summaryrefslogtreecommitdiff
path: root/kernel/time/hrtimer.c
blob: 3ae661ab62603c4f6ad6a162e4d3586346ead934 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
// SPDX-License-Identifier: GPL-2.0
/*
 *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
 *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
 *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
 *
 *  High-resolution kernel timers
 *
 *  In contrast to the low-resolution timeout API, aka timer wheel,
 *  hrtimers provide finer resolution and accuracy depending on system
 *  configuration and capabilities.
 *
 *  Started by: Thomas Gleixner and Ingo Molnar
 *
 *  Credits:
 *	Based on the original timer wheel code
 *
 *	Help, testing, suggestions, bugfixes, improvements were
 *	provided by:
 *
 *	George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
 *	et. al.
 */

#include <linux/cpu.h>
#include <linux/export.h>
#include <linux/percpu.h>
#include <linux/hrtimer.h>
#include <linux/notifier.h>
#include <linux/syscalls.h>
#include <linux/interrupt.h>
#include <linux/tick.h>
#include <linux/err.h>
#include <linux/debugobjects.h>
#include <linux/sched/signal.h>
#include <linux/sched/sysctl.h>
#include <linux/sched/rt.h>
#include <linux/sched/deadline.h>
#include <linux/sched/nohz.h>
#include <linux/sched/debug.h>
#include <linux/timer.h>
#include <linux/freezer.h>
#include <linux/compat.h>

#include <linux/uaccess.h>

#include <trace/events/timer.h>

#include "tick-internal.h"

/*
 * Masks for selecting the soft and hard context timers from
 * cpu_base->active
 */
#define MASK_SHIFT		(HRTIMER_BASE_MONOTONIC_SOFT)
#define HRTIMER_ACTIVE_HARD	((1U << MASK_SHIFT) - 1)
#define HRTIMER_ACTIVE_SOFT	(HRTIMER_ACTIVE_HARD << MASK_SHIFT)
#define HRTIMER_ACTIVE_ALL	(HRTIMER_ACTIVE_SOFT | HRTIMER_ACTIVE_HARD)

/*
 * The timer bases:
 *
 * There are more clockids than hrtimer bases. Thus, we index
 * into the timer bases by the hrtimer_base_type enum. When trying
 * to reach a base using a clockid, hrtimer_clockid_to_base()
 * is used to convert from clockid to the proper hrtimer_base_type.
 */
DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
{
	.lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock),
	.clock_base =
	{
		{
			.index = HRTIMER_BASE_MONOTONIC,
			.clockid = CLOCK_MONOTONIC,
			.get_time = &ktime_get,
		},
		{
			.index = HRTIMER_BASE_REALTIME,
			.clockid = CLOCK_REALTIME,
			.get_time = &ktime_get_real,
		},
		{
			.index = HRTIMER_BASE_BOOTTIME,
			.clockid = CLOCK_BOOTTIME,
			.get_time = &ktime_get_boottime,
		},
		{
			.index = HRTIMER_BASE_TAI,
			.clockid = CLOCK_TAI,
			.get_time = &ktime_get_clocktai,
		},
		{
			.index = HRTIMER_BASE_MONOTONIC_SOFT,
			.clockid = CLOCK_MONOTONIC,
			.get_time = &ktime_get,
		},
		{
			.index = HRTIMER_BASE_REALTIME_SOFT,
			.clockid = CLOCK_REALTIME,
			.get_time = &ktime_get_real,
		},
		{
			.index = HRTIMER_BASE_BOOTTIME_SOFT,
			.clockid = CLOCK_BOOTTIME,
			.get_time = &ktime_get_boottime,
		},
		{
			.index = HRTIMER_BASE_TAI_SOFT,
			.clockid = CLOCK_TAI,
			.get_time = &ktime_get_clocktai,
		},
	}
};

static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = {
	/* Make sure we catch unsupported clockids */
	[0 ... MAX_CLOCKS - 1]	= HRTIMER_MAX_CLOCK_BASES,

	[CLOCK_REALTIME]	= HRTIMER_BASE_REALTIME,
	[CLOCK_MONOTONIC]	= HRTIMER_BASE_MONOTONIC,
	[CLOCK_BOOTTIME]	= HRTIMER_BASE_BOOTTIME,
	[CLOCK_TAI]		= HRTIMER_BASE_TAI,
};

/*
 * Functions and macros which are different for UP/SMP systems are kept in a
 * single place
 */
#ifdef CONFIG_SMP

/*
 * We require the migration_base for lock_hrtimer_base()/switch_hrtimer_base()
 * such that hrtimer_callback_running() can unconditionally dereference
 * timer->base->cpu_base
 */
static struct hrtimer_cpu_base migration_cpu_base = {
	.clock_base = { {
		.cpu_base = &migration_cpu_base,
		.seq      = SEQCNT_RAW_SPINLOCK_ZERO(migration_cpu_base.seq,
						     &migration_cpu_base.lock),
	}, },
};

#define migration_base	migration_cpu_base.clock_base[0]

static inline bool is_migration_base(struct hrtimer_clock_base *base)
{
	return base == &migration_base;
}

/*
 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
 * means that all timers which are tied to this base via timer->base are
 * locked, and the base itself is locked too.
 *
 * So __run_timers/migrate_timers can safely modify all timers which could
 * be found on the lists/queues.
 *
 * When the timer's base is locked, and the timer removed from list, it is
 * possible to set timer->base = &migration_base and drop the lock: the timer
 * remains locked.
 */
static
struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
					     unsigned long *flags)
{
	struct hrtimer_clock_base *base;

	for (;;) {
		base = READ_ONCE(timer->base);
		if (likely(base != &migration_base)) {
			raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
			if (likely(base == timer->base))
				return base;
			/* The timer has migrated to another CPU: */
			raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
		}
		cpu_relax();
	}
}

/*
 * We do not migrate the timer when it is expiring before the next
 * event on the target cpu. When high resolution is enabled, we cannot
 * reprogram the target cpu hardware and we would cause it to fire
 * late. To keep it simple, we handle the high resolution enabled and
 * disabled case similar.
 *
 * Called with cpu_base->lock of target cpu held.
 */
static int
hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
{
	ktime_t expires;

	expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
	return expires < new_base->cpu_base->expires_next;
}

static inline
struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base,
					 int pinned)
{
#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
	if (static_branch_likely(&timers_migration_enabled) && !pinned)
		return &per_cpu(hrtimer_bases, get_nohz_timer_target());
#endif
	return base;
}

/*
 * We switch the timer base to a power-optimized selected CPU target,
 * if:
 *	- NO_HZ_COMMON is enabled
 *	- timer migration is enabled
 *	- the timer callback is not running
 *	- the timer is not the first expiring timer on the new target
 *
 * If one of the above requirements is not fulfilled we move the timer
 * to the current CPU or leave it on the previously assigned CPU if
 * the timer callback is currently running.
 */
static inline struct hrtimer_clock_base *
switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
		    int pinned)
{
	struct hrtimer_cpu_base *new_cpu_base, *this_cpu_base;
	struct hrtimer_clock_base *new_base;
	int basenum = base->index;

	this_cpu_base = this_cpu_ptr(&hrtimer_bases);
	new_cpu_base = get_target_base(this_cpu_base, pinned);
again:
	new_base = &new_cpu_base->clock_base[basenum];

	if (base != new_base) {
		/*
		 * We are trying to move timer to new_base.
		 * However we can't change timer's base while it is running,
		 * so we keep it on the same CPU. No hassle vs. reprogramming
		 * the event source in the high resolution case. The softirq
		 * code will take care of this when the timer function has
		 * completed. There is no conflict as we hold the lock until
		 * the timer is enqueued.
		 */
		if (unlikely(hrtimer_callback_running(timer)))
			return base;

		/* See the comment in lock_hrtimer_base() */
		WRITE_ONCE(timer->base, &migration_base);
		raw_spin_unlock(&base->cpu_base->lock);
		raw_spin_lock(&new_base->cpu_base->lock);

		if (new_cpu_base != this_cpu_base &&
		    hrtimer_check_target(timer, new_base)) {
			raw_spin_unlock(&new_base->cpu_base->lock);
			raw_spin_lock(&base->cpu_base->lock);
			new_cpu_base = this_cpu_base;
			WRITE_ONCE(timer->base, base);
			goto again;
		}
		WRITE_ONCE(timer->base, new_base);
	} else {
		if (new_cpu_base != this_cpu_base &&
		    hrtimer_check_target(timer, new_base)) {
			new_cpu_base = this_cpu_base;
			goto again;
		}
	}
	return new_base;
}

#else /* CONFIG_SMP */

static inline bool is_migration_base(struct hrtimer_clock_base *base)
{
	return false;
}

static inline struct hrtimer_clock_base *
lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
{
	struct hrtimer_clock_base *base = timer->base;

	raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);

	return base;
}

# define switch_hrtimer_base(t, b, p)	(b)

#endif	/* !CONFIG_SMP */

/*
 * Functions for the union type storage format of ktime_t which are
 * too large for inlining:
 */
#if BITS_PER_LONG < 64
/*
 * Divide a ktime value by a nanosecond value
 */
s64 __ktime_divns(const ktime_t kt, s64 div)
{
	int sft = 0;
	s64 dclc;
	u64 tmp;

	dclc = ktime_to_ns(kt);
	tmp = dclc < 0 ? -dclc : dclc;

	/* Make sure the divisor is less than 2^32: */
	while (div >> 32) {
		sft++;
		div >>= 1;
	}
	tmp >>= sft;
	do_div(tmp, (u32) div);
	return dclc < 0 ? -tmp : tmp;
}
EXPORT_SYMBOL_GPL(__ktime_divns);
#endif /* BITS_PER_LONG >= 64 */

/*
 * Add two ktime values and do a safety check for overflow:
 */
ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
{
	ktime_t res = ktime_add_unsafe(lhs, rhs);

	/*
	 * We use KTIME_SEC_MAX here, the maximum timeout which we can
	 * return to user space in a timespec:
	 */
	if (res < 0 || res < lhs || res < rhs)
		res = ktime_set(KTIME_SEC_MAX, 0);

	return res;
}

EXPORT_SYMBOL_GPL(ktime_add_safe);

#ifdef CONFIG_DEBUG_OBJECTS_TIMERS

static const struct debug_obj_descr hrtimer_debug_descr;

static void *hrtimer_debug_hint(void *addr)
{
	return ((struct hrtimer *) addr)->function;
}

/*
 * fixup_init is called when:
 * - an active object is initialized
 */
static bool hrtimer_fixup_init(void *addr, enum debug_obj_state state)
{
	struct hrtimer *timer = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		hrtimer_cancel(timer);
		debug_object_init(timer, &hrtimer_debug_descr);
		return true;
	default:
		return false;
	}
}

/*
 * fixup_activate is called when:
 * - an active object is activated
 * - an unknown non-static object is activated
 */
static bool hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
{
	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		WARN_ON(1);
		fallthrough;
	default:
		return false;
	}
}

/*
 * fixup_free is called when:
 * - an active object is freed
 */
static bool hrtimer_fixup_free(void *addr, enum debug_obj_state state)
{
	struct hrtimer *timer = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		hrtimer_cancel(timer);
		debug_object_free(timer, &hrtimer_debug_descr);
		return true;
	default:
		return false;
	}
}

static const struct debug_obj_descr hrtimer_debug_descr = {
	.name		= "hrtimer",
	.debug_hint	= hrtimer_debug_hint,
	.fixup_init	= hrtimer_fixup_init,
	.fixup_activate	= hrtimer_fixup_activate,
	.fixup_free	= hrtimer_fixup_free,
};

static inline void debug_hrtimer_init(struct hrtimer *timer)
{
	debug_object_init(timer, &hrtimer_debug_descr);
}

static inline void debug_hrtimer_activate(struct hrtimer *timer,
					  enum hrtimer_mode mode)
{
	debug_object_activate(timer, &hrtimer_debug_descr);
}

static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
{
	debug_object_deactivate(timer, &hrtimer_debug_descr);
}

static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
			   enum hrtimer_mode mode);

void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
			   enum hrtimer_mode mode)
{
	debug_object_init_on_stack(timer, &hrtimer_debug_descr);
	__hrtimer_init(timer, clock_id, mode);
}
EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);

static void __hrtimer_init_sleeper(struct hrtimer_sleeper *sl,
				   clockid_t clock_id, enum hrtimer_mode mode);

void hrtimer_init_sleeper_on_stack(struct hrtimer_sleeper *sl,
				   clockid_t clock_id, enum hrtimer_mode mode)
{
	debug_object_init_on_stack(&sl->timer, &hrtimer_debug_descr);
	__hrtimer_init_sleeper(sl, clock_id, mode);
}
EXPORT_SYMBOL_GPL(hrtimer_init_sleeper_on_stack);

void destroy_hrtimer_on_stack(struct hrtimer *timer)
{
	debug_object_free(timer, &hrtimer_debug_descr);
}
EXPORT_SYMBOL_GPL(destroy_hrtimer_on_stack);

#else

static inline void debug_hrtimer_init(struct hrtimer *timer) { }
static inline void debug_hrtimer_activate(struct hrtimer *timer,
					  enum hrtimer_mode mode) { }
static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
#endif

static inline void
debug_init(struct hrtimer *timer, clockid_t clockid,
	   enum hrtimer_mode mode)
{
	debug_hrtimer_init(timer);
	trace_hrtimer_init(timer, clockid, mode);
}

static inline void debug_activate(struct hrtimer *timer,
				  enum hrtimer_mode mode)
{
	debug_hrtimer_activate(timer, mode);
	trace_hrtimer_start(timer, mode);
}

static inline void debug_deactivate(struct hrtimer *timer)
{
	debug_hrtimer_deactivate(timer);
	trace_hrtimer_cancel(timer);
}

static struct hrtimer_clock_base *
__next_base(struct hrtimer_cpu_base *cpu_base, unsigned int *active)
{
	unsigned int idx;

	if (!*active)
		return NULL;

	idx = __ffs(*active);
	*active &= ~(1U << idx);

	return &cpu_base->clock_base[idx];
}

#define for_each_active_base(base, cpu_base, active)	\
	while ((base = __next_base((cpu_base), &(active))))

static ktime_t __hrtimer_next_event_base(struct hrtimer_cpu_base *cpu_base,
					 const struct hrtimer *exclude,
					 unsigned int active,
					 ktime_t expires_next)
{
	struct hrtimer_clock_base *base;
	ktime_t expires;

	for_each_active_base(base, cpu_base, active) {
		struct timerqueue_node *next;
		struct hrtimer *timer;

		next = timerqueue_getnext(&base->active);
		timer = container_of(next, struct hrtimer, node);
		if (timer == exclude) {
			/* Get to the next timer in the queue. */
			next = timerqueue_iterate_next(next);
			if (!next)
				continue;

			timer = container_of(next, struct hrtimer, node);
		}
		expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
		if (expires < expires_next) {
			expires_next = expires;

			/* Skip cpu_base update if a timer is being excluded. */
			if (exclude)
				continue;

			if (timer->is_soft)
				cpu_base->softirq_next_timer = timer;
			else
				cpu_base->next_timer = timer;
		}
	}
	/*
	 * clock_was_set() might have changed base->offset of any of
	 * the clock bases so the result might be negative. Fix it up
	 * to prevent a false positive in clockevents_program_event().
	 */
	if (expires_next < 0)
		expires_next = 0;
	return expires_next;
}

/*
 * Recomputes cpu_base::*next_timer and returns the earliest expires_next
 * but does not set cpu_base::*expires_next, that is done by
 * hrtimer[_force]_reprogram and hrtimer_interrupt only. When updating
 * cpu_base::*expires_next right away, reprogramming logic would no longer
 * work.
 *
 * When a softirq is pending, we can ignore the HRTIMER_ACTIVE_SOFT bases,
 * those timers will get run whenever the softirq gets handled, at the end of
 * hrtimer_run_softirq(), hrtimer_update_softirq_timer() will re-add these bases.
 *
 * Therefore softirq values are those from the HRTIMER_ACTIVE_SOFT clock bases.
 * The !softirq values are the minima across HRTIMER_ACTIVE_ALL, unless an actual
 * softirq is pending, in which case they're the minima of HRTIMER_ACTIVE_HARD.
 *
 * @active_mask must be one of:
 *  - HRTIMER_ACTIVE_ALL,
 *  - HRTIMER_ACTIVE_SOFT, or
 *  - HRTIMER_ACTIVE_HARD.
 */
static ktime_t
__hrtimer_get_next_event(struct hrtimer_cpu_base *cpu_base, unsigned int active_mask)
{
	unsigned int active;
	struct hrtimer *next_timer = NULL;
	ktime_t expires_next = KTIME_MAX;

	if (!cpu_base->softirq_activated && (active_mask & HRTIMER_ACTIVE_SOFT)) {
		active = cpu_base->active_bases & HRTIMER_ACTIVE_SOFT;
		cpu_base->softirq_next_timer = NULL;
		expires_next = __hrtimer_next_event_base(cpu_base, NULL,
							 active, KTIME_MAX);

		next_timer = cpu_base->softirq_next_timer;
	}

	if (active_mask & HRTIMER_ACTIVE_HARD) {
		active = cpu_base->active_bases & HRTIMER_ACTIVE_HARD;
		cpu_base->next_timer = next_timer;
		expires_next = __hrtimer_next_event_base(cpu_base, NULL, active,
							 expires_next);
	}

	return expires_next;
}

static ktime_t hrtimer_update_next_event(struct hrtimer_cpu_base *cpu_base)
{
	ktime_t expires_next, soft = KTIME_MAX;

	/*
	 * If the soft interrupt has already been activated, ignore the
	 * soft bases. They will be handled in the already raised soft
	 * interrupt.
	 */
	if (!cpu_base->softirq_activated) {
		soft = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_SOFT);
		/*
		 * Update the soft expiry time. clock_settime() might have
		 * affected it.
		 */
		cpu_base->softirq_expires_next = soft;
	}

	expires_next = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_HARD);
	/*
	 * If a softirq timer is expiring first, update cpu_base->next_timer
	 * and program the hardware with the soft expiry time.
	 */
	if (expires_next > soft) {
		cpu_base->next_timer = cpu_base->softirq_next_timer;
		expires_next = soft;
	}

	return expires_next;
}

static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base)
{
	ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset;
	ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset;
	ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset;

	ktime_t now = ktime_get_update_offsets_now(&base->clock_was_set_seq,
					    offs_real, offs_boot, offs_tai);

	base->clock_base[HRTIMER_BASE_REALTIME_SOFT].offset = *offs_real;
	base->clock_base[HRTIMER_BASE_BOOTTIME_SOFT].offset = *offs_boot;
	base->clock_base[HRTIMER_BASE_TAI_SOFT].offset = *offs_tai;

	return now;
}

/*
 * Is the high resolution mode active ?
 */
static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *cpu_base)
{
	return IS_ENABLED(CONFIG_HIGH_RES_TIMERS) ?
		cpu_base->hres_active : 0;
}

static inline int hrtimer_hres_active(void)
{
	return __hrtimer_hres_active(this_cpu_ptr(&hrtimer_bases));
}

static void __hrtimer_reprogram(struct hrtimer_cpu_base *cpu_base,
				struct hrtimer *next_timer,
				ktime_t expires_next)
{
	cpu_base->expires_next = expires_next;

	/*
	 * If hres is not active, hardware does not have to be
	 * reprogrammed yet.
	 *
	 * If a hang was detected in the last timer interrupt then we
	 * leave the hang delay active in the hardware. We want the
	 * system to make progress. That also prevents the following
	 * scenario:
	 * T1 expires 50ms from now
	 * T2 expires 5s from now
	 *
	 * T1 is removed, so this code is called and would reprogram
	 * the hardware to 5s from now. Any hrtimer_start after that
	 * will not reprogram the hardware due to hang_detected being
	 * set. So we'd effectively block all timers until the T2 event
	 * fires.
	 */
	if (!__hrtimer_hres_active(cpu_base) || cpu_base->hang_detected)
		return;

	tick_program_event(expires_next, 1);
}

/*
 * Reprogram the event source with checking both queues for the
 * next event
 * Called with interrupts disabled and base->lock held
 */
static void
hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
{
	ktime_t expires_next;

	expires_next = hrtimer_update_next_event(cpu_base);

	if (skip_equal && expires_next == cpu_base->expires_next)
		return;

	__hrtimer_reprogram(cpu_base, cpu_base->next_timer, expires_next);
}

/* High resolution timer related functions */
#ifdef CONFIG_HIGH_RES_TIMERS

/*
 * High resolution timer enabled ?
 */
static bool hrtimer_hres_enabled __read_mostly  = true;
unsigned int hrtimer_resolution __read_mostly = LOW_RES_NSEC;
EXPORT_SYMBOL_GPL(hrtimer_resolution);

/*
 * Enable / Disable high resolution mode
 */
static int __init setup_hrtimer_hres(char *str)
{
	return (kstrtobool(str, &hrtimer_hres_enabled) == 0);
}

__setup("highres=", setup_hrtimer_hres);

/*
 * hrtimer_high_res_enabled - query, if the highres mode is enabled
 */
static inline int hrtimer_is_hres_enabled(void)
{
	return hrtimer_hres_enabled;
}

static void retrigger_next_event(void *arg);

/*
 * Switch to high resolution mode
 */
static void hrtimer_switch_to_hres(void)
{
	struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);

	if (tick_init_highres()) {
		pr_warn("Could not switch to high resolution mode on CPU %u\n",
			base->cpu);
		return;
	}
	base->hres_active = 1;
	hrtimer_resolution = HIGH_RES_NSEC;

	tick_setup_sched_timer();
	/* "Retrigger" the interrupt to get things going */
	retrigger_next_event(NULL);
}

#else

static inline int hrtimer_is_hres_enabled(void) { return 0; }
static inline void hrtimer_switch_to_hres(void) { }

#endif /* CONFIG_HIGH_RES_TIMERS */
/*
 * Retrigger next event is called after clock was set with interrupts
 * disabled through an SMP function call or directly from low level
 * resume code.
 *
 * This is only invoked when:
 *	- CONFIG_HIGH_RES_TIMERS is enabled.
 *	- CONFIG_NOHZ_COMMON is enabled
 *
 * For the other cases this function is empty and because the call sites
 * are optimized out it vanishes as well, i.e. no need for lots of
 * #ifdeffery.
 */
static void retrigger_next_event(void *arg)
{
	struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);

	/*
	 * When high resolution mode or nohz is active, then the offsets of
	 * CLOCK_REALTIME/TAI/BOOTTIME have to be updated. Otherwise the
	 * next tick will take care of that.
	 *
	 * If high resolution mode is active then the next expiring timer
	 * must be reevaluated and the clock event device reprogrammed if
	 * necessary.
	 *
	 * In the NOHZ case the update of the offset and the reevaluation
	 * of the next expiring timer is enough. The return from the SMP
	 * function call will take care of the reprogramming in case the
	 * CPU was in a NOHZ idle sleep.
	 */
	if (!__hrtimer_hres_active(base) && !tick_nohz_active)
		return;

	raw_spin_lock(&base->lock);
	hrtimer_update_base(base);
	if (__hrtimer_hres_active(base))
		hrtimer_force_reprogram(base, 0);
	else
		hrtimer_update_next_event(base);
	raw_spin_unlock(&base->lock);
}

/*
 * When a timer is enqueued and expires earlier than the already enqueued
 * timers, we have to check, whether it expires earlier than the timer for
 * which the clock event device was armed.
 *
 * Called with interrupts disabled and base->cpu_base.lock held
 */
static void hrtimer_reprogram(struct hrtimer *timer, bool reprogram)
{
	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
	struct hrtimer_clock_base *base = timer->base;
	ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);

	WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);

	/*
	 * CLOCK_REALTIME timer might be requested with an absolute
	 * expiry time which is less than base->offset. Set it to 0.
	 */
	if (expires < 0)
		expires = 0;

	if (timer->is_soft) {
		/*
		 * soft hrtimer could be started on a remote CPU. In this
		 * case softirq_expires_next needs to be updated on the
		 * remote CPU. The soft hrtimer will not expire before the
		 * first hard hrtimer on the remote CPU -
		 * hrtimer_check_target() prevents this case.
		 */
		struct hrtimer_cpu_base *timer_cpu_base = base->cpu_base;

		if (timer_cpu_base->softirq_activated)
			return;

		if (!ktime_before(expires, timer_cpu_base->softirq_expires_next))
			return;

		timer_cpu_base->softirq_next_timer = timer;
		timer_cpu_base->softirq_expires_next = expires;

		if (!ktime_before(expires, timer_cpu_base->expires_next) ||
		    !reprogram)
			return;
	}

	/*
	 * If the timer is not on the current cpu, we cannot reprogram
	 * the other cpus clock event device.
	 */
	if (base->cpu_base != cpu_base)
		return;

	if (expires >= cpu_base->expires_next)
		return;

	/*
	 * If the hrtimer interrupt is running, then it will reevaluate the
	 * clock bases and reprogram the clock event device.
	 */
	if (cpu_base->in_hrtirq)
		return;

	cpu_base->next_timer = timer;

	__hrtimer_reprogram(cpu_base, timer, expires);
}

static bool update_needs_ipi(struct hrtimer_cpu_base *cpu_base,
			     unsigned int active)
{
	struct hrtimer_clock_base *base;
	unsigned int seq;
	ktime_t expires;

	/*
	 * Update the base offsets unconditionally so the following
	 * checks whether the SMP function call is required works.
	 *
	 * The update is safe even when the remote CPU is in the hrtimer
	 * interrupt or the hrtimer soft interrupt and expiring affected
	 * bases. Either it will see the update before handling a base or
	 * it will see it when it finishes the processing and reevaluates
	 * the next expiring timer.
	 */
	seq = cpu_base->clock_was_set_seq;
	hrtimer_update_base(cpu_base);

	/*
	 * If the sequence did not change over the update then the
	 * remote CPU already handled it.
	 */
	if (seq == cpu_base->clock_was_set_seq)
		return false;

	/*
	 * If the remote CPU is currently handling an hrtimer interrupt, it
	 * will reevaluate the first expiring timer of all clock bases
	 * before reprogramming. Nothing to do here.
	 */
	if (cpu_base->in_hrtirq)
		return false;

	/*
	 * Walk the affected clock bases and check whether the first expiring
	 * timer in a clock base is moving ahead of the first expiring timer of
	 * @cpu_base. If so, the IPI must be invoked because per CPU clock
	 * event devices cannot be remotely reprogrammed.
	 */
	active &= cpu_base->active_bases;

	for_each_active_base(base, cpu_base, active) {
		struct timerqueue_node *next;

		next = timerqueue_getnext(&base->active);
		expires = ktime_sub(next->expires, base->offset);
		if (expires < cpu_base->expires_next)
			return true;

		/* Extra check for softirq clock bases */
		if (base->clockid < HRTIMER_BASE_MONOTONIC_SOFT)
			continue;
		if (cpu_base->softirq_activated)
			continue;
		if (expires < cpu_base->softirq_expires_next)
			return true;
	}
	return false;
}

/*
 * Clock was set. This might affect CLOCK_REALTIME, CLOCK_TAI and
 * CLOCK_BOOTTIME (for late sleep time injection).
 *
 * This requires to update the offsets for these clocks
 * vs. CLOCK_MONOTONIC. When high resolution timers are enabled, then this
 * also requires to eventually reprogram the per CPU clock event devices
 * when the change moves an affected timer ahead of the first expiring
 * timer on that CPU. Obviously remote per CPU clock event devices cannot
 * be reprogrammed. The other reason why an IPI has to be sent is when the
 * system is in !HIGH_RES and NOHZ mode. The NOHZ mode updates the offsets
 * in the tick, which obviously might be stopped, so this has to bring out
 * the remote CPU which might sleep in idle to get this sorted.
 */
void clock_was_set(unsigned int bases)
{
	struct hrtimer_cpu_base *cpu_base = raw_cpu_ptr(&hrtimer_bases);
	cpumask_var_t mask;
	int cpu;

	if (!__hrtimer_hres_active(cpu_base) && !tick_nohz_active)
		goto out_timerfd;

	if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) {
		on_each_cpu(retrigger_next_event, NULL, 1);
		goto out_timerfd;
	}

	/* Avoid interrupting CPUs if possible */
	cpus_read_lock();
	for_each_online_cpu(cpu) {
		unsigned long flags;

		cpu_base = &per_cpu(hrtimer_bases, cpu);
		raw_spin_lock_irqsave(&cpu_base->lock, flags);

		if (update_needs_ipi(cpu_base, bases))
			cpumask_set_cpu(cpu, mask);

		raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
	}

	preempt_disable();
	smp_call_function_many(mask, retrigger_next_event, NULL, 1);
	preempt_enable();
	cpus_read_unlock();
	free_cpumask_var(mask);

out_timerfd:
	timerfd_clock_was_set();
}

static void clock_was_set_work(struct work_struct *work)
{
	clock_was_set(CLOCK_SET_WALL);
}

static DECLARE_WORK(hrtimer_work, clock_was_set_work);

/*
 * Called from timekeeping code to reprogram the hrtimer interrupt device
 * on all cpus and to notify timerfd.
 */
void clock_was_set_delayed(void)
{
	schedule_work(&hrtimer_work);
}

/*
 * Called during resume either directly from via timekeeping_resume()
 * or in the case of s2idle from tick_unfreeze() to ensure that the
 * hrtimers are up to date.
 */
void hrtimers_resume_local(void)
{
	lockdep_assert_irqs_disabled();
	/* Retrigger on the local CPU */
	retrigger_next_event(NULL);
}

/*
 * Counterpart to lock_hrtimer_base above:
 */
static inline
void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
{
	raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
}

/**
 * hrtimer_forward - forward the timer expiry
 * @timer:	hrtimer to forward
 * @now:	forward past this time
 * @interval:	the interval to forward
 *
 * Forward the timer expiry so it will expire in the future.
 * Returns the number of overruns.
 *
 * Can be safely called from the callback function of @timer. If
 * called from other contexts @timer must neither be enqueued nor
 * running the callback and the caller needs to take care of
 * serialization.
 *
 * Note: This only updates the timer expiry value and does not requeue
 * the timer.
 */
u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
{
	u64 orun = 1;
	ktime_t delta;

	delta = ktime_sub(now, hrtimer_get_expires(timer));

	if (delta < 0)
		return 0;

	if (WARN_ON(timer->state & HRTIMER_STATE_ENQUEUED))
		return 0;

	if (interval < hrtimer_resolution)
		interval = hrtimer_resolution;

	if (unlikely(delta >= interval)) {
		s64 incr = ktime_to_ns(interval);

		orun = ktime_divns(delta, incr);
		hrtimer_add_expires_ns(timer, incr * orun);
		if (hrtimer_get_expires_tv64(timer) > now)
			return orun;
		/*
		 * This (and the ktime_add() below) is the
		 * correction for exact:
		 */
		orun++;
	}
	hrtimer_add_expires(timer, interval);

	return orun;
}
EXPORT_SYMBOL_GPL(hrtimer_forward);

/*
 * enqueue_hrtimer - internal function to (re)start a timer
 *
 * The timer is inserted in expiry order. Insertion into the
 * red black tree is O(log(n)). Must hold the base lock.
 *
 * Returns 1 when the new timer is the leftmost timer in the tree.
 */
static int enqueue_hrtimer(struct hrtimer *timer,
			   struct hrtimer_clock_base *base,
			   enum hrtimer_mode mode)
{
	debug_activate(timer, mode);

	base->cpu_base->active_bases |= 1 << base->index;

	/* Pairs with the lockless read in hrtimer_is_queued() */
	WRITE_ONCE(timer->state, HRTIMER_STATE_ENQUEUED);

	return timerqueue_add(&base->active, &timer->node);
}

/*
 * __remove_hrtimer - internal function to remove a timer
 *
 * Caller must hold the base lock.
 *
 * High resolution timer mode reprograms the clock event device when the
 * timer is the one which expires next. The caller can disable this by setting
 * reprogram to zero. This is useful, when the context does a reprogramming
 * anyway (e.g. timer interrupt)
 */
static void __remove_hrtimer(struct hrtimer *timer,
			     struct hrtimer_clock_base *base,
			     u8 newstate, int reprogram)
{
	struct hrtimer_cpu_base *cpu_base = base->cpu_base;
	u8 state = timer->state;

	/* Pairs with the lockless read in hrtimer_is_queued() */
	WRITE_ONCE(timer->state, newstate);
	if (!(state & HRTIMER_STATE_ENQUEUED))
		return;

	if (!timerqueue_del(&base->active, &timer->node))
		cpu_base->active_bases &= ~(1 << base->index);

	/*
	 * Note: If reprogram is false we do not update
	 * cpu_base->next_timer. This happens when we remove the first
	 * timer on a remote cpu. No harm as we never dereference
	 * cpu_base->next_timer. So the worst thing what can happen is
	 * an superfluous call to hrtimer_force_reprogram() on the
	 * remote cpu later on if the same timer gets enqueued again.
	 */
	if (reprogram && timer == cpu_base->next_timer)
		hrtimer_force_reprogram(cpu_base, 1);
}

/*
 * remove hrtimer, called with base lock held
 */
static inline int
remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base,
	       bool restart, bool keep_local)
{
	u8 state = timer->state;

	if (state & HRTIMER_STATE_ENQUEUED) {
		bool reprogram;

		/*
		 * Remove the timer and force reprogramming when high
		 * resolution mode is active and the timer is on the current
		 * CPU. If we remove a timer on another CPU, reprogramming is
		 * skipped. The interrupt event on this CPU is fired and
		 * reprogramming happens in the interrupt handler. This is a
		 * rare case and less expensive than a smp call.
		 */
		debug_deactivate(timer);
		reprogram = base->cpu_base == this_cpu_ptr(&hrtimer_bases);

		/*
		 * If the timer is not restarted then reprogramming is
		 * required if the timer is local. If it is local and about
		 * to be restarted, avoid programming it twice (on removal
		 * and a moment later when it's requeued).
		 */
		if (!restart)
			state = HRTIMER_STATE_INACTIVE;
		else
			reprogram &= !keep_local;

		__remove_hrtimer(timer, base, state, reprogram);
		return 1;
	}
	return 0;
}

static inline ktime_t hrtimer_update_lowres(struct hrtimer *timer, ktime_t tim,
					    const enum hrtimer_mode mode)
{
#ifdef CONFIG_TIME_LOW_RES
	/*
	 * CONFIG_TIME_LOW_RES indicates that the system has no way to return
	 * granular time values. For relative timers we add hrtimer_resolution
	 * (i.e. one jiffie) to prevent short timeouts.
	 */
	timer->is_rel = mode & HRTIMER_MODE_REL;
	if (timer->is_rel)
		tim = ktime_add_safe(tim, hrtimer_resolution);
#endif
	return tim;
}

static void
hrtimer_update_softirq_timer(struct hrtimer_cpu_base *cpu_base, bool reprogram)
{
	ktime_t expires;

	/*
	 * Find the next SOFT expiration.
	 */
	expires = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_SOFT);

	/*
	 * reprogramming needs to be triggered, even if the next soft
	 * hrtimer expires at the same time than the next hard
	 * hrtimer. cpu_base->softirq_expires_next needs to be updated!
	 */
	if (expires == KTIME_MAX)
		return;

	/*
	 * cpu_base->*next_timer is recomputed by __hrtimer_get_next_event()
	 * cpu_base->*expires_next is only set by hrtimer_reprogram()
	 */
	hrtimer_reprogram(cpu_base->softirq_next_timer, reprogram);
}

static int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
				    u64 delta_ns, const enum hrtimer_mode mode,
				    struct hrtimer_clock_base *base)
{
	struct hrtimer_clock_base *new_base;
	bool force_local, first;

	/*
	 * If the timer is on the local cpu base and is the first expiring
	 * timer then this might end up reprogramming the hardware twice
	 * (on removal and on enqueue). To avoid that by prevent the
	 * reprogram on removal, keep the timer local to the current CPU
	 * and enforce reprogramming after it is queued no matter whether
	 * it is the new first expiring timer again or not.
	 */
	force_local = base->cpu_base == this_cpu_ptr(&hrtimer_bases);
	force_local &= base->cpu_base->next_timer == timer;

	/*
	 * Remove an active timer from the queue. In case it is not queued
	 * on the current CPU, make sure that remove_hrtimer() updates the
	 * remote data correctly.
	 *
	 * If it's on the current CPU and the first expiring timer, then
	 * skip reprogramming, keep the timer local and enforce
	 * reprogramming later if it was the first expiring timer.  This
	 * avoids programming the underlying clock event twice (once at
	 * removal and once after enqueue).
	 */
	remove_hrtimer(timer, base, true, force_local);

	if (mode & HRTIMER_MODE_REL)
		tim = ktime_add_safe(tim, base->get_time());

	tim = hrtimer_update_lowres(timer, tim, mode);

	hrtimer_set_expires_range_ns(timer, tim, delta_ns);

	/* Switch the timer base, if necessary: */
	if (!force_local) {
		new_base = switch_hrtimer_base(timer, base,
					       mode & HRTIMER_MODE_PINNED);
	} else {
		new_base = base;
	}

	first = enqueue_hrtimer(timer, new_base, mode);
	if (!force_local)
		return first;

	/*
	 * Timer was forced to stay on the current CPU to avoid
	 * reprogramming on removal and enqueue. Force reprogram the
	 * hardware by evaluating the new first expiring timer.
	 */
	hrtimer_force_reprogram(new_base->cpu_base, 1);
	return 0;
}

/**
 * hrtimer_start_range_ns - (re)start an hrtimer
 * @timer:	the timer to be added
 * @tim:	expiry time
 * @delta_ns:	"slack" range for the timer
 * @mode:	timer mode: absolute (HRTIMER_MODE_ABS) or
 *		relative (HRTIMER_MODE_REL), and pinned (HRTIMER_MODE_PINNED);
 *		softirq based mode is considered for debug purpose only!
 */
void hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
			    u64 delta_ns, const enum hrtimer_mode mode)
{
	struct hrtimer_clock_base *base;
	unsigned long flags;

	/*
	 * Check whether the HRTIMER_MODE_SOFT bit and hrtimer.is_soft
	 * match on CONFIG_PREEMPT_RT = n. With PREEMPT_RT check the hard
	 * expiry mode because unmarked timers are moved to softirq expiry.
	 */
	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
		WARN_ON_ONCE(!(mode & HRTIMER_MODE_SOFT) ^ !timer->is_soft);
	else
		WARN_ON_ONCE(!(mode & HRTIMER_MODE_HARD) ^ !timer->is_hard);

	base = lock_hrtimer_base(timer, &flags);

	if (__hrtimer_start_range_ns(timer, tim, delta_ns, mode, base))
		hrtimer_reprogram(timer, true);

	unlock_hrtimer_base(timer, &flags);
}
EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);

/**
 * hrtimer_try_to_cancel - try to deactivate a timer
 * @timer:	hrtimer to stop
 *
 * Returns:
 *
 *  *  0 when the timer was not active
 *  *  1 when the timer was active
 *  * -1 when the timer is currently executing the callback function and
 *    cannot be stopped
 */
int hrtimer_try_to_cancel(struct hrtimer *timer)
{
	struct hrtimer_clock_base *base;
	unsigned long flags;
	int ret = -1;

	/*
	 * Check lockless first. If the timer is not active (neither
	 * enqueued nor running the callback, nothing to do here.  The
	 * base lock does not serialize against a concurrent enqueue,
	 * so we can avoid taking it.
	 */
	if (!hrtimer_active(timer))
		return 0;

	base = lock_hrtimer_base(timer, &flags);

	if (!hrtimer_callback_running(timer))
		ret = remove_hrtimer(timer, base, false, false);

	unlock_hrtimer_base(timer, &flags);

	return ret;

}
EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);

#ifdef CONFIG_PREEMPT_RT
static void hrtimer_cpu_base_init_expiry_lock(struct hrtimer_cpu_base *base)
{
	spin_lock_init(&base->softirq_expiry_lock);
}

static void hrtimer_cpu_base_lock_expiry(struct hrtimer_cpu_base *base)
{
	spin_lock(&base->softirq_expiry_lock);
}

static void hrtimer_cpu_base_unlock_expiry(struct hrtimer_cpu_base *base)
{
	spin_unlock(&base->softirq_expiry_lock);
}

/*
 * The counterpart to hrtimer_cancel_wait_running().
 *
 * If there is a waiter for cpu_base->expiry_lock, then it was waiting for
 * the timer callback to finish. Drop expiry_lock and reacquire it. That
 * allows the waiter to acquire the lock and make progress.
 */
static void hrtimer_sync_wait_running(struct hrtimer_cpu_base *cpu_base,
				      unsigned long flags)
{
	if (atomic_read(&cpu_base->timer_waiters)) {
		raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
		spin_unlock(&cpu_base->softirq_expiry_lock);
		spin_lock(&cpu_base->softirq_expiry_lock);
		raw_spin_lock_irq(&cpu_base->lock);
	}
}

/*
 * This function is called on PREEMPT_RT kernels when the fast path
 * deletion of a timer failed because the timer callback function was
 * running.
 *
 * This prevents priority inversion: if the soft irq thread is preempted
 * in the middle of a timer callback, then calling del_timer_sync() can
 * lead to two issues:
 *
 *  - If the caller is on a remote CPU then it has to spin wait for the timer
 *    handler to complete. This can result in unbound priority inversion.
 *
 *  - If the caller originates from the task which preempted the timer
 *    handler on the same CPU, then spin waiting for the timer handler to
 *    complete is never going to end.
 */
void hrtimer_cancel_wait_running(const struct hrtimer *timer)
{
	/* Lockless read. Prevent the compiler from reloading it below */
	struct hrtimer_clock_base *base = READ_ONCE(timer->base);

	/*
	 * Just relax if the timer expires in hard interrupt context or if
	 * it is currently on the migration base.
	 */
	if (!timer->is_soft || is_migration_base(base)) {
		cpu_relax();
		return;
	}

	/*
	 * Mark the base as contended and grab the expiry lock, which is
	 * held by the softirq across the timer callback. Drop the lock
	 * immediately so the softirq can expire the next timer. In theory
	 * the timer could already be running again, but that's more than
	 * unlikely and just causes another wait loop.
	 */
	atomic_inc(&base->cpu_base->timer_waiters);
	spin_lock_bh(&base->cpu_base->softirq_expiry_lock);
	atomic_dec(&base->cpu_base->timer_waiters);
	spin_unlock_bh(&base->cpu_base->softirq_expiry_lock);
}
#else
static inline void
hrtimer_cpu_base_init_expiry_lock(struct hrtimer_cpu_base *base) { }
static inline void
hrtimer_cpu_base_lock_expiry(struct hrtimer_cpu_base *base) { }
static inline void
hrtimer_cpu_base_unlock_expiry(struct hrtimer_cpu_base *base) { }
static inline void hrtimer_sync_wait_running(struct hrtimer_cpu_base *base,
					     unsigned long flags) { }
#endif

/**
 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
 * @timer:	the timer to be cancelled
 *
 * Returns:
 *  0 when the timer was not active
 *  1 when the timer was active
 */
int hrtimer_cancel(struct hrtimer *timer)
{
	int ret;

	do {
		ret = hrtimer_try_to_cancel(timer);

		if (ret < 0)
			hrtimer_cancel_wait_running(timer);
	} while (ret < 0);
	return ret;
}
EXPORT_SYMBOL_GPL(hrtimer_cancel);

/**
 * __hrtimer_get_remaining - get remaining time for the timer
 * @timer:	the timer to read
 * @adjust:	adjust relative timers when CONFIG_TIME_LOW_RES=y
 */
ktime_t __hrtimer_get_remaining(const struct hrtimer *timer, bool adjust)
{
	unsigned long flags;
	ktime_t rem;

	lock_hrtimer_base(timer, &flags);
	if (IS_ENABLED(CONFIG_TIME_LOW_RES) && adjust)
		rem = hrtimer_expires_remaining_adjusted(timer);
	else
		rem = hrtimer_expires_remaining(timer);
	unlock_hrtimer_base(timer, &flags);

	return rem;
}
EXPORT_SYMBOL_GPL(__hrtimer_get_remaining);

#ifdef CONFIG_NO_HZ_COMMON
/**
 * hrtimer_get_next_event - get the time until next expiry event
 *
 * Returns the next expiry time or KTIME_MAX if no timer is pending.
 */
u64 hrtimer_get_next_event(void)
{
	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
	u64 expires = KTIME_MAX;
	unsigned long flags;

	raw_spin_lock_irqsave(&cpu_base->lock, flags);

	if (!__hrtimer_hres_active(cpu_base))
		expires = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_ALL);

	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);

	return expires;
}

/**
 * hrtimer_next_event_without - time until next expiry event w/o one timer
 * @exclude:	timer to exclude
 *
 * Returns the next expiry time over all timers except for the @exclude one or
 * KTIME_MAX if none of them is pending.
 */
u64 hrtimer_next_event_without(const struct hrtimer *exclude)
{
	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
	u64 expires = KTIME_MAX;
	unsigned long flags;

	raw_spin_lock_irqsave(&cpu_base->lock, flags);

	if (__hrtimer_hres_active(cpu_base)) {
		unsigned int active;

		if (!cpu_base->softirq_activated) {
			active = cpu_base->active_bases & HRTIMER_ACTIVE_SOFT;
			expires = __hrtimer_next_event_base(cpu_base, exclude,
							    active, KTIME_MAX);
		}
		active = cpu_base->active_bases & HRTIMER_ACTIVE_HARD;
		expires = __hrtimer_next_event_base(cpu_base, exclude, active,
						    expires);
	}

	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);

	return expires;
}
#endif

static inline int hrtimer_clockid_to_base(clockid_t clock_id)
{
	if (likely(clock_id < MAX_CLOCKS)) {
		int base = hrtimer_clock_to_base_table[clock_id];

		if (likely(base != HRTIMER_MAX_CLOCK_BASES))
			return base;
	}
	WARN(1, "Invalid clockid %d. Using MONOTONIC\n", clock_id);
	return HRTIMER_BASE_MONOTONIC;
}

static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
			   enum hrtimer_mode mode)
{
	bool softtimer = !!(mode & HRTIMER_MODE_SOFT);
	struct hrtimer_cpu_base *cpu_base;
	int base;

	/*
	 * On PREEMPT_RT enabled kernels hrtimers which are not explicitly
	 * marked for hard interrupt expiry mode are moved into soft
	 * interrupt context for latency reasons and because the callbacks
	 * can invoke functions which might sleep on RT, e.g. spin_lock().
	 */
	if (IS_ENABLED(CONFIG_PREEMPT_RT) && !(mode & HRTIMER_MODE_HARD))
		softtimer = true;

	memset(timer, 0, sizeof(struct hrtimer));

	cpu_base = raw_cpu_ptr(&hrtimer_bases);

	/*
	 * POSIX magic: Relative CLOCK_REALTIME timers are not affected by
	 * clock modifications, so they needs to become CLOCK_MONOTONIC to
	 * ensure POSIX compliance.
	 */
	if (clock_id == CLOCK_REALTIME && mode & HRTIMER_MODE_REL)
		clock_id = CLOCK_MONOTONIC;

	base = softtimer ? HRTIMER_MAX_CLOCK_BASES / 2 : 0;
	base += hrtimer_clockid_to_base(clock_id);
	timer->is_soft = softtimer;
	timer->is_hard = !!(mode & HRTIMER_MODE_HARD);
	timer->base = &cpu_base->clock_base[base];
	timerqueue_init(&timer->node);
}

/**
 * hrtimer_init - initialize a timer to the given clock
 * @timer:	the timer to be initialized
 * @clock_id:	the clock to be used
 * @mode:       The modes which are relevant for initialization:
 *              HRTIMER_MODE_ABS, HRTIMER_MODE_REL, HRTIMER_MODE_ABS_SOFT,
 *              HRTIMER_MODE_REL_SOFT
 *
 *              The PINNED variants of the above can be handed in,
 *              but the PINNED bit is ignored as pinning happens
 *              when the hrtimer is started
 */
void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
		  enum hrtimer_mode mode)
{
	debug_init(timer, clock_id, mode);
	__hrtimer_init(timer, clock_id, mode);
}
EXPORT_SYMBOL_GPL(hrtimer_init);

/*
 * A timer is active, when it is enqueued into the rbtree or the
 * callback function is running or it's in the state of being migrated
 * to another cpu.
 *
 * It is important for this function to not return a false negative.
 */
bool hrtimer_active(const struct hrtimer *timer)
{
	struct hrtimer_clock_base *base;
	unsigned int seq;

	do {
		base = READ_ONCE(timer->base);
		seq = raw_read_seqcount_begin(&base->seq);

		if (timer->state != HRTIMER_STATE_INACTIVE ||
		    base->running == timer)
			return true;

	} while (read_seqcount_retry(&base->seq, seq) ||
		 base != READ_ONCE(timer->base));

	return false;
}
EXPORT_SYMBOL_GPL(hrtimer_active);

/*
 * The write_seqcount_barrier()s in __run_hrtimer() split the thing into 3
 * distinct sections:
 *
 *  - queued:	the timer is queued
 *  - callback:	the timer is being ran
 *  - post:	the timer is inactive or (re)queued
 *
 * On the read side we ensure we observe timer->state and cpu_base->running
 * from the same section, if anything changed while we looked at it, we retry.
 * This includes timer->base changing because sequence numbers alone are
 * insufficient for that.
 *
 * The sequence numbers are required because otherwise we could still observe
 * a false negative if the read side got smeared over multiple consecutive
 * __run_hrtimer() invocations.
 */

static void __run_hrtimer(struct hrtimer_cpu_base *cpu_base,
			  struct hrtimer_clock_base *base,
			  struct hrtimer *timer, ktime_t *now,
			  unsigned long flags) __must_hold(&cpu_base->lock)
{
	enum hrtimer_restart (*fn)(struct hrtimer *);
	bool expires_in_hardirq;
	int restart;

	lockdep_assert_held(&cpu_base->lock);

	debug_deactivate(timer);
	base->running = timer;

	/*
	 * Separate the ->running assignment from the ->state assignment.
	 *
	 * As with a regular write barrier, this ensures the read side in
	 * hrtimer_active() cannot observe base->running == NULL &&
	 * timer->state == INACTIVE.
	 */
	raw_write_seqcount_barrier(&base->seq);

	__remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE, 0);
	fn = timer->function;

	/*
	 * Clear the 'is relative' flag for the TIME_LOW_RES case. If the
	 * timer is restarted with a period then it becomes an absolute
	 * timer. If its not restarted it does not matter.
	 */
	if (IS_ENABLED(CONFIG_TIME_LOW_RES))
		timer->is_rel = false;

	/*
	 * The timer is marked as running in the CPU base, so it is
	 * protected against migration to a different CPU even if the lock
	 * is dropped.
	 */
	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
	trace_hrtimer_expire_entry(timer, now);
	expires_in_hardirq = lockdep_hrtimer_enter(timer);

	restart = fn(timer);

	lockdep_hrtimer_exit(expires_in_hardirq);
	trace_hrtimer_expire_exit(timer);
	raw_spin_lock_irq(&cpu_base->lock);

	/*
	 * Note: We clear the running state after enqueue_hrtimer and
	 * we do not reprogram the event hardware. Happens either in
	 * hrtimer_start_range_ns() or in hrtimer_interrupt()
	 *
	 * Note: Because we dropped the cpu_base->lock above,
	 * hrtimer_start_range_ns() can have popped in and enqueued the timer
	 * for us already.
	 */
	if (restart != HRTIMER_NORESTART &&
	    !(timer->state & HRTIMER_STATE_ENQUEUED))
		enqueue_hrtimer(timer, base, HRTIMER_MODE_ABS);

	/*
	 * Separate the ->running assignment from the ->state assignment.
	 *
	 * As with a regular write barrier, this ensures the read side in
	 * hrtimer_active() cannot observe base->running.timer == NULL &&
	 * timer->state == INACTIVE.
	 */
	raw_write_seqcount_barrier(&base->seq);

	WARN_ON_ONCE(base->running != timer);
	base->running = NULL;
}

static void __hrtimer_run_queues(struct hrtimer_cpu_base *cpu_base, ktime_t now,
				 unsigned long flags, unsigned int active_mask)
{
	struct hrtimer_clock_base *base;
	unsigned int active = cpu_base->active_bases & active_mask;

	for_each_active_base(base, cpu_base, active) {
		struct timerqueue_node *node;
		ktime_t basenow;

		basenow = ktime_add(now, base->offset);

		while ((node = timerqueue_getnext(&base->active))) {
			struct hrtimer *timer;

			timer = container_of(node, struct hrtimer, node);

			/*
			 * The immediate goal for using the softexpires is
			 * minimizing wakeups, not running timers at the
			 * earliest interrupt after their soft expiration.
			 * This allows us to avoid using a Priority Search
			 * Tree, which can answer a stabbing query for
			 * overlapping intervals and instead use the simple
			 * BST we already have.
			 * We don't add extra wakeups by delaying timers that
			 * are right-of a not yet expired timer, because that
			 * timer will have to trigger a wakeup anyway.
			 */
			if (basenow < hrtimer_get_softexpires_tv64(timer))
				break;

			__run_hrtimer(cpu_base, base, timer, &basenow, flags);
			if (active_mask == HRTIMER_ACTIVE_SOFT)
				hrtimer_sync_wait_running(cpu_base, flags);
		}
	}
}

static __latent_entropy void hrtimer_run_softirq(struct softirq_action *h)
{
	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
	unsigned long flags;
	ktime_t now;

	hrtimer_cpu_base_lock_expiry(cpu_base);
	raw_spin_lock_irqsave(&cpu_base->lock, flags);

	now = hrtimer_update_base(cpu_base);
	__hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_SOFT);

	cpu_base->softirq_activated = 0;
	hrtimer_update_softirq_timer(cpu_base, true);

	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
	hrtimer_cpu_base_unlock_expiry(cpu_base);
}

#ifdef CONFIG_HIGH_RES_TIMERS

/*
 * High resolution timer interrupt
 * Called with interrupts disabled
 */
void hrtimer_interrupt(struct clock_event_device *dev)
{
	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
	ktime_t expires_next, now, entry_time, delta;
	unsigned long flags;
	int retries = 0;

	BUG_ON(!cpu_base->hres_active);
	cpu_base->nr_events++;
	dev->next_event = KTIME_MAX;

	raw_spin_lock_irqsave(&cpu_base->lock, flags);
	entry_time = now = hrtimer_update_base(cpu_base);
retry:
	cpu_base->in_hrtirq = 1;
	/*
	 * We set expires_next to KTIME_MAX here with cpu_base->lock
	 * held to prevent that a timer is enqueued in our queue via
	 * the migration code. This does not affect enqueueing of
	 * timers which run their callback and need to be requeued on
	 * this CPU.
	 */
	cpu_base->expires_next = KTIME_MAX;

	if (!ktime_before(now, cpu_base->softirq_expires_next)) {
		cpu_base->softirq_expires_next = KTIME_MAX;
		cpu_base->softirq_activated = 1;
		raise_softirq_irqoff(HRTIMER_SOFTIRQ);
	}

	__hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_HARD);

	/* Reevaluate the clock bases for the [soft] next expiry */
	expires_next = hrtimer_update_next_event(cpu_base);
	/*
	 * Store the new expiry value so the migration code can verify
	 * against it.
	 */
	cpu_base->expires_next = expires_next;
	cpu_base->in_hrtirq = 0;
	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);

	/* Reprogramming necessary ? */
	if (!tick_program_event(expires_next, 0)) {
		cpu_base->hang_detected = 0;
		return;
	}

	/*
	 * The next timer was already expired due to:
	 * - tracing
	 * - long lasting callbacks
	 * - being scheduled away when running in a VM
	 *
	 * We need to prevent that we loop forever in the hrtimer
	 * interrupt routine. We give it 3 attempts to avoid
	 * overreacting on some spurious event.
	 *
	 * Acquire base lock for updating the offsets and retrieving
	 * the current time.
	 */
	raw_spin_lock_irqsave(&cpu_base->lock, flags);
	now = hrtimer_update_base(cpu_base);
	cpu_base->nr_retries++;
	if (++retries < 3)
		goto retry;
	/*
	 * Give the system a chance to do something else than looping
	 * here. We stored the entry time, so we know exactly how long
	 * we spent here. We schedule the next event this amount of
	 * time away.
	 */
	cpu_base->nr_hangs++;
	cpu_base->hang_detected = 1;
	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);

	delta = ktime_sub(now, entry_time);
	if ((unsigned int)delta > cpu_base->max_hang_time)
		cpu_base->max_hang_time = (unsigned int) delta;
	/*
	 * Limit it to a sensible value as we enforce a longer
	 * delay. Give the CPU at least 100ms to catch up.
	 */
	if (delta > 100 * NSEC_PER_MSEC)
		expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
	else
		expires_next = ktime_add(now, delta);
	tick_program_event(expires_next, 1);
	pr_warn_once("hrtimer: interrupt took %llu ns\n", ktime_to_ns(delta));
}

/* called with interrupts disabled */
static inline void __hrtimer_peek_ahead_timers(void)
{
	struct tick_device *td;

	if (!hrtimer_hres_active())
		return;

	td = this_cpu_ptr(&tick_cpu_device);
	if (td && td->evtdev)
		hrtimer_interrupt(td->evtdev);
}

#else /* CONFIG_HIGH_RES_TIMERS */

static inline void __hrtimer_peek_ahead_timers(void) { }

#endif	/* !CONFIG_HIGH_RES_TIMERS */

/*
 * Called from run_local_timers in hardirq context every jiffy
 */
void hrtimer_run_queues(void)
{
	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
	unsigned long flags;
	ktime_t now;

	if (__hrtimer_hres_active(cpu_base))
		return;

	/*
	 * This _is_ ugly: We have to check periodically, whether we
	 * can switch to highres and / or nohz mode. The clocksource
	 * switch happens with xtime_lock held. Notification from
	 * there only sets the check bit in the tick_oneshot code,
	 * otherwise we might deadlock vs. xtime_lock.
	 */
	if (tick_check_oneshot_change(!hrtimer_is_hres_enabled())) {
		hrtimer_switch_to_hres();
		return;
	}

	raw_spin_lock_irqsave(&cpu_base->lock, flags);
	now = hrtimer_update_base(cpu_base);

	if (!ktime_before(now, cpu_base->softirq_expires_next)) {
		cpu_base->softirq_expires_next = KTIME_MAX;
		cpu_base->softirq_activated = 1;
		raise_softirq_irqoff(HRTIMER_SOFTIRQ);
	}

	__hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_HARD);
	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
}

/*
 * Sleep related functions:
 */
static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
{
	struct hrtimer_sleeper *t =
		container_of(timer, struct hrtimer_sleeper, timer);
	struct task_struct *task = t->task;

	t->task = NULL;
	if (task)
		wake_up_process(task);

	return HRTIMER_NORESTART;
}

/**
 * hrtimer_sleeper_start_expires - Start a hrtimer sleeper timer
 * @sl:		sleeper to be started
 * @mode:	timer mode abs/rel
 *
 * Wrapper around hrtimer_start_expires() for hrtimer_sleeper based timers
 * to allow PREEMPT_RT to tweak the delivery mode (soft/hardirq context)
 */
void hrtimer_sleeper_start_expires(struct hrtimer_sleeper *sl,
				   enum hrtimer_mode mode)
{
	/*
	 * Make the enqueue delivery mode check work on RT. If the sleeper
	 * was initialized for hard interrupt delivery, force the mode bit.
	 * This is a special case for hrtimer_sleepers because
	 * hrtimer_init_sleeper() determines the delivery mode on RT so the
	 * fiddling with this decision is avoided at the call sites.
	 */
	if (IS_ENABLED(CONFIG_PREEMPT_RT) && sl->timer.is_hard)
		mode |= HRTIMER_MODE_HARD;

	hrtimer_start_expires(&sl->timer, mode);
}
EXPORT_SYMBOL_GPL(hrtimer_sleeper_start_expires);

static void __hrtimer_init_sleeper(struct hrtimer_sleeper *sl,
				   clockid_t clock_id, enum hrtimer_mode mode)
{
	/*
	 * On PREEMPT_RT enabled kernels hrtimers which are not explicitly
	 * marked for hard interrupt expiry mode are moved into soft
	 * interrupt context either for latency reasons or because the
	 * hrtimer callback takes regular spinlocks or invokes other
	 * functions which are not suitable for hard interrupt context on
	 * PREEMPT_RT.
	 *
	 * The hrtimer_sleeper callback is RT compatible in hard interrupt
	 * context, but there is a latency concern: Untrusted userspace can
	 * spawn many threads which arm timers for the same expiry time on
	 * the same CPU. That causes a latency spike due to the wakeup of
	 * a gazillion threads.
	 *
	 * OTOH, privileged real-time user space applications rely on the
	 * low latency of hard interrupt wakeups. If the current task is in
	 * a real-time scheduling class, mark the mode for hard interrupt
	 * expiry.
	 */
	if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
		if (task_is_realtime(current) && !(mode & HRTIMER_MODE_SOFT))
			mode |= HRTIMER_MODE_HARD;
	}

	__hrtimer_init(&sl->timer, clock_id, mode);
	sl->timer.function = hrtimer_wakeup;
	sl->task = current;
}

/**
 * hrtimer_init_sleeper - initialize sleeper to the given clock
 * @sl:		sleeper to be initialized
 * @clock_id:	the clock to be used
 * @mode:	timer mode abs/rel
 */
void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, clockid_t clock_id,
			  enum hrtimer_mode mode)
{
	debug_init(&sl->timer, clock_id, mode);
	__hrtimer_init_sleeper(sl, clock_id, mode);

}
EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);

int nanosleep_copyout(struct restart_block *restart, struct timespec64 *ts)
{
	switch(restart->nanosleep.type) {
#ifdef CONFIG_COMPAT_32BIT_TIME
	case TT_COMPAT:
		if (put_old_timespec32(ts, restart->nanosleep.compat_rmtp))
			return -EFAULT;
		break;
#endif
	case TT_NATIVE:
		if (put_timespec64(ts, restart->nanosleep.rmtp))
			return -EFAULT;
		break;
	default:
		BUG();
	}
	return -ERESTART_RESTARTBLOCK;
}

static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
{
	struct restart_block *restart;

	do {
		set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE);
		hrtimer_sleeper_start_expires(t, mode);

		if (likely(t->task))
			schedule();

		hrtimer_cancel(&t->timer);
		mode = HRTIMER_MODE_ABS;

	} while (t->task && !signal_pending(current));

	__set_current_state(TASK_RUNNING);

	if (!t->task)
		return 0;

	restart = &current->restart_block;
	if (restart->nanosleep.type != TT_NONE) {
		ktime_t rem = hrtimer_expires_remaining(&t->timer);
		struct timespec64 rmt;

		if (rem <= 0)
			return 0;
		rmt = ktime_to_timespec64(rem);

		return nanosleep_copyout(restart, &rmt);
	}
	return -ERESTART_RESTARTBLOCK;
}

static long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
{
	struct hrtimer_sleeper t;
	int ret;

	hrtimer_init_sleeper_on_stack(&t, restart->nanosleep.clockid,
				      HRTIMER_MODE_ABS);
	hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
	ret = do_nanosleep(&t, HRTIMER_MODE_ABS);
	destroy_hrtimer_on_stack(&t.timer);
	return ret;
}

long hrtimer_nanosleep(ktime_t rqtp, const enum hrtimer_mode mode,
		       const clockid_t clockid)
{
	struct restart_block *restart;
	struct hrtimer_sleeper t;
	int ret = 0;
	u64 slack;

	slack = current->timer_slack_ns;
	if (dl_task(current) || rt_task(current))
		slack = 0;

	hrtimer_init_sleeper_on_stack(&t, clockid, mode);
	hrtimer_set_expires_range_ns(&t.timer, rqtp, slack);
	ret = do_nanosleep(&t, mode);
	if (ret != -ERESTART_RESTARTBLOCK)
		goto out;

	/* Absolute timers do not update the rmtp value and restart: */
	if (mode == HRTIMER_MODE_ABS) {
		ret = -ERESTARTNOHAND;
		goto out;
	}

	restart = &current->restart_block;
	restart->nanosleep.clockid = t.timer.base->clockid;
	restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
	set_restart_fn(restart, hrtimer_nanosleep_restart);
out:
	destroy_hrtimer_on_stack(&t.timer);
	return ret;
}

#ifdef CONFIG_64BIT

SYSCALL_DEFINE2(nanosleep, struct __kernel_timespec __user *, rqtp,
		struct __kernel_timespec __user *, rmtp)
{
	struct timespec64 tu;

	if (get_timespec64(&tu, rqtp))
		return -EFAULT;

	if (!timespec64_valid(&tu))
		return -EINVAL;

	current->restart_block.nanosleep.type = rmtp ? TT_NATIVE : TT_NONE;
	current->restart_block.nanosleep.rmtp = rmtp;
	return hrtimer_nanosleep(timespec64_to_ktime(tu), HRTIMER_MODE_REL,
				 CLOCK_MONOTONIC);
}

#endif

#ifdef CONFIG_COMPAT_32BIT_TIME

SYSCALL_DEFINE2(nanosleep_time32, struct old_timespec32 __user *, rqtp,
		       struct old_timespec32 __user *, rmtp)
{
	struct timespec64 tu;

	if (get_old_timespec32(&tu, rqtp))
		return -EFAULT;

	if (!timespec64_valid(&tu))
		return -EINVAL;

	current->restart_block.nanosleep.type = rmtp ? TT_COMPAT : TT_NONE;
	current->restart_block.nanosleep.compat_rmtp = rmtp;
	return hrtimer_nanosleep(timespec64_to_ktime(tu), HRTIMER_MODE_REL,
				 CLOCK_MONOTONIC);
}
#endif

/*
 * Functions related to boot-time initialization:
 */
int hrtimers_prepare_cpu(unsigned int cpu)
{
	struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
	int i;

	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
		struct hrtimer_clock_base *clock_b = &cpu_base->clock_base[i];

		clock_b->cpu_base = cpu_base;
		seqcount_raw_spinlock_init(&clock_b->seq, &cpu_base->lock);
		timerqueue_init_head(&clock_b->active);
	}

	cpu_base->cpu = cpu;
	cpu_base->active_bases = 0;
	cpu_base->hres_active = 0;
	cpu_base->hang_detected = 0;
	cpu_base->next_timer = NULL;
	cpu_base->softirq_next_timer = NULL;
	cpu_base->expires_next = KTIME_MAX;
	cpu_base->softirq_expires_next = KTIME_MAX;
	hrtimer_cpu_base_init_expiry_lock(cpu_base);
	return 0;
}

#ifdef CONFIG_HOTPLUG_CPU

static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
				struct hrtimer_clock_base *new_base)
{
	struct hrtimer *timer;
	struct timerqueue_node *node;

	while ((node = timerqueue_getnext(&old_base->active))) {
		timer = container_of(node, struct hrtimer, node);
		BUG_ON(hrtimer_callback_running(timer));
		debug_deactivate(timer);

		/*
		 * Mark it as ENQUEUED not INACTIVE otherwise the
		 * timer could be seen as !active and just vanish away
		 * under us on another CPU
		 */
		__remove_hrtimer(timer, old_base, HRTIMER_STATE_ENQUEUED, 0);
		timer->base = new_base;
		/*
		 * Enqueue the timers on the new cpu. This does not
		 * reprogram the event device in case the timer
		 * expires before the earliest on this CPU, but we run
		 * hrtimer_interrupt after we migrated everything to
		 * sort out already expired timers and reprogram the
		 * event device.
		 */
		enqueue_hrtimer(timer, new_base, HRTIMER_MODE_ABS);
	}
}

int hrtimers_dead_cpu(unsigned int scpu)
{
	struct hrtimer_cpu_base *old_base, *new_base;
	int i;

	BUG_ON(cpu_online(scpu));
	tick_cancel_sched_timer(scpu);

	/*
	 * this BH disable ensures that raise_softirq_irqoff() does
	 * not wakeup ksoftirqd (and acquire the pi-lock) while
	 * holding the cpu_base lock
	 */
	local_bh_disable();
	local_irq_disable();
	old_base = &per_cpu(hrtimer_bases, scpu);
	new_base = this_cpu_ptr(&hrtimer_bases);
	/*
	 * The caller is globally serialized and nobody else
	 * takes two locks at once, deadlock is not possible.
	 */
	raw_spin_lock(&new_base->lock);
	raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);

	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
		migrate_hrtimer_list(&old_base->clock_base[i],
				     &new_base->clock_base[i]);
	}

	/*
	 * The migration might have changed the first expiring softirq
	 * timer on this CPU. Update it.
	 */
	hrtimer_update_softirq_timer(new_base, false);

	raw_spin_unlock(&old_base->lock);
	raw_spin_unlock(&new_base->lock);

	/* Check, if we got expired work to do */
	__hrtimer_peek_ahead_timers();
	local_irq_enable();
	local_bh_enable();
	return 0;
}

#endif /* CONFIG_HOTPLUG_CPU */

void __init hrtimers_init(void)
{
	hrtimers_prepare_cpu(smp_processor_id());
	open_softirq(HRTIMER_SOFTIRQ, hrtimer_run_softirq);
}

/**
 * schedule_hrtimeout_range_clock - sleep until timeout
 * @expires:	timeout value (ktime_t)
 * @delta:	slack in expires timeout (ktime_t)
 * @mode:	timer mode
 * @clock_id:	timer clock to be used
 */
int __sched
schedule_hrtimeout_range_clock(ktime_t *expires, u64 delta,
			       const enum hrtimer_mode mode, clockid_t clock_id)
{
	struct hrtimer_sleeper t;

	/*
	 * Optimize when a zero timeout value is given. It does not
	 * matter whether this is an absolute or a relative time.
	 */
	if (expires && *expires == 0) {
		__set_current_state(TASK_RUNNING);
		return 0;
	}

	/*
	 * A NULL parameter means "infinite"
	 */
	if (!expires) {
		schedule();
		return -EINTR;
	}

	hrtimer_init_sleeper_on_stack(&t, clock_id, mode);
	hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
	hrtimer_sleeper_start_expires(&t, mode);

	if (likely(t.task))
		schedule();

	hrtimer_cancel(&t.timer);
	destroy_hrtimer_on_stack(&t.timer);

	__set_current_state(TASK_RUNNING);

	return !t.task ? 0 : -EINTR;
}
EXPORT_SYMBOL_GPL(schedule_hrtimeout_range_clock);

/**
 * schedule_hrtimeout_range - sleep until timeout
 * @expires:	timeout value (ktime_t)
 * @delta:	slack in expires timeout (ktime_t)
 * @mode:	timer mode
 *
 * Make the current task sleep until the given expiry time has
 * elapsed. The routine will return immediately unless
 * the current task state has been set (see set_current_state()).
 *
 * The @delta argument gives the kernel the freedom to schedule the
 * actual wakeup to a time that is both power and performance friendly.
 * The kernel give the normal best effort behavior for "@expires+@delta",
 * but may decide to fire the timer earlier, but no earlier than @expires.
 *
 * You can set the task state as follows -
 *
 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
 * pass before the routine returns unless the current task is explicitly
 * woken up, (e.g. by wake_up_process()).
 *
 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
 * delivered to the current task or the current task is explicitly woken
 * up.
 *
 * The current task state is guaranteed to be TASK_RUNNING when this
 * routine returns.
 *
 * Returns 0 when the timer has expired. If the task was woken before the
 * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or
 * by an explicit wakeup, it returns -EINTR.
 */
int __sched schedule_hrtimeout_range(ktime_t *expires, u64 delta,
				     const enum hrtimer_mode mode)
{
	return schedule_hrtimeout_range_clock(expires, delta, mode,
					      CLOCK_MONOTONIC);
}
EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);

/**
 * schedule_hrtimeout - sleep until timeout
 * @expires:	timeout value (ktime_t)
 * @mode:	timer mode
 *
 * Make the current task sleep until the given expiry time has
 * elapsed. The routine will return immediately unless
 * the current task state has been set (see set_current_state()).
 *
 * You can set the task state as follows -
 *
 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
 * pass before the routine returns unless the current task is explicitly
 * woken up, (e.g. by wake_up_process()).
 *
 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
 * delivered to the current task or the current task is explicitly woken
 * up.
 *
 * The current task state is guaranteed to be TASK_RUNNING when this
 * routine returns.
 *
 * Returns 0 when the timer has expired. If the task was woken before the
 * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or
 * by an explicit wakeup, it returns -EINTR.
 */
int __sched schedule_hrtimeout(ktime_t *expires,
			       const enum hrtimer_mode mode)
{
	return schedule_hrtimeout_range(expires, 0, mode);
}
EXPORT_SYMBOL_GPL(schedule_hrtimeout);