Age | Commit message (Collapse) | Author | Files | Lines |
|
Michal Suchánek noticed a comment in book3s/64/mmu-hash.h about the context ids
we use for the kernel was inconsistent with the code and other comments in the
same file.
It should read 1-4 not 1-5.
While we're touching it, update "address" to "addresses" which makes more sense
as it's referring to more than one address below.
Reported-by: Michal Suchánek <msuchanek@suse.de>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
On some targets, _PAGE_RW is 0 and this is _PAGE_RO which is used.
There is also _PAGE_SHARED that is missing.
Signed-off-by: Christophe Leroy <christophe.leroy@c-s.fr>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
Recently in commit f6eedbba7a26 ("powerpc/mm/hash: Increase VA range to 128TB"),
we increased H_PGD_INDEX_SIZE to 15 when we're building with 64K pages. This
makes it larger than RADIX_PGD_INDEX_SIZE (13), which means the logic to
calculate MAX_PGD_INDEX_SIZE in book3s/64/pgtable.h is wrong.
The end result is that the PGD (Page Global Directory, ie top level page table)
of the kernel (aka. swapper_pg_dir), is too small.
This generally doesn't lead to a crash, as we don't use the full range in normal
operation. However if we try to dump the kernel pagetables we can trigger a
crash because we walk off the end of the pgd into other memory and eventually
try to dereference something bogus:
$ cat /sys/kernel/debug/kernel_pagetables
Unable to handle kernel paging request for data at address 0xe8fece0000000000
Faulting instruction address: 0xc000000000072314
cpu 0xc: Vector: 380 (Data SLB Access) at [c0000000daa13890]
pc: c000000000072314: ptdump_show+0x164/0x430
lr: c000000000072550: ptdump_show+0x3a0/0x430
dar: e802cf0000000000
seq_read+0xf8/0x560
full_proxy_read+0x84/0xc0
__vfs_read+0x6c/0x1d0
vfs_read+0xbc/0x1b0
SyS_read+0x6c/0x110
system_call+0x38/0xfc
The root cause is that MAX_PGD_INDEX_SIZE isn't actually computed to be
the max of H_PGD_INDEX_SIZE or RADIX_PGD_INDEX_SIZE. To fix that move
the calculation into asm-offsets.c where we can do it easily using
max().
Fixes: f6eedbba7a26 ("powerpc/mm/hash: Increase VA range to 128TB")
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
Nvlink2 supports address translation services (ATS) allowing devices
to request address translations from an mmu known as the nest MMU
which is setup to walk the CPU page tables.
To access this functionality certain firmware calls are required to
setup and manage hardware context tables in the nvlink processing unit
(NPU). The NPU also manages forwarding of TLB invalidates (known as
address translation shootdowns/ATSDs) to attached devices.
This patch exports several methods to allow device drivers to register
a process id (PASID/PID) in the hardware tables and to receive
notification of when a device should stop issuing address translation
requests (ATRs). It also adds a fault handler to allow device drivers
to demand fault pages in.
Signed-off-by: Alistair Popple <alistair@popple.id.au>
[mpe: Fix up comment formatting, use flush_tlb_mm()]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
Now that we use all the available virtual address range, we need to make
sure we don't generate VSID such that it overlaps with the reserved vsid
range. Reserved vsid range include the virtual address range used by the
adjunct partition and also the VRMA virtual segment. We find the context
value that can result in generating such a VSID and reserve it early in
boot.
We don't look at the adjunct range, because for now we disable the
adjunct usage in a Linux LPAR via CAS interface.
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
[mpe: Rewrite hash__reserve_context_id(), move the rest into pseries]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
In the followup patch, we will increase the slice array size to handle
512TB range, but will limit the max addr to 128TB. Avoid doing
unnecessary computation and avoid doing slice mask related operation
above address limit.
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
We update the hash linux page table layout such that we can support
512TB. But we limit the TASK_SIZE to 128TB. We can switch to 128TB by
default without conditional because that is the max virtual address
supported by other architectures. We will later add a mechanism to
on-demand increase the application's effective address range to 512TB.
Having the page table layout changed to accommodate 512TB makes testing
large memory configuration easier with less code changes to kernel
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
This doesn't have any functional change. But helps in avoiding mistakes
in case the shift bit changes
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
Inorder to support large effective address range (512TB), we want to
increase the virtual address bits to 68. But we do have platforms like
p4 and p5 that can only do 65 bit VA. We support those platforms by
limiting context bits on them to 16.
The protovsid -> vsid conversion is verified to work with both 65 and 68
bit va values. I also documented the restrictions in a table format as
part of code comments.
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
get_kernel_vsid() has a very stern comment saying that it's only valid
for kernel addresses, but there's nothing in the code to enforce that.
Rather than hoping our callers are well behaved, add a check and return
a VSID of 0 (invalid).
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
Currently we use the top 4 context ids (0x7fffc-0x7ffff) for the kernel.
Kernel VSIDs are built using these top context values and effective the
segement ID. In subsequent patches we want to increase the max effective
address to 512TB. We will achieve that by increasing the effective
segment IDs there by increasing virtual address range.
We will be switching to a 68bit virtual address in the following patch.
But platforms like Power4 and Power5 only support a 65 bit virtual
address. We will handle that by limiting the context bits to 16 instead
of 19 on those platforms. That means the max context id will have a
different value on different platforms.
So that we don't have to deal with the kernel context ids changing
between different platforms, move the kernel context ids down to use
context ids 1-4.
We can't use segment 0 of context-id 0, because that maps to VSID 0,
which we want to keep as invalid, so we avoid context-id 0 entirely.
Similarly we can't use the last segment of the maximum context, so we
avoid it too.
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
[mpe: Switch from 0-3 to 1-4 so VSID=0 remains invalid]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
Complete the split of the radix vs hash mm context initialisation.
This is mostly code movement, with the exception that we now limit the
context allocation to PRTB_ENTRIES - 1 on radix.
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
We don't support the full 57 bits of physical address and hence can
overload the top bits of RPN as hash specific pte bits.
Add a BUILD_BUG_ON() to enforce the relationship between H_PAGE_F_SECOND
and H_PAGE_F_GIX.
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Reviewed-by: Paul Mackerras <paulus@ozlabs.org>
[mpe: Move the BUILD_BUG_ON() into hash_utils_64.c and comment it]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
Max value supported by hardware is 51 bits address. Radix page table define
a slot of 57 bits for future expansion. We restrict the value supported in
linux kernel 53 bits, so that we can use the bits between 57-53 for storing
hash linux page table bits. This is done in the next patch.
This will free up the software page table bits to be used for features
that are needed for both hash and radix. The current hash linux page table
format doesn't have any free software bits. Moving hash linux page table
specific bits to top of RPN field free up the software bits for other purpose.
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Reviewed-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
Reviewed-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
Conditional PTE bit definition is confusing and results in coding error.
Reviewed-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
This bit is only used by radix and it is nice to follow the naming style of having
bit name start with H_/R_ depending on which translation mode they are used.
No functional change in this patch.
Reviewed-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
Define everything based on bits present in pgtable.h. This will help in easily
identifying overlapping bits between hash/radix.
No functional change with this patch.
Reviewed-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
Merge 5-level page table prep from Kirill Shutemov:
"Here's relatively low-risk part of 5-level paging patchset. Merging it
now will make x86 5-level paging enabling in v4.12 easier.
The first patch is actually x86-specific: detect 5-level paging
support. It boils down to single define.
The rest of patchset converts Linux MMU abstraction from 4- to 5-level
paging.
Enabling of new abstraction in most cases requires adding single line
of code in arch-specific code. The rest is taken care by asm-generic/.
Changes to mm/ code are mostly mechanical: add support for new page
table level -- p4d_t -- where we deal with pud_t now.
v2:
- fix build on microblaze (Michal);
- comment for __ARCH_HAS_5LEVEL_HACK in kasan_populate_zero_shadow();
- acks from Michal"
* emailed patches from Kirill A Shutemov <kirill.shutemov@linux.intel.com>:
mm: introduce __p4d_alloc()
mm: convert generic code to 5-level paging
asm-generic: introduce <asm-generic/pgtable-nop4d.h>
arch, mm: convert all architectures to use 5level-fixup.h
asm-generic: introduce __ARCH_USE_5LEVEL_HACK
asm-generic: introduce 5level-fixup.h
x86/cpufeature: Add 5-level paging detection
|
|
We use pte_write() to check whethwer the pte entry is writable. This is
mostly used to later mark the pte read only if it is writable. The other
use of pte_write() is to check whether the pte_entry is writable so that
hardware page table entry can be marked accordingly. This is used in kvm
where we look at qemu page table entry and update hardware hash page table
for the guest with correct write enable bit.
With the above, for the first usage we should also check the savedwrite
bit so that we can correctly clear the savedwite bit. For the later, we
add a new variant __pte_write().
With this we can revert write_protect_page part of 595cd8f256d2 ("mm/ksm:
handle protnone saved writes when making page write protect"). But I left
it as it is as an example code for savedwrite check.
Fixes: c137a2757b886 ("powerpc/mm/autonuma: switch ppc64 to its own implementation of saved write")
Link: http://lkml.kernel.org/r/1488203787-17849-2-git-send-email-aneesh.kumar@linux.vnet.ibm.com
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Paul Mackerras <paulus@ozlabs.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
We need to mark pages of parent process read only on fork. Numa fault
pte needs a protnone ptes variant with saved write flag set. On fork we
need to make sure we remove the saved write bit. Instead of adding the
protnone check in the caller update ptep_set_wrprotect variants to clear
savedwrite bit.
Without this we see random segfaults in application on fork.
Fixes: c137a2757b886 ("powerpc/mm/autonuma: switch ppc64 to its own implementation of saved write")
Link: http://lkml.kernel.org/r/1488203787-17849-1-git-send-email-aneesh.kumar@linux.vnet.ibm.com
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Paul Mackerras <paulus@ozlabs.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
If an architecture uses 4level-fixup.h we don't need to do anything as
it includes 5level-fixup.h.
If an architecture uses pgtable-nop*d.h, define __ARCH_USE_5LEVEL_HACK
before inclusion of the header. It makes asm-generic code to use
5level-fixup.h.
If an architecture has 4-level paging or folds levels on its own,
include 5level-fixup.h directly.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Pull more KVM updates from Radim Krčmář:
"Second batch of KVM changes for the 4.11 merge window:
PPC:
- correct assumption about ASDR on POWER9
- fix MMIO emulation on POWER9
x86:
- add a simple test for ioperm
- cleanup TSS (going through KVM tree as the whole undertaking was
caused by VMX's use of TSS)
- fix nVMX interrupt delivery
- fix some performance counters in the guest
... and two cleanup patches"
* tag 'kvm-4.11-2' of git://git.kernel.org/pub/scm/virt/kvm/kvm:
KVM: nVMX: Fix pending events injection
x86/kvm/vmx: remove unused variable in segment_base()
selftests/x86: Add a basic selftest for ioperm
x86/asm: Tidy up TSS limit code
kvm: convert kvm.users_count from atomic_t to refcount_t
KVM: x86: never specify a sample period for virtualized in_tx_cp counters
KVM: PPC: Book3S HV: Don't use ASDR for real-mode HPT faults on POWER9
KVM: PPC: Book3S HV: Fix software walk of guest process page tables
|
|
This fixes some bugs in the code that walks the guest's page tables.
These bugs cause MMIO emulation to fail whenever the guest is in
virtial mode (MMU on), leading to the guest hanging if it tried to
access a virtio device.
The first bug was that when reading the guest's process table, we were
using the whole of arch->process_table, not just the field that contains
the process table base address. The second bug was that the mask used
when reading the process table entry to get the radix tree base address,
RPDB_MASK, had the wrong value.
Fixes: 9e04ba69beec ("KVM: PPC: Book3S HV: Add basic infrastructure for radix guests")
Fixes: e99833448c5f ("powerpc/mm/radix: Add partition table format & callback")
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
|
|
Fix typos and add the following to the scripts/spelling.txt:
partiton||partition
Link: http://lkml.kernel.org/r/1481573103-11329-7-git-send-email-yamada.masahiro@socionext.com
Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
With this our protnone becomes a present pte with READ/WRITE/EXEC bit
cleared. By default we also set _PAGE_PRIVILEGED on such pte. This is
now used to help us identify a protnone pte that as saved write bit.
For such pte, we will clear the _PAGE_PRIVILEGED bit. The pte still
remain non-accessible from both user and kernel.
[aneesh.kumar@linux.vnet.ibm.com: v3]
Link: http://lkml.kernel.org/r/1487498625-10891-4-git-send-email-aneesh.kumar@linux.vnet.ibm.com
Link: http://lkml.kernel.org/r/1487050314-3892-3-git-send-email-aneesh.kumar@linux.vnet.ibm.com
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Acked-by: Michael Neuling <mikey@neuling.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Michael Ellerman <michaele@au1.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
We do them at the start of tlb flush, and we are sure a pte update will be
followed by a tlbflush. Hence we can skip the ptesync in pte update helpers.
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Tested-by: Michael Neuling <mikey@neuling.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
This helps us to do some optimization for application exit case, where we can
skip the DD1 style pte update sequence.
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Tested-by: Michael Neuling <mikey@neuling.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
In the kernel we do follow the below sequence in different code paths.
pte = ptep_get_clear(ptep)
....
set_pte_at(ptep, pte)
We do that for mremap, autonuma protection update and softdirty clearing. This
implies our optimization to skip a tlb flush when clearing a pte update is
not valid, because for DD1 system that followup set_pte_at will be done witout
doing the required tlbflush. Fix that by always doing the dd1 style pte update
irrespective of new_pte value. In a later patch we will optimize the application
exit case.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Tested-by: Michael Neuling <mikey@neuling.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
Merge the topic branch we're sharing with the kvm-ppc tree.
|
|
If we enable RADIX but disable HUGETLBFS, the build breaks with:
arch/powerpc/mm/pgtable-radix.c:557:7: error: implicit declaration of function 'pmd_huge'
arch/powerpc/mm/pgtable-radix.c:588:7: error: implicit declaration of function 'pud_huge'
Fix it by stubbing those functions when HUGETLBFS=n.
Fixes: 4b5d62ca17a1 ("powerpc/mm: add radix__remove_section_mapping()")
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
This adds support for using two hypercalls to change the size of the
main hash page table while running as a PAPR guest. For now these
hypercalls are only in experimental qemu versions.
The interface is two part: first H_RESIZE_HPT_PREPARE is used to
allocate and prepare the new hash table. This may be slow, but can be
done asynchronously. Then, H_RESIZE_HPT_COMMIT is used to switch to the
new hash table. This requires that no CPUs be concurrently updating the
HPT, and so must be run under stop_machine().
This also adds a debugfs file which can be used to manually control
HPT resizing or testing purposes.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Paul Mackerras <paulus@samba.org>
[mpe: Rename the debugfs file to "hpt_order"]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
This adds definitions for bits in the DSISR register which are used
by POWER9 for various translation-related exception conditions, and
for some more bits in the partition table entry that will be needed
by KVM.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
To use radix as a guest, we first need to tell the hypervisor via
the ibm,client-architecture call first that we support POWER9 and
architecture v3.00, and that we can do either radix or hash and
that we would like to choose later using an hcall (the
H_REGISTER_PROC_TBL hcall).
Then we need to check whether the hypervisor agreed to us using
radix. We need to do this very early on in the kernel boot process
before any of the MMU initialization is done. If the hypervisor
doesn't agree, we can't use radix and therefore clear the radix
MMU feature bit.
Later, when we have set up our process table, which points to the
radix tree for each process, we need to install that using the
H_REGISTER_PROC_TBL hcall.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
Tear down and free the four-level page tables of physical mappings
during memory hotremove.
Borrow the basic structure of remove_pagetable() and friends from the
identically-named x86 functions. Reduce the frequency of tlb flushes and
page_table_lock spinlocks by only doing them in the outermost function.
There was some question as to whether the locking is needed at all.
Leave it for now, but we could consider dropping it.
Memory must be offline to be removed, thus not in use. So there
shouldn't be the sort of concurrent page walking activity here that
might prompt us to use RCU.
Signed-off-by: Reza Arbab <arbab@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
Wire up memory hotplug page mapping for radix. Share the mapping
function already used by radix_init_pgtable().
Signed-off-by: Reza Arbab <arbab@linux.vnet.ibm.com>
Acked-by: Balbir Singh <bsingharora@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
The proto VSID is built using both the MMU context id and effective
segment ID (ESID). We should not have overlapping bits between those.
That could result in us having a VSID collision. With the current code
we missed masking the top bits of the ESID. This implies for kernel
address we ended up using the top 4 bits of the ESID as part of the
proto VSID, which is wrong.
The current code use the top 4 context values (0x7fffc - 0x7ffff) for
the kernel. With those context IDs used for the kernel, we don't run
into VSID collisions because we get the same proto VSID irrespective of
whether we mask the ESID bits or not. eg:
ea = 0xf000000000000000
context = 0x7ffff
w/out masking:
proto_vsid = (0x7ffff << 6 | 0xf000000000000000 >> 40)
= (0x1ffffc0 | 0xf00000)
= 0x1ffffc0
with masking:
proto_vsid = (0x7ffff << 6 | ((0xf000000000000000 >> 40) & 0x3f))
= (0x1ffffc0 | (0xf00000 & 0x3f))
= 0x1ffffc0 | 0)
= 0x1ffffc0
So although there is no bug, the code is still overly subtle, so fix it
to save ourselves pain in future.
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
We now support THP with both 64k and 4K page size configuration
for radix. (hash only support THP with 64K page size). Hence we
will have CONFIG_TRANSPARENT_HUGEPAGE enabled for both PPC_64K
and PPC_4K config. Since we only need large pmd page table
with hash configuration (to store the slot information
in the second half of the table) restrict the large pmd page table
to THP and 64K configs.
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Reviewed-by: Anshuman Khandual <khandual@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
We don't do this for other page table entries. So lets keep this simple
and always return false for hugepd check on a 64K page size config.
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
When we switched to big endian page table, we never updated the hugepd
format such that it can work for both big endian and little endian
config. This patch series update hugepd format such that it is looked at
as __be64 value in big endian page table config.
This patch also switch hugepd_t.pd from signed long to unsigned long.
I did update the FSL hugepd_ok check to check for the top bit instead
of checking > 0.
Fixes: 5dc1ef858c12 ("powerpc/mm: Use big endian Linux page tables for book3s 64")
Cc: stable@vger.kernel.org # v4.7+
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
Memory hotplug is leading to hash page table calls, even on radix:
arch_add_memory
create_section_mapping
htab_bolt_mapping
BUG_ON(!ppc_md.hpte_insert);
To fix, refactor {create,remove}_section_mapping() into hash__ and
radix__ variants. Leave the radix versions stubbed for now.
Reviewed-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Acked-by: Balbir Singh <bsingharora@gmail.com>
Signed-off-by: Reza Arbab <arbab@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux
Pull powerpc updates from Michael Ellerman:
"Highlights include:
- Support for the kexec_file_load() syscall, which is a prereq for
secure and trusted boot.
- Prevent kernel execution of userspace on P9 Radix (similar to
SMEP/PXN).
- Sort the exception tables at build time, to save time at boot, and
store them as relative offsets to save space in the kernel image &
memory.
- Allow building the kernel with thin archives, which should allow us
to build an allyesconfig once some other fixes land.
- Build fixes to allow us to correctly rebuild when changing the
kernel endian from big to little or vice versa.
- Plumbing so that we can avoid doing a full mm TLB flush on P9
Radix.
- Initial stack protector support (-fstack-protector).
- Support for dumping the radix (aka. Linux) and hash page tables via
debugfs.
- Fix an oops in cxl coredump generation when cxl_get_fd() is used.
- Freescale updates from Scott: "Highlights include 8xx hugepage
support, qbman fixes/cleanup, device tree updates, and some misc
cleanup."
- Many and varied fixes and minor enhancements as always.
Thanks to:
Alexey Kardashevskiy, Andrew Donnellan, Aneesh Kumar K.V, Anshuman
Khandual, Anton Blanchard, Balbir Singh, Bartlomiej Zolnierkiewicz,
Christophe Jaillet, Christophe Leroy, Denis Kirjanov, Elimar
Riesebieter, Frederic Barrat, Gautham R. Shenoy, Geliang Tang, Geoff
Levand, Jack Miller, Johan Hovold, Lars-Peter Clausen, Libin,
Madhavan Srinivasan, Michael Neuling, Nathan Fontenot, Naveen N.
Rao, Nicholas Piggin, Pan Xinhui, Peter Senna Tschudin, Rashmica
Gupta, Rui Teng, Russell Currey, Scott Wood, Simon Guo, Suraj
Jitindar Singh, Thiago Jung Bauermann, Tobias Klauser, Vaibhav Jain"
[ And thanks to Michael, who took time off from a new baby to get this
pull request done. - Linus ]
* tag 'powerpc-4.10-1' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux: (174 commits)
powerpc/fsl/dts: add FMan node for t1042d4rdb
powerpc/fsl/dts: add sg_2500_aqr105_phy4 alias on t1024rdb
powerpc/fsl/dts: add QMan and BMan nodes on t1024
powerpc/fsl/dts: add QMan and BMan nodes on t1023
soc/fsl/qman: test: use DEFINE_SPINLOCK()
powerpc/fsl-lbc: use DEFINE_SPINLOCK()
powerpc/8xx: Implement support of hugepages
powerpc: get hugetlbpage handling more generic
powerpc: port 64 bits pgtable_cache to 32 bits
powerpc/boot: Request no dynamic linker for boot wrapper
soc/fsl/bman: Use resource_size instead of computation
soc/fsl/qe: use builtin_platform_driver
powerpc/fsl_pmc: use builtin_platform_driver
powerpc/83xx/suspend: use builtin_platform_driver
powerpc/ftrace: Fix the comments for ftrace_modify_code
powerpc/perf: macros for power9 format encoding
powerpc/perf: power9 raw event format encoding
powerpc/perf: update attribute_group data structure
powerpc/perf: factor out the event format field
powerpc/mm/iommu, vfio/spapr: Put pages on VFIO container shutdown
...
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/scottwood/linux into next
Freescale updates from Scott:
"Highlights include 8xx hugepage support, qbman fixes/cleanup, device
tree updates, and some misc cleanup."
|
|
Pull KVM updates from Paolo Bonzini:
"Small release, the most interesting stuff is x86 nested virt
improvements.
x86:
- userspace can now hide nested VMX features from guests
- nested VMX can now run Hyper-V in a guest
- support for AVX512_4VNNIW and AVX512_FMAPS in KVM
- infrastructure support for virtual Intel GPUs.
PPC:
- support for KVM guests on POWER9
- improved support for interrupt polling
- optimizations and cleanups.
s390:
- two small optimizations, more stuff is in flight and will be in
4.11.
ARM:
- support for the GICv3 ITS on 32bit platforms"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (94 commits)
arm64: KVM: pmu: Reset PMSELR_EL0.SEL to a sane value before entering the guest
KVM: arm/arm64: timer: Check for properly initialized timer on init
KVM: arm/arm64: vgic-v2: Limit ITARGETSR bits to number of VCPUs
KVM: x86: Handle the kthread worker using the new API
KVM: nVMX: invvpid handling improvements
KVM: nVMX: check host CR3 on vmentry and vmexit
KVM: nVMX: introduce nested_vmx_load_cr3 and call it on vmentry
KVM: nVMX: propagate errors from prepare_vmcs02
KVM: nVMX: fix CR3 load if L2 uses PAE paging and EPT
KVM: nVMX: load GUEST_EFER after GUEST_CR0 during emulated VM-entry
KVM: nVMX: generate MSR_IA32_CR{0,4}_FIXED1 from guest CPUID
KVM: nVMX: fix checks on CR{0,4} during virtual VMX operation
KVM: nVMX: support restore of VMX capability MSRs
KVM: nVMX: generate non-true VMX MSRs based on true versions
KVM: x86: Do not clear RFLAGS.TF when a singlestep trap occurs.
KVM: x86: Add kvm_skip_emulated_instruction and use it.
KVM: VMX: Move skip_emulated_instruction out of nested_vmx_check_vmcs12
KVM: VMX: Reorder some skip_emulated_instruction calls
KVM: x86: Add a return value to kvm_emulate_cpuid
KVM: PPC: Book3S: Move prototypes for KVM functions into kvm_ppc.h
...
|
|
Add arch specific callback in the generic THP page cache code that will
deposit and withdarw preallocated page table. Archs like ppc64 use this
preallocated table to store the hash pte slot information.
Testing:
kernel build of the patch series on tmpfs mounted with option huge=always
The related thp stat:
thp_fault_alloc 72939
thp_fault_fallback 60547
thp_collapse_alloc 603
thp_collapse_alloc_failed 0
thp_file_alloc 253763
thp_file_mapped 4251
thp_split_page 51518
thp_split_page_failed 1
thp_deferred_split_page 73566
thp_split_pmd 665
thp_zero_page_alloc 3
thp_zero_page_alloc_failed 0
[akpm@linux-foundation.org: remove unneeded parentheses, per Kirill]
Link: http://lkml.kernel.org/r/20161113150025.17942-2-aneesh.kumar@linux.vnet.ibm.com
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Michael Neuling <mikey@neuling.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Balbir Singh <bsingharora@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Independent of whether the vma is for anonymous memory, some arches like
ppc64 would like to override pmd_move_must_withdraw().
One option is to encapsulate the vma_is_anonymous() check for general
architectures inside pmd_move_must_withdraw() so that is always called
and architectures that need unconditional overriding can override this
function. ppc64 needs to override the function when the MMU is
configured to use hash PTE's.
[bsingharora@gmail.com: reworked changelog]
Link: http://lkml.kernel.org/r/20161113150025.17942-1-aneesh.kumar@linux.vnet.ibm.com
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Michael Ellerman <mpe@ellerman.id.au> (powerpc)
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Michael Neuling <mikey@neuling.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Balbir Singh <bsingharora@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Today powerpc64 uses a set of pgtable_caches while powerpc32 uses
standard pages when using 4k pages and a single pgtable_cache
if using other size pages.
In preparation of implementing huge pages on the 8xx, this patch
replaces the specific powerpc32 handling by the 64 bits approach.
This is done by:
* moving 64 bits pgtable_cache_add() and pgtable_cache_init()
in a new file called init-common.c
* modifying pgtable_cache_init() to also handle the case
without PMD
* removing the 32 bits version of pgtable_cache_add() and
pgtable_cache_init()
* copying related header contents from 64 bits into both the
book3s/32 and nohash/32 header files
On the 8xx, the following cache sizes will be used:
* 4k pages mode:
- PGT_CACHE(10) for PGD
- PGT_CACHE(3) for 512k hugepage tables
* 16k pages mode:
- PGT_CACHE(6) for PGD
- PGT_CACHE(7) for 512k hugepage tables
- PGT_CACHE(3) for 8M hugepage tables
Signed-off-by: Christophe Leroy <christophe.leroy@c-s.fr>
Reviewed-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: Scott Wood <oss@buserror.net>
|
|
This will improve the task exit case, by batching tlb invalidates.
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
When we are updating a pte, we just need to flush the tlb mapping
that pte. Right now we do a full mm flush because we don't track page
size. Now that we have page size details in pte use that to do the
optimized flush
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
When we are updating a pte, we just need to flush the tlb mapping
that pte. Right now we do a full mm flush because we don't track the page
size. Now that we have page size details in pte use that to do the
optimized flush
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|