summaryrefslogtreecommitdiff
path: root/drivers/nvme/host/rdma.c
blob: cc61a1b8311b16b638296c21ac8c572f99a96fe4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
// SPDX-License-Identifier: GPL-2.0
/*
 * NVMe over Fabrics RDMA host code.
 * Copyright (c) 2015-2016 HGST, a Western Digital Company.
 */
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/module.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <rdma/mr_pool.h>
#include <linux/err.h>
#include <linux/string.h>
#include <linux/atomic.h>
#include <linux/blk-mq.h>
#include <linux/blk-mq-rdma.h>
#include <linux/blk-integrity.h>
#include <linux/types.h>
#include <linux/list.h>
#include <linux/mutex.h>
#include <linux/scatterlist.h>
#include <linux/nvme.h>
#include <asm/unaligned.h>

#include <rdma/ib_verbs.h>
#include <rdma/rdma_cm.h>
#include <linux/nvme-rdma.h>

#include "nvme.h"
#include "fabrics.h"


#define NVME_RDMA_CM_TIMEOUT_MS		3000		/* 3 second */

#define NVME_RDMA_MAX_SEGMENTS		256

#define NVME_RDMA_MAX_INLINE_SEGMENTS	4

#define NVME_RDMA_DATA_SGL_SIZE \
	(sizeof(struct scatterlist) * NVME_INLINE_SG_CNT)
#define NVME_RDMA_METADATA_SGL_SIZE \
	(sizeof(struct scatterlist) * NVME_INLINE_METADATA_SG_CNT)

struct nvme_rdma_device {
	struct ib_device	*dev;
	struct ib_pd		*pd;
	struct kref		ref;
	struct list_head	entry;
	unsigned int		num_inline_segments;
};

struct nvme_rdma_qe {
	struct ib_cqe		cqe;
	void			*data;
	u64			dma;
};

struct nvme_rdma_sgl {
	int			nents;
	struct sg_table		sg_table;
};

struct nvme_rdma_queue;
struct nvme_rdma_request {
	struct nvme_request	req;
	struct ib_mr		*mr;
	struct nvme_rdma_qe	sqe;
	union nvme_result	result;
	__le16			status;
	refcount_t		ref;
	struct ib_sge		sge[1 + NVME_RDMA_MAX_INLINE_SEGMENTS];
	u32			num_sge;
	struct ib_reg_wr	reg_wr;
	struct ib_cqe		reg_cqe;
	struct nvme_rdma_queue  *queue;
	struct nvme_rdma_sgl	data_sgl;
	struct nvme_rdma_sgl	*metadata_sgl;
	bool			use_sig_mr;
};

enum nvme_rdma_queue_flags {
	NVME_RDMA_Q_ALLOCATED		= 0,
	NVME_RDMA_Q_LIVE		= 1,
	NVME_RDMA_Q_TR_READY		= 2,
};

struct nvme_rdma_queue {
	struct nvme_rdma_qe	*rsp_ring;
	int			queue_size;
	size_t			cmnd_capsule_len;
	struct nvme_rdma_ctrl	*ctrl;
	struct nvme_rdma_device	*device;
	struct ib_cq		*ib_cq;
	struct ib_qp		*qp;

	unsigned long		flags;
	struct rdma_cm_id	*cm_id;
	int			cm_error;
	struct completion	cm_done;
	bool			pi_support;
	int			cq_size;
	struct mutex		queue_lock;
};

struct nvme_rdma_ctrl {
	/* read only in the hot path */
	struct nvme_rdma_queue	*queues;

	/* other member variables */
	struct blk_mq_tag_set	tag_set;
	struct work_struct	err_work;

	struct nvme_rdma_qe	async_event_sqe;

	struct delayed_work	reconnect_work;

	struct list_head	list;

	struct blk_mq_tag_set	admin_tag_set;
	struct nvme_rdma_device	*device;

	u32			max_fr_pages;

	struct sockaddr_storage addr;
	struct sockaddr_storage src_addr;

	struct nvme_ctrl	ctrl;
	bool			use_inline_data;
	u32			io_queues[HCTX_MAX_TYPES];
};

static inline struct nvme_rdma_ctrl *to_rdma_ctrl(struct nvme_ctrl *ctrl)
{
	return container_of(ctrl, struct nvme_rdma_ctrl, ctrl);
}

static LIST_HEAD(device_list);
static DEFINE_MUTEX(device_list_mutex);

static LIST_HEAD(nvme_rdma_ctrl_list);
static DEFINE_MUTEX(nvme_rdma_ctrl_mutex);

/*
 * Disabling this option makes small I/O goes faster, but is fundamentally
 * unsafe.  With it turned off we will have to register a global rkey that
 * allows read and write access to all physical memory.
 */
static bool register_always = true;
module_param(register_always, bool, 0444);
MODULE_PARM_DESC(register_always,
	 "Use memory registration even for contiguous memory regions");

static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
		struct rdma_cm_event *event);
static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc);
static void nvme_rdma_complete_rq(struct request *rq);

static const struct blk_mq_ops nvme_rdma_mq_ops;
static const struct blk_mq_ops nvme_rdma_admin_mq_ops;

static inline int nvme_rdma_queue_idx(struct nvme_rdma_queue *queue)
{
	return queue - queue->ctrl->queues;
}

static bool nvme_rdma_poll_queue(struct nvme_rdma_queue *queue)
{
	return nvme_rdma_queue_idx(queue) >
		queue->ctrl->io_queues[HCTX_TYPE_DEFAULT] +
		queue->ctrl->io_queues[HCTX_TYPE_READ];
}

static inline size_t nvme_rdma_inline_data_size(struct nvme_rdma_queue *queue)
{
	return queue->cmnd_capsule_len - sizeof(struct nvme_command);
}

static void nvme_rdma_free_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
		size_t capsule_size, enum dma_data_direction dir)
{
	ib_dma_unmap_single(ibdev, qe->dma, capsule_size, dir);
	kfree(qe->data);
}

static int nvme_rdma_alloc_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
		size_t capsule_size, enum dma_data_direction dir)
{
	qe->data = kzalloc(capsule_size, GFP_KERNEL);
	if (!qe->data)
		return -ENOMEM;

	qe->dma = ib_dma_map_single(ibdev, qe->data, capsule_size, dir);
	if (ib_dma_mapping_error(ibdev, qe->dma)) {
		kfree(qe->data);
		qe->data = NULL;
		return -ENOMEM;
	}

	return 0;
}

static void nvme_rdma_free_ring(struct ib_device *ibdev,
		struct nvme_rdma_qe *ring, size_t ib_queue_size,
		size_t capsule_size, enum dma_data_direction dir)
{
	int i;

	for (i = 0; i < ib_queue_size; i++)
		nvme_rdma_free_qe(ibdev, &ring[i], capsule_size, dir);
	kfree(ring);
}

static struct nvme_rdma_qe *nvme_rdma_alloc_ring(struct ib_device *ibdev,
		size_t ib_queue_size, size_t capsule_size,
		enum dma_data_direction dir)
{
	struct nvme_rdma_qe *ring;
	int i;

	ring = kcalloc(ib_queue_size, sizeof(struct nvme_rdma_qe), GFP_KERNEL);
	if (!ring)
		return NULL;

	/*
	 * Bind the CQEs (post recv buffers) DMA mapping to the RDMA queue
	 * lifetime. It's safe, since any chage in the underlying RDMA device
	 * will issue error recovery and queue re-creation.
	 */
	for (i = 0; i < ib_queue_size; i++) {
		if (nvme_rdma_alloc_qe(ibdev, &ring[i], capsule_size, dir))
			goto out_free_ring;
	}

	return ring;

out_free_ring:
	nvme_rdma_free_ring(ibdev, ring, i, capsule_size, dir);
	return NULL;
}

static void nvme_rdma_qp_event(struct ib_event *event, void *context)
{
	pr_debug("QP event %s (%d)\n",
		 ib_event_msg(event->event), event->event);

}

static int nvme_rdma_wait_for_cm(struct nvme_rdma_queue *queue)
{
	int ret;

	ret = wait_for_completion_interruptible(&queue->cm_done);
	if (ret)
		return ret;
	WARN_ON_ONCE(queue->cm_error > 0);
	return queue->cm_error;
}

static int nvme_rdma_create_qp(struct nvme_rdma_queue *queue, const int factor)
{
	struct nvme_rdma_device *dev = queue->device;
	struct ib_qp_init_attr init_attr;
	int ret;

	memset(&init_attr, 0, sizeof(init_attr));
	init_attr.event_handler = nvme_rdma_qp_event;
	/* +1 for drain */
	init_attr.cap.max_send_wr = factor * queue->queue_size + 1;
	/* +1 for drain */
	init_attr.cap.max_recv_wr = queue->queue_size + 1;
	init_attr.cap.max_recv_sge = 1;
	init_attr.cap.max_send_sge = 1 + dev->num_inline_segments;
	init_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
	init_attr.qp_type = IB_QPT_RC;
	init_attr.send_cq = queue->ib_cq;
	init_attr.recv_cq = queue->ib_cq;
	if (queue->pi_support)
		init_attr.create_flags |= IB_QP_CREATE_INTEGRITY_EN;
	init_attr.qp_context = queue;

	ret = rdma_create_qp(queue->cm_id, dev->pd, &init_attr);

	queue->qp = queue->cm_id->qp;
	return ret;
}

static void nvme_rdma_exit_request(struct blk_mq_tag_set *set,
		struct request *rq, unsigned int hctx_idx)
{
	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);

	kfree(req->sqe.data);
}

static int nvme_rdma_init_request(struct blk_mq_tag_set *set,
		struct request *rq, unsigned int hctx_idx,
		unsigned int numa_node)
{
	struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(set->driver_data);
	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
	int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
	struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx];

	nvme_req(rq)->ctrl = &ctrl->ctrl;
	req->sqe.data = kzalloc(sizeof(struct nvme_command), GFP_KERNEL);
	if (!req->sqe.data)
		return -ENOMEM;

	/* metadata nvme_rdma_sgl struct is located after command's data SGL */
	if (queue->pi_support)
		req->metadata_sgl = (void *)nvme_req(rq) +
			sizeof(struct nvme_rdma_request) +
			NVME_RDMA_DATA_SGL_SIZE;

	req->queue = queue;
	nvme_req(rq)->cmd = req->sqe.data;

	return 0;
}

static int nvme_rdma_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
		unsigned int hctx_idx)
{
	struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(data);
	struct nvme_rdma_queue *queue = &ctrl->queues[hctx_idx + 1];

	BUG_ON(hctx_idx >= ctrl->ctrl.queue_count);

	hctx->driver_data = queue;
	return 0;
}

static int nvme_rdma_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
		unsigned int hctx_idx)
{
	struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(data);
	struct nvme_rdma_queue *queue = &ctrl->queues[0];

	BUG_ON(hctx_idx != 0);

	hctx->driver_data = queue;
	return 0;
}

static void nvme_rdma_free_dev(struct kref *ref)
{
	struct nvme_rdma_device *ndev =
		container_of(ref, struct nvme_rdma_device, ref);

	mutex_lock(&device_list_mutex);
	list_del(&ndev->entry);
	mutex_unlock(&device_list_mutex);

	ib_dealloc_pd(ndev->pd);
	kfree(ndev);
}

static void nvme_rdma_dev_put(struct nvme_rdma_device *dev)
{
	kref_put(&dev->ref, nvme_rdma_free_dev);
}

static int nvme_rdma_dev_get(struct nvme_rdma_device *dev)
{
	return kref_get_unless_zero(&dev->ref);
}

static struct nvme_rdma_device *
nvme_rdma_find_get_device(struct rdma_cm_id *cm_id)
{
	struct nvme_rdma_device *ndev;

	mutex_lock(&device_list_mutex);
	list_for_each_entry(ndev, &device_list, entry) {
		if (ndev->dev->node_guid == cm_id->device->node_guid &&
		    nvme_rdma_dev_get(ndev))
			goto out_unlock;
	}

	ndev = kzalloc(sizeof(*ndev), GFP_KERNEL);
	if (!ndev)
		goto out_err;

	ndev->dev = cm_id->device;
	kref_init(&ndev->ref);

	ndev->pd = ib_alloc_pd(ndev->dev,
		register_always ? 0 : IB_PD_UNSAFE_GLOBAL_RKEY);
	if (IS_ERR(ndev->pd))
		goto out_free_dev;

	if (!(ndev->dev->attrs.device_cap_flags &
	      IB_DEVICE_MEM_MGT_EXTENSIONS)) {
		dev_err(&ndev->dev->dev,
			"Memory registrations not supported.\n");
		goto out_free_pd;
	}

	ndev->num_inline_segments = min(NVME_RDMA_MAX_INLINE_SEGMENTS,
					ndev->dev->attrs.max_send_sge - 1);
	list_add(&ndev->entry, &device_list);
out_unlock:
	mutex_unlock(&device_list_mutex);
	return ndev;

out_free_pd:
	ib_dealloc_pd(ndev->pd);
out_free_dev:
	kfree(ndev);
out_err:
	mutex_unlock(&device_list_mutex);
	return NULL;
}

static void nvme_rdma_free_cq(struct nvme_rdma_queue *queue)
{
	if (nvme_rdma_poll_queue(queue))
		ib_free_cq(queue->ib_cq);
	else
		ib_cq_pool_put(queue->ib_cq, queue->cq_size);
}

static void nvme_rdma_destroy_queue_ib(struct nvme_rdma_queue *queue)
{
	struct nvme_rdma_device *dev;
	struct ib_device *ibdev;

	if (!test_and_clear_bit(NVME_RDMA_Q_TR_READY, &queue->flags))
		return;

	dev = queue->device;
	ibdev = dev->dev;

	if (queue->pi_support)
		ib_mr_pool_destroy(queue->qp, &queue->qp->sig_mrs);
	ib_mr_pool_destroy(queue->qp, &queue->qp->rdma_mrs);

	/*
	 * The cm_id object might have been destroyed during RDMA connection
	 * establishment error flow to avoid getting other cma events, thus
	 * the destruction of the QP shouldn't use rdma_cm API.
	 */
	ib_destroy_qp(queue->qp);
	nvme_rdma_free_cq(queue);

	nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size,
			sizeof(struct nvme_completion), DMA_FROM_DEVICE);

	nvme_rdma_dev_put(dev);
}

static int nvme_rdma_get_max_fr_pages(struct ib_device *ibdev, bool pi_support)
{
	u32 max_page_list_len;

	if (pi_support)
		max_page_list_len = ibdev->attrs.max_pi_fast_reg_page_list_len;
	else
		max_page_list_len = ibdev->attrs.max_fast_reg_page_list_len;

	return min_t(u32, NVME_RDMA_MAX_SEGMENTS, max_page_list_len - 1);
}

static int nvme_rdma_create_cq(struct ib_device *ibdev,
		struct nvme_rdma_queue *queue)
{
	int ret, comp_vector, idx = nvme_rdma_queue_idx(queue);
	enum ib_poll_context poll_ctx;

	/*
	 * Spread I/O queues completion vectors according their queue index.
	 * Admin queues can always go on completion vector 0.
	 */
	comp_vector = (idx == 0 ? idx : idx - 1) % ibdev->num_comp_vectors;

	/* Polling queues need direct cq polling context */
	if (nvme_rdma_poll_queue(queue)) {
		poll_ctx = IB_POLL_DIRECT;
		queue->ib_cq = ib_alloc_cq(ibdev, queue, queue->cq_size,
					   comp_vector, poll_ctx);
	} else {
		poll_ctx = IB_POLL_SOFTIRQ;
		queue->ib_cq = ib_cq_pool_get(ibdev, queue->cq_size,
					      comp_vector, poll_ctx);
	}

	if (IS_ERR(queue->ib_cq)) {
		ret = PTR_ERR(queue->ib_cq);
		return ret;
	}

	return 0;
}

static int nvme_rdma_create_queue_ib(struct nvme_rdma_queue *queue)
{
	struct ib_device *ibdev;
	const int send_wr_factor = 3;			/* MR, SEND, INV */
	const int cq_factor = send_wr_factor + 1;	/* + RECV */
	int ret, pages_per_mr;

	queue->device = nvme_rdma_find_get_device(queue->cm_id);
	if (!queue->device) {
		dev_err(queue->cm_id->device->dev.parent,
			"no client data found!\n");
		return -ECONNREFUSED;
	}
	ibdev = queue->device->dev;

	/* +1 for ib_stop_cq */
	queue->cq_size = cq_factor * queue->queue_size + 1;

	ret = nvme_rdma_create_cq(ibdev, queue);
	if (ret)
		goto out_put_dev;

	ret = nvme_rdma_create_qp(queue, send_wr_factor);
	if (ret)
		goto out_destroy_ib_cq;

	queue->rsp_ring = nvme_rdma_alloc_ring(ibdev, queue->queue_size,
			sizeof(struct nvme_completion), DMA_FROM_DEVICE);
	if (!queue->rsp_ring) {
		ret = -ENOMEM;
		goto out_destroy_qp;
	}

	/*
	 * Currently we don't use SG_GAPS MR's so if the first entry is
	 * misaligned we'll end up using two entries for a single data page,
	 * so one additional entry is required.
	 */
	pages_per_mr = nvme_rdma_get_max_fr_pages(ibdev, queue->pi_support) + 1;
	ret = ib_mr_pool_init(queue->qp, &queue->qp->rdma_mrs,
			      queue->queue_size,
			      IB_MR_TYPE_MEM_REG,
			      pages_per_mr, 0);
	if (ret) {
		dev_err(queue->ctrl->ctrl.device,
			"failed to initialize MR pool sized %d for QID %d\n",
			queue->queue_size, nvme_rdma_queue_idx(queue));
		goto out_destroy_ring;
	}

	if (queue->pi_support) {
		ret = ib_mr_pool_init(queue->qp, &queue->qp->sig_mrs,
				      queue->queue_size, IB_MR_TYPE_INTEGRITY,
				      pages_per_mr, pages_per_mr);
		if (ret) {
			dev_err(queue->ctrl->ctrl.device,
				"failed to initialize PI MR pool sized %d for QID %d\n",
				queue->queue_size, nvme_rdma_queue_idx(queue));
			goto out_destroy_mr_pool;
		}
	}

	set_bit(NVME_RDMA_Q_TR_READY, &queue->flags);

	return 0;

out_destroy_mr_pool:
	ib_mr_pool_destroy(queue->qp, &queue->qp->rdma_mrs);
out_destroy_ring:
	nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size,
			    sizeof(struct nvme_completion), DMA_FROM_DEVICE);
out_destroy_qp:
	rdma_destroy_qp(queue->cm_id);
out_destroy_ib_cq:
	nvme_rdma_free_cq(queue);
out_put_dev:
	nvme_rdma_dev_put(queue->device);
	return ret;
}

static int nvme_rdma_alloc_queue(struct nvme_rdma_ctrl *ctrl,
		int idx, size_t queue_size)
{
	struct nvme_rdma_queue *queue;
	struct sockaddr *src_addr = NULL;
	int ret;

	queue = &ctrl->queues[idx];
	mutex_init(&queue->queue_lock);
	queue->ctrl = ctrl;
	if (idx && ctrl->ctrl.max_integrity_segments)
		queue->pi_support = true;
	else
		queue->pi_support = false;
	init_completion(&queue->cm_done);

	if (idx > 0)
		queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16;
	else
		queue->cmnd_capsule_len = sizeof(struct nvme_command);

	queue->queue_size = queue_size;

	queue->cm_id = rdma_create_id(&init_net, nvme_rdma_cm_handler, queue,
			RDMA_PS_TCP, IB_QPT_RC);
	if (IS_ERR(queue->cm_id)) {
		dev_info(ctrl->ctrl.device,
			"failed to create CM ID: %ld\n", PTR_ERR(queue->cm_id));
		ret = PTR_ERR(queue->cm_id);
		goto out_destroy_mutex;
	}

	if (ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR)
		src_addr = (struct sockaddr *)&ctrl->src_addr;

	queue->cm_error = -ETIMEDOUT;
	ret = rdma_resolve_addr(queue->cm_id, src_addr,
			(struct sockaddr *)&ctrl->addr,
			NVME_RDMA_CM_TIMEOUT_MS);
	if (ret) {
		dev_info(ctrl->ctrl.device,
			"rdma_resolve_addr failed (%d).\n", ret);
		goto out_destroy_cm_id;
	}

	ret = nvme_rdma_wait_for_cm(queue);
	if (ret) {
		dev_info(ctrl->ctrl.device,
			"rdma connection establishment failed (%d)\n", ret);
		goto out_destroy_cm_id;
	}

	set_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags);

	return 0;

out_destroy_cm_id:
	rdma_destroy_id(queue->cm_id);
	nvme_rdma_destroy_queue_ib(queue);
out_destroy_mutex:
	mutex_destroy(&queue->queue_lock);
	return ret;
}

static void __nvme_rdma_stop_queue(struct nvme_rdma_queue *queue)
{
	rdma_disconnect(queue->cm_id);
	ib_drain_qp(queue->qp);
}

static void nvme_rdma_stop_queue(struct nvme_rdma_queue *queue)
{
	mutex_lock(&queue->queue_lock);
	if (test_and_clear_bit(NVME_RDMA_Q_LIVE, &queue->flags))
		__nvme_rdma_stop_queue(queue);
	mutex_unlock(&queue->queue_lock);
}

static void nvme_rdma_free_queue(struct nvme_rdma_queue *queue)
{
	if (!test_and_clear_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags))
		return;

	rdma_destroy_id(queue->cm_id);
	nvme_rdma_destroy_queue_ib(queue);
	mutex_destroy(&queue->queue_lock);
}

static void nvme_rdma_free_io_queues(struct nvme_rdma_ctrl *ctrl)
{
	int i;

	for (i = 1; i < ctrl->ctrl.queue_count; i++)
		nvme_rdma_free_queue(&ctrl->queues[i]);
}

static void nvme_rdma_stop_io_queues(struct nvme_rdma_ctrl *ctrl)
{
	int i;

	for (i = 1; i < ctrl->ctrl.queue_count; i++)
		nvme_rdma_stop_queue(&ctrl->queues[i]);
}

static int nvme_rdma_start_queue(struct nvme_rdma_ctrl *ctrl, int idx)
{
	struct nvme_rdma_queue *queue = &ctrl->queues[idx];
	int ret;

	if (idx)
		ret = nvmf_connect_io_queue(&ctrl->ctrl, idx);
	else
		ret = nvmf_connect_admin_queue(&ctrl->ctrl);

	if (!ret) {
		set_bit(NVME_RDMA_Q_LIVE, &queue->flags);
	} else {
		if (test_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags))
			__nvme_rdma_stop_queue(queue);
		dev_info(ctrl->ctrl.device,
			"failed to connect queue: %d ret=%d\n", idx, ret);
	}
	return ret;
}

static int nvme_rdma_start_io_queues(struct nvme_rdma_ctrl *ctrl,
				     int first, int last)
{
	int i, ret = 0;

	for (i = first; i < last; i++) {
		ret = nvme_rdma_start_queue(ctrl, i);
		if (ret)
			goto out_stop_queues;
	}

	return 0;

out_stop_queues:
	for (i--; i >= first; i--)
		nvme_rdma_stop_queue(&ctrl->queues[i]);
	return ret;
}

static int nvme_rdma_alloc_io_queues(struct nvme_rdma_ctrl *ctrl)
{
	struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
	struct ib_device *ibdev = ctrl->device->dev;
	unsigned int nr_io_queues, nr_default_queues;
	unsigned int nr_read_queues, nr_poll_queues;
	int i, ret;

	nr_read_queues = min_t(unsigned int, ibdev->num_comp_vectors,
				min(opts->nr_io_queues, num_online_cpus()));
	nr_default_queues =  min_t(unsigned int, ibdev->num_comp_vectors,
				min(opts->nr_write_queues, num_online_cpus()));
	nr_poll_queues = min(opts->nr_poll_queues, num_online_cpus());
	nr_io_queues = nr_read_queues + nr_default_queues + nr_poll_queues;

	ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
	if (ret)
		return ret;

	if (nr_io_queues == 0) {
		dev_err(ctrl->ctrl.device,
			"unable to set any I/O queues\n");
		return -ENOMEM;
	}

	ctrl->ctrl.queue_count = nr_io_queues + 1;
	dev_info(ctrl->ctrl.device,
		"creating %d I/O queues.\n", nr_io_queues);

	if (opts->nr_write_queues && nr_read_queues < nr_io_queues) {
		/*
		 * separate read/write queues
		 * hand out dedicated default queues only after we have
		 * sufficient read queues.
		 */
		ctrl->io_queues[HCTX_TYPE_READ] = nr_read_queues;
		nr_io_queues -= ctrl->io_queues[HCTX_TYPE_READ];
		ctrl->io_queues[HCTX_TYPE_DEFAULT] =
			min(nr_default_queues, nr_io_queues);
		nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT];
	} else {
		/*
		 * shared read/write queues
		 * either no write queues were requested, or we don't have
		 * sufficient queue count to have dedicated default queues.
		 */
		ctrl->io_queues[HCTX_TYPE_DEFAULT] =
			min(nr_read_queues, nr_io_queues);
		nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT];
	}

	if (opts->nr_poll_queues && nr_io_queues) {
		/* map dedicated poll queues only if we have queues left */
		ctrl->io_queues[HCTX_TYPE_POLL] =
			min(nr_poll_queues, nr_io_queues);
	}

	for (i = 1; i < ctrl->ctrl.queue_count; i++) {
		ret = nvme_rdma_alloc_queue(ctrl, i,
				ctrl->ctrl.sqsize + 1);
		if (ret)
			goto out_free_queues;
	}

	return 0;

out_free_queues:
	for (i--; i >= 1; i--)
		nvme_rdma_free_queue(&ctrl->queues[i]);

	return ret;
}

static int nvme_rdma_alloc_tag_set(struct nvme_ctrl *ctrl)
{
	unsigned int cmd_size = sizeof(struct nvme_rdma_request) +
				NVME_RDMA_DATA_SGL_SIZE;

	if (ctrl->max_integrity_segments)
		cmd_size += sizeof(struct nvme_rdma_sgl) +
			    NVME_RDMA_METADATA_SGL_SIZE;

	return nvme_alloc_io_tag_set(ctrl, &to_rdma_ctrl(ctrl)->tag_set,
			&nvme_rdma_mq_ops, BLK_MQ_F_SHOULD_MERGE, cmd_size);
}

static void nvme_rdma_destroy_admin_queue(struct nvme_rdma_ctrl *ctrl)
{
	if (ctrl->async_event_sqe.data) {
		cancel_work_sync(&ctrl->ctrl.async_event_work);
		nvme_rdma_free_qe(ctrl->device->dev, &ctrl->async_event_sqe,
				sizeof(struct nvme_command), DMA_TO_DEVICE);
		ctrl->async_event_sqe.data = NULL;
	}
	nvme_rdma_free_queue(&ctrl->queues[0]);
}

static int nvme_rdma_configure_admin_queue(struct nvme_rdma_ctrl *ctrl,
		bool new)
{
	bool pi_capable = false;
	int error;

	error = nvme_rdma_alloc_queue(ctrl, 0, NVME_AQ_DEPTH);
	if (error)
		return error;

	ctrl->device = ctrl->queues[0].device;
	ctrl->ctrl.numa_node = ibdev_to_node(ctrl->device->dev);

	/* T10-PI support */
	if (ctrl->device->dev->attrs.kernel_cap_flags &
	    IBK_INTEGRITY_HANDOVER)
		pi_capable = true;

	ctrl->max_fr_pages = nvme_rdma_get_max_fr_pages(ctrl->device->dev,
							pi_capable);

	/*
	 * Bind the async event SQE DMA mapping to the admin queue lifetime.
	 * It's safe, since any chage in the underlying RDMA device will issue
	 * error recovery and queue re-creation.
	 */
	error = nvme_rdma_alloc_qe(ctrl->device->dev, &ctrl->async_event_sqe,
			sizeof(struct nvme_command), DMA_TO_DEVICE);
	if (error)
		goto out_free_queue;

	if (new) {
		error = nvme_alloc_admin_tag_set(&ctrl->ctrl,
				&ctrl->admin_tag_set, &nvme_rdma_admin_mq_ops,
				BLK_MQ_F_NO_SCHED,
				sizeof(struct nvme_rdma_request) +
				NVME_RDMA_DATA_SGL_SIZE);
		if (error)
			goto out_free_async_qe;

	}

	error = nvme_rdma_start_queue(ctrl, 0);
	if (error)
		goto out_remove_admin_tag_set;

	error = nvme_enable_ctrl(&ctrl->ctrl);
	if (error)
		goto out_stop_queue;

	ctrl->ctrl.max_segments = ctrl->max_fr_pages;
	ctrl->ctrl.max_hw_sectors = ctrl->max_fr_pages << (ilog2(SZ_4K) - 9);
	if (pi_capable)
		ctrl->ctrl.max_integrity_segments = ctrl->max_fr_pages;
	else
		ctrl->ctrl.max_integrity_segments = 0;

	nvme_unquiesce_admin_queue(&ctrl->ctrl);

	error = nvme_init_ctrl_finish(&ctrl->ctrl, false);
	if (error)
		goto out_quiesce_queue;

	return 0;

out_quiesce_queue:
	nvme_quiesce_admin_queue(&ctrl->ctrl);
	blk_sync_queue(ctrl->ctrl.admin_q);
out_stop_queue:
	nvme_rdma_stop_queue(&ctrl->queues[0]);
	nvme_cancel_admin_tagset(&ctrl->ctrl);
out_remove_admin_tag_set:
	if (new)
		nvme_remove_admin_tag_set(&ctrl->ctrl);
out_free_async_qe:
	if (ctrl->async_event_sqe.data) {
		nvme_rdma_free_qe(ctrl->device->dev, &ctrl->async_event_sqe,
			sizeof(struct nvme_command), DMA_TO_DEVICE);
		ctrl->async_event_sqe.data = NULL;
	}
out_free_queue:
	nvme_rdma_free_queue(&ctrl->queues[0]);
	return error;
}

static int nvme_rdma_configure_io_queues(struct nvme_rdma_ctrl *ctrl, bool new)
{
	int ret, nr_queues;

	ret = nvme_rdma_alloc_io_queues(ctrl);
	if (ret)
		return ret;

	if (new) {
		ret = nvme_rdma_alloc_tag_set(&ctrl->ctrl);
		if (ret)
			goto out_free_io_queues;
	}

	/*
	 * Only start IO queues for which we have allocated the tagset
	 * and limitted it to the available queues. On reconnects, the
	 * queue number might have changed.
	 */
	nr_queues = min(ctrl->tag_set.nr_hw_queues + 1, ctrl->ctrl.queue_count);
	ret = nvme_rdma_start_io_queues(ctrl, 1, nr_queues);
	if (ret)
		goto out_cleanup_tagset;

	if (!new) {
		nvme_unquiesce_io_queues(&ctrl->ctrl);
		if (!nvme_wait_freeze_timeout(&ctrl->ctrl, NVME_IO_TIMEOUT)) {
			/*
			 * If we timed out waiting for freeze we are likely to
			 * be stuck.  Fail the controller initialization just
			 * to be safe.
			 */
			ret = -ENODEV;
			goto out_wait_freeze_timed_out;
		}
		blk_mq_update_nr_hw_queues(ctrl->ctrl.tagset,
			ctrl->ctrl.queue_count - 1);
		nvme_unfreeze(&ctrl->ctrl);
	}

	/*
	 * If the number of queues has increased (reconnect case)
	 * start all new queues now.
	 */
	ret = nvme_rdma_start_io_queues(ctrl, nr_queues,
					ctrl->tag_set.nr_hw_queues + 1);
	if (ret)
		goto out_wait_freeze_timed_out;

	return 0;

out_wait_freeze_timed_out:
	nvme_quiesce_io_queues(&ctrl->ctrl);
	nvme_sync_io_queues(&ctrl->ctrl);
	nvme_rdma_stop_io_queues(ctrl);
out_cleanup_tagset:
	nvme_cancel_tagset(&ctrl->ctrl);
	if (new)
		nvme_remove_io_tag_set(&ctrl->ctrl);
out_free_io_queues:
	nvme_rdma_free_io_queues(ctrl);
	return ret;
}

static void nvme_rdma_teardown_admin_queue(struct nvme_rdma_ctrl *ctrl,
		bool remove)
{
	nvme_quiesce_admin_queue(&ctrl->ctrl);
	blk_sync_queue(ctrl->ctrl.admin_q);
	nvme_rdma_stop_queue(&ctrl->queues[0]);
	nvme_cancel_admin_tagset(&ctrl->ctrl);
	if (remove) {
		nvme_unquiesce_admin_queue(&ctrl->ctrl);
		nvme_remove_admin_tag_set(&ctrl->ctrl);
	}
	nvme_rdma_destroy_admin_queue(ctrl);
}

static void nvme_rdma_teardown_io_queues(struct nvme_rdma_ctrl *ctrl,
		bool remove)
{
	if (ctrl->ctrl.queue_count > 1) {
		nvme_start_freeze(&ctrl->ctrl);
		nvme_quiesce_io_queues(&ctrl->ctrl);
		nvme_sync_io_queues(&ctrl->ctrl);
		nvme_rdma_stop_io_queues(ctrl);
		nvme_cancel_tagset(&ctrl->ctrl);
		if (remove) {
			nvme_unquiesce_io_queues(&ctrl->ctrl);
			nvme_remove_io_tag_set(&ctrl->ctrl);
		}
		nvme_rdma_free_io_queues(ctrl);
	}
}

static void nvme_rdma_stop_ctrl(struct nvme_ctrl *nctrl)
{
	struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);

	flush_work(&ctrl->err_work);
	cancel_delayed_work_sync(&ctrl->reconnect_work);
}

static void nvme_rdma_free_ctrl(struct nvme_ctrl *nctrl)
{
	struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);

	if (list_empty(&ctrl->list))
		goto free_ctrl;

	mutex_lock(&nvme_rdma_ctrl_mutex);
	list_del(&ctrl->list);
	mutex_unlock(&nvme_rdma_ctrl_mutex);

	nvmf_free_options(nctrl->opts);
free_ctrl:
	kfree(ctrl->queues);
	kfree(ctrl);
}

static void nvme_rdma_reconnect_or_remove(struct nvme_rdma_ctrl *ctrl)
{
	/* If we are resetting/deleting then do nothing */
	if (ctrl->ctrl.state != NVME_CTRL_CONNECTING) {
		WARN_ON_ONCE(ctrl->ctrl.state == NVME_CTRL_NEW ||
			ctrl->ctrl.state == NVME_CTRL_LIVE);
		return;
	}

	if (nvmf_should_reconnect(&ctrl->ctrl)) {
		dev_info(ctrl->ctrl.device, "Reconnecting in %d seconds...\n",
			ctrl->ctrl.opts->reconnect_delay);
		queue_delayed_work(nvme_wq, &ctrl->reconnect_work,
				ctrl->ctrl.opts->reconnect_delay * HZ);
	} else {
		nvme_delete_ctrl(&ctrl->ctrl);
	}
}

static int nvme_rdma_setup_ctrl(struct nvme_rdma_ctrl *ctrl, bool new)
{
	int ret;
	bool changed;

	ret = nvme_rdma_configure_admin_queue(ctrl, new);
	if (ret)
		return ret;

	if (ctrl->ctrl.icdoff) {
		ret = -EOPNOTSUPP;
		dev_err(ctrl->ctrl.device, "icdoff is not supported!\n");
		goto destroy_admin;
	}

	if (!(ctrl->ctrl.sgls & (1 << 2))) {
		ret = -EOPNOTSUPP;
		dev_err(ctrl->ctrl.device,
			"Mandatory keyed sgls are not supported!\n");
		goto destroy_admin;
	}

	if (ctrl->ctrl.opts->queue_size > ctrl->ctrl.sqsize + 1) {
		dev_warn(ctrl->ctrl.device,
			"queue_size %zu > ctrl sqsize %u, clamping down\n",
			ctrl->ctrl.opts->queue_size, ctrl->ctrl.sqsize + 1);
	}

	if (ctrl->ctrl.sqsize + 1 > NVME_RDMA_MAX_QUEUE_SIZE) {
		dev_warn(ctrl->ctrl.device,
			"ctrl sqsize %u > max queue size %u, clamping down\n",
			ctrl->ctrl.sqsize + 1, NVME_RDMA_MAX_QUEUE_SIZE);
		ctrl->ctrl.sqsize = NVME_RDMA_MAX_QUEUE_SIZE - 1;
	}

	if (ctrl->ctrl.sqsize + 1 > ctrl->ctrl.maxcmd) {
		dev_warn(ctrl->ctrl.device,
			"sqsize %u > ctrl maxcmd %u, clamping down\n",
			ctrl->ctrl.sqsize + 1, ctrl->ctrl.maxcmd);
		ctrl->ctrl.sqsize = ctrl->ctrl.maxcmd - 1;
	}

	if (ctrl->ctrl.sgls & (1 << 20))
		ctrl->use_inline_data = true;

	if (ctrl->ctrl.queue_count > 1) {
		ret = nvme_rdma_configure_io_queues(ctrl, new);
		if (ret)
			goto destroy_admin;
	}

	changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
	if (!changed) {
		/*
		 * state change failure is ok if we started ctrl delete,
		 * unless we're during creation of a new controller to
		 * avoid races with teardown flow.
		 */
		WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING &&
			     ctrl->ctrl.state != NVME_CTRL_DELETING_NOIO);
		WARN_ON_ONCE(new);
		ret = -EINVAL;
		goto destroy_io;
	}

	nvme_start_ctrl(&ctrl->ctrl);
	return 0;

destroy_io:
	if (ctrl->ctrl.queue_count > 1) {
		nvme_quiesce_io_queues(&ctrl->ctrl);
		nvme_sync_io_queues(&ctrl->ctrl);
		nvme_rdma_stop_io_queues(ctrl);
		nvme_cancel_tagset(&ctrl->ctrl);
		if (new)
			nvme_remove_io_tag_set(&ctrl->ctrl);
		nvme_rdma_free_io_queues(ctrl);
	}
destroy_admin:
	nvme_quiesce_admin_queue(&ctrl->ctrl);
	blk_sync_queue(ctrl->ctrl.admin_q);
	nvme_rdma_stop_queue(&ctrl->queues[0]);
	nvme_cancel_admin_tagset(&ctrl->ctrl);
	if (new)
		nvme_remove_admin_tag_set(&ctrl->ctrl);
	nvme_rdma_destroy_admin_queue(ctrl);
	return ret;
}

static void nvme_rdma_reconnect_ctrl_work(struct work_struct *work)
{
	struct nvme_rdma_ctrl *ctrl = container_of(to_delayed_work(work),
			struct nvme_rdma_ctrl, reconnect_work);

	++ctrl->ctrl.nr_reconnects;

	if (nvme_rdma_setup_ctrl(ctrl, false))
		goto requeue;

	dev_info(ctrl->ctrl.device, "Successfully reconnected (%d attempts)\n",
			ctrl->ctrl.nr_reconnects);

	ctrl->ctrl.nr_reconnects = 0;

	return;

requeue:
	dev_info(ctrl->ctrl.device, "Failed reconnect attempt %d\n",
			ctrl->ctrl.nr_reconnects);
	nvme_rdma_reconnect_or_remove(ctrl);
}

static void nvme_rdma_error_recovery_work(struct work_struct *work)
{
	struct nvme_rdma_ctrl *ctrl = container_of(work,
			struct nvme_rdma_ctrl, err_work);

	nvme_stop_keep_alive(&ctrl->ctrl);
	flush_work(&ctrl->ctrl.async_event_work);
	nvme_rdma_teardown_io_queues(ctrl, false);
	nvme_unquiesce_io_queues(&ctrl->ctrl);
	nvme_rdma_teardown_admin_queue(ctrl, false);
	nvme_unquiesce_admin_queue(&ctrl->ctrl);
	nvme_auth_stop(&ctrl->ctrl);

	if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
		/* state change failure is ok if we started ctrl delete */
		WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING &&
			     ctrl->ctrl.state != NVME_CTRL_DELETING_NOIO);
		return;
	}

	nvme_rdma_reconnect_or_remove(ctrl);
}

static void nvme_rdma_error_recovery(struct nvme_rdma_ctrl *ctrl)
{
	if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RESETTING))
		return;

	dev_warn(ctrl->ctrl.device, "starting error recovery\n");
	queue_work(nvme_reset_wq, &ctrl->err_work);
}

static void nvme_rdma_end_request(struct nvme_rdma_request *req)
{
	struct request *rq = blk_mq_rq_from_pdu(req);

	if (!refcount_dec_and_test(&req->ref))
		return;
	if (!nvme_try_complete_req(rq, req->status, req->result))
		nvme_rdma_complete_rq(rq);
}

static void nvme_rdma_wr_error(struct ib_cq *cq, struct ib_wc *wc,
		const char *op)
{
	struct nvme_rdma_queue *queue = wc->qp->qp_context;
	struct nvme_rdma_ctrl *ctrl = queue->ctrl;

	if (ctrl->ctrl.state == NVME_CTRL_LIVE)
		dev_info(ctrl->ctrl.device,
			     "%s for CQE 0x%p failed with status %s (%d)\n",
			     op, wc->wr_cqe,
			     ib_wc_status_msg(wc->status), wc->status);
	nvme_rdma_error_recovery(ctrl);
}

static void nvme_rdma_memreg_done(struct ib_cq *cq, struct ib_wc *wc)
{
	if (unlikely(wc->status != IB_WC_SUCCESS))
		nvme_rdma_wr_error(cq, wc, "MEMREG");
}

static void nvme_rdma_inv_rkey_done(struct ib_cq *cq, struct ib_wc *wc)
{
	struct nvme_rdma_request *req =
		container_of(wc->wr_cqe, struct nvme_rdma_request, reg_cqe);

	if (unlikely(wc->status != IB_WC_SUCCESS))
		nvme_rdma_wr_error(cq, wc, "LOCAL_INV");
	else
		nvme_rdma_end_request(req);
}

static int nvme_rdma_inv_rkey(struct nvme_rdma_queue *queue,
		struct nvme_rdma_request *req)
{
	struct ib_send_wr wr = {
		.opcode		    = IB_WR_LOCAL_INV,
		.next		    = NULL,
		.num_sge	    = 0,
		.send_flags	    = IB_SEND_SIGNALED,
		.ex.invalidate_rkey = req->mr->rkey,
	};

	req->reg_cqe.done = nvme_rdma_inv_rkey_done;
	wr.wr_cqe = &req->reg_cqe;

	return ib_post_send(queue->qp, &wr, NULL);
}

static void nvme_rdma_dma_unmap_req(struct ib_device *ibdev, struct request *rq)
{
	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);

	if (blk_integrity_rq(rq)) {
		ib_dma_unmap_sg(ibdev, req->metadata_sgl->sg_table.sgl,
				req->metadata_sgl->nents, rq_dma_dir(rq));
		sg_free_table_chained(&req->metadata_sgl->sg_table,
				      NVME_INLINE_METADATA_SG_CNT);
	}

	ib_dma_unmap_sg(ibdev, req->data_sgl.sg_table.sgl, req->data_sgl.nents,
			rq_dma_dir(rq));
	sg_free_table_chained(&req->data_sgl.sg_table, NVME_INLINE_SG_CNT);
}

static void nvme_rdma_unmap_data(struct nvme_rdma_queue *queue,
		struct request *rq)
{
	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
	struct nvme_rdma_device *dev = queue->device;
	struct ib_device *ibdev = dev->dev;
	struct list_head *pool = &queue->qp->rdma_mrs;

	if (!blk_rq_nr_phys_segments(rq))
		return;

	if (req->use_sig_mr)
		pool = &queue->qp->sig_mrs;

	if (req->mr) {
		ib_mr_pool_put(queue->qp, pool, req->mr);
		req->mr = NULL;
	}

	nvme_rdma_dma_unmap_req(ibdev, rq);
}

static int nvme_rdma_set_sg_null(struct nvme_command *c)
{
	struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;

	sg->addr = 0;
	put_unaligned_le24(0, sg->length);
	put_unaligned_le32(0, sg->key);
	sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
	return 0;
}

static int nvme_rdma_map_sg_inline(struct nvme_rdma_queue *queue,
		struct nvme_rdma_request *req, struct nvme_command *c,
		int count)
{
	struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
	struct ib_sge *sge = &req->sge[1];
	struct scatterlist *sgl;
	u32 len = 0;
	int i;

	for_each_sg(req->data_sgl.sg_table.sgl, sgl, count, i) {
		sge->addr = sg_dma_address(sgl);
		sge->length = sg_dma_len(sgl);
		sge->lkey = queue->device->pd->local_dma_lkey;
		len += sge->length;
		sge++;
	}

	sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff);
	sg->length = cpu_to_le32(len);
	sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET;

	req->num_sge += count;
	return 0;
}

static int nvme_rdma_map_sg_single(struct nvme_rdma_queue *queue,
		struct nvme_rdma_request *req, struct nvme_command *c)
{
	struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;

	sg->addr = cpu_to_le64(sg_dma_address(req->data_sgl.sg_table.sgl));
	put_unaligned_le24(sg_dma_len(req->data_sgl.sg_table.sgl), sg->length);
	put_unaligned_le32(queue->device->pd->unsafe_global_rkey, sg->key);
	sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
	return 0;
}

static int nvme_rdma_map_sg_fr(struct nvme_rdma_queue *queue,
		struct nvme_rdma_request *req, struct nvme_command *c,
		int count)
{
	struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
	int nr;

	req->mr = ib_mr_pool_get(queue->qp, &queue->qp->rdma_mrs);
	if (WARN_ON_ONCE(!req->mr))
		return -EAGAIN;

	/*
	 * Align the MR to a 4K page size to match the ctrl page size and
	 * the block virtual boundary.
	 */
	nr = ib_map_mr_sg(req->mr, req->data_sgl.sg_table.sgl, count, NULL,
			  SZ_4K);
	if (unlikely(nr < count)) {
		ib_mr_pool_put(queue->qp, &queue->qp->rdma_mrs, req->mr);
		req->mr = NULL;
		if (nr < 0)
			return nr;
		return -EINVAL;
	}

	ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey));

	req->reg_cqe.done = nvme_rdma_memreg_done;
	memset(&req->reg_wr, 0, sizeof(req->reg_wr));
	req->reg_wr.wr.opcode = IB_WR_REG_MR;
	req->reg_wr.wr.wr_cqe = &req->reg_cqe;
	req->reg_wr.wr.num_sge = 0;
	req->reg_wr.mr = req->mr;
	req->reg_wr.key = req->mr->rkey;
	req->reg_wr.access = IB_ACCESS_LOCAL_WRITE |
			     IB_ACCESS_REMOTE_READ |
			     IB_ACCESS_REMOTE_WRITE;

	sg->addr = cpu_to_le64(req->mr->iova);
	put_unaligned_le24(req->mr->length, sg->length);
	put_unaligned_le32(req->mr->rkey, sg->key);
	sg->type = (NVME_KEY_SGL_FMT_DATA_DESC << 4) |
			NVME_SGL_FMT_INVALIDATE;

	return 0;
}

static void nvme_rdma_set_sig_domain(struct blk_integrity *bi,
		struct nvme_command *cmd, struct ib_sig_domain *domain,
		u16 control, u8 pi_type)
{
	domain->sig_type = IB_SIG_TYPE_T10_DIF;
	domain->sig.dif.bg_type = IB_T10DIF_CRC;
	domain->sig.dif.pi_interval = 1 << bi->interval_exp;
	domain->sig.dif.ref_tag = le32_to_cpu(cmd->rw.reftag);
	if (control & NVME_RW_PRINFO_PRCHK_REF)
		domain->sig.dif.ref_remap = true;

	domain->sig.dif.app_tag = le16_to_cpu(cmd->rw.apptag);
	domain->sig.dif.apptag_check_mask = le16_to_cpu(cmd->rw.appmask);
	domain->sig.dif.app_escape = true;
	if (pi_type == NVME_NS_DPS_PI_TYPE3)
		domain->sig.dif.ref_escape = true;
}

static void nvme_rdma_set_sig_attrs(struct blk_integrity *bi,
		struct nvme_command *cmd, struct ib_sig_attrs *sig_attrs,
		u8 pi_type)
{
	u16 control = le16_to_cpu(cmd->rw.control);

	memset(sig_attrs, 0, sizeof(*sig_attrs));
	if (control & NVME_RW_PRINFO_PRACT) {
		/* for WRITE_INSERT/READ_STRIP no memory domain */
		sig_attrs->mem.sig_type = IB_SIG_TYPE_NONE;
		nvme_rdma_set_sig_domain(bi, cmd, &sig_attrs->wire, control,
					 pi_type);
		/* Clear the PRACT bit since HCA will generate/verify the PI */
		control &= ~NVME_RW_PRINFO_PRACT;
		cmd->rw.control = cpu_to_le16(control);
	} else {
		/* for WRITE_PASS/READ_PASS both wire/memory domains exist */
		nvme_rdma_set_sig_domain(bi, cmd, &sig_attrs->wire, control,
					 pi_type);
		nvme_rdma_set_sig_domain(bi, cmd, &sig_attrs->mem, control,
					 pi_type);
	}
}

static void nvme_rdma_set_prot_checks(struct nvme_command *cmd, u8 *mask)
{
	*mask = 0;
	if (le16_to_cpu(cmd->rw.control) & NVME_RW_PRINFO_PRCHK_REF)
		*mask |= IB_SIG_CHECK_REFTAG;
	if (le16_to_cpu(cmd->rw.control) & NVME_RW_PRINFO_PRCHK_GUARD)
		*mask |= IB_SIG_CHECK_GUARD;
}

static void nvme_rdma_sig_done(struct ib_cq *cq, struct ib_wc *wc)
{
	if (unlikely(wc->status != IB_WC_SUCCESS))
		nvme_rdma_wr_error(cq, wc, "SIG");
}

static int nvme_rdma_map_sg_pi(struct nvme_rdma_queue *queue,
		struct nvme_rdma_request *req, struct nvme_command *c,
		int count, int pi_count)
{
	struct nvme_rdma_sgl *sgl = &req->data_sgl;
	struct ib_reg_wr *wr = &req->reg_wr;
	struct request *rq = blk_mq_rq_from_pdu(req);
	struct nvme_ns *ns = rq->q->queuedata;
	struct bio *bio = rq->bio;
	struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
	int nr;

	req->mr = ib_mr_pool_get(queue->qp, &queue->qp->sig_mrs);
	if (WARN_ON_ONCE(!req->mr))
		return -EAGAIN;

	nr = ib_map_mr_sg_pi(req->mr, sgl->sg_table.sgl, count, NULL,
			     req->metadata_sgl->sg_table.sgl, pi_count, NULL,
			     SZ_4K);
	if (unlikely(nr))
		goto mr_put;

	nvme_rdma_set_sig_attrs(blk_get_integrity(bio->bi_bdev->bd_disk), c,
				req->mr->sig_attrs, ns->pi_type);
	nvme_rdma_set_prot_checks(c, &req->mr->sig_attrs->check_mask);

	ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey));

	req->reg_cqe.done = nvme_rdma_sig_done;
	memset(wr, 0, sizeof(*wr));
	wr->wr.opcode = IB_WR_REG_MR_INTEGRITY;
	wr->wr.wr_cqe = &req->reg_cqe;
	wr->wr.num_sge = 0;
	wr->wr.send_flags = 0;
	wr->mr = req->mr;
	wr->key = req->mr->rkey;
	wr->access = IB_ACCESS_LOCAL_WRITE |
		     IB_ACCESS_REMOTE_READ |
		     IB_ACCESS_REMOTE_WRITE;

	sg->addr = cpu_to_le64(req->mr->iova);
	put_unaligned_le24(req->mr->length, sg->length);
	put_unaligned_le32(req->mr->rkey, sg->key);
	sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;

	return 0;

mr_put:
	ib_mr_pool_put(queue->qp, &queue->qp->sig_mrs, req->mr);
	req->mr = NULL;
	if (nr < 0)
		return nr;
	return -EINVAL;
}

static int nvme_rdma_dma_map_req(struct ib_device *ibdev, struct request *rq,
		int *count, int *pi_count)
{
	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
	int ret;

	req->data_sgl.sg_table.sgl = (struct scatterlist *)(req + 1);
	ret = sg_alloc_table_chained(&req->data_sgl.sg_table,
			blk_rq_nr_phys_segments(rq), req->data_sgl.sg_table.sgl,
			NVME_INLINE_SG_CNT);
	if (ret)
		return -ENOMEM;

	req->data_sgl.nents = blk_rq_map_sg(rq->q, rq,
					    req->data_sgl.sg_table.sgl);

	*count = ib_dma_map_sg(ibdev, req->data_sgl.sg_table.sgl,
			       req->data_sgl.nents, rq_dma_dir(rq));
	if (unlikely(*count <= 0)) {
		ret = -EIO;
		goto out_free_table;
	}

	if (blk_integrity_rq(rq)) {
		req->metadata_sgl->sg_table.sgl =
			(struct scatterlist *)(req->metadata_sgl + 1);
		ret = sg_alloc_table_chained(&req->metadata_sgl->sg_table,
				blk_rq_count_integrity_sg(rq->q, rq->bio),
				req->metadata_sgl->sg_table.sgl,
				NVME_INLINE_METADATA_SG_CNT);
		if (unlikely(ret)) {
			ret = -ENOMEM;
			goto out_unmap_sg;
		}

		req->metadata_sgl->nents = blk_rq_map_integrity_sg(rq->q,
				rq->bio, req->metadata_sgl->sg_table.sgl);
		*pi_count = ib_dma_map_sg(ibdev,
					  req->metadata_sgl->sg_table.sgl,
					  req->metadata_sgl->nents,
					  rq_dma_dir(rq));
		if (unlikely(*pi_count <= 0)) {
			ret = -EIO;
			goto out_free_pi_table;
		}
	}

	return 0;

out_free_pi_table:
	sg_free_table_chained(&req->metadata_sgl->sg_table,
			      NVME_INLINE_METADATA_SG_CNT);
out_unmap_sg:
	ib_dma_unmap_sg(ibdev, req->data_sgl.sg_table.sgl, req->data_sgl.nents,
			rq_dma_dir(rq));
out_free_table:
	sg_free_table_chained(&req->data_sgl.sg_table, NVME_INLINE_SG_CNT);
	return ret;
}

static int nvme_rdma_map_data(struct nvme_rdma_queue *queue,
		struct request *rq, struct nvme_command *c)
{
	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
	struct nvme_rdma_device *dev = queue->device;
	struct ib_device *ibdev = dev->dev;
	int pi_count = 0;
	int count, ret;

	req->num_sge = 1;
	refcount_set(&req->ref, 2); /* send and recv completions */

	c->common.flags |= NVME_CMD_SGL_METABUF;

	if (!blk_rq_nr_phys_segments(rq))
		return nvme_rdma_set_sg_null(c);

	ret = nvme_rdma_dma_map_req(ibdev, rq, &count, &pi_count);
	if (unlikely(ret))
		return ret;

	if (req->use_sig_mr) {
		ret = nvme_rdma_map_sg_pi(queue, req, c, count, pi_count);
		goto out;
	}

	if (count <= dev->num_inline_segments) {
		if (rq_data_dir(rq) == WRITE && nvme_rdma_queue_idx(queue) &&
		    queue->ctrl->use_inline_data &&
		    blk_rq_payload_bytes(rq) <=
				nvme_rdma_inline_data_size(queue)) {
			ret = nvme_rdma_map_sg_inline(queue, req, c, count);
			goto out;
		}

		if (count == 1 && dev->pd->flags & IB_PD_UNSAFE_GLOBAL_RKEY) {
			ret = nvme_rdma_map_sg_single(queue, req, c);
			goto out;
		}
	}

	ret = nvme_rdma_map_sg_fr(queue, req, c, count);
out:
	if (unlikely(ret))
		goto out_dma_unmap_req;

	return 0;

out_dma_unmap_req:
	nvme_rdma_dma_unmap_req(ibdev, rq);
	return ret;
}

static void nvme_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc)
{
	struct nvme_rdma_qe *qe =
		container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe);
	struct nvme_rdma_request *req =
		container_of(qe, struct nvme_rdma_request, sqe);

	if (unlikely(wc->status != IB_WC_SUCCESS))
		nvme_rdma_wr_error(cq, wc, "SEND");
	else
		nvme_rdma_end_request(req);
}

static int nvme_rdma_post_send(struct nvme_rdma_queue *queue,
		struct nvme_rdma_qe *qe, struct ib_sge *sge, u32 num_sge,
		struct ib_send_wr *first)
{
	struct ib_send_wr wr;
	int ret;

	sge->addr   = qe->dma;
	sge->length = sizeof(struct nvme_command);
	sge->lkey   = queue->device->pd->local_dma_lkey;

	wr.next       = NULL;
	wr.wr_cqe     = &qe->cqe;
	wr.sg_list    = sge;
	wr.num_sge    = num_sge;
	wr.opcode     = IB_WR_SEND;
	wr.send_flags = IB_SEND_SIGNALED;

	if (first)
		first->next = &wr;
	else
		first = &wr;

	ret = ib_post_send(queue->qp, first, NULL);
	if (unlikely(ret)) {
		dev_err(queue->ctrl->ctrl.device,
			     "%s failed with error code %d\n", __func__, ret);
	}
	return ret;
}

static int nvme_rdma_post_recv(struct nvme_rdma_queue *queue,
		struct nvme_rdma_qe *qe)
{
	struct ib_recv_wr wr;
	struct ib_sge list;
	int ret;

	list.addr   = qe->dma;
	list.length = sizeof(struct nvme_completion);
	list.lkey   = queue->device->pd->local_dma_lkey;

	qe->cqe.done = nvme_rdma_recv_done;

	wr.next     = NULL;
	wr.wr_cqe   = &qe->cqe;
	wr.sg_list  = &list;
	wr.num_sge  = 1;

	ret = ib_post_recv(queue->qp, &wr, NULL);
	if (unlikely(ret)) {
		dev_err(queue->ctrl->ctrl.device,
			"%s failed with error code %d\n", __func__, ret);
	}
	return ret;
}

static struct blk_mq_tags *nvme_rdma_tagset(struct nvme_rdma_queue *queue)
{
	u32 queue_idx = nvme_rdma_queue_idx(queue);

	if (queue_idx == 0)
		return queue->ctrl->admin_tag_set.tags[queue_idx];
	return queue->ctrl->tag_set.tags[queue_idx - 1];
}

static void nvme_rdma_async_done(struct ib_cq *cq, struct ib_wc *wc)
{
	if (unlikely(wc->status != IB_WC_SUCCESS))
		nvme_rdma_wr_error(cq, wc, "ASYNC");
}

static void nvme_rdma_submit_async_event(struct nvme_ctrl *arg)
{
	struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(arg);
	struct nvme_rdma_queue *queue = &ctrl->queues[0];
	struct ib_device *dev = queue->device->dev;
	struct nvme_rdma_qe *sqe = &ctrl->async_event_sqe;
	struct nvme_command *cmd = sqe->data;
	struct ib_sge sge;
	int ret;

	ib_dma_sync_single_for_cpu(dev, sqe->dma, sizeof(*cmd), DMA_TO_DEVICE);

	memset(cmd, 0, sizeof(*cmd));
	cmd->common.opcode = nvme_admin_async_event;
	cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH;
	cmd->common.flags |= NVME_CMD_SGL_METABUF;
	nvme_rdma_set_sg_null(cmd);

	sqe->cqe.done = nvme_rdma_async_done;

	ib_dma_sync_single_for_device(dev, sqe->dma, sizeof(*cmd),
			DMA_TO_DEVICE);

	ret = nvme_rdma_post_send(queue, sqe, &sge, 1, NULL);
	WARN_ON_ONCE(ret);
}

static void nvme_rdma_process_nvme_rsp(struct nvme_rdma_queue *queue,
		struct nvme_completion *cqe, struct ib_wc *wc)
{
	struct request *rq;
	struct nvme_rdma_request *req;

	rq = nvme_find_rq(nvme_rdma_tagset(queue), cqe->command_id);
	if (!rq) {
		dev_err(queue->ctrl->ctrl.device,
			"got bad command_id %#x on QP %#x\n",
			cqe->command_id, queue->qp->qp_num);
		nvme_rdma_error_recovery(queue->ctrl);
		return;
	}
	req = blk_mq_rq_to_pdu(rq);

	req->status = cqe->status;
	req->result = cqe->result;

	if (wc->wc_flags & IB_WC_WITH_INVALIDATE) {
		if (unlikely(!req->mr ||
			     wc->ex.invalidate_rkey != req->mr->rkey)) {
			dev_err(queue->ctrl->ctrl.device,
				"Bogus remote invalidation for rkey %#x\n",
				req->mr ? req->mr->rkey : 0);
			nvme_rdma_error_recovery(queue->ctrl);
		}
	} else if (req->mr) {
		int ret;

		ret = nvme_rdma_inv_rkey(queue, req);
		if (unlikely(ret < 0)) {
			dev_err(queue->ctrl->ctrl.device,
				"Queueing INV WR for rkey %#x failed (%d)\n",
				req->mr->rkey, ret);
			nvme_rdma_error_recovery(queue->ctrl);
		}
		/* the local invalidation completion will end the request */
		return;
	}

	nvme_rdma_end_request(req);
}

static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc)
{
	struct nvme_rdma_qe *qe =
		container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe);
	struct nvme_rdma_queue *queue = wc->qp->qp_context;
	struct ib_device *ibdev = queue->device->dev;
	struct nvme_completion *cqe = qe->data;
	const size_t len = sizeof(struct nvme_completion);

	if (unlikely(wc->status != IB_WC_SUCCESS)) {
		nvme_rdma_wr_error(cq, wc, "RECV");
		return;
	}

	/* sanity checking for received data length */
	if (unlikely(wc->byte_len < len)) {
		dev_err(queue->ctrl->ctrl.device,
			"Unexpected nvme completion length(%d)\n", wc->byte_len);
		nvme_rdma_error_recovery(queue->ctrl);
		return;
	}

	ib_dma_sync_single_for_cpu(ibdev, qe->dma, len, DMA_FROM_DEVICE);
	/*
	 * AEN requests are special as they don't time out and can
	 * survive any kind of queue freeze and often don't respond to
	 * aborts.  We don't even bother to allocate a struct request
	 * for them but rather special case them here.
	 */
	if (unlikely(nvme_is_aen_req(nvme_rdma_queue_idx(queue),
				     cqe->command_id)))
		nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status,
				&cqe->result);
	else
		nvme_rdma_process_nvme_rsp(queue, cqe, wc);
	ib_dma_sync_single_for_device(ibdev, qe->dma, len, DMA_FROM_DEVICE);

	nvme_rdma_post_recv(queue, qe);
}

static int nvme_rdma_conn_established(struct nvme_rdma_queue *queue)
{
	int ret, i;

	for (i = 0; i < queue->queue_size; i++) {
		ret = nvme_rdma_post_recv(queue, &queue->rsp_ring[i]);
		if (ret)
			return ret;
	}

	return 0;
}

static int nvme_rdma_conn_rejected(struct nvme_rdma_queue *queue,
		struct rdma_cm_event *ev)
{
	struct rdma_cm_id *cm_id = queue->cm_id;
	int status = ev->status;
	const char *rej_msg;
	const struct nvme_rdma_cm_rej *rej_data;
	u8 rej_data_len;

	rej_msg = rdma_reject_msg(cm_id, status);
	rej_data = rdma_consumer_reject_data(cm_id, ev, &rej_data_len);

	if (rej_data && rej_data_len >= sizeof(u16)) {
		u16 sts = le16_to_cpu(rej_data->sts);

		dev_err(queue->ctrl->ctrl.device,
		      "Connect rejected: status %d (%s) nvme status %d (%s).\n",
		      status, rej_msg, sts, nvme_rdma_cm_msg(sts));
	} else {
		dev_err(queue->ctrl->ctrl.device,
			"Connect rejected: status %d (%s).\n", status, rej_msg);
	}

	return -ECONNRESET;
}

static int nvme_rdma_addr_resolved(struct nvme_rdma_queue *queue)
{
	struct nvme_ctrl *ctrl = &queue->ctrl->ctrl;
	int ret;

	ret = nvme_rdma_create_queue_ib(queue);
	if (ret)
		return ret;

	if (ctrl->opts->tos >= 0)
		rdma_set_service_type(queue->cm_id, ctrl->opts->tos);
	ret = rdma_resolve_route(queue->cm_id, NVME_RDMA_CM_TIMEOUT_MS);
	if (ret) {
		dev_err(ctrl->device, "rdma_resolve_route failed (%d).\n",
			queue->cm_error);
		goto out_destroy_queue;
	}

	return 0;

out_destroy_queue:
	nvme_rdma_destroy_queue_ib(queue);
	return ret;
}

static int nvme_rdma_route_resolved(struct nvme_rdma_queue *queue)
{
	struct nvme_rdma_ctrl *ctrl = queue->ctrl;
	struct rdma_conn_param param = { };
	struct nvme_rdma_cm_req priv = { };
	int ret;

	param.qp_num = queue->qp->qp_num;
	param.flow_control = 1;

	param.responder_resources = queue->device->dev->attrs.max_qp_rd_atom;
	/* maximum retry count */
	param.retry_count = 7;
	param.rnr_retry_count = 7;
	param.private_data = &priv;
	param.private_data_len = sizeof(priv);

	priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0);
	priv.qid = cpu_to_le16(nvme_rdma_queue_idx(queue));
	/*
	 * set the admin queue depth to the minimum size
	 * specified by the Fabrics standard.
	 */
	if (priv.qid == 0) {
		priv.hrqsize = cpu_to_le16(NVME_AQ_DEPTH);
		priv.hsqsize = cpu_to_le16(NVME_AQ_DEPTH - 1);
	} else {
		/*
		 * current interpretation of the fabrics spec
		 * is at minimum you make hrqsize sqsize+1, or a
		 * 1's based representation of sqsize.
		 */
		priv.hrqsize = cpu_to_le16(queue->queue_size);
		priv.hsqsize = cpu_to_le16(queue->ctrl->ctrl.sqsize);
	}

	ret = rdma_connect_locked(queue->cm_id, &param);
	if (ret) {
		dev_err(ctrl->ctrl.device,
			"rdma_connect_locked failed (%d).\n", ret);
		return ret;
	}

	return 0;
}

static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
		struct rdma_cm_event *ev)
{
	struct nvme_rdma_queue *queue = cm_id->context;
	int cm_error = 0;

	dev_dbg(queue->ctrl->ctrl.device, "%s (%d): status %d id %p\n",
		rdma_event_msg(ev->event), ev->event,
		ev->status, cm_id);

	switch (ev->event) {
	case RDMA_CM_EVENT_ADDR_RESOLVED:
		cm_error = nvme_rdma_addr_resolved(queue);
		break;
	case RDMA_CM_EVENT_ROUTE_RESOLVED:
		cm_error = nvme_rdma_route_resolved(queue);
		break;
	case RDMA_CM_EVENT_ESTABLISHED:
		queue->cm_error = nvme_rdma_conn_established(queue);
		/* complete cm_done regardless of success/failure */
		complete(&queue->cm_done);
		return 0;
	case RDMA_CM_EVENT_REJECTED:
		cm_error = nvme_rdma_conn_rejected(queue, ev);
		break;
	case RDMA_CM_EVENT_ROUTE_ERROR:
	case RDMA_CM_EVENT_CONNECT_ERROR:
	case RDMA_CM_EVENT_UNREACHABLE:
	case RDMA_CM_EVENT_ADDR_ERROR:
		dev_dbg(queue->ctrl->ctrl.device,
			"CM error event %d\n", ev->event);
		cm_error = -ECONNRESET;
		break;
	case RDMA_CM_EVENT_DISCONNECTED:
	case RDMA_CM_EVENT_ADDR_CHANGE:
	case RDMA_CM_EVENT_TIMEWAIT_EXIT:
		dev_dbg(queue->ctrl->ctrl.device,
			"disconnect received - connection closed\n");
		nvme_rdma_error_recovery(queue->ctrl);
		break;
	case RDMA_CM_EVENT_DEVICE_REMOVAL:
		/* device removal is handled via the ib_client API */
		break;
	default:
		dev_err(queue->ctrl->ctrl.device,
			"Unexpected RDMA CM event (%d)\n", ev->event);
		nvme_rdma_error_recovery(queue->ctrl);
		break;
	}

	if (cm_error) {
		queue->cm_error = cm_error;
		complete(&queue->cm_done);
	}

	return 0;
}

static void nvme_rdma_complete_timed_out(struct request *rq)
{
	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
	struct nvme_rdma_queue *queue = req->queue;

	nvme_rdma_stop_queue(queue);
	nvmf_complete_timed_out_request(rq);
}

static enum blk_eh_timer_return nvme_rdma_timeout(struct request *rq)
{
	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
	struct nvme_rdma_queue *queue = req->queue;
	struct nvme_rdma_ctrl *ctrl = queue->ctrl;

	dev_warn(ctrl->ctrl.device, "I/O %d QID %d timeout\n",
		 rq->tag, nvme_rdma_queue_idx(queue));

	if (ctrl->ctrl.state != NVME_CTRL_LIVE) {
		/*
		 * If we are resetting, connecting or deleting we should
		 * complete immediately because we may block controller
		 * teardown or setup sequence
		 * - ctrl disable/shutdown fabrics requests
		 * - connect requests
		 * - initialization admin requests
		 * - I/O requests that entered after unquiescing and
		 *   the controller stopped responding
		 *
		 * All other requests should be cancelled by the error
		 * recovery work, so it's fine that we fail it here.
		 */
		nvme_rdma_complete_timed_out(rq);
		return BLK_EH_DONE;
	}

	/*
	 * LIVE state should trigger the normal error recovery which will
	 * handle completing this request.
	 */
	nvme_rdma_error_recovery(ctrl);
	return BLK_EH_RESET_TIMER;
}

static blk_status_t nvme_rdma_queue_rq(struct blk_mq_hw_ctx *hctx,
		const struct blk_mq_queue_data *bd)
{
	struct nvme_ns *ns = hctx->queue->queuedata;
	struct nvme_rdma_queue *queue = hctx->driver_data;
	struct request *rq = bd->rq;
	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
	struct nvme_rdma_qe *sqe = &req->sqe;
	struct nvme_command *c = nvme_req(rq)->cmd;
	struct ib_device *dev;
	bool queue_ready = test_bit(NVME_RDMA_Q_LIVE, &queue->flags);
	blk_status_t ret;
	int err;

	WARN_ON_ONCE(rq->tag < 0);

	if (!nvme_check_ready(&queue->ctrl->ctrl, rq, queue_ready))
		return nvme_fail_nonready_command(&queue->ctrl->ctrl, rq);

	dev = queue->device->dev;

	req->sqe.dma = ib_dma_map_single(dev, req->sqe.data,
					 sizeof(struct nvme_command),
					 DMA_TO_DEVICE);
	err = ib_dma_mapping_error(dev, req->sqe.dma);
	if (unlikely(err))
		return BLK_STS_RESOURCE;

	ib_dma_sync_single_for_cpu(dev, sqe->dma,
			sizeof(struct nvme_command), DMA_TO_DEVICE);

	ret = nvme_setup_cmd(ns, rq);
	if (ret)
		goto unmap_qe;

	nvme_start_request(rq);

	if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) &&
	    queue->pi_support &&
	    (c->common.opcode == nvme_cmd_write ||
	     c->common.opcode == nvme_cmd_read) &&
	    nvme_ns_has_pi(ns))
		req->use_sig_mr = true;
	else
		req->use_sig_mr = false;

	err = nvme_rdma_map_data(queue, rq, c);
	if (unlikely(err < 0)) {
		dev_err(queue->ctrl->ctrl.device,
			     "Failed to map data (%d)\n", err);
		goto err;
	}

	sqe->cqe.done = nvme_rdma_send_done;

	ib_dma_sync_single_for_device(dev, sqe->dma,
			sizeof(struct nvme_command), DMA_TO_DEVICE);

	err = nvme_rdma_post_send(queue, sqe, req->sge, req->num_sge,
			req->mr ? &req->reg_wr.wr : NULL);
	if (unlikely(err))
		goto err_unmap;

	return BLK_STS_OK;

err_unmap:
	nvme_rdma_unmap_data(queue, rq);
err:
	if (err == -EIO)
		ret = nvme_host_path_error(rq);
	else if (err == -ENOMEM || err == -EAGAIN)
		ret = BLK_STS_RESOURCE;
	else
		ret = BLK_STS_IOERR;
	nvme_cleanup_cmd(rq);
unmap_qe:
	ib_dma_unmap_single(dev, req->sqe.dma, sizeof(struct nvme_command),
			    DMA_TO_DEVICE);
	return ret;
}

static int nvme_rdma_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob)
{
	struct nvme_rdma_queue *queue = hctx->driver_data;

	return ib_process_cq_direct(queue->ib_cq, -1);
}

static void nvme_rdma_check_pi_status(struct nvme_rdma_request *req)
{
	struct request *rq = blk_mq_rq_from_pdu(req);
	struct ib_mr_status mr_status;
	int ret;

	ret = ib_check_mr_status(req->mr, IB_MR_CHECK_SIG_STATUS, &mr_status);
	if (ret) {
		pr_err("ib_check_mr_status failed, ret %d\n", ret);
		nvme_req(rq)->status = NVME_SC_INVALID_PI;
		return;
	}

	if (mr_status.fail_status & IB_MR_CHECK_SIG_STATUS) {
		switch (mr_status.sig_err.err_type) {
		case IB_SIG_BAD_GUARD:
			nvme_req(rq)->status = NVME_SC_GUARD_CHECK;
			break;
		case IB_SIG_BAD_REFTAG:
			nvme_req(rq)->status = NVME_SC_REFTAG_CHECK;
			break;
		case IB_SIG_BAD_APPTAG:
			nvme_req(rq)->status = NVME_SC_APPTAG_CHECK;
			break;
		}
		pr_err("PI error found type %d expected 0x%x vs actual 0x%x\n",
		       mr_status.sig_err.err_type, mr_status.sig_err.expected,
		       mr_status.sig_err.actual);
	}
}

static void nvme_rdma_complete_rq(struct request *rq)
{
	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
	struct nvme_rdma_queue *queue = req->queue;
	struct ib_device *ibdev = queue->device->dev;

	if (req->use_sig_mr)
		nvme_rdma_check_pi_status(req);

	nvme_rdma_unmap_data(queue, rq);
	ib_dma_unmap_single(ibdev, req->sqe.dma, sizeof(struct nvme_command),
			    DMA_TO_DEVICE);
	nvme_complete_rq(rq);
}

static void nvme_rdma_map_queues(struct blk_mq_tag_set *set)
{
	struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(set->driver_data);
	struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;

	if (opts->nr_write_queues && ctrl->io_queues[HCTX_TYPE_READ]) {
		/* separate read/write queues */
		set->map[HCTX_TYPE_DEFAULT].nr_queues =
			ctrl->io_queues[HCTX_TYPE_DEFAULT];
		set->map[HCTX_TYPE_DEFAULT].queue_offset = 0;
		set->map[HCTX_TYPE_READ].nr_queues =
			ctrl->io_queues[HCTX_TYPE_READ];
		set->map[HCTX_TYPE_READ].queue_offset =
			ctrl->io_queues[HCTX_TYPE_DEFAULT];
	} else {
		/* shared read/write queues */
		set->map[HCTX_TYPE_DEFAULT].nr_queues =
			ctrl->io_queues[HCTX_TYPE_DEFAULT];
		set->map[HCTX_TYPE_DEFAULT].queue_offset = 0;
		set->map[HCTX_TYPE_READ].nr_queues =
			ctrl->io_queues[HCTX_TYPE_DEFAULT];
		set->map[HCTX_TYPE_READ].queue_offset = 0;
	}
	blk_mq_rdma_map_queues(&set->map[HCTX_TYPE_DEFAULT],
			ctrl->device->dev, 0);
	blk_mq_rdma_map_queues(&set->map[HCTX_TYPE_READ],
			ctrl->device->dev, 0);

	if (opts->nr_poll_queues && ctrl->io_queues[HCTX_TYPE_POLL]) {
		/* map dedicated poll queues only if we have queues left */
		set->map[HCTX_TYPE_POLL].nr_queues =
				ctrl->io_queues[HCTX_TYPE_POLL];
		set->map[HCTX_TYPE_POLL].queue_offset =
			ctrl->io_queues[HCTX_TYPE_DEFAULT] +
			ctrl->io_queues[HCTX_TYPE_READ];
		blk_mq_map_queues(&set->map[HCTX_TYPE_POLL]);
	}

	dev_info(ctrl->ctrl.device,
		"mapped %d/%d/%d default/read/poll queues.\n",
		ctrl->io_queues[HCTX_TYPE_DEFAULT],
		ctrl->io_queues[HCTX_TYPE_READ],
		ctrl->io_queues[HCTX_TYPE_POLL]);
}

static const struct blk_mq_ops nvme_rdma_mq_ops = {
	.queue_rq	= nvme_rdma_queue_rq,
	.complete	= nvme_rdma_complete_rq,
	.init_request	= nvme_rdma_init_request,
	.exit_request	= nvme_rdma_exit_request,
	.init_hctx	= nvme_rdma_init_hctx,
	.timeout	= nvme_rdma_timeout,
	.map_queues	= nvme_rdma_map_queues,
	.poll		= nvme_rdma_poll,
};

static const struct blk_mq_ops nvme_rdma_admin_mq_ops = {
	.queue_rq	= nvme_rdma_queue_rq,
	.complete	= nvme_rdma_complete_rq,
	.init_request	= nvme_rdma_init_request,
	.exit_request	= nvme_rdma_exit_request,
	.init_hctx	= nvme_rdma_init_admin_hctx,
	.timeout	= nvme_rdma_timeout,
};

static void nvme_rdma_shutdown_ctrl(struct nvme_rdma_ctrl *ctrl, bool shutdown)
{
	nvme_rdma_teardown_io_queues(ctrl, shutdown);
	nvme_quiesce_admin_queue(&ctrl->ctrl);
	nvme_disable_ctrl(&ctrl->ctrl, shutdown);
	nvme_rdma_teardown_admin_queue(ctrl, shutdown);
}

static void nvme_rdma_delete_ctrl(struct nvme_ctrl *ctrl)
{
	nvme_rdma_shutdown_ctrl(to_rdma_ctrl(ctrl), true);
}

static void nvme_rdma_reset_ctrl_work(struct work_struct *work)
{
	struct nvme_rdma_ctrl *ctrl =
		container_of(work, struct nvme_rdma_ctrl, ctrl.reset_work);

	nvme_stop_ctrl(&ctrl->ctrl);
	nvme_rdma_shutdown_ctrl(ctrl, false);

	if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
		/* state change failure should never happen */
		WARN_ON_ONCE(1);
		return;
	}

	if (nvme_rdma_setup_ctrl(ctrl, false))
		goto out_fail;

	return;

out_fail:
	++ctrl->ctrl.nr_reconnects;
	nvme_rdma_reconnect_or_remove(ctrl);
}

static const struct nvme_ctrl_ops nvme_rdma_ctrl_ops = {
	.name			= "rdma",
	.module			= THIS_MODULE,
	.flags			= NVME_F_FABRICS | NVME_F_METADATA_SUPPORTED,
	.reg_read32		= nvmf_reg_read32,
	.reg_read64		= nvmf_reg_read64,
	.reg_write32		= nvmf_reg_write32,
	.free_ctrl		= nvme_rdma_free_ctrl,
	.submit_async_event	= nvme_rdma_submit_async_event,
	.delete_ctrl		= nvme_rdma_delete_ctrl,
	.get_address		= nvmf_get_address,
	.stop_ctrl		= nvme_rdma_stop_ctrl,
};

/*
 * Fails a connection request if it matches an existing controller
 * (association) with the same tuple:
 * <Host NQN, Host ID, local address, remote address, remote port, SUBSYS NQN>
 *
 * if local address is not specified in the request, it will match an
 * existing controller with all the other parameters the same and no
 * local port address specified as well.
 *
 * The ports don't need to be compared as they are intrinsically
 * already matched by the port pointers supplied.
 */
static bool
nvme_rdma_existing_controller(struct nvmf_ctrl_options *opts)
{
	struct nvme_rdma_ctrl *ctrl;
	bool found = false;

	mutex_lock(&nvme_rdma_ctrl_mutex);
	list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) {
		found = nvmf_ip_options_match(&ctrl->ctrl, opts);
		if (found)
			break;
	}
	mutex_unlock(&nvme_rdma_ctrl_mutex);

	return found;
}

static struct nvme_ctrl *nvme_rdma_create_ctrl(struct device *dev,
		struct nvmf_ctrl_options *opts)
{
	struct nvme_rdma_ctrl *ctrl;
	int ret;
	bool changed;

	ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
	if (!ctrl)
		return ERR_PTR(-ENOMEM);
	ctrl->ctrl.opts = opts;
	INIT_LIST_HEAD(&ctrl->list);

	if (!(opts->mask & NVMF_OPT_TRSVCID)) {
		opts->trsvcid =
			kstrdup(__stringify(NVME_RDMA_IP_PORT), GFP_KERNEL);
		if (!opts->trsvcid) {
			ret = -ENOMEM;
			goto out_free_ctrl;
		}
		opts->mask |= NVMF_OPT_TRSVCID;
	}

	ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
			opts->traddr, opts->trsvcid, &ctrl->addr);
	if (ret) {
		pr_err("malformed address passed: %s:%s\n",
			opts->traddr, opts->trsvcid);
		goto out_free_ctrl;
	}

	if (opts->mask & NVMF_OPT_HOST_TRADDR) {
		ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
			opts->host_traddr, NULL, &ctrl->src_addr);
		if (ret) {
			pr_err("malformed src address passed: %s\n",
			       opts->host_traddr);
			goto out_free_ctrl;
		}
	}

	if (!opts->duplicate_connect && nvme_rdma_existing_controller(opts)) {
		ret = -EALREADY;
		goto out_free_ctrl;
	}

	INIT_DELAYED_WORK(&ctrl->reconnect_work,
			nvme_rdma_reconnect_ctrl_work);
	INIT_WORK(&ctrl->err_work, nvme_rdma_error_recovery_work);
	INIT_WORK(&ctrl->ctrl.reset_work, nvme_rdma_reset_ctrl_work);

	ctrl->ctrl.queue_count = opts->nr_io_queues + opts->nr_write_queues +
				opts->nr_poll_queues + 1;
	ctrl->ctrl.sqsize = opts->queue_size - 1;
	ctrl->ctrl.kato = opts->kato;

	ret = -ENOMEM;
	ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues),
				GFP_KERNEL);
	if (!ctrl->queues)
		goto out_free_ctrl;

	ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_rdma_ctrl_ops,
				0 /* no quirks, we're perfect! */);
	if (ret)
		goto out_kfree_queues;

	changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING);
	WARN_ON_ONCE(!changed);

	ret = nvme_rdma_setup_ctrl(ctrl, true);
	if (ret)
		goto out_uninit_ctrl;

	dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISpcs\n",
		nvmf_ctrl_subsysnqn(&ctrl->ctrl), &ctrl->addr);

	mutex_lock(&nvme_rdma_ctrl_mutex);
	list_add_tail(&ctrl->list, &nvme_rdma_ctrl_list);
	mutex_unlock(&nvme_rdma_ctrl_mutex);

	return &ctrl->ctrl;

out_uninit_ctrl:
	nvme_uninit_ctrl(&ctrl->ctrl);
	nvme_put_ctrl(&ctrl->ctrl);
	if (ret > 0)
		ret = -EIO;
	return ERR_PTR(ret);
out_kfree_queues:
	kfree(ctrl->queues);
out_free_ctrl:
	kfree(ctrl);
	return ERR_PTR(ret);
}

static struct nvmf_transport_ops nvme_rdma_transport = {
	.name		= "rdma",
	.module		= THIS_MODULE,
	.required_opts	= NVMF_OPT_TRADDR,
	.allowed_opts	= NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY |
			  NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO |
			  NVMF_OPT_NR_WRITE_QUEUES | NVMF_OPT_NR_POLL_QUEUES |
			  NVMF_OPT_TOS,
	.create_ctrl	= nvme_rdma_create_ctrl,
};

static void nvme_rdma_remove_one(struct ib_device *ib_device, void *client_data)
{
	struct nvme_rdma_ctrl *ctrl;
	struct nvme_rdma_device *ndev;
	bool found = false;

	mutex_lock(&device_list_mutex);
	list_for_each_entry(ndev, &device_list, entry) {
		if (ndev->dev == ib_device) {
			found = true;
			break;
		}
	}
	mutex_unlock(&device_list_mutex);

	if (!found)
		return;

	/* Delete all controllers using this device */
	mutex_lock(&nvme_rdma_ctrl_mutex);
	list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) {
		if (ctrl->device->dev != ib_device)
			continue;
		nvme_delete_ctrl(&ctrl->ctrl);
	}
	mutex_unlock(&nvme_rdma_ctrl_mutex);

	flush_workqueue(nvme_delete_wq);
}

static struct ib_client nvme_rdma_ib_client = {
	.name   = "nvme_rdma",
	.remove = nvme_rdma_remove_one
};

static int __init nvme_rdma_init_module(void)
{
	int ret;

	ret = ib_register_client(&nvme_rdma_ib_client);
	if (ret)
		return ret;

	ret = nvmf_register_transport(&nvme_rdma_transport);
	if (ret)
		goto err_unreg_client;

	return 0;

err_unreg_client:
	ib_unregister_client(&nvme_rdma_ib_client);
	return ret;
}

static void __exit nvme_rdma_cleanup_module(void)
{
	struct nvme_rdma_ctrl *ctrl;

	nvmf_unregister_transport(&nvme_rdma_transport);
	ib_unregister_client(&nvme_rdma_ib_client);

	mutex_lock(&nvme_rdma_ctrl_mutex);
	list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list)
		nvme_delete_ctrl(&ctrl->ctrl);
	mutex_unlock(&nvme_rdma_ctrl_mutex);
	flush_workqueue(nvme_delete_wq);
}

module_init(nvme_rdma_init_module);
module_exit(nvme_rdma_cleanup_module);

MODULE_LICENSE("GPL v2");