diff options
Diffstat (limited to 'Documentation')
-rw-r--r-- | Documentation/arm/Samsung-S3C24XX/CPUfreq.txt | 75 | ||||
-rw-r--r-- | Documentation/filesystems/gfs2-uevents.txt | 100 | ||||
-rw-r--r-- | Documentation/filesystems/seq_file.txt | 2 | ||||
-rw-r--r-- | Documentation/flexible-arrays.txt | 99 | ||||
-rw-r--r-- | Documentation/input/sentelic.txt | 475 | ||||
-rw-r--r-- | Documentation/ioctl/ioctl-number.txt | 2 | ||||
-rw-r--r-- | Documentation/kernel-parameters.txt | 39 | ||||
-rw-r--r-- | Documentation/kvm/api.txt | 759 | ||||
-rw-r--r-- | Documentation/vm/slub.txt | 10 |
9 files changed, 1559 insertions, 2 deletions
diff --git a/Documentation/arm/Samsung-S3C24XX/CPUfreq.txt b/Documentation/arm/Samsung-S3C24XX/CPUfreq.txt new file mode 100644 index 000000000000..76b3a11e90be --- /dev/null +++ b/Documentation/arm/Samsung-S3C24XX/CPUfreq.txt @@ -0,0 +1,75 @@ + S3C24XX CPUfreq support + ======================= + +Introduction +------------ + + The S3C24XX series support a number of power saving systems, such as + the ability to change the core, memory and peripheral operating + frequencies. The core control is exported via the CPUFreq driver + which has a number of different manual or automatic controls over the + rate the core is running at. + + There are two forms of the driver depending on the specific CPU and + how the clocks are arranged. The first implementation used as single + PLL to feed the ARM, memory and peripherals via a series of dividers + and muxes and this is the implementation that is documented here. A + newer version where there is a seperate PLL and clock divider for the + ARM core is available as a seperate driver. + + +Layout +------ + + The code core manages the CPU specific drivers, any data that they + need to register and the interface to the generic drivers/cpufreq + system. Each CPU registers a driver to control the PLL, clock dividers + and anything else associated with it. Any board that wants to use this + framework needs to supply at least basic details of what is required. + + The core registers with drivers/cpufreq at init time if all the data + necessary has been supplied. + + +CPU support +----------- + + The support for each CPU depends on the facilities provided by the + SoC and the driver as each device has different PLL and clock chains + associated with it. + + +Slow Mode +--------- + + The SLOW mode where the PLL is turned off altogether and the + system is fed by the external crystal input is currently not + supported. + + +sysfs +----- + + The core code exports extra information via sysfs in the directory + devices/system/cpu/cpu0/arch-freq. + + +Board Support +------------- + + Each board that wants to use the cpufreq code must register some basic + information with the core driver to provide information about what the + board requires and any restrictions being placed on it. + + The board needs to supply information about whether it needs the IO bank + timings changing, any maximum frequency limits and information about the + SDRAM refresh rate. + + + + +Document Author +--------------- + +Ben Dooks, Copyright 2009 Simtec Electronics +Licensed under GPLv2 diff --git a/Documentation/filesystems/gfs2-uevents.txt b/Documentation/filesystems/gfs2-uevents.txt new file mode 100644 index 000000000000..fd966dc9979a --- /dev/null +++ b/Documentation/filesystems/gfs2-uevents.txt @@ -0,0 +1,100 @@ + uevents and GFS2 + ================== + +During the lifetime of a GFS2 mount, a number of uevents are generated. +This document explains what the events are and what they are used +for (by gfs_controld in gfs2-utils). + +A list of GFS2 uevents +----------------------- + +1. ADD + +The ADD event occurs at mount time. It will always be the first +uevent generated by the newly created filesystem. If the mount +is successful, an ONLINE uevent will follow. If it is not successful +then a REMOVE uevent will follow. + +The ADD uevent has two environment variables: SPECTATOR=[0|1] +and RDONLY=[0|1] that specify the spectator status (a read-only mount +with no journal assigned), and read-only (with journal assigned) status +of the filesystem respectively. + +2. ONLINE + +The ONLINE uevent is generated after a successful mount or remount. It +has the same environment variables as the ADD uevent. The ONLINE +uevent, along with the two environment variables for spectator and +RDONLY are a relatively recent addition (2.6.32-rc+) and will not +be generated by older kernels. + +3. CHANGE + +The CHANGE uevent is used in two places. One is when reporting the +successful mount of the filesystem by the first node (FIRSTMOUNT=Done). +This is used as a signal by gfs_controld that it is then ok for other +nodes in the cluster to mount the filesystem. + +The other CHANGE uevent is used to inform of the completion +of journal recovery for one of the filesystems journals. It has +two environment variables, JID= which specifies the journal id which +has just been recovered, and RECOVERY=[Done|Failed] to indicate the +success (or otherwise) of the operation. These uevents are generated +for every journal recovered, whether it is during the initial mount +process or as the result of gfs_controld requesting a specific journal +recovery via the /sys/fs/gfs2/<fsname>/lock_module/recovery file. + +Because the CHANGE uevent was used (in early versions of gfs_controld) +without checking the environment variables to discover the state, we +cannot add any more functions to it without running the risk of +someone using an older version of the user tools and breaking their +cluster. For this reason the ONLINE uevent was used when adding a new +uevent for a successful mount or remount. + +4. OFFLINE + +The OFFLINE uevent is only generated due to filesystem errors and is used +as part of the "withdraw" mechanism. Currently this doesn't give any +information about what the error is, which is something that needs to +be fixed. + +5. REMOVE + +The REMOVE uevent is generated at the end of an unsuccessful mount +or at the end of a umount of the filesystem. All REMOVE uevents will +have been preceeded by at least an ADD uevent for the same fileystem, +and unlike the other uevents is generated automatically by the kernel's +kobject subsystem. + + +Information common to all GFS2 uevents (uevent environment variables) +---------------------------------------------------------------------- + +1. LOCKTABLE= + +The LOCKTABLE is a string, as supplied on the mount command +line (locktable=) or via fstab. It is used as a filesystem label +as well as providing the information for a lock_dlm mount to be +able to join the cluster. + +2. LOCKPROTO= + +The LOCKPROTO is a string, and its value depends on what is set +on the mount command line, or via fstab. It will be either +lock_nolock or lock_dlm. In the future other lock managers +may be supported. + +3. JOURNALID= + +If a journal is in use by the filesystem (journals are not +assigned for spectator mounts) then this will give the +numeric journal id in all GFS2 uevents. + +4. UUID= + +With recent versions of gfs2-utils, mkfs.gfs2 writes a UUID +into the filesystem superblock. If it exists, this will +be included in every uevent relating to the filesystem. + + + diff --git a/Documentation/filesystems/seq_file.txt b/Documentation/filesystems/seq_file.txt index b843743aa0b5..0d15ebccf5b0 100644 --- a/Documentation/filesystems/seq_file.txt +++ b/Documentation/filesystems/seq_file.txt @@ -46,7 +46,7 @@ better to do. The file is seekable, in that one can do something like the following: dd if=/proc/sequence of=out1 count=1 - dd if=/proc/sequence skip=1 out=out2 count=1 + dd if=/proc/sequence skip=1 of=out2 count=1 Then concatenate the output files out1 and out2 and get the right result. Yes, it is a thoroughly useless module, but the point is to show diff --git a/Documentation/flexible-arrays.txt b/Documentation/flexible-arrays.txt new file mode 100644 index 000000000000..84eb26808dee --- /dev/null +++ b/Documentation/flexible-arrays.txt @@ -0,0 +1,99 @@ +Using flexible arrays in the kernel +Last updated for 2.6.31 +Jonathan Corbet <corbet@lwn.net> + +Large contiguous memory allocations can be unreliable in the Linux kernel. +Kernel programmers will sometimes respond to this problem by allocating +pages with vmalloc(). This solution not ideal, though. On 32-bit systems, +memory from vmalloc() must be mapped into a relatively small address space; +it's easy to run out. On SMP systems, the page table changes required by +vmalloc() allocations can require expensive cross-processor interrupts on +all CPUs. And, on all systems, use of space in the vmalloc() range +increases pressure on the translation lookaside buffer (TLB), reducing the +performance of the system. + +In many cases, the need for memory from vmalloc() can be eliminated by +piecing together an array from smaller parts; the flexible array library +exists to make this task easier. + +A flexible array holds an arbitrary (within limits) number of fixed-sized +objects, accessed via an integer index. Sparse arrays are handled +reasonably well. Only single-page allocations are made, so memory +allocation failures should be relatively rare. The down sides are that the +arrays cannot be indexed directly, individual object size cannot exceed the +system page size, and putting data into a flexible array requires a copy +operation. It's also worth noting that flexible arrays do no internal +locking at all; if concurrent access to an array is possible, then the +caller must arrange for appropriate mutual exclusion. + +The creation of a flexible array is done with: + + #include <linux/flex_array.h> + + struct flex_array *flex_array_alloc(int element_size, + unsigned int total, + gfp_t flags); + +The individual object size is provided by element_size, while total is the +maximum number of objects which can be stored in the array. The flags +argument is passed directly to the internal memory allocation calls. With +the current code, using flags to ask for high memory is likely to lead to +notably unpleasant side effects. + +Storing data into a flexible array is accomplished with a call to: + + int flex_array_put(struct flex_array *array, unsigned int element_nr, + void *src, gfp_t flags); + +This call will copy the data from src into the array, in the position +indicated by element_nr (which must be less than the maximum specified when +the array was created). If any memory allocations must be performed, flags +will be used. The return value is zero on success, a negative error code +otherwise. + +There might possibly be a need to store data into a flexible array while +running in some sort of atomic context; in this situation, sleeping in the +memory allocator would be a bad thing. That can be avoided by using +GFP_ATOMIC for the flags value, but, often, there is a better way. The +trick is to ensure that any needed memory allocations are done before +entering atomic context, using: + + int flex_array_prealloc(struct flex_array *array, unsigned int start, + unsigned int end, gfp_t flags); + +This function will ensure that memory for the elements indexed in the range +defined by start and end has been allocated. Thereafter, a +flex_array_put() call on an element in that range is guaranteed not to +block. + +Getting data back out of the array is done with: + + void *flex_array_get(struct flex_array *fa, unsigned int element_nr); + +The return value is a pointer to the data element, or NULL if that +particular element has never been allocated. + +Note that it is possible to get back a valid pointer for an element which +has never been stored in the array. Memory for array elements is allocated +one page at a time; a single allocation could provide memory for several +adjacent elements. The flexible array code does not know if a specific +element has been written; it only knows if the associated memory is +present. So a flex_array_get() call on an element which was never stored +in the array has the potential to return a pointer to random data. If the +caller does not have a separate way to know which elements were actually +stored, it might be wise, at least, to add GFP_ZERO to the flags argument +to ensure that all elements are zeroed. + +There is no way to remove a single element from the array. It is possible, +though, to remove all elements with a call to: + + void flex_array_free_parts(struct flex_array *array); + +This call frees all elements, but leaves the array itself in place. +Freeing the entire array is done with: + + void flex_array_free(struct flex_array *array); + +As of this writing, there are no users of flexible arrays in the mainline +kernel. The functions described here are also not exported to modules; +that will probably be fixed when somebody comes up with a need for it. diff --git a/Documentation/input/sentelic.txt b/Documentation/input/sentelic.txt new file mode 100644 index 000000000000..f7160a2fb6a2 --- /dev/null +++ b/Documentation/input/sentelic.txt @@ -0,0 +1,475 @@ +Copyright (C) 2002-2008 Sentelic Corporation. +Last update: Oct-31-2008 + +============================================================================== +* Finger Sensing Pad Intellimouse Mode(scrolling wheel, 4th and 5th buttons) +============================================================================== +A) MSID 4: Scrolling wheel mode plus Forward page(4th button) and Backward + page (5th button) +@1. Set sample rate to 200; +@2. Set sample rate to 200; +@3. Set sample rate to 80; +@4. Issuing the "Get device ID" command (0xF2) and waits for the response; +@5. FSP will respond 0x04. + +Packet 1 + Bit 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 +BYTE |---------------|BYTE |---------------|BYTE|---------------|BYTE|---------------| + 1 |Y|X|y|x|1|M|R|L| 2 |X|X|X|X|X|X|X|X| 3 |Y|Y|Y|Y|Y|Y|Y|Y| 4 | | |B|F|W|W|W|W| + |---------------| |---------------| |---------------| |---------------| + +Byte 1: Bit7 => Y overflow + Bit6 => X overflow + Bit5 => Y sign bit + Bit4 => X sign bit + Bit3 => 1 + Bit2 => Middle Button, 1 is pressed, 0 is not pressed. + Bit1 => Right Button, 1 is pressed, 0 is not pressed. + Bit0 => Left Button, 1 is pressed, 0 is not pressed. +Byte 2: X Movement(9-bit 2's complement integers) +Byte 3: Y Movement(9-bit 2's complement integers) +Byte 4: Bit3~Bit0 => the scrolling wheel's movement since the last data report. + valid values, -8 ~ +7 + Bit4 => 1 = 4th mouse button is pressed, Forward one page. + 0 = 4th mouse button is not pressed. + Bit5 => 1 = 5th mouse button is pressed, Backward one page. + 0 = 5th mouse button is not pressed. + +B) MSID 6: Horizontal and Vertical scrolling. +@ Set bit 1 in register 0x40 to 1 + +# FSP replaces scrolling wheel's movement as 4 bits to show horizontal and + vertical scrolling. + +Packet 1 + Bit 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 +BYTE |---------------|BYTE |---------------|BYTE|---------------|BYTE|---------------| + 1 |Y|X|y|x|1|M|R|L| 2 |X|X|X|X|X|X|X|X| 3 |Y|Y|Y|Y|Y|Y|Y|Y| 4 | | |B|F|l|r|u|d| + |---------------| |---------------| |---------------| |---------------| + +Byte 1: Bit7 => Y overflow + Bit6 => X overflow + Bit5 => Y sign bit + Bit4 => X sign bit + Bit3 => 1 + Bit2 => Middle Button, 1 is pressed, 0 is not pressed. + Bit1 => Right Button, 1 is pressed, 0 is not pressed. + Bit0 => Left Button, 1 is pressed, 0 is not pressed. +Byte 2: X Movement(9-bit 2's complement integers) +Byte 3: Y Movement(9-bit 2's complement integers) +Byte 4: Bit0 => the Vertical scrolling movement downward. + Bit1 => the Vertical scrolling movement upward. + Bit2 => the Vertical scrolling movement rightward. + Bit3 => the Vertical scrolling movement leftward. + Bit4 => 1 = 4th mouse button is pressed, Forward one page. + 0 = 4th mouse button is not pressed. + Bit5 => 1 = 5th mouse button is pressed, Backward one page. + 0 = 5th mouse button is not pressed. + +C) MSID 7: +# FSP uses 2 packets(8 Bytes) data to represent Absolute Position + so we have PACKET NUMBER to identify packets. + If PACKET NUMBER is 0, the packet is Packet 1. + If PACKET NUMBER is 1, the packet is Packet 2. + Please count this number in program. + +# MSID6 special packet will be enable at the same time when enable MSID 7. + +============================================================================== +* Absolute position for STL3886-G0. +============================================================================== +@ Set bit 2 or 3 in register 0x40 to 1 +@ Set bit 6 in register 0x40 to 1 + +Packet 1 (ABSOLUTE POSITION) + Bit 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 +BYTE |---------------|BYTE |---------------|BYTE|---------------|BYTE|---------------| + 1 |0|1|V|1|1|M|R|L| 2 |X|X|X|X|X|X|X|X| 3 |Y|Y|Y|Y|Y|Y|Y|Y| 4 |r|l|d|u|X|X|Y|Y| + |---------------| |---------------| |---------------| |---------------| + +Byte 1: Bit7~Bit6 => 00, Normal data packet + => 01, Absolute coordination packet + => 10, Notify packet + Bit5 => valid bit + Bit4 => 1 + Bit3 => 1 + Bit2 => Middle Button, 1 is pressed, 0 is not pressed. + Bit1 => Right Button, 1 is pressed, 0 is not pressed. + Bit0 => Left Button, 1 is pressed, 0 is not pressed. +Byte 2: X coordinate (xpos[9:2]) +Byte 3: Y coordinate (ypos[9:2]) +Byte 4: Bit1~Bit0 => Y coordinate (xpos[1:0]) + Bit3~Bit2 => X coordinate (ypos[1:0]) + Bit4 => scroll up + Bit5 => scroll down + Bit6 => scroll left + Bit7 => scroll right + +Notify Packet for G0 + Bit 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 +BYTE |---------------|BYTE |---------------|BYTE|---------------|BYTE|---------------| + 1 |1|0|0|1|1|M|R|L| 2 |C|C|C|C|C|C|C|C| 3 |M|M|M|M|M|M|M|M| 4 |0|0|0|0|0|0|0|0| + |---------------| |---------------| |---------------| |---------------| + +Byte 1: Bit7~Bit6 => 00, Normal data packet + => 01, Absolute coordination packet + => 10, Notify packet + Bit5 => 0 + Bit4 => 1 + Bit3 => 1 + Bit2 => Middle Button, 1 is pressed, 0 is not pressed. + Bit1 => Right Button, 1 is pressed, 0 is not pressed. + Bit0 => Left Button, 1 is pressed, 0 is not pressed. +Byte 2: Message Type => 0x5A (Enable/Disable status packet) + Mode Type => 0xA5 (Normal/Icon mode status) +Byte 3: Message Type => 0x00 (Disabled) + => 0x01 (Enabled) + Mode Type => 0x00 (Normal) + => 0x01 (Icon) +Byte 4: Bit7~Bit0 => Don't Care + +============================================================================== +* Absolute position for STL3888-A0. +============================================================================== +Packet 1 (ABSOLUTE POSITION) + Bit 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 +BYTE |---------------|BYTE |---------------|BYTE|---------------|BYTE|---------------| + 1 |0|1|V|A|1|L|0|1| 2 |X|X|X|X|X|X|X|X| 3 |Y|Y|Y|Y|Y|Y|Y|Y| 4 |x|x|y|y|X|X|Y|Y| + |---------------| |---------------| |---------------| |---------------| + +Byte 1: Bit7~Bit6 => 00, Normal data packet + => 01, Absolute coordination packet + => 10, Notify packet + Bit5 => Valid bit, 0 means that the coordinate is invalid or finger up. + When both fingers are up, the last two reports have zero valid + bit. + Bit4 => arc + Bit3 => 1 + Bit2 => Left Button, 1 is pressed, 0 is released. + Bit1 => 0 + Bit0 => 1 +Byte 2: X coordinate (xpos[9:2]) +Byte 3: Y coordinate (ypos[9:2]) +Byte 4: Bit1~Bit0 => Y coordinate (xpos[1:0]) + Bit3~Bit2 => X coordinate (ypos[1:0]) + Bit5~Bit4 => y1_g + Bit7~Bit6 => x1_g + +Packet 2 (ABSOLUTE POSITION) + Bit 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 +BYTE |---------------|BYTE |---------------|BYTE|---------------|BYTE|---------------| + 1 |0|1|V|A|1|R|1|0| 2 |X|X|X|X|X|X|X|X| 3 |Y|Y|Y|Y|Y|Y|Y|Y| 4 |x|x|y|y|X|X|Y|Y| + |---------------| |---------------| |---------------| |---------------| + +Byte 1: Bit7~Bit6 => 00, Normal data packet + => 01, Absolute coordinates packet + => 10, Notify packet + Bit5 => Valid bit, 0 means that the coordinate is invalid or finger up. + When both fingers are up, the last two reports have zero valid + bit. + Bit4 => arc + Bit3 => 1 + Bit2 => Right Button, 1 is pressed, 0 is released. + Bit1 => 1 + Bit0 => 0 +Byte 2: X coordinate (xpos[9:2]) +Byte 3: Y coordinate (ypos[9:2]) +Byte 4: Bit1~Bit0 => Y coordinate (xpos[1:0]) + Bit3~Bit2 => X coordinate (ypos[1:0]) + Bit5~Bit4 => y2_g + Bit7~Bit6 => x2_g + +Notify Packet for STL3888-A0 + Bit 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 +BYTE |---------------|BYTE |---------------|BYTE|---------------|BYTE|---------------| + 1 |1|0|1|P|1|M|R|L| 2 |C|C|C|C|C|C|C|C| 3 |0|0|F|F|0|0|0|i| 4 |r|l|d|u|0|0|0|0| + |---------------| |---------------| |---------------| |---------------| + +Byte 1: Bit7~Bit6 => 00, Normal data packet + => 01, Absolute coordination packet + => 10, Notify packet + Bit5 => 1 + Bit4 => when in absolute coordinates mode (valid when EN_PKT_GO is 1): + 0: left button is generated by the on-pad command + 1: left button is generated by the external button + Bit3 => 1 + Bit2 => Middle Button, 1 is pressed, 0 is not pressed. + Bit1 => Right Button, 1 is pressed, 0 is not pressed. + Bit0 => Left Button, 1 is pressed, 0 is not pressed. +Byte 2: Message Type => 0xB7 (Multi Finger, Multi Coordinate mode) +Byte 3: Bit7~Bit6 => Don't care + Bit5~Bit4 => Number of fingers + Bit3~Bit1 => Reserved + Bit0 => 1: enter gesture mode; 0: leaving gesture mode +Byte 4: Bit7 => scroll right button + Bit6 => scroll left button + Bit5 => scroll down button + Bit4 => scroll up button + * Note that if gesture and additional button (Bit4~Bit7) + happen at the same time, the button information will not + be sent. + Bit3~Bit0 => Reserved + +Sample sequence of Multi-finger, Multi-coordinate mode: + + notify packet (valid bit == 1), abs pkt 1, abs pkt 2, abs pkt 1, + abs pkt 2, ..., notify packet(valid bit == 0) + +============================================================================== +* FSP Enable/Disable packet +============================================================================== + Bit 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 +BYTE |---------------|BYTE |---------------|BYTE|---------------|BYTE|---------------| + 1 |Y|X|0|0|1|M|R|L| 2 |0|1|0|1|1|0|1|E| 3 | | | | | | | | | 4 | | | | | | | | | + |---------------| |---------------| |---------------| |---------------| + +FSP will send out enable/disable packet when FSP receive PS/2 enable/disable +command. Host will receive the packet which Middle, Right, Left button will +be set. The packet only use byte 0 and byte 1 as a pattern of original packet. +Ignore the other bytes of the packet. + +Byte 1: Bit7 => 0, Y overflow + Bit6 => 0, X overflow + Bit5 => 0, Y sign bit + Bit4 => 0, X sign bit + Bit3 => 1 + Bit2 => 1, Middle Button + Bit1 => 1, Right Button + Bit0 => 1, Left Button +Byte 2: Bit7~1 => (0101101b) + Bit0 => 1 = Enable + 0 = Disable +Byte 3: Don't care +Byte 4: Don't care (MOUSE ID 3, 4) +Byte 5~8: Don't care (Absolute packet) + +============================================================================== +* PS/2 Command Set +============================================================================== + +FSP supports basic PS/2 commanding set and modes, refer to following URL for +details about PS/2 commands: + +http://www.computer-engineering.org/index.php?title=PS/2_Mouse_Interface + +============================================================================== +* Programming Sequence for Determining Packet Parsing Flow +============================================================================== +1. Identify FSP by reading device ID(0x00) and version(0x01) register + +2. Determine number of buttons by reading status2 (0x0b) register + + buttons = reg[0x0b] & 0x30 + + if buttons == 0x30 or buttons == 0x20: + # two/four buttons + Refer to 'Finger Sensing Pad PS/2 Mouse Intellimouse' + section A for packet parsing detail(ignore byte 4, bit ~ 7) + elif buttons == 0x10: + # 6 buttons + Refer to 'Finger Sensing Pad PS/2 Mouse Intellimouse' + section B for packet parsing detail + elif buttons == 0x00: + # 6 buttons + Refer to 'Finger Sensing Pad PS/2 Mouse Intellimouse' + section A for packet parsing detail + +============================================================================== +* Programming Sequence for Register Reading/Writing +============================================================================== + +Register inversion requirement: + + Following values needed to be inverted(the '~' operator in C) before being +sent to FSP: + + 0xe9, 0xee, 0xf2 and 0xff. + +Register swapping requirement: + + Following values needed to have their higher 4 bits and lower 4 bits being +swapped before being sent to FSP: + + 10, 20, 40, 60, 80, 100 and 200. + +Register reading sequence: + + 1. send 0xf3 PS/2 command to FSP; + + 2. send 0x66 PS/2 command to FSP; + + 3. send 0x88 PS/2 command to FSP; + + 4. send 0xf3 PS/2 command to FSP; + + 5. if the register address being to read is not required to be + inverted(refer to the 'Register inversion requirement' section), + goto step 6 + + 5a. send 0x68 PS/2 command to FSP; + + 5b. send the inverted register address to FSP and goto step 8; + + 6. if the register address being to read is not required to be + swapped(refer to the 'Register swapping requirement' section), + goto step 7 + + 6a. send 0xcc PS/2 command to FSP; + + 6b. send the swapped register address to FSP and goto step 8; + + 7. send 0x66 PS/2 command to FSP; + + 7a. send the original register address to FSP and goto step 8; + + 8. send 0xe9(status request) PS/2 command to FSP; + + 9. the response read from FSP should be the requested register value. + +Register writing sequence: + + 1. send 0xf3 PS/2 command to FSP; + + 2. if the register address being to write is not required to be + inverted(refer to the 'Register inversion requirement' section), + goto step 3 + + 2a. send 0x74 PS/2 command to FSP; + + 2b. send the inverted register address to FSP and goto step 5; + + 3. if the register address being to write is not required to be + swapped(refer to the 'Register swapping requirement' section), + goto step 4 + + 3a. send 0x77 PS/2 command to FSP; + + 3b. send the swapped register address to FSP and goto step 5; + + 4. send 0x55 PS/2 command to FSP; + + 4a. send the register address to FSP and goto step 5; + + 5. send 0xf3 PS/2 command to FSP; + + 6. if the register value being to write is not required to be + inverted(refer to the 'Register inversion requirement' section), + goto step 7 + + 6a. send 0x47 PS/2 command to FSP; + + 6b. send the inverted register value to FSP and goto step 9; + + 7. if the register value being to write is not required to be + swapped(refer to the 'Register swapping requirement' section), + goto step 8 + + 7a. send 0x44 PS/2 command to FSP; + + 7b. send the swapped register value to FSP and goto step 9; + + 8. send 0x33 PS/2 command to FSP; + + 8a. send the register value to FSP; + + 9. the register writing sequence is completed. + +============================================================================== +* Register Listing +============================================================================== + +offset width default r/w name +0x00 bit7~bit0 0x01 RO device ID + +0x01 bit7~bit0 0xc0 RW version ID + +0x02 bit7~bit0 0x01 RO vendor ID + +0x03 bit7~bit0 0x01 RO product ID + +0x04 bit3~bit0 0x01 RW revision ID + +0x0b RO test mode status 1 + bit3 1 RO 0: rotate 180 degree, 1: no rotation + + bit5~bit4 RO number of buttons + 11 => 2, lbtn/rbtn + 10 => 4, lbtn/rbtn/scru/scrd + 01 => 6, lbtn/rbtn/scru/scrd/scrl/scrr + 00 => 6, lbtn/rbtn/scru/scrd/fbtn/bbtn + +0x0f RW register file page control + bit0 0 RW 1 to enable page 1 register files + +0x10 RW system control 1 + bit0 1 RW Reserved, must be 1 + bit1 0 RW Reserved, must be 0 + bit4 1 RW Reserved, must be 0 + bit5 0 RW register clock gating enable + 0: read only, 1: read/write enable + (Note that following registers does not require clock gating being + enabled prior to write: 05 06 07 08 09 0c 0f 10 11 12 16 17 18 23 2e + 40 41 42 43.) + +0x31 RW on-pad command detection + bit7 0 RW on-pad command left button down tag + enable + 0: disable, 1: enable + +0x34 RW on-pad command control 5 + bit4~bit0 0x05 RW XLO in 0s/4/1, so 03h = 0010.1b = 2.5 + (Note that position unit is in 0.5 scanline) + + bit7 0 RW on-pad tap zone enable + 0: disable, 1: enable + +0x35 RW on-pad command control 6 + bit4~bit0 0x1d RW XHI in 0s/4/1, so 19h = 1100.1b = 12.5 + (Note that position unit is in 0.5 scanline) + +0x36 RW on-pad command control 7 + bit4~bit0 0x04 RW YLO in 0s/4/1, so 03h = 0010.1b = 2.5 + (Note that position unit is in 0.5 scanline) + +0x37 RW on-pad command control 8 + bit4~bit0 0x13 RW YHI in 0s/4/1, so 11h = 1000.1b = 8.5 + (Note that position unit is in 0.5 scanline) + +0x40 RW system control 5 + bit1 0 RW FSP Intellimouse mode enable + 0: disable, 1: enable + + bit2 0 RW movement + abs. coordinate mode enable + 0: disable, 1: enable + (Note that this function has the functionality of bit 1 even when + bit 1 is not set. However, the format is different from that of bit 1. + In addition, when bit 1 and bit 2 are set at the same time, bit 2 will + override bit 1.) + + bit3 0 RW abs. coordinate only mode enable + 0: disable, 1: enable + (Note that this function has the functionality of bit 1 even when + bit 1 is not set. However, the format is different from that of bit 1. + In addition, when bit 1, bit 2 and bit 3 are set at the same time, + bit 3 will override bit 1 and 2.) + + bit5 0 RW auto switch enable + 0: disable, 1: enable + + bit6 0 RW G0 abs. + notify packet format enable + 0: disable, 1: enable + (Note that the absolute/relative coordinate output still depends on + bit 2 and 3. That is, if any of those bit is 1, host will receive + absolute coordinates; otherwise, host only receives packets with + relative coordinate.) + +0x43 RW on-pad control + bit0 0 RW on-pad control enable + 0: disable, 1: enable + (Note that if this bit is cleared, bit 3/5 will be ineffective) + + bit3 0 RW on-pad fix vertical scrolling enable + 0: disable, 1: enable + + bit5 0 RW on-pad fix horizontal scrolling enable + 0: disable, 1: enable diff --git a/Documentation/ioctl/ioctl-number.txt b/Documentation/ioctl/ioctl-number.txt index 1c058b552e93..aafca0a8f66a 100644 --- a/Documentation/ioctl/ioctl-number.txt +++ b/Documentation/ioctl/ioctl-number.txt @@ -193,7 +193,7 @@ Code Seq# Include File Comments 0xAD 00 Netfilter device in development: <mailto:rusty@rustcorp.com.au> 0xAE all linux/kvm.h Kernel-based Virtual Machine - <mailto:kvm-devel@lists.sourceforge.net> + <mailto:kvm@vger.kernel.org> 0xB0 all RATIO devices in development: <mailto:vgo@ratio.de> 0xB1 00-1F PPPoX <mailto:mostrows@styx.uwaterloo.ca> diff --git a/Documentation/kernel-parameters.txt b/Documentation/kernel-parameters.txt index cb3a169e372a..3a238644c811 100644 --- a/Documentation/kernel-parameters.txt +++ b/Documentation/kernel-parameters.txt @@ -57,6 +57,7 @@ parameter is applicable: ISAPNP ISA PnP code is enabled. ISDN Appropriate ISDN support is enabled. JOY Appropriate joystick support is enabled. + KVM Kernel Virtual Machine support is enabled. LIBATA Libata driver is enabled LP Printer support is enabled. LOOP Loopback device support is enabled. @@ -1098,6 +1099,44 @@ and is between 256 and 4096 characters. It is defined in the file kstack=N [X86] Print N words from the kernel stack in oops dumps. + kvm.ignore_msrs=[KVM] Ignore guest accesses to unhandled MSRs. + Default is 0 (don't ignore, but inject #GP) + + kvm.oos_shadow= [KVM] Disable out-of-sync shadow paging. + Default is 1 (enabled) + + kvm-amd.nested= [KVM,AMD] Allow nested virtualization in KVM/SVM. + Default is 0 (off) + + kvm-amd.npt= [KVM,AMD] Disable nested paging (virtualized MMU) + for all guests. + Default is 1 (enabled) if in 64bit or 32bit-PAE mode + + kvm-intel.bypass_guest_pf= + [KVM,Intel] Disables bypassing of guest page faults + on Intel chips. Default is 1 (enabled) + + kvm-intel.ept= [KVM,Intel] Disable extended page tables + (virtualized MMU) support on capable Intel chips. + Default is 1 (enabled) + + kvm-intel.emulate_invalid_guest_state= + [KVM,Intel] Enable emulation of invalid guest states + Default is 0 (disabled) + + kvm-intel.flexpriority= + [KVM,Intel] Disable FlexPriority feature (TPR shadow). + Default is 1 (enabled) + + kvm-intel.unrestricted_guest= + [KVM,Intel] Disable unrestricted guest feature + (virtualized real and unpaged mode) on capable + Intel chips. Default is 1 (enabled) + + kvm-intel.vpid= [KVM,Intel] Disable Virtual Processor Identification + feature (tagged TLBs) on capable Intel chips. + Default is 1 (enabled) + l2cr= [PPC] l3cr= [PPC] diff --git a/Documentation/kvm/api.txt b/Documentation/kvm/api.txt new file mode 100644 index 000000000000..5a4bc8cf6d04 --- /dev/null +++ b/Documentation/kvm/api.txt @@ -0,0 +1,759 @@ +The Definitive KVM (Kernel-based Virtual Machine) API Documentation +=================================================================== + +1. General description + +The kvm API is a set of ioctls that are issued to control various aspects +of a virtual machine. The ioctls belong to three classes + + - System ioctls: These query and set global attributes which affect the + whole kvm subsystem. In addition a system ioctl is used to create + virtual machines + + - VM ioctls: These query and set attributes that affect an entire virtual + machine, for example memory layout. In addition a VM ioctl is used to + create virtual cpus (vcpus). + + Only run VM ioctls from the same process (address space) that was used + to create the VM. + + - vcpu ioctls: These query and set attributes that control the operation + of a single virtual cpu. + + Only run vcpu ioctls from the same thread that was used to create the + vcpu. + +2. File descritpors + +The kvm API is centered around file descriptors. An initial +open("/dev/kvm") obtains a handle to the kvm subsystem; this handle +can be used to issue system ioctls. A KVM_CREATE_VM ioctl on this +handle will create a VM file descripror which can be used to issue VM +ioctls. A KVM_CREATE_VCPU ioctl on a VM fd will create a virtual cpu +and return a file descriptor pointing to it. Finally, ioctls on a vcpu +fd can be used to control the vcpu, including the important task of +actually running guest code. + +In general file descriptors can be migrated among processes by means +of fork() and the SCM_RIGHTS facility of unix domain socket. These +kinds of tricks are explicitly not supported by kvm. While they will +not cause harm to the host, their actual behavior is not guaranteed by +the API. The only supported use is one virtual machine per process, +and one vcpu per thread. + +3. Extensions + +As of Linux 2.6.22, the KVM ABI has been stabilized: no backward +incompatible change are allowed. However, there is an extension +facility that allows backward-compatible extensions to the API to be +queried and used. + +The extension mechanism is not based on on the Linux version number. +Instead, kvm defines extension identifiers and a facility to query +whether a particular extension identifier is available. If it is, a +set of ioctls is available for application use. + +4. API description + +This section describes ioctls that can be used to control kvm guests. +For each ioctl, the following information is provided along with a +description: + + Capability: which KVM extension provides this ioctl. Can be 'basic', + which means that is will be provided by any kernel that supports + API version 12 (see section 4.1), or a KVM_CAP_xyz constant, which + means availability needs to be checked with KVM_CHECK_EXTENSION + (see section 4.4). + + Architectures: which instruction set architectures provide this ioctl. + x86 includes both i386 and x86_64. + + Type: system, vm, or vcpu. + + Parameters: what parameters are accepted by the ioctl. + + Returns: the return value. General error numbers (EBADF, ENOMEM, EINVAL) + are not detailed, but errors with specific meanings are. + +4.1 KVM_GET_API_VERSION + +Capability: basic +Architectures: all +Type: system ioctl +Parameters: none +Returns: the constant KVM_API_VERSION (=12) + +This identifies the API version as the stable kvm API. It is not +expected that this number will change. However, Linux 2.6.20 and +2.6.21 report earlier versions; these are not documented and not +supported. Applications should refuse to run if KVM_GET_API_VERSION +returns a value other than 12. If this check passes, all ioctls +described as 'basic' will be available. + +4.2 KVM_CREATE_VM + +Capability: basic +Architectures: all +Type: system ioctl +Parameters: none +Returns: a VM fd that can be used to control the new virtual machine. + +The new VM has no virtual cpus and no memory. An mmap() of a VM fd +will access the virtual machine's physical address space; offset zero +corresponds to guest physical address zero. Use of mmap() on a VM fd +is discouraged if userspace memory allocation (KVM_CAP_USER_MEMORY) is +available. + +4.3 KVM_GET_MSR_INDEX_LIST + +Capability: basic +Architectures: x86 +Type: system +Parameters: struct kvm_msr_list (in/out) +Returns: 0 on success; -1 on error +Errors: + E2BIG: the msr index list is to be to fit in the array specified by + the user. + +struct kvm_msr_list { + __u32 nmsrs; /* number of msrs in entries */ + __u32 indices[0]; +}; + +This ioctl returns the guest msrs that are supported. The list varies +by kvm version and host processor, but does not change otherwise. The +user fills in the size of the indices array in nmsrs, and in return +kvm adjusts nmsrs to reflect the actual number of msrs and fills in +the indices array with their numbers. + +4.4 KVM_CHECK_EXTENSION + +Capability: basic +Architectures: all +Type: system ioctl +Parameters: extension identifier (KVM_CAP_*) +Returns: 0 if unsupported; 1 (or some other positive integer) if supported + +The API allows the application to query about extensions to the core +kvm API. Userspace passes an extension identifier (an integer) and +receives an integer that describes the extension availability. +Generally 0 means no and 1 means yes, but some extensions may report +additional information in the integer return value. + +4.5 KVM_GET_VCPU_MMAP_SIZE + +Capability: basic +Architectures: all +Type: system ioctl +Parameters: none +Returns: size of vcpu mmap area, in bytes + +The KVM_RUN ioctl (cf.) communicates with userspace via a shared +memory region. This ioctl returns the size of that region. See the +KVM_RUN documentation for details. + +4.6 KVM_SET_MEMORY_REGION + +Capability: basic +Architectures: all +Type: vm ioctl +Parameters: struct kvm_memory_region (in) +Returns: 0 on success, -1 on error + +struct kvm_memory_region { + __u32 slot; + __u32 flags; + __u64 guest_phys_addr; + __u64 memory_size; /* bytes */ +}; + +/* for kvm_memory_region::flags */ +#define KVM_MEM_LOG_DIRTY_PAGES 1UL + +This ioctl allows the user to create or modify a guest physical memory +slot. When changing an existing slot, it may be moved in the guest +physical memory space, or its flags may be modified. It may not be +resized. Slots may not overlap. + +The flags field supports just one flag, KVM_MEM_LOG_DIRTY_PAGES, which +instructs kvm to keep track of writes to memory within the slot. See +the KVM_GET_DIRTY_LOG ioctl. + +It is recommended to use the KVM_SET_USER_MEMORY_REGION ioctl instead +of this API, if available. This newer API allows placing guest memory +at specified locations in the host address space, yielding better +control and easy access. + +4.6 KVM_CREATE_VCPU + +Capability: basic +Architectures: all +Type: vm ioctl +Parameters: vcpu id (apic id on x86) +Returns: vcpu fd on success, -1 on error + +This API adds a vcpu to a virtual machine. The vcpu id is a small integer +in the range [0, max_vcpus). + +4.7 KVM_GET_DIRTY_LOG (vm ioctl) + +Capability: basic +Architectures: x86 +Type: vm ioctl +Parameters: struct kvm_dirty_log (in/out) +Returns: 0 on success, -1 on error + +/* for KVM_GET_DIRTY_LOG */ +struct kvm_dirty_log { + __u32 slot; + __u32 padding; + union { + void __user *dirty_bitmap; /* one bit per page */ + __u64 padding; + }; +}; + +Given a memory slot, return a bitmap containing any pages dirtied +since the last call to this ioctl. Bit 0 is the first page in the +memory slot. Ensure the entire structure is cleared to avoid padding +issues. + +4.8 KVM_SET_MEMORY_ALIAS + +Capability: basic +Architectures: x86 +Type: vm ioctl +Parameters: struct kvm_memory_alias (in) +Returns: 0 (success), -1 (error) + +struct kvm_memory_alias { + __u32 slot; /* this has a different namespace than memory slots */ + __u32 flags; + __u64 guest_phys_addr; + __u64 memory_size; + __u64 target_phys_addr; +}; + +Defines a guest physical address space region as an alias to another +region. Useful for aliased address, for example the VGA low memory +window. Should not be used with userspace memory. + +4.9 KVM_RUN + +Capability: basic +Architectures: all +Type: vcpu ioctl +Parameters: none +Returns: 0 on success, -1 on error +Errors: + EINTR: an unmasked signal is pending + +This ioctl is used to run a guest virtual cpu. While there are no +explicit parameters, there is an implicit parameter block that can be +obtained by mmap()ing the vcpu fd at offset 0, with the size given by +KVM_GET_VCPU_MMAP_SIZE. The parameter block is formatted as a 'struct +kvm_run' (see below). + +4.10 KVM_GET_REGS + +Capability: basic +Architectures: all +Type: vcpu ioctl +Parameters: struct kvm_regs (out) +Returns: 0 on success, -1 on error + +Reads the general purpose registers from the vcpu. + +/* x86 */ +struct kvm_regs { + /* out (KVM_GET_REGS) / in (KVM_SET_REGS) */ + __u64 rax, rbx, rcx, rdx; + __u64 rsi, rdi, rsp, rbp; + __u64 r8, r9, r10, r11; + __u64 r12, r13, r14, r15; + __u64 rip, rflags; +}; + +4.11 KVM_SET_REGS + +Capability: basic +Architectures: all +Type: vcpu ioctl +Parameters: struct kvm_regs (in) +Returns: 0 on success, -1 on error + +Writes the general purpose registers into the vcpu. + +See KVM_GET_REGS for the data structure. + +4.12 KVM_GET_SREGS + +Capability: basic +Architectures: x86 +Type: vcpu ioctl +Parameters: struct kvm_sregs (out) +Returns: 0 on success, -1 on error + +Reads special registers from the vcpu. + +/* x86 */ +struct kvm_sregs { + struct kvm_segment cs, ds, es, fs, gs, ss; + struct kvm_segment tr, ldt; + struct kvm_dtable gdt, idt; + __u64 cr0, cr2, cr3, cr4, cr8; + __u64 efer; + __u64 apic_base; + __u64 interrupt_bitmap[(KVM_NR_INTERRUPTS + 63) / 64]; +}; + +interrupt_bitmap is a bitmap of pending external interrupts. At most +one bit may be set. This interrupt has been acknowledged by the APIC +but not yet injected into the cpu core. + +4.13 KVM_SET_SREGS + +Capability: basic +Architectures: x86 +Type: vcpu ioctl +Parameters: struct kvm_sregs (in) +Returns: 0 on success, -1 on error + +Writes special registers into the vcpu. See KVM_GET_SREGS for the +data structures. + +4.14 KVM_TRANSLATE + +Capability: basic +Architectures: x86 +Type: vcpu ioctl +Parameters: struct kvm_translation (in/out) +Returns: 0 on success, -1 on error + +Translates a virtual address according to the vcpu's current address +translation mode. + +struct kvm_translation { + /* in */ + __u64 linear_address; + + /* out */ + __u64 physical_address; + __u8 valid; + __u8 writeable; + __u8 usermode; + __u8 pad[5]; +}; + +4.15 KVM_INTERRUPT + +Capability: basic +Architectures: x86 +Type: vcpu ioctl +Parameters: struct kvm_interrupt (in) +Returns: 0 on success, -1 on error + +Queues a hardware interrupt vector to be injected. This is only +useful if in-kernel local APIC is not used. + +/* for KVM_INTERRUPT */ +struct kvm_interrupt { + /* in */ + __u32 irq; +}; + +Note 'irq' is an interrupt vector, not an interrupt pin or line. + +4.16 KVM_DEBUG_GUEST + +Capability: basic +Architectures: none +Type: vcpu ioctl +Parameters: none) +Returns: -1 on error + +Support for this has been removed. Use KVM_SET_GUEST_DEBUG instead. + +4.17 KVM_GET_MSRS + +Capability: basic +Architectures: x86 +Type: vcpu ioctl +Parameters: struct kvm_msrs (in/out) +Returns: 0 on success, -1 on error + +Reads model-specific registers from the vcpu. Supported msr indices can +be obtained using KVM_GET_MSR_INDEX_LIST. + +struct kvm_msrs { + __u32 nmsrs; /* number of msrs in entries */ + __u32 pad; + + struct kvm_msr_entry entries[0]; +}; + +struct kvm_msr_entry { + __u32 index; + __u32 reserved; + __u64 data; +}; + +Application code should set the 'nmsrs' member (which indicates the +size of the entries array) and the 'index' member of each array entry. +kvm will fill in the 'data' member. + +4.18 KVM_SET_MSRS + +Capability: basic +Architectures: x86 +Type: vcpu ioctl +Parameters: struct kvm_msrs (in) +Returns: 0 on success, -1 on error + +Writes model-specific registers to the vcpu. See KVM_GET_MSRS for the +data structures. + +Application code should set the 'nmsrs' member (which indicates the +size of the entries array), and the 'index' and 'data' members of each +array entry. + +4.19 KVM_SET_CPUID + +Capability: basic +Architectures: x86 +Type: vcpu ioctl +Parameters: struct kvm_cpuid (in) +Returns: 0 on success, -1 on error + +Defines the vcpu responses to the cpuid instruction. Applications +should use the KVM_SET_CPUID2 ioctl if available. + + +struct kvm_cpuid_entry { + __u32 function; + __u32 eax; + __u32 ebx; + __u32 ecx; + __u32 edx; + __u32 padding; +}; + +/* for KVM_SET_CPUID */ +struct kvm_cpuid { + __u32 nent; + __u32 padding; + struct kvm_cpuid_entry entries[0]; +}; + +4.20 KVM_SET_SIGNAL_MASK + +Capability: basic +Architectures: x86 +Type: vcpu ioctl +Parameters: struct kvm_signal_mask (in) +Returns: 0 on success, -1 on error + +Defines which signals are blocked during execution of KVM_RUN. This +signal mask temporarily overrides the threads signal mask. Any +unblocked signal received (except SIGKILL and SIGSTOP, which retain +their traditional behaviour) will cause KVM_RUN to return with -EINTR. + +Note the signal will only be delivered if not blocked by the original +signal mask. + +/* for KVM_SET_SIGNAL_MASK */ +struct kvm_signal_mask { + __u32 len; + __u8 sigset[0]; +}; + +4.21 KVM_GET_FPU + +Capability: basic +Architectures: x86 +Type: vcpu ioctl +Parameters: struct kvm_fpu (out) +Returns: 0 on success, -1 on error + +Reads the floating point state from the vcpu. + +/* for KVM_GET_FPU and KVM_SET_FPU */ +struct kvm_fpu { + __u8 fpr[8][16]; + __u16 fcw; + __u16 fsw; + __u8 ftwx; /* in fxsave format */ + __u8 pad1; + __u16 last_opcode; + __u64 last_ip; + __u64 last_dp; + __u8 xmm[16][16]; + __u32 mxcsr; + __u32 pad2; +}; + +4.22 KVM_SET_FPU + +Capability: basic +Architectures: x86 +Type: vcpu ioctl +Parameters: struct kvm_fpu (in) +Returns: 0 on success, -1 on error + +Writes the floating point state to the vcpu. + +/* for KVM_GET_FPU and KVM_SET_FPU */ +struct kvm_fpu { + __u8 fpr[8][16]; + __u16 fcw; + __u16 fsw; + __u8 ftwx; /* in fxsave format */ + __u8 pad1; + __u16 last_opcode; + __u64 last_ip; + __u64 last_dp; + __u8 xmm[16][16]; + __u32 mxcsr; + __u32 pad2; +}; + +4.23 KVM_CREATE_IRQCHIP + +Capability: KVM_CAP_IRQCHIP +Architectures: x86, ia64 +Type: vm ioctl +Parameters: none +Returns: 0 on success, -1 on error + +Creates an interrupt controller model in the kernel. On x86, creates a virtual +ioapic, a virtual PIC (two PICs, nested), and sets up future vcpus to have a +local APIC. IRQ routing for GSIs 0-15 is set to both PIC and IOAPIC; GSI 16-23 +only go to the IOAPIC. On ia64, a IOSAPIC is created. + +4.24 KVM_IRQ_LINE + +Capability: KVM_CAP_IRQCHIP +Architectures: x86, ia64 +Type: vm ioctl +Parameters: struct kvm_irq_level +Returns: 0 on success, -1 on error + +Sets the level of a GSI input to the interrupt controller model in the kernel. +Requires that an interrupt controller model has been previously created with +KVM_CREATE_IRQCHIP. Note that edge-triggered interrupts require the level +to be set to 1 and then back to 0. + +struct kvm_irq_level { + union { + __u32 irq; /* GSI */ + __s32 status; /* not used for KVM_IRQ_LEVEL */ + }; + __u32 level; /* 0 or 1 */ +}; + +4.25 KVM_GET_IRQCHIP + +Capability: KVM_CAP_IRQCHIP +Architectures: x86, ia64 +Type: vm ioctl +Parameters: struct kvm_irqchip (in/out) +Returns: 0 on success, -1 on error + +Reads the state of a kernel interrupt controller created with +KVM_CREATE_IRQCHIP into a buffer provided by the caller. + +struct kvm_irqchip { + __u32 chip_id; /* 0 = PIC1, 1 = PIC2, 2 = IOAPIC */ + __u32 pad; + union { + char dummy[512]; /* reserving space */ + struct kvm_pic_state pic; + struct kvm_ioapic_state ioapic; + } chip; +}; + +4.26 KVM_SET_IRQCHIP + +Capability: KVM_CAP_IRQCHIP +Architectures: x86, ia64 +Type: vm ioctl +Parameters: struct kvm_irqchip (in) +Returns: 0 on success, -1 on error + +Sets the state of a kernel interrupt controller created with +KVM_CREATE_IRQCHIP from a buffer provided by the caller. + +struct kvm_irqchip { + __u32 chip_id; /* 0 = PIC1, 1 = PIC2, 2 = IOAPIC */ + __u32 pad; + union { + char dummy[512]; /* reserving space */ + struct kvm_pic_state pic; + struct kvm_ioapic_state ioapic; + } chip; +}; + +5. The kvm_run structure + +Application code obtains a pointer to the kvm_run structure by +mmap()ing a vcpu fd. From that point, application code can control +execution by changing fields in kvm_run prior to calling the KVM_RUN +ioctl, and obtain information about the reason KVM_RUN returned by +looking up structure members. + +struct kvm_run { + /* in */ + __u8 request_interrupt_window; + +Request that KVM_RUN return when it becomes possible to inject external +interrupts into the guest. Useful in conjunction with KVM_INTERRUPT. + + __u8 padding1[7]; + + /* out */ + __u32 exit_reason; + +When KVM_RUN has returned successfully (return value 0), this informs +application code why KVM_RUN has returned. Allowable values for this +field are detailed below. + + __u8 ready_for_interrupt_injection; + +If request_interrupt_window has been specified, this field indicates +an interrupt can be injected now with KVM_INTERRUPT. + + __u8 if_flag; + +The value of the current interrupt flag. Only valid if in-kernel +local APIC is not used. + + __u8 padding2[2]; + + /* in (pre_kvm_run), out (post_kvm_run) */ + __u64 cr8; + +The value of the cr8 register. Only valid if in-kernel local APIC is +not used. Both input and output. + + __u64 apic_base; + +The value of the APIC BASE msr. Only valid if in-kernel local +APIC is not used. Both input and output. + + union { + /* KVM_EXIT_UNKNOWN */ + struct { + __u64 hardware_exit_reason; + } hw; + +If exit_reason is KVM_EXIT_UNKNOWN, the vcpu has exited due to unknown +reasons. Further architecture-specific information is available in +hardware_exit_reason. + + /* KVM_EXIT_FAIL_ENTRY */ + struct { + __u64 hardware_entry_failure_reason; + } fail_entry; + +If exit_reason is KVM_EXIT_FAIL_ENTRY, the vcpu could not be run due +to unknown reasons. Further architecture-specific information is +available in hardware_entry_failure_reason. + + /* KVM_EXIT_EXCEPTION */ + struct { + __u32 exception; + __u32 error_code; + } ex; + +Unused. + + /* KVM_EXIT_IO */ + struct { +#define KVM_EXIT_IO_IN 0 +#define KVM_EXIT_IO_OUT 1 + __u8 direction; + __u8 size; /* bytes */ + __u16 port; + __u32 count; + __u64 data_offset; /* relative to kvm_run start */ + } io; + +If exit_reason is KVM_EXIT_IO_IN or KVM_EXIT_IO_OUT, then the vcpu has +executed a port I/O instruction which could not be satisfied by kvm. +data_offset describes where the data is located (KVM_EXIT_IO_OUT) or +where kvm expects application code to place the data for the next +KVM_RUN invocation (KVM_EXIT_IO_IN). Data format is a patcked array. + + struct { + struct kvm_debug_exit_arch arch; + } debug; + +Unused. + + /* KVM_EXIT_MMIO */ + struct { + __u64 phys_addr; + __u8 data[8]; + __u32 len; + __u8 is_write; + } mmio; + +If exit_reason is KVM_EXIT_MMIO or KVM_EXIT_IO_OUT, then the vcpu has +executed a memory-mapped I/O instruction which could not be satisfied +by kvm. The 'data' member contains the written data if 'is_write' is +true, and should be filled by application code otherwise. + + /* KVM_EXIT_HYPERCALL */ + struct { + __u64 nr; + __u64 args[6]; + __u64 ret; + __u32 longmode; + __u32 pad; + } hypercall; + +Unused. + + /* KVM_EXIT_TPR_ACCESS */ + struct { + __u64 rip; + __u32 is_write; + __u32 pad; + } tpr_access; + +To be documented (KVM_TPR_ACCESS_REPORTING). + + /* KVM_EXIT_S390_SIEIC */ + struct { + __u8 icptcode; + __u64 mask; /* psw upper half */ + __u64 addr; /* psw lower half */ + __u16 ipa; + __u32 ipb; + } s390_sieic; + +s390 specific. + + /* KVM_EXIT_S390_RESET */ +#define KVM_S390_RESET_POR 1 +#define KVM_S390_RESET_CLEAR 2 +#define KVM_S390_RESET_SUBSYSTEM 4 +#define KVM_S390_RESET_CPU_INIT 8 +#define KVM_S390_RESET_IPL 16 + __u64 s390_reset_flags; + +s390 specific. + + /* KVM_EXIT_DCR */ + struct { + __u32 dcrn; + __u32 data; + __u8 is_write; + } dcr; + +powerpc specific. + + /* Fix the size of the union. */ + char padding[256]; + }; +}; diff --git a/Documentation/vm/slub.txt b/Documentation/vm/slub.txt index bb1f5c6e28b3..510917ff59ed 100644 --- a/Documentation/vm/slub.txt +++ b/Documentation/vm/slub.txt @@ -41,6 +41,8 @@ Possible debug options are P Poisoning (object and padding) U User tracking (free and alloc) T Trace (please only use on single slabs) + O Switch debugging off for caches that would have + caused higher minimum slab orders - Switch all debugging off (useful if the kernel is configured with CONFIG_SLUB_DEBUG_ON) @@ -59,6 +61,14 @@ to the dentry cache with slub_debug=F,dentry +Debugging options may require the minimum possible slab order to increase as +a result of storing the metadata (for example, caches with PAGE_SIZE object +sizes). This has a higher liklihood of resulting in slab allocation errors +in low memory situations or if there's high fragmentation of memory. To +switch off debugging for such caches by default, use + + slub_debug=O + In case you forgot to enable debugging on the kernel command line: It is possible to enable debugging manually when the kernel is up. Look at the contents of: |