summaryrefslogtreecommitdiff
path: root/fs/f2fs/inline.c
blob: 9686ffea177e7e8d251e21f3a101bcda3ee1e21e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
// SPDX-License-Identifier: GPL-2.0
/*
 * fs/f2fs/inline.c
 * Copyright (c) 2013, Intel Corporation
 * Authors: Huajun Li <huajun.li@intel.com>
 *          Haicheng Li <haicheng.li@intel.com>
 */

#include <linux/fs.h>
#include <linux/f2fs_fs.h>
#include <linux/fiemap.h>

#include "f2fs.h"
#include "node.h"

bool f2fs_may_inline_data(struct inode *inode)
{
	if (f2fs_is_atomic_file(inode))
		return false;

	if (!S_ISREG(inode->i_mode) && !S_ISLNK(inode->i_mode))
		return false;

	if (i_size_read(inode) > MAX_INLINE_DATA(inode))
		return false;

	if (f2fs_post_read_required(inode))
		return false;

	return true;
}

bool f2fs_may_inline_dentry(struct inode *inode)
{
	if (!test_opt(F2FS_I_SB(inode), INLINE_DENTRY))
		return false;

	if (!S_ISDIR(inode->i_mode))
		return false;

	return true;
}

void f2fs_do_read_inline_data(struct page *page, struct page *ipage)
{
	struct inode *inode = page->mapping->host;
	void *src_addr, *dst_addr;

	if (PageUptodate(page))
		return;

	f2fs_bug_on(F2FS_P_SB(page), page->index);

	zero_user_segment(page, MAX_INLINE_DATA(inode), PAGE_SIZE);

	/* Copy the whole inline data block */
	src_addr = inline_data_addr(inode, ipage);
	dst_addr = kmap_atomic(page);
	memcpy(dst_addr, src_addr, MAX_INLINE_DATA(inode));
	flush_dcache_page(page);
	kunmap_atomic(dst_addr);
	if (!PageUptodate(page))
		SetPageUptodate(page);
}

void f2fs_truncate_inline_inode(struct inode *inode,
					struct page *ipage, u64 from)
{
	void *addr;

	if (from >= MAX_INLINE_DATA(inode))
		return;

	addr = inline_data_addr(inode, ipage);

	f2fs_wait_on_page_writeback(ipage, NODE, true, true);
	memset(addr + from, 0, MAX_INLINE_DATA(inode) - from);
	set_page_dirty(ipage);

	if (from == 0)
		clear_inode_flag(inode, FI_DATA_EXIST);
}

int f2fs_read_inline_data(struct inode *inode, struct page *page)
{
	struct page *ipage;

	ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino);
	if (IS_ERR(ipage)) {
		unlock_page(page);
		return PTR_ERR(ipage);
	}

	if (!f2fs_has_inline_data(inode)) {
		f2fs_put_page(ipage, 1);
		return -EAGAIN;
	}

	if (page->index)
		zero_user_segment(page, 0, PAGE_SIZE);
	else
		f2fs_do_read_inline_data(page, ipage);

	if (!PageUptodate(page))
		SetPageUptodate(page);
	f2fs_put_page(ipage, 1);
	unlock_page(page);
	return 0;
}

int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page)
{
	struct f2fs_io_info fio = {
		.sbi = F2FS_I_SB(dn->inode),
		.ino = dn->inode->i_ino,
		.type = DATA,
		.op = REQ_OP_WRITE,
		.op_flags = REQ_SYNC | REQ_PRIO,
		.page = page,
		.encrypted_page = NULL,
		.io_type = FS_DATA_IO,
	};
	struct node_info ni;
	int dirty, err;

	if (!f2fs_exist_data(dn->inode))
		goto clear_out;

	err = f2fs_reserve_block(dn, 0);
	if (err)
		return err;

	err = f2fs_get_node_info(fio.sbi, dn->nid, &ni);
	if (err) {
		f2fs_truncate_data_blocks_range(dn, 1);
		f2fs_put_dnode(dn);
		return err;
	}

	fio.version = ni.version;

	if (unlikely(dn->data_blkaddr != NEW_ADDR)) {
		f2fs_put_dnode(dn);
		set_sbi_flag(fio.sbi, SBI_NEED_FSCK);
		f2fs_warn(fio.sbi, "%s: corrupted inline inode ino=%lx, i_addr[0]:0x%x, run fsck to fix.",
			  __func__, dn->inode->i_ino, dn->data_blkaddr);
		return -EFSCORRUPTED;
	}

	f2fs_bug_on(F2FS_P_SB(page), PageWriteback(page));

	f2fs_do_read_inline_data(page, dn->inode_page);
	set_page_dirty(page);

	/* clear dirty state */
	dirty = clear_page_dirty_for_io(page);

	/* write data page to try to make data consistent */
	set_page_writeback(page);
	ClearPageError(page);
	fio.old_blkaddr = dn->data_blkaddr;
	set_inode_flag(dn->inode, FI_HOT_DATA);
	f2fs_outplace_write_data(dn, &fio);
	f2fs_wait_on_page_writeback(page, DATA, true, true);
	if (dirty) {
		inode_dec_dirty_pages(dn->inode);
		f2fs_remove_dirty_inode(dn->inode);
	}

	/* this converted inline_data should be recovered. */
	set_inode_flag(dn->inode, FI_APPEND_WRITE);

	/* clear inline data and flag after data writeback */
	f2fs_truncate_inline_inode(dn->inode, dn->inode_page, 0);
	clear_inline_node(dn->inode_page);
clear_out:
	stat_dec_inline_inode(dn->inode);
	clear_inode_flag(dn->inode, FI_INLINE_DATA);
	f2fs_put_dnode(dn);
	return 0;
}

int f2fs_convert_inline_inode(struct inode *inode)
{
	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
	struct dnode_of_data dn;
	struct page *ipage, *page;
	int err = 0;

	if (!f2fs_has_inline_data(inode))
		return 0;

	page = f2fs_grab_cache_page(inode->i_mapping, 0, false);
	if (!page)
		return -ENOMEM;

	f2fs_lock_op(sbi);

	ipage = f2fs_get_node_page(sbi, inode->i_ino);
	if (IS_ERR(ipage)) {
		err = PTR_ERR(ipage);
		goto out;
	}

	set_new_dnode(&dn, inode, ipage, ipage, 0);

	if (f2fs_has_inline_data(inode))
		err = f2fs_convert_inline_page(&dn, page);

	f2fs_put_dnode(&dn);
out:
	f2fs_unlock_op(sbi);

	f2fs_put_page(page, 1);

	f2fs_balance_fs(sbi, dn.node_changed);

	return err;
}

int f2fs_write_inline_data(struct inode *inode, struct page *page)
{
	void *src_addr, *dst_addr;
	struct dnode_of_data dn;
	int err;

	set_new_dnode(&dn, inode, NULL, NULL, 0);
	err = f2fs_get_dnode_of_data(&dn, 0, LOOKUP_NODE);
	if (err)
		return err;

	if (!f2fs_has_inline_data(inode)) {
		f2fs_put_dnode(&dn);
		return -EAGAIN;
	}

	f2fs_bug_on(F2FS_I_SB(inode), page->index);

	f2fs_wait_on_page_writeback(dn.inode_page, NODE, true, true);
	src_addr = kmap_atomic(page);
	dst_addr = inline_data_addr(inode, dn.inode_page);
	memcpy(dst_addr, src_addr, MAX_INLINE_DATA(inode));
	kunmap_atomic(src_addr);
	set_page_dirty(dn.inode_page);

	f2fs_clear_page_cache_dirty_tag(page);

	set_inode_flag(inode, FI_APPEND_WRITE);
	set_inode_flag(inode, FI_DATA_EXIST);

	clear_inline_node(dn.inode_page);
	f2fs_put_dnode(&dn);
	return 0;
}

bool f2fs_recover_inline_data(struct inode *inode, struct page *npage)
{
	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
	struct f2fs_inode *ri = NULL;
	void *src_addr, *dst_addr;
	struct page *ipage;

	/*
	 * The inline_data recovery policy is as follows.
	 * [prev.] [next] of inline_data flag
	 *    o       o  -> recover inline_data
	 *    o       x  -> remove inline_data, and then recover data blocks
	 *    x       o  -> remove inline_data, and then recover inline_data
	 *    x       x  -> recover data blocks
	 */
	if (IS_INODE(npage))
		ri = F2FS_INODE(npage);

	if (f2fs_has_inline_data(inode) &&
			ri && (ri->i_inline & F2FS_INLINE_DATA)) {
process_inline:
		ipage = f2fs_get_node_page(sbi, inode->i_ino);
		f2fs_bug_on(sbi, IS_ERR(ipage));

		f2fs_wait_on_page_writeback(ipage, NODE, true, true);

		src_addr = inline_data_addr(inode, npage);
		dst_addr = inline_data_addr(inode, ipage);
		memcpy(dst_addr, src_addr, MAX_INLINE_DATA(inode));

		set_inode_flag(inode, FI_INLINE_DATA);
		set_inode_flag(inode, FI_DATA_EXIST);

		set_page_dirty(ipage);
		f2fs_put_page(ipage, 1);
		return true;
	}

	if (f2fs_has_inline_data(inode)) {
		ipage = f2fs_get_node_page(sbi, inode->i_ino);
		f2fs_bug_on(sbi, IS_ERR(ipage));
		f2fs_truncate_inline_inode(inode, ipage, 0);
		clear_inode_flag(inode, FI_INLINE_DATA);
		f2fs_put_page(ipage, 1);
	} else if (ri && (ri->i_inline & F2FS_INLINE_DATA)) {
		if (f2fs_truncate_blocks(inode, 0, false))
			return false;
		goto process_inline;
	}
	return false;
}

struct f2fs_dir_entry *f2fs_find_in_inline_dir(struct inode *dir,
			struct fscrypt_name *fname, struct page **res_page)
{
	struct f2fs_sb_info *sbi = F2FS_SB(dir->i_sb);
	struct qstr name = FSTR_TO_QSTR(&fname->disk_name);
	struct f2fs_dir_entry *de;
	struct f2fs_dentry_ptr d;
	struct page *ipage;
	void *inline_dentry;
	f2fs_hash_t namehash;

	ipage = f2fs_get_node_page(sbi, dir->i_ino);
	if (IS_ERR(ipage)) {
		*res_page = ipage;
		return NULL;
	}

	namehash = f2fs_dentry_hash(dir, &name, fname);

	inline_dentry = inline_data_addr(dir, ipage);

	make_dentry_ptr_inline(dir, &d, inline_dentry);
	de = f2fs_find_target_dentry(fname, namehash, NULL, &d);
	unlock_page(ipage);
	if (de)
		*res_page = ipage;
	else
		f2fs_put_page(ipage, 0);

	return de;
}

int f2fs_make_empty_inline_dir(struct inode *inode, struct inode *parent,
							struct page *ipage)
{
	struct f2fs_dentry_ptr d;
	void *inline_dentry;

	inline_dentry = inline_data_addr(inode, ipage);

	make_dentry_ptr_inline(inode, &d, inline_dentry);
	f2fs_do_make_empty_dir(inode, parent, &d);

	set_page_dirty(ipage);

	/* update i_size to MAX_INLINE_DATA */
	if (i_size_read(inode) < MAX_INLINE_DATA(inode))
		f2fs_i_size_write(inode, MAX_INLINE_DATA(inode));
	return 0;
}

/*
 * NOTE: ipage is grabbed by caller, but if any error occurs, we should
 * release ipage in this function.
 */
static int f2fs_move_inline_dirents(struct inode *dir, struct page *ipage,
							void *inline_dentry)
{
	struct page *page;
	struct dnode_of_data dn;
	struct f2fs_dentry_block *dentry_blk;
	struct f2fs_dentry_ptr src, dst;
	int err;

	page = f2fs_grab_cache_page(dir->i_mapping, 0, true);
	if (!page) {
		f2fs_put_page(ipage, 1);
		return -ENOMEM;
	}

	set_new_dnode(&dn, dir, ipage, NULL, 0);
	err = f2fs_reserve_block(&dn, 0);
	if (err)
		goto out;

	if (unlikely(dn.data_blkaddr != NEW_ADDR)) {
		f2fs_put_dnode(&dn);
		set_sbi_flag(F2FS_P_SB(page), SBI_NEED_FSCK);
		f2fs_warn(F2FS_P_SB(page), "%s: corrupted inline inode ino=%lx, i_addr[0]:0x%x, run fsck to fix.",
			  __func__, dir->i_ino, dn.data_blkaddr);
		err = -EFSCORRUPTED;
		goto out;
	}

	f2fs_wait_on_page_writeback(page, DATA, true, true);

	dentry_blk = page_address(page);

	make_dentry_ptr_inline(dir, &src, inline_dentry);
	make_dentry_ptr_block(dir, &dst, dentry_blk);

	/* copy data from inline dentry block to new dentry block */
	memcpy(dst.bitmap, src.bitmap, src.nr_bitmap);
	memset(dst.bitmap + src.nr_bitmap, 0, dst.nr_bitmap - src.nr_bitmap);
	/*
	 * we do not need to zero out remainder part of dentry and filename
	 * field, since we have used bitmap for marking the usage status of
	 * them, besides, we can also ignore copying/zeroing reserved space
	 * of dentry block, because them haven't been used so far.
	 */
	memcpy(dst.dentry, src.dentry, SIZE_OF_DIR_ENTRY * src.max);
	memcpy(dst.filename, src.filename, src.max * F2FS_SLOT_LEN);

	if (!PageUptodate(page))
		SetPageUptodate(page);
	set_page_dirty(page);

	/* clear inline dir and flag after data writeback */
	f2fs_truncate_inline_inode(dir, ipage, 0);

	stat_dec_inline_dir(dir);
	clear_inode_flag(dir, FI_INLINE_DENTRY);

	/*
	 * should retrieve reserved space which was used to keep
	 * inline_dentry's structure for backward compatibility.
	 */
	if (!f2fs_sb_has_flexible_inline_xattr(F2FS_I_SB(dir)) &&
			!f2fs_has_inline_xattr(dir))
		F2FS_I(dir)->i_inline_xattr_size = 0;

	f2fs_i_depth_write(dir, 1);
	if (i_size_read(dir) < PAGE_SIZE)
		f2fs_i_size_write(dir, PAGE_SIZE);
out:
	f2fs_put_page(page, 1);
	return err;
}

static int f2fs_add_inline_entries(struct inode *dir, void *inline_dentry)
{
	struct f2fs_dentry_ptr d;
	unsigned long bit_pos = 0;
	int err = 0;

	make_dentry_ptr_inline(dir, &d, inline_dentry);

	while (bit_pos < d.max) {
		struct f2fs_dir_entry *de;
		struct qstr new_name;
		nid_t ino;
		umode_t fake_mode;

		if (!test_bit_le(bit_pos, d.bitmap)) {
			bit_pos++;
			continue;
		}

		de = &d.dentry[bit_pos];

		if (unlikely(!de->name_len)) {
			bit_pos++;
			continue;
		}

		new_name.name = d.filename[bit_pos];
		new_name.len = le16_to_cpu(de->name_len);

		ino = le32_to_cpu(de->ino);
		fake_mode = f2fs_get_de_type(de) << S_SHIFT;

		err = f2fs_add_regular_entry(dir, &new_name, NULL, NULL,
							ino, fake_mode);
		if (err)
			goto punch_dentry_pages;

		bit_pos += GET_DENTRY_SLOTS(le16_to_cpu(de->name_len));
	}
	return 0;
punch_dentry_pages:
	truncate_inode_pages(&dir->i_data, 0);
	f2fs_truncate_blocks(dir, 0, false);
	f2fs_remove_dirty_inode(dir);
	return err;
}

static int f2fs_move_rehashed_dirents(struct inode *dir, struct page *ipage,
							void *inline_dentry)
{
	void *backup_dentry;
	int err;

	backup_dentry = f2fs_kmalloc(F2FS_I_SB(dir),
				MAX_INLINE_DATA(dir), GFP_F2FS_ZERO);
	if (!backup_dentry) {
		f2fs_put_page(ipage, 1);
		return -ENOMEM;
	}

	memcpy(backup_dentry, inline_dentry, MAX_INLINE_DATA(dir));
	f2fs_truncate_inline_inode(dir, ipage, 0);

	unlock_page(ipage);

	err = f2fs_add_inline_entries(dir, backup_dentry);
	if (err)
		goto recover;

	lock_page(ipage);

	stat_dec_inline_dir(dir);
	clear_inode_flag(dir, FI_INLINE_DENTRY);

	/*
	 * should retrieve reserved space which was used to keep
	 * inline_dentry's structure for backward compatibility.
	 */
	if (!f2fs_sb_has_flexible_inline_xattr(F2FS_I_SB(dir)) &&
			!f2fs_has_inline_xattr(dir))
		F2FS_I(dir)->i_inline_xattr_size = 0;

	kvfree(backup_dentry);
	return 0;
recover:
	lock_page(ipage);
	f2fs_wait_on_page_writeback(ipage, NODE, true, true);
	memcpy(inline_dentry, backup_dentry, MAX_INLINE_DATA(dir));
	f2fs_i_depth_write(dir, 0);
	f2fs_i_size_write(dir, MAX_INLINE_DATA(dir));
	set_page_dirty(ipage);
	f2fs_put_page(ipage, 1);

	kvfree(backup_dentry);
	return err;
}

static int do_convert_inline_dir(struct inode *dir, struct page *ipage,
							void *inline_dentry)
{
	if (!F2FS_I(dir)->i_dir_level)
		return f2fs_move_inline_dirents(dir, ipage, inline_dentry);
	else
		return f2fs_move_rehashed_dirents(dir, ipage, inline_dentry);
}

int f2fs_try_convert_inline_dir(struct inode *dir, struct dentry *dentry)
{
	struct f2fs_sb_info *sbi = F2FS_I_SB(dir);
	struct page *ipage;
	struct fscrypt_name fname;
	void *inline_dentry = NULL;
	int err = 0;

	if (!f2fs_has_inline_dentry(dir))
		return 0;

	f2fs_lock_op(sbi);

	err = fscrypt_setup_filename(dir, &dentry->d_name, 0, &fname);
	if (err)
		goto out;

	ipage = f2fs_get_node_page(sbi, dir->i_ino);
	if (IS_ERR(ipage)) {
		err = PTR_ERR(ipage);
		goto out;
	}

	if (f2fs_has_enough_room(dir, ipage, &fname)) {
		f2fs_put_page(ipage, 1);
		goto out;
	}

	inline_dentry = inline_data_addr(dir, ipage);

	err = do_convert_inline_dir(dir, ipage, inline_dentry);
	if (!err)
		f2fs_put_page(ipage, 1);
out:
	f2fs_unlock_op(sbi);
	return err;
}

int f2fs_add_inline_entry(struct inode *dir, const struct qstr *new_name,
				const struct qstr *orig_name,
				struct inode *inode, nid_t ino, umode_t mode)
{
	struct f2fs_sb_info *sbi = F2FS_I_SB(dir);
	struct page *ipage;
	unsigned int bit_pos;
	f2fs_hash_t name_hash;
	void *inline_dentry = NULL;
	struct f2fs_dentry_ptr d;
	int slots = GET_DENTRY_SLOTS(new_name->len);
	struct page *page = NULL;
	int err = 0;

	ipage = f2fs_get_node_page(sbi, dir->i_ino);
	if (IS_ERR(ipage))
		return PTR_ERR(ipage);

	inline_dentry = inline_data_addr(dir, ipage);
	make_dentry_ptr_inline(dir, &d, inline_dentry);

	bit_pos = f2fs_room_for_filename(d.bitmap, slots, d.max);
	if (bit_pos >= d.max) {
		err = do_convert_inline_dir(dir, ipage, inline_dentry);
		if (err)
			return err;
		err = -EAGAIN;
		goto out;
	}

	if (inode) {
		down_write(&F2FS_I(inode)->i_sem);
		page = f2fs_init_inode_metadata(inode, dir, new_name,
						orig_name, ipage);
		if (IS_ERR(page)) {
			err = PTR_ERR(page);
			goto fail;
		}
	}

	f2fs_wait_on_page_writeback(ipage, NODE, true, true);

	name_hash = f2fs_dentry_hash(dir, new_name, NULL);
	f2fs_update_dentry(ino, mode, &d, new_name, name_hash, bit_pos);

	set_page_dirty(ipage);

	/* we don't need to mark_inode_dirty now */
	if (inode) {
		f2fs_i_pino_write(inode, dir->i_ino);

		/* synchronize inode page's data from inode cache */
		if (is_inode_flag_set(inode, FI_NEW_INODE))
			f2fs_update_inode(inode, page);

		f2fs_put_page(page, 1);
	}

	f2fs_update_parent_metadata(dir, inode, 0);
fail:
	if (inode)
		up_write(&F2FS_I(inode)->i_sem);
out:
	f2fs_put_page(ipage, 1);
	return err;
}

void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry, struct page *page,
					struct inode *dir, struct inode *inode)
{
	struct f2fs_dentry_ptr d;
	void *inline_dentry;
	int slots = GET_DENTRY_SLOTS(le16_to_cpu(dentry->name_len));
	unsigned int bit_pos;
	int i;

	lock_page(page);
	f2fs_wait_on_page_writeback(page, NODE, true, true);

	inline_dentry = inline_data_addr(dir, page);
	make_dentry_ptr_inline(dir, &d, inline_dentry);

	bit_pos = dentry - d.dentry;
	for (i = 0; i < slots; i++)
		__clear_bit_le(bit_pos + i, d.bitmap);

	set_page_dirty(page);
	f2fs_put_page(page, 1);

	dir->i_ctime = dir->i_mtime = current_time(dir);
	f2fs_mark_inode_dirty_sync(dir, false);

	if (inode)
		f2fs_drop_nlink(dir, inode);
}

bool f2fs_empty_inline_dir(struct inode *dir)
{
	struct f2fs_sb_info *sbi = F2FS_I_SB(dir);
	struct page *ipage;
	unsigned int bit_pos = 2;
	void *inline_dentry;
	struct f2fs_dentry_ptr d;

	ipage = f2fs_get_node_page(sbi, dir->i_ino);
	if (IS_ERR(ipage))
		return false;

	inline_dentry = inline_data_addr(dir, ipage);
	make_dentry_ptr_inline(dir, &d, inline_dentry);

	bit_pos = find_next_bit_le(d.bitmap, d.max, bit_pos);

	f2fs_put_page(ipage, 1);

	if (bit_pos < d.max)
		return false;

	return true;
}

int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx,
				struct fscrypt_str *fstr)
{
	struct inode *inode = file_inode(file);
	struct page *ipage = NULL;
	struct f2fs_dentry_ptr d;
	void *inline_dentry = NULL;
	int err;

	make_dentry_ptr_inline(inode, &d, inline_dentry);

	if (ctx->pos == d.max)
		return 0;

	ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino);
	if (IS_ERR(ipage))
		return PTR_ERR(ipage);

	/*
	 * f2fs_readdir was protected by inode.i_rwsem, it is safe to access
	 * ipage without page's lock held.
	 */
	unlock_page(ipage);

	inline_dentry = inline_data_addr(inode, ipage);

	make_dentry_ptr_inline(inode, &d, inline_dentry);

	err = f2fs_fill_dentries(ctx, &d, 0, fstr);
	if (!err)
		ctx->pos = d.max;

	f2fs_put_page(ipage, 0);
	return err < 0 ? err : 0;
}

int f2fs_inline_data_fiemap(struct inode *inode,
		struct fiemap_extent_info *fieinfo, __u64 start, __u64 len)
{
	__u64 byteaddr, ilen;
	__u32 flags = FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_NOT_ALIGNED |
		FIEMAP_EXTENT_LAST;
	struct node_info ni;
	struct page *ipage;
	int err = 0;

	ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino);
	if (IS_ERR(ipage))
		return PTR_ERR(ipage);

	if ((S_ISREG(inode->i_mode) || S_ISLNK(inode->i_mode)) &&
				!f2fs_has_inline_data(inode)) {
		err = -EAGAIN;
		goto out;
	}

	if (S_ISDIR(inode->i_mode) && !f2fs_has_inline_dentry(inode)) {
		err = -EAGAIN;
		goto out;
	}

	ilen = min_t(size_t, MAX_INLINE_DATA(inode), i_size_read(inode));
	if (start >= ilen)
		goto out;
	if (start + len < ilen)
		ilen = start + len;
	ilen -= start;

	err = f2fs_get_node_info(F2FS_I_SB(inode), inode->i_ino, &ni);
	if (err)
		goto out;

	byteaddr = (__u64)ni.blk_addr << inode->i_sb->s_blocksize_bits;
	byteaddr += (char *)inline_data_addr(inode, ipage) -
					(char *)F2FS_INODE(ipage);
	err = fiemap_fill_next_extent(fieinfo, start, byteaddr, ilen, flags);
out:
	f2fs_put_page(ipage, 1);
	return err;
}