators still need to free or discard the unused memory.
For example, with madvise(DONTNEED).
However, always allowing madvise(DONTNEED) on this range poses a security
risk. For example if a jump instruction crosses a page boundary and the
second page gets discarded, it will overwrite the target bytes with zeros
and change the control flow. Checking write-permission before the discard
operation allows us to control when the operation is valid. In this case,
the madvise will only succeed if the executing thread has PKEY write
permissions and PKRU changes are protected in software by control-flow
integrity.
Although the initial version of this patch series is targeting the Chrome
browser as its first user, it became evident during upstream discussions
that we would also want to ensure that the patch set eventually is a
complete solution for memory sealing and compatible with other use cases.
The specific scenario currently in mind is glibc's use case of loading and
sealing ELF executables. To this end, Stephen is working on a change to
glibc to add sealing support to the dynamic linker, which will seal all
non-writable segments at startup. Once this work is completed, all
applications will be able to automatically benefit from these new
protections.
In closing, I would like to formally acknowledge the valuable
contributions received during the RFC process, which were instrumental in
shaping this patch:
Jann Horn: raising awareness and providing valuable insights on the
destructive madvise operations.
Liam R. Howlett: perf optimization.
Linus Torvalds: assisting in defining system call signature and scope.
Theo de Raadt: sharing the experiences and insight gained from
implementing mimmutable() in OpenBSD.
MM perf benchmarks
==================
This patch adds a loop in the mprotect/munmap/madvise(DONTNEED) to
check the VMAs’ sealing flag, so that no partial update can be made,
when any segment within the given memory range is sealed.
To measure the performance impact of this loop, two tests are developed.
[8]
The first is measuring the time taken for a particular system call,
by using clock_gettime(CLOCK_MONOTONIC). The second is using
PERF_COUNT_HW_REF_CPU_CYCLES (exclude user space). Both tests have
similar results.
The tests have roughly below sequence:
for (i = 0; i < 1000, i++)
create 1000 mappings (1 page per VMA)
start the sampling
for (j = 0; j < 1000, j++)
mprotect one mapping
stop and save the sample
delete 1000 mappings
calculates all samples.
Below tests are performed on Intel(R) Pentium(R) Gold 7505 @ 2.00GHz,
4G memory, Chromebook.
Based on the latest upstream code:
The first test (measuring time)
syscall__ vmas t t_mseal delta_ns per_vma %
munmap__ 1 909 944 35 35 104%
munmap__ 2 1398 1502 104 52 107%
munmap__ 4 2444 2594 149 37 106%
munmap__ 8 4029 4323 293 37 107%
munmap__ 16 6647 6935 288 18 104%
munmap__ 32 11811 12398 587 18 105%
mprotect 1 439 465 26 26 106%
mprotect 2 1659 1745 86 43 105%
mprotect 4 3747 3889 142 36 104%
mprotect 8 6755 6969 215 27 103%
mprotect 16 13748 14144 396 25 103%
mprotect 32 27827 28969 1142 36 104%
madvise_ 1 240 262 22 22 109%
madvise_ 2 366 442 76 38 121%
madvise_ 4 623 751 128 32 121%
madvise_ 8 1110 1324 215 27 119%
madvise_ 16 2127 2451 324 20 115%
madvise_ 32 4109 4642 534 17 113%
The second test (measuring cpu cycle)
syscall__ vmas cpu cmseal delta_cpu per_vma %
munmap__ 1 1790 1890 100 100 106%
munmap__ 2 2819 3033 214 107 108%
munmap__ 4 4959 5271 312 78 106%
munmap__ 8 8262 8745 483 60 106%
munmap__ 16 13099 14116 1017 64 108%
munmap__ 32 23221 24785 1565 49 107%
mprotect 1 906 967 62 62 107%
mprotect 2 3019 3203 184 92 106%
mprotect 4 6149 6569 420 105 107%
mprotect 8 9978 10524 545 68 105%
mprotect 16 20448 21427 979 61 105%
mprotect 32 40972 42935 1963 61 105%
madvise_ 1 434 497 63 63 115%
madvise_ 2 752 899 147 74 120%
madvise_ 4 1313 1513 200 50 115%
madvise_ 8 2271 2627 356 44 116%
madvise_ 16 4312 4883 571 36 113%
madvise_ 32 8376 9319 943 29 111%
Based on the result, for 6.8 kernel, sealing check adds
20-40 nano seconds, or around 50-100 CPU cycles, per VMA.
In addition, I applied the sealing to 5.10 kernel:
The first test (measuring time)
syscall__ vmas t tmseal delta_ns per_vma %
munmap__ 1 357 390 33 33 109%
munmap__ 2 442 463 21 11 105%
munmap__ 4 614 634 20 5 103%
munmap__ 8 1017 1137 120 15 112%
munmap__ 16 1889 2153 263 16 114%
munmap__ 32 4109 4088 -21 -1 99%
mprotect 1 235 227 -7 -7 97%
mprotect 2 495 464 -30 -15 94%
mprotect 4 741 764 24 6 103%
mprotect 8 1434 1437 2 0 100%
mprotect 16 2958 2991 33 2 101%
mprotect 32 6431 6608 177 6 103%
madvise_ 1 191 208 16 16 109%
madvise_ 2 300 324 24 12 108%
madvise_ 4 450 473 23 6 105%
madvise_ 8 753 806 53 7 107%
madvise_ 16 1467 1592 125 8 108%
madvise_ 32 2795 3405 610 19 122%
The second test (measuring cpu cycle)
syscall__ nbr_vma cpu cmseal delta_cpu per_vma %
munmap__ 1 684 715 31 31 105%
munmap__ 2 861 898 38 19 104%
munmap__ 4 1183 1235 51 13 104%
munmap__ 8 1999 2045 46 6 102%
munmap__ 16 3839 3816 -23 -1 99%
munmap__ 32 7672 7887 216 7 103%
mprotect 1 397 443 46 46 112%
mprotect 2 738 788 50 25 107%
mprotect 4 1221 1256 35 9 103%
mprotect 8 2356 2429 72 9 103%
mprotect 16 4961 4935 -26 -2 99%
mprotect 32 9882 10172 291 9 103%
madvise_ 1 351 380 29 29 108%
madvise_ 2 565 615 49 25 109%
madvise_ 4 872 933 61 15 107%
madvise_ 8 1508 1640 132 16 109%
madvise_ 16 3078 3323 245 15 108%
madvise_ 32 5893 6704 811 25 114%
For 5.10 kernel, sealing check adds 0-15 ns in time, or 10-30
CPU cycles, there is even decrease in some cases.
It might be interesting to compare 5.10 and 6.8 kernel
The first test (measuring time)
syscall__ vmas t_5_10 t_6_8 delta_ns per_vma %
munmap__ 1 357 909 552 552 254%
munmap__ 2 442 1398 956 478 316%
munmap__ 4 614 2444 1830 458 398%
munmap__ 8 1017 4029 3012 377 396%
munmap__ 16 1889 6647 4758 297 352%
munmap__ 32 4109 11811 7702 241 287%
mprotect 1 235 439 204 204 187%
mprotect 2 495 1659 1164 582 335%
mprotect 4 741 3747 3006 752 506%
mprotect 8 1434 6755 5320 665 471%
mprotect 16 2958 13748 10790 674 465%
mprotect 32 6431 27827 21397 669 433%
madvise_ 1 191 240 49 49 125%
madvise_ 2 300 366 67 33 122%
madvise_ 4 450 623 173 43 138%
madvise_ 8 753 1110 357 45 147%
madvise_ 16 1467 2127 660 41 145%
madvise_ 32 2795 4109 1314 41 147%
The second test (measuring cpu cycle)
syscall__ vmas cpu_5_10 c_6_8 delta_cpu per_vma %
munmap__ 1 684 1790 1106 1106 262%
munmap__ 2 861 2819 1958 979 327%
munmap__ 4 1183 4959 3776 944 419%
munmap__ 8 1999 8262 6263 783 413%
munmap__ 16 3839 13099 9260 579 341%
munmap__ 32 7672 23221 15549 486 303%
mprotect 1 397 906 509 509 228%
mprotect 2 738 3019 2281 1140 409%
mprotect 4 1221 6149 4929 1232 504%
mprotect 8 2356 9978 7622 953 423%
mprotect 16 4961 20448 15487 968 412%
mprotect 32 9882 40972 31091 972 415%
madvise_ 1 351 434 82 82 123%
madvise_ 2 565 752 186 93 133%
madvise_ 4 872 1313 442 110 151%
madvise_ 8 1508 2271 763 95 151%
madvise_ 16 3078 4312 1234 77 140%
madvise_ 32 5893 8376 2483 78 142%
From 5.10 to 6.8
munmap: added 250-550 ns in time, or 500-1100 in cpu cycle, per vma.
mprotect: added 200-750 ns in time, or 500-1200 in cpu cycle, per vma.
madvise: added 33-50 ns in time, or 70-110 in cpu cycle, per vma.
In comparison to mseal, which adds 20-40 ns or 50-100 CPU cycles, the
increase from 5.10 to 6.8 is significantly larger, approximately ten times
greater for munmap and mprotect.
When I discuss the mm performance with Brian Makin, an engineer who worked
on performance, it was brought to my attention that such performance
benchmarks, which measuring millions of mm syscall in a tight loop, may
not accurately reflect real-world scenarios, such as that of a database
service. Also this is tested using a single HW and ChromeOS, the data
from another HW or distribution might be different. It might be best to
take this data with a grain of salt.
This patch (of 5):
Wire up mseal syscall for all architectures.
Link: https://lkml.kernel.org/r/20240415163527.626541-1-jeffxu@chromium.org
Link: https://lkml.kernel.org/r/20240415163527.626541-2-jeffxu@chromium.org
Signed-off-by: Jeff Xu <jeffxu@chromium.org>
Reviewed-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Liam R. Howlett <Liam.Howlett@oracle.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Guenter Roeck <groeck@chromium.org>
Cc: Jann Horn <jannh@google.com> [Bug #2]
Cc: Jeff Xu <jeffxu@google.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Jorge Lucangeli Obes <jorgelo@chromium.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Muhammad Usama Anjum <usama.anjum@collabora.com>
Cc: Pedro Falcato <pedro.falcato@gmail.com>
Cc: Stephen Röttger <sroettger@google.com>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Amer Al Shanawany <amer.shanawany@gmail.com>
Cc: Javier Carrasco <javier.carrasco.cruz@gmail.com>
Cc: Shuah Khan <shuah@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/s390/linux
Pull more s390 updates from Alexander Gordeev:
- Switch read and write software bits for PUDs
- Add missing hardware bits for PUDs and PMDs
- Generate unwind information for C modules to fix GDB unwind error for
vDSO functions
- Create .build-id links for unstripped vDSO files to enable vDSO
debugging with symbols
- Use standard stack frame layout for vDSO generated stack frames to
manually walk stack frames without DWARF information
- Rework perf_callchain_user() and arch_stack_walk_user() functions to
reduce code duplication
- Skip first stack frame when walking user stack
- Add basic checks to identify invalid instruction pointers when
walking stack frames
- Introduce and use struct stack_frame_vdso_wrapper within vDSO user
wrapper code to automatically generate an asm-offset define. Also use
STACK_FRAME_USER_OVERHEAD instead of STACK_FRAME_OVERHEAD to document
that the code works with user space stack
- Clear the backchain of the extra stack frame added by the vDSO user
wrapper code. This allows the user stack walker to detect and skip
the non-standard stack frame. Without this an incorrect instruction
pointer would be added to stack traces.
- Rewrite psw_idle() function in C to ease maintenance and further
enhancements
- Remove get_vtimer() function and use get_cpu_timer() instead
- Mark psw variable in __load_psw_mask() as __unitialized to avoid
superfluous clearing of PSW
- Remove obsolete and superfluous comment about removed TIF_FPU flag
- Replace memzero_explicit() and kfree() with kfree_sensitive() to fix
warnings reported by Coccinelle
- Wipe sensitive data and all copies of protected- or secure-keys from
stack when an IOCTL fails
- Both do_airq_interrupt() and do_io_interrupt() functions set
CIF_NOHZ_DELAY flag. Move it in do_io_irq() to simplify the code
- Provide iucv_alloc_device() and iucv_release_device() helpers, which
can be used to deduplicate more or less identical IUCV device
allocation and release code in four different drivers
- Make use of iucv_alloc_device() and iucv_release_device() helpers to
get rid of quite some code and also remove a cast to an incompatible
function (clang W=1)
- There is no user of iucv_root outside of the core IUCV code left.
Therefore remove the EXPORT_SYMBOL
- __apply_alternatives() contains a runtime check which verifies that
the size of the to be patched code area is even. Convert this to a
compile time check
- Increase size of buffers for sending z/VM CP DIAGNOSE X'008' commands
from 128 to 240
- Do not accept z/VM CP DIAGNOSE X'008' commands longer than maximally
allowed
- Use correct defines IPL_BP_NVME_LEN and IPL_BP0_NVME_LEN instead of
IPL_BP_FCP_LEN and IPL_BP0_FCP_LEN ones to initialize NVMe reIPL
block on 'scp_data' sysfs attribute update
- Initialize the correct fields of the NVMe dump block, which were
confused with FCP fields
- Refactor macros for 'scp_data' (re-)IPL sysfs attribute to reduce
code duplication
- Introduce 'scp_data' sysfs attribute for dump IPL to allow tools such
as dumpconf passing additional kernel command line parameters to a
stand-alone dumper
- Rework the CPACF query functions to use the correct RRE or RRF
instruction formats and set instruction register fields correctly
- Instead of calling BUG() at runtime force a link error during compile
when a unsupported opcode is used with __cpacf_query() or
__cpacf_check_opcode() functions
- Fix a crash in ap_parse_bitmap_str() function on /sys/bus/ap/apmask
or /sys/bus/ap/aqmask sysfs file update with a relative mask value
- Fix "bindings complete" udev event which should be sent once all AP
devices have been bound to device drivers and again when unbind/bind
actions take place and all AP devices are bound again
- Facility list alt_stfle_fac_list is nowhere used in the decompressor,
therefore remove it there
- Remove custom kprobes insn slot allocator in favour of the standard
module_alloc() one, since kernel image and module areas are located
within 4GB
- Use kvcalloc() instead of kvmalloc_array() in zcrypt driver to avoid
calling memset() with a large byte count and get rid of the sparse
warning as result
* tag 's390-6.10-2' of git://git.kernel.org/pub/scm/linux/kernel/git/s390/linux: (39 commits)
s390/zcrypt: Use kvcalloc() instead of kvmalloc_array()
s390/kprobes: Remove custom insn slot allocator
s390/boot: Remove alt_stfle_fac_list from decompressor
s390/ap: Fix bind complete udev event sent after each AP bus scan
s390/ap: Fix crash in AP internal function modify_bitmap()
s390/cpacf: Make use of invalid opcode produce a link error
s390/cpacf: Split and rework cpacf query functions
s390/ipl: Introduce sysfs attribute 'scp_data' for dump ipl
s390/ipl: Introduce macros for (re)ipl sysfs attribute 'scp_data'
s390/ipl: Fix incorrect initialization of nvme dump block
s390/ipl: Fix incorrect initialization of len fields in nvme reipl block
s390/ipl: Do not accept z/VM CP diag X'008' cmds longer than max length
s390/ipl: Fix size of vmcmd buffers for sending z/VM CP diag X'008' cmds
s390/alternatives: Convert runtime sanity check into compile time check
s390/iucv: Unexport iucv_root
tty: hvc-iucv: Make use of iucv_alloc_device()
s390/smsgiucv_app: Make use of iucv_alloc_device()
s390/netiucv: Make use of iucv_alloc_device()
s390/vmlogrdr: Make use of iucv_alloc_device()
s390/iucv: Provide iucv_alloc_device() / iucv_release_device()
...
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm
Pull mm updates from Andrew Morton:
"The usual shower of singleton fixes and minor series all over MM,
documented (hopefully adequately) in the respective changelogs.
Notable series include:
- Lucas Stach has provided some page-mapping cleanup/consolidation/
maintainability work in the series "mm/treewide: Remove pXd_huge()
API".
- In the series "Allow migrate on protnone reference with
MPOL_PREFERRED_MANY policy", Donet Tom has optimized mempolicy's
MPOL_PREFERRED_MANY mode, yielding almost doubled performance in
one test.
- In their series "Memory allocation profiling" Kent Overstreet and
Suren Baghdasaryan have contributed a means of determining (via
/proc/allocinfo) whereabouts in the kernel memory is being
allocated: number of calls and amount of memory.
- Matthew Wilcox has provided the series "Various significant MM
patches" which does a number of rather unrelated things, but in
largely similar code sites.
- In his series "mm: page_alloc: freelist migratetype hygiene"
Johannes Weiner has fixed the page allocator's handling of
migratetype requests, with resulting improvements in compaction
efficiency.
- In the series "make the hugetlb migration strategy consistent"
Baolin Wang has fixed a hugetlb migration issue, which should
improve hugetlb allocation reliability.
- Liu Shixin has hit an I/O meltdown caused by readahead in a
memory-tight memcg. Addressed in the series "Fix I/O high when
memory almost met memcg limit".
- In the series "mm/filemap: optimize folio adding and splitting"
Kairui Song has optimized pagecache insertion, yielding ~10%
performance improvement in one test.
- Baoquan He has cleaned up and consolidated the early zone
initialization code in the series "mm/mm_init.c: refactor
free_area_init_core()".
- Baoquan has also redone some MM initializatio code in the series
"mm/init: minor clean up and improvement".
- MM helper cleanups from Christoph Hellwig in his series "remove
follow_pfn".
- More cleanups from Matthew Wilcox in the series "Various
page->flags cleanups".
- Vlastimil Babka has contributed maintainability improvements in the
series "memcg_kmem hooks refactoring".
- More folio conversions and cleanups in Matthew Wilcox's series:
"Convert huge_zero_page to huge_zero_folio"
"khugepaged folio conversions"
"Remove page_idle and page_young wrappers"
"Use folio APIs in procfs"
"Clean up __folio_put()"
"Some cleanups for memory-failure"
"Remove page_mapping()"
"More folio compat code removal"
- David Hildenbrand chipped in with "fs/proc/task_mmu: convert
hugetlb functions to work on folis".
- Code consolidation and cleanup work related to GUP's handling of
hugetlbs in Peter Xu's series "mm/gup: Unify hugetlb, part 2".
- Rick Edgecombe has developed some fixes to stack guard gaps in the
series "Cover a guard gap corner case".
- Jinjiang Tu has fixed KSM's behaviour after a fork+exec in the
series "mm/ksm: fix ksm exec support for prctl".
- Baolin Wang has implemented NUMA balancing for multi-size THPs.
This is a simple first-cut implementation for now. The series is
"support multi-size THP numa balancing".
- Cleanups to vma handling helper functions from Matthew Wilcox in
the series "Unify vma_address and vma_pgoff_address".
- Some selftests maintenance work from Dev Jain in the series
"selftests/mm: mremap_test: Optimizations and style fixes".
- Improvements to the swapping of multi-size THPs from Ryan Roberts
in the series "Swap-out mTHP without splitting".
- Kefeng Wang has significantly optimized the handling of arm64's
permission page faults in the series
"arch/mm/fault: accelerate pagefault when badaccess"
"mm: remove arch's private VM_FAULT_BADMAP/BADACCESS"
- GUP cleanups from David Hildenbrand in "mm/gup: consistently call
it GUP-fast".
- hugetlb fault code cleanups from Vishal Moola in "Hugetlb fault
path to use struct vm_fault".
- selftests build fixes from John Hubbard in the series "Fix
selftests/mm build without requiring "make headers"".
- Memory tiering fixes/improvements from Ho-Ren (Jack) Chuang in the
series "Improved Memory Tier Creation for CPUless NUMA Nodes".
Fixes the initialization code so that migration between different
memory types works as intended.
- David Hildenbrand has improved follow_pte() and fixed an errant
driver in the series "mm: follow_pte() improvements and acrn
follow_pte() fixes".
- David also did some cleanup work on large folio mapcounts in his
series "mm: mapcount for large folios + page_mapcount() cleanups".
- Folio conversions in KSM in Alex Shi's series "transfer page to
folio in KSM".
- Barry Song has added some sysfs stats for monitoring multi-size
THP's in the series "mm: add per-order mTHP alloc and swpout
counters".
- Some zswap cleanups from Yosry Ahmed in the series "zswap
same-filled and limit checking cleanups".
- Matthew Wilcox has been looking at buffer_head code and found the
documentation to be lacking. The series is "Improve buffer head
documentation".
- Multi-size THPs get more work, this time from Lance Yang. His
series "mm/madvise: enhance lazyfreeing with mTHP in madvise_free"
optimizes the freeing of these things.
- Kemeng Shi has added more userspace-visible writeback
instrumentation in the series "Improve visibility of writeback".
- Kemeng Shi then sent some maintenance work on top in the series
"Fix and cleanups to page-writeback".
- Matthew Wilcox reduces mmap_lock traffic in the anon vma code in
the series "Improve anon_vma scalability for anon VMAs". Intel's
test bot reported an improbable 3x improvement in one test.
- SeongJae Park adds some DAMON feature work in the series
"mm/damon: add a DAMOS filter type for page granularity access recheck"
"selftests/damon: add DAMOS quota goal test"
- Also some maintenance work in the series
"mm/damon/paddr: simplify page level access re-check for pageout"
"mm/damon: misc fixes and improvements"
- David Hildenbrand has disabled some known-to-fail selftests ni the
series "selftests: mm: cow: flag vmsplice() hugetlb tests as
XFAIL".
- memcg metadata storage optimizations from Shakeel Butt in "memcg:
reduce memory consumption by memcg stats".
- DAX fixes and maintenance work from Vishal Verma in the series
"dax/bus.c: Fixups for dax-bus locking""
* tag 'mm-stable-2024-05-17-19-19' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (426 commits)
memcg, oom: cleanup unused memcg_oom_gfp_mask and memcg_oom_order
selftests/mm: hugetlb_madv_vs_map: avoid test skipping by querying hugepage size at runtime
mm/hugetlb: add missing VM_FAULT_SET_HINDEX in hugetlb_wp
mm/hugetlb: add missing VM_FAULT_SET_HINDEX in hugetlb_fault
selftests: cgroup: add tests to verify the zswap writeback path
mm: memcg: make alloc_mem_cgroup_per_node_info() return bool
mm/damon/core: fix return value from damos_wmark_metric_value
mm: do not update memcg stats for NR_{FILE/SHMEM}_PMDMAPPED
selftests: cgroup: remove redundant enabling of memory controller
Docs/mm/damon/maintainer-profile: allow posting patches based on damon/next tree
Docs/mm/damon/maintainer-profile: change the maintainer's timezone from PST to PT
Docs/mm/damon/design: use a list for supported filters
Docs/admin-guide/mm/damon/usage: fix wrong schemes effective quota update command
Docs/admin-guide/mm/damon/usage: fix wrong example of DAMOS filter matching sysfs file
selftests/damon: classify tests for functionalities and regressions
selftests/damon/_damon_sysfs: use 'is' instead of '==' for 'None'
selftests/damon/_damon_sysfs: find sysfs mount point from /proc/mounts
selftests/damon/_damon_sysfs: check errors from nr_schemes file reads
mm/damon/core: initialize ->esz_bp from damos_quota_init_priv()
selftests/damon: add a test for DAMOS quota goal
...
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/masahiroy/linux-kbuild
Pull Kbuild updates from Masahiro Yamada:
- Avoid 'constexpr', which is a keyword in C23
- Allow 'dtbs_check' and 'dt_compatible_check' run independently of
'dt_binding_check'
- Fix weak references to avoid GOT entries in position-independent code
generation
- Convert the last use of 'optional' property in arch/sh/Kconfig
- Remove support for the 'optional' property in Kconfig
- Remove support for Clang's ThinLTO caching, which does not work with
the .incbin directive
- Change the semantics of $(src) so it always points to the source
directory, which fixes Makefile inconsistencies between upstream and
downstream
- Fix 'make tar-pkg' for RISC-V to produce a consistent package
- Provide reasonable default coverage for objtool, sanitizers, and
profilers
- Remove redundant OBJECT_FILES_NON_STANDARD, KASAN_SANITIZE, etc.
- Remove the last use of tristate choice in drivers/rapidio/Kconfig
- Various cleanups and fixes in Kconfig
* tag 'kbuild-v6.10' of git://git.kernel.org/pub/scm/linux/kernel/git/masahiroy/linux-kbuild: (46 commits)
kconfig: use sym_get_choice_menu() in sym_check_prop()
rapidio: remove choice for enumeration
kconfig: lxdialog: remove initialization with A_NORMAL
kconfig: m/nconf: merge two item_add_str() calls
kconfig: m/nconf: remove dead code to display value of bool choice
kconfig: m/nconf: remove dead code to display children of choice members
kconfig: gconf: show checkbox for choice correctly
kbuild: use GCOV_PROFILE and KCSAN_SANITIZE in scripts/Makefile.modfinal
Makefile: remove redundant tool coverage variables
kbuild: provide reasonable defaults for tool coverage
modules: Drop the .export_symbol section from the final modules
kconfig: use menu_list_for_each_sym() in sym_check_choice_deps()
kconfig: use sym_get_choice_menu() in conf_write_defconfig()
kconfig: add sym_get_choice_menu() helper
kconfig: turn defaults and additional prompt for choice members into error
kconfig: turn missing prompt for choice members into error
kconfig: turn conf_choice() into void function
kconfig: use linked list in sym_set_changed()
kconfig: gconf: use MENU_CHANGED instead of SYMBOL_CHANGED
kconfig: gconf: remove debug code
...
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace
Pull probes updates from Masami Hiramatsu:
- tracing/probes: Add new pseudo-types %pd and %pD support for dumping
dentry name from 'struct dentry *' and file name from 'struct file *'
- uprobes performance optimizations:
- Speed up the BPF uprobe event by delaying the fetching of the
uprobe event arguments that are not used in BPF
- Avoid locking by speculatively checking whether uprobe event is
valid
- Reduce lock contention by using read/write_lock instead of
spinlock for uprobe list operation. This improved BPF uprobe
benchmark result 43% on average
- rethook: Remove non-fatal warning messages when tracing stack from
BPF and skip rcu_is_watching() validation in rethook if possible
- objpool: Optimize objpool (which is used by kretprobes and fprobe as
rethook backend storage) by inlining functions and avoid caching
nr_cpu_ids because it is a const value
- fprobe: Add entry/exit callbacks types (code cleanup)
- kprobes: Check ftrace was killed in kprobes if it uses ftrace
* tag 'probes-v6.10' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace:
kprobe/ftrace: bail out if ftrace was killed
selftests/ftrace: Fix required features for VFS type test case
objpool: cache nr_possible_cpus() and avoid caching nr_cpu_ids
objpool: enable inlining objpool_push() and objpool_pop() operations
rethook: honor CONFIG_FTRACE_VALIDATE_RCU_IS_WATCHING in rethook_try_get()
ftrace: make extra rcu_is_watching() validation check optional
uprobes: reduce contention on uprobes_tree access
rethook: Remove warning messages printed for finding return address of a frame.
fprobe: Add entry/exit callbacks types
selftests/ftrace: add fprobe test cases for VFS type "%pd" and "%pD"
selftests/ftrace: add kprobe test cases for VFS type "%pd" and "%pD"
Documentation: tracing: add new type '%pd' and '%pD' for kprobe
tracing/probes: support '%pD' type for print struct file's name
tracing/probes: support '%pd' type for print struct dentry's name
uprobes: add speculative lockless system-wide uprobe filter check
uprobes: prepare uprobe args buffer lazily
uprobes: encapsulate preparation of uprobe args buffer
|
|
Since commit c98d2ecae08f ("s390/mm: Uncouple physical vs virtual address
spaces") the kernel image and module area are within the same 4GB area.
This eliminates the need of a custom insn slot allocator for kprobes within
the kernel image, since standard module_alloc() allocated pages are
sufficient for PC relative instructions with a signed 32 bit offset.
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
|
|
It is nowhere used in the decompressor, therefore remove it.
Fixes: 17e89e1340a3 ("s390/facilities: move stfl information from lowcore to global data")
Reviewed-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Sven Schnelle <svens@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
|
|
If an error happens in ftrace, ftrace_kill() will prevent disarming
kprobes. Eventually, the ftrace_ops associated with the kprobes will be
freed, yet the kprobes will still be active, and when triggered, they
will use the freed memory, likely resulting in a page fault and panic.
This behavior can be reproduced quite easily, by creating a kprobe and
then triggering a ftrace_kill(). For simplicity, we can simulate an
ftrace error with a kernel module like [1]:
[1]: https://github.com/brenns10/kernel_stuff/tree/master/ftrace_killer
sudo perf probe --add commit_creds
sudo perf trace -e probe:commit_creds
# In another terminal
make
sudo insmod ftrace_killer.ko # calls ftrace_kill(), simulating bug
# Back to perf terminal
# ctrl-c
sudo perf probe --del commit_creds
After a short period, a page fault and panic would occur as the kprobe
continues to execute and uses the freed ftrace_ops. While ftrace_kill()
is supposed to be used only in extreme circumstances, it is invoked in
FTRACE_WARN_ON() and so there are many places where an unexpected bug
could be triggered, yet the system may continue operating, possibly
without the administrator noticing. If ftrace_kill() does not panic the
system, then we should do everything we can to continue operating,
rather than leave a ticking time bomb.
Link: https://lore.kernel.org/all/20240501162956.229427-1-stephen.s.brennan@oracle.com/
Signed-off-by: Stephen Brennan <stephen.s.brennan@oracle.com>
Acked-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Acked-by: Guo Ren <guoren@kernel.org>
Reviewed-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
|
|
This is analogous to the reipl's sysfs attribute named equally and enables
tools such as s390-tools' dumpconf to pass additional kernel cmdline
parameters to a stand-alone dumper such as zfcpdump (e.g. to enable
debug output with 'dump_debug' parameter) or ngdump.
Acked-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Alexander Egorenkov <egorenar@linux.ibm.com>
Signed-off-by: Alexander Gordeev <agordeev@linux.ibm.com>
|
|
This is a refactoring change to reduce code duplication and improve code
reuse.
Acked-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Alexander Egorenkov <egorenar@linux.ibm.com>
Signed-off-by: Alexander Gordeev <agordeev@linux.ibm.com>
|
|
Initialize the correct fields of the nvme dump block.
This bug had not been detected before because first, the fcp and nvme fields
of struct ipl_parameter_block are part of the same union and, therefore,
overlap in memory and second, they are identical in structure and size.
Fixes: d70e38cb1dee ("s390: nvme dump support")
Reviewed-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Alexander Egorenkov <egorenar@linux.ibm.com>
Signed-off-by: Alexander Gordeev <agordeev@linux.ibm.com>
|
|
Use correct symbolic constants IPL_BP_NVME_LEN and IPL_BP0_NVME_LEN
to initialize nvme reipl block when 'scp_data' sysfs attribute is
being updated. This bug had not been detected before because
the corresponding fcp and nvme symbolic constants are equal.
Fixes: 23a457b8d57d ("s390: nvme reipl")
Reviewed-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Alexander Egorenkov <egorenar@linux.ibm.com>
Signed-off-by: Alexander Gordeev <agordeev@linux.ibm.com>
|
|
The old implementation of vmcmd sysfs string attributes truncated passed
z/VM CP diagnose X'008' commands which were longer than the max allowed
number of characters but the reported number of written characters was
still equal to the entire length of a given string. This can result in
silent failures of some s390-tools (e.g. dumpconf) which can be very hard
to detect. Therefore, this commit makes a write attempt to a vmcmd sysfs
attribute
* fail with E2BIG error if a given string is longer than the maximum
allowed one
* never destroy the old data in the vmcmd sysfs attribute if the new data
doesn't fit into it entirely
* return the actual number of written characters if it succeeds
Reviewed-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Alexander Egorenkov <egorenar@linux.ibm.com>
Signed-off-by: Alexander Gordeev <agordeev@linux.ibm.com>
|
|
z/VM CP diagnose X'008' accepts commands of max 240 characters.
Using a smaller value as a buffer size makes kernel send truncated CP
commands which are longer than the old buffer size. This can result in
invalid CP commands passed to z/VM.
Reviewed-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Alexander Egorenkov <egorenar@linux.ibm.com>
Signed-off-by: Alexander Gordeev <agordeev@linux.ibm.com>
|
|
__apply_alternatives() contains a runtime check which verifies that the
size of the to be patched code area is even. Convert this to a compile time
check using a similar ".org" trick, which is already used to verify that
old and new code areas have the same size.
Reviewed-by: Sven Schnelle <svens@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Alexander Gordeev <agordeev@linux.ibm.com>
|
|
Both do_airq_interrupt() and do_io_interrupt() set
CIF_NOHZ_DELAY. Move it to do_io_irq() to simplify
the code.
Reviewed-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Sven Schnelle <svens@linux.ibm.com>
Signed-off-by: Alexander Gordeev <agordeev@linux.ibm.com>
|
|
Now Kbuild provides reasonable defaults for objtool, sanitizers, and
profilers.
Remove redundant variables.
Note:
This commit changes the coverage for some objects:
- include arch/mips/vdso/vdso-image.o into UBSAN, GCOV, KCOV
- include arch/sparc/vdso/vdso-image-*.o into UBSAN
- include arch/sparc/vdso/vma.o into UBSAN
- include arch/x86/entry/vdso/extable.o into KASAN, KCSAN, UBSAN, GCOV, KCOV
- include arch/x86/entry/vdso/vdso-image-*.o into KASAN, KCSAN, UBSAN, GCOV, KCOV
- include arch/x86/entry/vdso/vdso32-setup.o into KASAN, KCSAN, UBSAN, GCOV, KCOV
- include arch/x86/entry/vdso/vma.o into GCOV, KCOV
- include arch/x86/um/vdso/vma.o into KASAN, GCOV, KCOV
I believe these are positive effects because all of them are kernel
space objects.
Signed-off-by: Masahiro Yamada <masahiroy@kernel.org>
Reviewed-by: Kees Cook <keescook@chromium.org>
Tested-by: Roberto Sassu <roberto.sassu@huawei.com>
|
|
It has been removed in commit 2c6b96762fbd ("s390/fpu: remove TIF_FPU"),
so we should not mention TIF_FPU in the comment here anymore. Since the
remaining parts of the comment just document the obvious fact that
save_user_fpu_regs() saves the FPU state, simply remove the comment now
completely.
Signed-off-by: Thomas Huth <thuth@redhat.com>
Acked-by: Heiko Carstens <hca@linux.ibm.com>
Link: https://lore.kernel.org/r/20240503080648.81461-1-thuth@redhat.com
Signed-off-by: Alexander Gordeev <agordeev@linux.ibm.com>
|
|
Instead of implementing get_vtimer() use get_cpu_timer()
which does the same.
Reviewed-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Sven Schnelle <svens@linux.ibm.com>
Signed-off-by: Alexander Gordeev <agordeev@linux.ibm.com>
|
|
To ease maintenance and further enhancements, convert
the psw_idle() function to C.
Reviewed-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Sven Schnelle <svens@linux.ibm.com>
Signed-off-by: Alexander Gordeev <agordeev@linux.ibm.com>
|
|
Clear the backchain of the extra stack frame added by the vdso user wrapper
code. This allows the user stack walker to detect and skip the non-standard
stack frame. Without this an incorrect instruction pointer would be added
to stack traces, and stack frame walking would be continued with a more or
less random back chain.
Fixes: aa44433ac4ee ("s390: add USER_STACKTRACE support")
Reviewed-by: Jens Remus <jremus@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Alexander Gordeev <agordeev@linux.ibm.com>
|
|
Introduce and use struct stack_frame_vdso_wrapper within vdso user wrapper
code. With this structure it is possible to automatically generate an
asm-offset define which can be used to save and restore the return address
of the calling function.
Also use STACK_FRAME_USER_OVERHEAD instead of STACK_FRAME_OVERHEAD to
document that the code works with user space stack frames with the standard
stack frame layout.
Fixes: aa44433ac4ee ("s390: add USER_STACKTRACE support")
Reviewed-by: Jens Remus <jremus@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Alexander Gordeev <agordeev@linux.ibm.com>
|
|
Add basic checks to identify invalid instruction pointers when walking
stack frames:
Instruction pointers must
- have even addresses
- be larger than mmap_min_addr
- lower than the asce_limit of the process
Alternatively it would also be possible to walk page tables similar to fast
GUP and verify that the mapping of the corresponding page is executable,
however that seems to be overkill.
Fixes: aa44433ac4ee ("s390: add USER_STACKTRACE support")
Reviewed-by: Jens Remus <jremus@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Alexander Gordeev <agordeev@linux.ibm.com>
|
|
When walking user stack frames the first stack frame (where the stack
pointer points to) should be skipped: the return address of the current
function is saved in the previous stack frame, not the current stack frame,
which is allocated for to be called functions.
Fixes: aa44433ac4ee ("s390: add USER_STACKTRACE support")
Reviewed-by: Jens Remus <jremus@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Alexander Gordeev <agordeev@linux.ibm.com>
|
|
The two functions perf_callchain_user() and arch_stack_walk_user() are
nearly identical. Reduce code duplication and add a common helper which can
be called by both functions.
Fixes: aa44433ac4ee ("s390: add USER_STACKTRACE support")
Reviewed-by: Jens Remus <jremus@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Alexander Gordeev <agordeev@linux.ibm.com>
|
|
By default user space is compiled with standard stack frame layout and not
with the packed stack layout. The vdso code however inherited the
-mpacked-stack compiler option from the kernel. Remove this option to make
sure the vdso is compiled with standard stack frame layout.
This makes sure that the stack frame backchain location for vdso generated
stack frames is the same like for calling code (if compiled with default
options). This allows to manually walk stack frames without DWARF
information, like the kernel is doing it e.g. with arch_stack_walk_user().
Fixes: 4bff8cb54502 ("s390: convert to GENERIC_VDSO")
Reviewed-by: Jens Remus <jremus@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Alexander Gordeev <agordeev@linux.ibm.com>
|
|
GDB fails to unwind vDSO functions with error message "PC not saved",
for instance when stepping through gettimeofday().
Add -fasynchronous-unwind-tables to CFLAGS to generate .eh_frame
DWARF unwind information for the vDSO C modules.
Fixes: 4bff8cb54502 ("s390: convert to GENERIC_VDSO")
Signed-off-by: Jens Remus <jremus@linux.ibm.com>
Signed-off-by: Alexander Gordeev <agordeev@linux.ibm.com>
|
|
execmem does not depend on modules, on the contrary modules use
execmem.
To make execmem available when CONFIG_MODULES=n, for instance for
kprobes, split execmem_params initialization out from
arch/*/kernel/module.c and compile it when CONFIG_EXECMEM=y
Signed-off-by: Mike Rapoport (IBM) <rppt@kernel.org>
Reviewed-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Signed-off-by: Luis Chamberlain <mcgrof@kernel.org>
|
|
Extend execmem parameters to accommodate more complex overrides of
module_alloc() by architectures.
This includes specification of a fallback range required by arm, arm64
and powerpc, EXECMEM_MODULE_DATA type required by powerpc, support for
allocation of KASAN shadow required by s390 and x86 and support for
late initialization of execmem required by arm64.
The core implementation of execmem_alloc() takes care of suppressing
warnings when the initial allocation fails but there is a fallback range
defined.
Signed-off-by: Mike Rapoport (IBM) <rppt@kernel.org>
Acked-by: Will Deacon <will@kernel.org>
Acked-by: Song Liu <song@kernel.org>
Tested-by: Liviu Dudau <liviu@dudau.co.uk>
Signed-off-by: Luis Chamberlain <mcgrof@kernel.org>
|
|
module_alloc() is used everywhere as a mean to allocate memory for code.
Beside being semantically wrong, this unnecessarily ties all subsystems
that need to allocate code, such as ftrace, kprobes and BPF to modules and
puts the burden of code allocation to the modules code.
Several architectures override module_alloc() because of various
constraints where the executable memory can be located and this causes
additional obstacles for improvements of code allocation.
Start splitting code allocation from modules by introducing execmem_alloc()
and execmem_free() APIs.
Initially, execmem_alloc() is a wrapper for module_alloc() and
execmem_free() is a replacement of module_memfree() to allow updating all
call sites to use the new APIs.
Since architectures define different restrictions on placement,
permissions, alignment and other parameters for memory that can be used by
different subsystems that allocate executable memory, execmem_alloc() takes
a type argument, that will be used to identify the calling subsystem and to
allow architectures define parameters for ranges suitable for that
subsystem.
No functional changes.
Signed-off-by: Mike Rapoport (IBM) <rppt@kernel.org>
Acked-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Acked-by: Song Liu <song@kernel.org>
Acked-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Luis Chamberlain <mcgrof@kernel.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler updates from Ingo Molnar:
- Add cpufreq pressure feedback for the scheduler
- Rework misfit load-balancing wrt affinity restrictions
- Clean up and simplify the code around ::overutilized and
::overload access.
- Simplify sched_balance_newidle()
- Bump SCHEDSTAT_VERSION to 16 due to a cleanup of CPU_MAX_IDLE_TYPES
handling that changed the output.
- Rework & clean up <asm/vtime.h> interactions wrt arch_vtime_task_switch()
- Reorganize, clean up and unify most of the higher level
scheduler balancing function names around the sched_balance_*()
prefix
- Simplify the balancing flag code (sched_balance_running)
- Miscellaneous cleanups & fixes
* tag 'sched-core-2024-05-13' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (50 commits)
sched/pelt: Remove shift of thermal clock
sched/cpufreq: Rename arch_update_thermal_pressure() => arch_update_hw_pressure()
thermal/cpufreq: Remove arch_update_thermal_pressure()
sched/cpufreq: Take cpufreq feedback into account
cpufreq: Add a cpufreq pressure feedback for the scheduler
sched/fair: Fix update of rd->sg_overutilized
sched/vtime: Do not include <asm/vtime.h> header
s390/irq,nmi: Include <asm/vtime.h> header directly
s390/vtime: Remove unused __ARCH_HAS_VTIME_TASK_SWITCH leftover
sched/vtime: Get rid of generic vtime_task_switch() implementation
sched/vtime: Remove confusing arch_vtime_task_switch() declaration
sched/balancing: Simplify the sg_status bitmask and use separate ->overloaded and ->overutilized flags
sched/fair: Rename set_rd_overutilized_status() to set_rd_overutilized()
sched/fair: Rename SG_OVERLOAD to SG_OVERLOADED
sched/fair: Rename {set|get}_rd_overload() to {set|get}_rd_overloaded()
sched/fair: Rename root_domain::overload to ::overloaded
sched/fair: Use helper functions to access root_domain::overload
sched/fair: Check root_domain::overload value before update
sched/fair: Combine EAS check with root_domain::overutilized access
sched/fair: Simplify the continue_balancing logic in sched_balance_newidle()
...
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/s390/linux
Pull s390 updates from Alexander Gordeev:
- Store AP Query Configuration Information in a static buffer
- Rework the AP initialization and add missing cleanups to the error
path
- Swap IRQ and AP bus/device registration to avoid race conditions
- Export prot_virt_guest symbol
- Introduce AP configuration changes notifier interface to facilitate
modularization of the AP bus
- Add CONFIG_AP kernel configuration option to allow modularization of
the AP bus
- Rework CONFIG_ZCRYPT_DEBUG kernel configuration option description
and dependency and rename it to CONFIG_AP_DEBUG
- Convert sprintf() and snprintf() to sysfs_emit() in CIO code
- Adjust indentation of RELOCS command build step
- Make crypto performance counters upward compatible
- Convert make_page_secure() and gmap_make_secure() to use folio
- Rework channel-utilization-block (CUB) handling in preparation of
introducing additional CUBs
- Use attribute groups to simplify registration, removal and extension
of measurement-related channel-path sysfs attributes
- Add a per-channel-path binary "ext_measurement" sysfs attribute that
provides access to extended channel-path measurement data
- Export measurement data for all channel-measurement-groups (CMG), not
only for a specific ones. This enables support of new CMG data
formats in userspace without the need for kernel changes
- Add a per-channel-path sysfs attribute "speed_bps" that provides the
operating speed in bits per second or 0 if the operating speed is not
available
- The CIO tracepoint subchannel-type field "st" is incorrectly set to
the value of subchannel-enabled SCHIB "ena" field. Fix that
- Do not forcefully limit vmemmap starting address to MAX_PHYSMEM_BITS
- Consider the maximum physical address available to a DCSS segment
(512GB) when memory layout is set up
- Simplify the virtual memory layout setup by reducing the size of
identity mapping vs vmemmap overlap
- Swap vmalloc and Lowcore/Real Memory Copy areas in virtual memory.
This will allow to place the kernel image next to kernel modules
- Move everyting KASLR related from <asm/setup.h> to <asm/page.h>
- Put virtual memory layout information into a structure to improve
code generation
- Currently __kaslr_offset is the kernel offset in both physical and
virtual memory spaces. Uncouple these offsets to allow uncoupling of
the addresses spaces
- Currently the identity mapping base address is implicit and is always
set to zero. Make it explicit by putting into __identity_base
persistent boot variable and use it in proper context
- Introduce .amode31 section start and end macros AMODE31_START and
AMODE31_END
- Introduce OS_INFO entries that do not reference any data in memory,
but rather provide only values
- Store virtual memory layout in OS_INFO. It is read out by
makedumpfile, crash and other tools
- Store virtual memory layout in VMCORE_INFO. It is read out by crash
and other tools when /proc/kcore device is used
- Create additional PT_LOAD ELF program header that covers kernel image
only, so that vmcore tools could locate kernel text and data when
virtual and physical memory spaces are uncoupled
- Uncouple physical and virtual address spaces
- Map kernel at fixed location when KASLR mode is disabled. The
location is defined by CONFIG_KERNEL_IMAGE_BASE kernel configuration
value.
- Rework deployment of kernel image for both compressed and
uncompressed variants as defined by CONFIG_KERNEL_UNCOMPRESSED kernel
configuration value
- Move .vmlinux.relocs section in front of the compressed kernel. The
interim section rescue step is avoided as result
- Correct modules thunk offset calculation when branch target is more
than 2GB away
- Kernel modules contain their own set of expoline thunks. Now that the
kernel modules area is less than 4GB away from kernel expoline
thunks, make modules use kernel expolines. Also make EXPOLINE_EXTERN
the default if the compiler supports it
- userfaultfd can insert shared zeropages into processes running VMs,
but that is not allowed for s390. Fallback to allocating a fresh
zeroed anonymous folio and insert that instead
- Re-enable shared zeropages for non-PV and non-skeys KVM guests
- Rename hex2bitmap() to ap_hex2bitmap() and export it for external use
- Add ap_config sysfs attribute to provide the means for setting or
displaying adapters, domains and control domains assigned to a
vfio-ap mediated device in a single operation
- Make vfio_ap_mdev_link_queue() ignore duplicate link requests
- Add write support to ap_config sysfs attribute to allow atomic update
a vfio-ap mediated device state
- Document ap_config sysfs attribute
- Function os_info_old_init() is expected to be called only from a
regular kdump kernel. Enable it to be called from a stand-alone dump
kernel
- Address gcc -Warray-bounds warning and fix array size in struct
os_info
- s390 does not support SMBIOS, so drop unneeded CONFIG_DMI checks
- Use unwinder instead of __builtin_return_address() with ftrace to
prevent returning of undefined values
- Sections .hash and .gnu.hash are only created when CONFIG_PIE_BUILD
kernel is enabled. Drop these for the case CONFIG_PIE_BUILD is
disabled
- Compile kernel with -fPIC and link with -no-pie to allow kpatch
feature always succeed and drop the whole CONFIG_PIE_BUILD
option-enabled code
- Add missing virt_to_phys() converter for VSIE facility and crypto
control blocks
* tag 's390-6.10-1' of git://git.kernel.org/pub/scm/linux/kernel/git/s390/linux: (54 commits)
Revert "s390: Relocate vmlinux ELF data to virtual address space"
KVM: s390: vsie: Use virt_to_phys for crypto control block
s390: Relocate vmlinux ELF data to virtual address space
s390: Compile kernel with -fPIC and link with -no-pie
s390: vmlinux.lds.S: Drop .hash and .gnu.hash for !CONFIG_PIE_BUILD
s390/ftrace: Use unwinder instead of __builtin_return_address()
s390/pci: Drop unneeded reference to CONFIG_DMI
s390/os_info: Fix array size in struct os_info
s390/os_info: Initialize old os_info in standalone dump kernel
docs: Update s390 vfio-ap doc for ap_config sysfs attribute
s390/vfio-ap: Add write support to sysfs attr ap_config
s390/vfio-ap: Ignore duplicate link requests in vfio_ap_mdev_link_queue
s390/vfio-ap: Add sysfs attr, ap_config, to export mdev state
s390/ap: Externalize AP bus specific bitmap reading function
s390/mm: Re-enable the shared zeropage for !PV and !skeys KVM guests
mm/userfaultfd: Do not place zeropages when zeropages are disallowed
s390/expoline: Make modules use kernel expolines
s390/nospec: Correct modules thunk offset calculation
s390/boot: Do not rescue .vmlinux.relocs section
s390/boot: Rework deployment of the kernel image
...
|
|
Kbuild conventionally uses $(obj)/ for generated files, and $(src)/ for
checked-in source files. It is merely a convention without any functional
difference. In fact, $(obj) and $(src) are exactly the same, as defined
in scripts/Makefile.build:
src := $(obj)
When the kernel is built in a separate output directory, $(src) does
not accurately reflect the source directory location. While Kbuild
resolves this discrepancy by specifying VPATH=$(srctree) to search for
source files, it does not cover all cases. For example, when adding a
header search path for local headers, -I$(srctree)/$(src) is typically
passed to the compiler.
This introduces inconsistency between upstream and downstream Makefiles
because $(src) is used instead of $(srctree)/$(src) for the latter.
To address this inconsistency, this commit changes the semantics of
$(src) so that it always points to the directory in the source tree.
Going forward, the variables used in Makefiles will have the following
meanings:
$(obj) - directory in the object tree
$(src) - directory in the source tree (changed by this commit)
$(objtree) - the top of the kernel object tree
$(srctree) - the top of the kernel source tree
Consequently, $(srctree)/$(src) in upstream Makefiles need to be replaced
with $(src).
Signed-off-by: Masahiro Yamada <masahiroy@kernel.org>
Reviewed-by: Nicolas Schier <nicolas@fjasle.eu>
|
|
These are generated files. Prefix them with $(obj)/ instead of $(src)/.
Signed-off-by: Masahiro Yamada <masahiroy@kernel.org>
Acked-by: Helge Deller <deller@gmx.de>
Reviewed-by: Nicolas Schier <nicolas@fjasle.eu>
|
|
When the kernel is built with CONFIG_PIE_BUILD option enabled it
uses dynamic symbols, for which the linker does not allow more
than 64K number of entries. This can break features like kpatch.
Hence, whenever possible the kernel is built with CONFIG_PIE_BUILD
option disabled. For that support of unaligned symbols generated by
linker scripts in the compiler is necessary.
However, older compilers might lack such support. In that case the
build process resorts to CONFIG_PIE_BUILD option-enabled build.
Compile object files with -fPIC option and then link the kernel
binary with -no-pie linker option.
As result, the dynamic symbols are not generated and not only kpatch
feature succeeds, but also the whole CONFIG_PIE_BUILD option-enabled
code could be dropped.
[ agordeev: Reworded the commit message ]
Suggested-by: Ulrich Weigand <ulrich.weigand@de.ibm.com>
Signed-off-by: Sumanth Korikkar <sumanthk@linux.ibm.com>
Reviewed-by: Alexander Gordeev <agordeev@linux.ibm.com>
Signed-off-by: Alexander Gordeev <agordeev@linux.ibm.com>
|
|
Sections .hash and .gnu.hash are only created when CONFIG_PIE_BUILD
option is enabled. Drop these for the case CONFIG_PIE_BUILD is disabled.
[ agordeev: Reworded the commit message ]
Fixes: 778666df60f0 ("s390: compile relocatable kernel without -fPIE")
Suggested-by: Alexander Gordeev <agordeev@linux.ibm.com>
Signed-off-by: Sumanth Korikkar <sumanthk@linux.ibm.com>
Reviewed-by: Alexander Gordeev <agordeev@linux.ibm.com>
Signed-off-by: Alexander Gordeev <agordeev@linux.ibm.com>
|
|
Using __builtin_return_address(n) might return undefined values
when used with values of n outside of the stack. This was noticed
when __builtin_return_address() was called in ftrace on top level
functions like the interrupt handlers.
As this behaviour cannot be fixed, use the s390 stack unwinder and
remove the ftrace compilation flags for unwind_bc.c and stacktrace.c
to prevent the unwinding function polluting function traces.
Another advantage is that this also works with clang.
Reviewed-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Sven Schnelle <svens@linux.ibm.com>
Signed-off-by: Alexander Gordeev <agordeev@linux.ibm.com>
|
|
gcc's -Warray-bounds warned about an out-of-bounds access to
the entry array contained in struct os_info. This doesn't trigger
a bug right now because there's a large reserved space after the
array. Nevertheless fix this, and also add a BUILD_BUG_ON to make
sure struct os_info is always exactly on page in size.
Fixes: f4cac27dc0d6 ("s390/crash: Use old os_info to create PT_LOAD headers")
Reviewed-by: Alexander Gordeev <agordeev@linux.ibm.com>
Signed-off-by: Sven Schnelle <svens@linux.ibm.com>
Signed-off-by: Alexander Gordeev <agordeev@linux.ibm.com>
|
|
The commit be42660d0c13 ("s390/crash: use old os_info to create PT_LOAD headers")
introduced use of the old os_info into standalone dump kernel.
Before this change os_info_old_init() expected to be called only from
a regular kdump kernel although the function itself is able to work
in standalone dump kernels as well (because copy_oldmem_kernel() is able
to handle both use cases). Therefore, fix the expectation of os_info_old_init()
and enable it to be called from a standalone dump kernel.
Fixes: f4cac27dc0d6 ("s390/crash: Use old os_info to create PT_LOAD headers")
Acked-by: Alexander Gordeev <agordeev@linux.ibm.com>
Signed-off-by: Alexander Egorenkov <egorenar@linux.ibm.com>
Signed-off-by: Alexander Gordeev <agordeev@linux.ibm.com>
|
|
The return-address (RA) register r14 is specified as volatile in the
s390x ELF ABI [1]. Nevertheless proper CFI directives must be provided
for an unwinder to restore the return address, if the RA register
value is changed from its value at function entry, as it is the case.
[1]: s390x ELF ABI, https://github.com/IBM/s390x-abi/releases
Fixes: 4bff8cb54502 ("s390: convert to GENERIC_VDSO")
Signed-off-by: Jens Remus <jremus@linux.ibm.com>
Acked-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Alexander Gordeev <agordeev@linux.ibm.com>
|
|
Patch series "Memory allocation profiling", v6.
Overview:
Low overhead [1] per-callsite memory allocation profiling. Not just for
debug kernels, overhead low enough to be deployed in production.
Example output:
root@moria-kvm:~# sort -rn /proc/allocinfo
127664128 31168 mm/page_ext.c:270 func:alloc_page_ext
56373248 4737 mm/slub.c:2259 func:alloc_slab_page
14880768 3633 mm/readahead.c:247 func:page_cache_ra_unbounded
14417920 3520 mm/mm_init.c:2530 func:alloc_large_system_hash
13377536 234 block/blk-mq.c:3421 func:blk_mq_alloc_rqs
11718656 2861 mm/filemap.c:1919 func:__filemap_get_folio
9192960 2800 kernel/fork.c:307 func:alloc_thread_stack_node
4206592 4 net/netfilter/nf_conntrack_core.c:2567 func:nf_ct_alloc_hashtable
4136960 1010 drivers/staging/ctagmod/ctagmod.c:20 [ctagmod] func:ctagmod_start
3940352 962 mm/memory.c:4214 func:alloc_anon_folio
2894464 22613 fs/kernfs/dir.c:615 func:__kernfs_new_node
...
Usage:
kconfig options:
- CONFIG_MEM_ALLOC_PROFILING
- CONFIG_MEM_ALLOC_PROFILING_ENABLED_BY_DEFAULT
- CONFIG_MEM_ALLOC_PROFILING_DEBUG
adds warnings for allocations that weren't accounted because of a
missing annotation
sysctl:
/proc/sys/vm/mem_profiling
Runtime info:
/proc/allocinfo
Notes:
[1]: Overhead
To measure the overhead we are comparing the following configurations:
(1) Baseline with CONFIG_MEMCG_KMEM=n
(2) Disabled by default (CONFIG_MEM_ALLOC_PROFILING=y &&
CONFIG_MEM_ALLOC_PROFILING_BY_DEFAULT=n)
(3) Enabled by default (CONFIG_MEM_ALLOC_PROFILING=y &&
CONFIG_MEM_ALLOC_PROFILING_BY_DEFAULT=y)
(4) Enabled at runtime (CONFIG_MEM_ALLOC_PROFILING=y &&
CONFIG_MEM_ALLOC_PROFILING_BY_DEFAULT=n && /proc/sys/vm/mem_profiling=1)
(5) Baseline with CONFIG_MEMCG_KMEM=y && allocating with __GFP_ACCOUNT
(6) Disabled by default (CONFIG_MEM_ALLOC_PROFILING=y &&
CONFIG_MEM_ALLOC_PROFILING_BY_DEFAULT=n) && CONFIG_MEMCG_KMEM=y
(7) Enabled by default (CONFIG_MEM_ALLOC_PROFILING=y &&
CONFIG_MEM_ALLOC_PROFILING_BY_DEFAULT=y) && CONFIG_MEMCG_KMEM=y
Performance overhead:
To evaluate performance we implemented an in-kernel test executing
multiple get_free_page/free_page and kmalloc/kfree calls with allocation
sizes growing from 8 to 240 bytes with CPU frequency set to max and CPU
affinity set to a specific CPU to minimize the noise. Below are results
from running the test on Ubuntu 22.04.2 LTS with 6.8.0-rc1 kernel on
56 core Intel Xeon:
kmalloc pgalloc
(1 baseline) 6.764s 16.902s
(2 default disabled) 6.793s (+0.43%) 17.007s (+0.62%)
(3 default enabled) 7.197s (+6.40%) 23.666s (+40.02%)
(4 runtime enabled) 7.405s (+9.48%) 23.901s (+41.41%)
(5 memcg) 13.388s (+97.94%) 48.460s (+186.71%)
(6 def disabled+memcg) 13.332s (+97.10%) 48.105s (+184.61%)
(7 def enabled+memcg) 13.446s (+98.78%) 54.963s (+225.18%)
Memory overhead:
Kernel size:
text data bss dec diff
(1) 26515311 18890222 17018880 62424413
(2) 26524728 19423818 16740352 62688898 264485
(3) 26524724 19423818 16740352 62688894 264481
(4) 26524728 19423818 16740352 62688898 264485
(5) 26541782 18964374 16957440 62463596 39183
Memory consumption on a 56 core Intel CPU with 125GB of memory:
Code tags: 192 kB
PageExts: 262144 kB (256MB)
SlabExts: 9876 kB (9.6MB)
PcpuExts: 512 kB (0.5MB)
Total overhead is 0.2% of total memory.
Benchmarks:
Hackbench tests run 100 times:
hackbench -s 512 -l 200 -g 15 -f 25 -P
baseline disabled profiling enabled profiling
avg 0.3543 0.3559 (+0.0016) 0.3566 (+0.0023)
stdev 0.0137 0.0188 0.0077
hackbench -l 10000
baseline disabled profiling enabled profiling
avg 6.4218 6.4306 (+0.0088) 6.5077 (+0.0859)
stdev 0.0933 0.0286 0.0489
stress-ng tests:
stress-ng --class memory --seq 4 -t 60
stress-ng --class cpu --seq 4 -t 60
Results posted at: https://evilpiepirate.org/~kent/memalloc_prof_v4_stress-ng/
[2] https://lore.kernel.org/all/20240306182440.2003814-1-surenb@google.com/
This patch (of 37):
The next patch drops vmalloc.h from a system header in order to fix a
circular dependency; this adds it to all the files that were pulling it in
implicitly.
[kent.overstreet@linux.dev: fix arch/alpha/lib/memcpy.c]
Link: https://lkml.kernel.org/r/20240327002152.3339937-1-kent.overstreet@linux.dev
[surenb@google.com: fix arch/x86/mm/numa_32.c]
Link: https://lkml.kernel.org/r/20240402180933.1663992-1-surenb@google.com
[kent.overstreet@linux.dev: a few places were depending on sizes.h]
Link: https://lkml.kernel.org/r/20240404034744.1664840-1-kent.overstreet@linux.dev
[arnd@arndb.de: fix mm/kasan/hw_tags.c]
Link: https://lkml.kernel.org/r/20240404124435.3121534-1-arnd@kernel.org
[surenb@google.com: fix arc build]
Link: https://lkml.kernel.org/r/20240405225115.431056-1-surenb@google.com
Link: https://lkml.kernel.org/r/20240321163705.3067592-1-surenb@google.com
Link: https://lkml.kernel.org/r/20240321163705.3067592-2-surenb@google.com
Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
Signed-off-by: Suren Baghdasaryan <surenb@google.com>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Reviewed-by: Pasha Tatashin <pasha.tatashin@soleen.com>
Tested-by: Kees Cook <keescook@chromium.org>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Alex Gaynor <alex.gaynor@gmail.com>
Cc: Alice Ryhl <aliceryhl@google.com>
Cc: Andreas Hindborg <a.hindborg@samsung.com>
Cc: Benno Lossin <benno.lossin@proton.me>
Cc: "Björn Roy Baron" <bjorn3_gh@protonmail.com>
Cc: Boqun Feng <boqun.feng@gmail.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Dennis Zhou <dennis@kernel.org>
Cc: Gary Guo <gary@garyguo.net>
Cc: Miguel Ojeda <ojeda@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Wedson Almeida Filho <wedsonaf@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
The recently added check to figure out if a fault happened on gmap ASCE
dereferences the gmap pointer in lowcore without checking that it is not
NULL. For all non-KVM processes the pointer is NULL, so that some value
from lowcore will be read. With the current layouts of struct gmap and
struct lowcore the read value (aka ASCE) is zero, so that this doesn't lead
to any observable bug; at least currently.
Fix this by adding the missing NULL pointer check.
Fixes: 64c3431808bd ("s390/entry: compare gmap asce to determine guest/host fault")
Signed-off-by: Sven Schnelle <svens@linux.ibm.com>
Reviewed-by: Claudio Imbrenda <imbrenda@linux.ibm.com>
Reviewed-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Alexander Gordeev <agordeev@linux.ibm.com>
|
|
Fix offset calculation when branch target is more then 2Gb away.
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Alexander Gordeev <agordeev@linux.ibm.com>
|
|
Rework deployment of kernel image for both compressed and
uncompressed variants as defined by CONFIG_KERNEL_UNCOMPRESSED
kernel configuration variable.
In case CONFIG_KERNEL_UNCOMPRESSED is disabled avoid uncompressing
the kernel to a temporary buffer and copying it to the target
address. Instead, uncompress it directly to the target destination.
In case CONFIG_KERNEL_UNCOMPRESSED is enabled avoid moving the
kernel to default 0x100000 location when KASLR is disabled or
failed. Instead, use the uncompressed kernel image directly.
In case KASLR is disabled or failed .amode31 section location in
memory is not randomized and precedes the kernel image. In case
CONFIG_KERNEL_UNCOMPRESSED is disabled that location overlaps the
area used by the decompression algorithm. That is fine, since that
area is not used after the decompression finished and the size of
.amode31 section is not expected to exceed BOOT_HEAP_SIZE ever.
There is no decompression in case CONFIG_KERNEL_UNCOMPRESSED is
enabled. Therefore, rename decompress_kernel() to deploy_kernel(),
which better describes both uncompressed and compressed cases.
Introduce AMODE31_SIZE macro to avoid immediate value of 0x3000
(the size of .amode31 section) in the decompressor linker script.
Modify the vmlinux linker script to force the size of .amode31
section to AMODE31_SIZE (the value of (_eamode31 - _samode31)
could otherwise differ as result of compiler options used).
Introduce __START_KERNEL macro that defines the kernel ELF image
entry point and set it to the currrent value of 0x100000.
Signed-off-by: Alexander Gordeev <agordeev@linux.ibm.com>
|
|
This is a preparatory rework to allow uncoupling virtual
and physical addresses spaces.
The vmcore ELF program headers describe virtual memory
regions of a crashed kernel. User level tools use that
information for the kernel text and data analysis (e.g
vmcore-dmesg extracts the kernel log).
Currently the kernel image is covered by program headers
describing the identity mapping regions. But in the future
the kernel image will be mapped into separate region outside
of the identity mapping. Create the additional ELF program
header that covers kernel image only, so that vmcore tools
could locate kernel text and data.
Further, the identity mapping in crashed and capture kernels
will have different base address. Due to that __va() macro
can not be used in the capture kernel. Instead, read crashed
kernel identity mapping base address from os_info and use
it for PT_LOAD type program headers creation.
Acked-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Alexander Gordeev <agordeev@linux.ibm.com>
|
|
This is a preparatory rework to allow uncoupling virtual
and physical addresses spaces.
The virtual memory layout is needed for address translation
by crash tool when /proc/kcore device is used as the memory
image.
Acked-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Alexander Gordeev <agordeev@linux.ibm.com>
|
|
This is a preparatory rework to allow uncoupling virtual
and physical addresses spaces.
The virtual memory layout will be read out by makedumpfile,
crash and other user tools for virtual address translation.
Acked-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Alexander Gordeev <agordeev@linux.ibm.com>
|