summaryrefslogtreecommitdiff
path: root/drivers/mtd/nand/raw/rockchip-nand-controller.c
blob: 596cf9a782749a7576265f01ffd4d464677c12e8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
// SPDX-License-Identifier: GPL-2.0 OR MIT
/*
 * Rockchip NAND Flash controller driver.
 * Copyright (C) 2020 Rockchip Inc.
 * Author: Yifeng Zhao <yifeng.zhao@rock-chips.com>
 */

#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/dma-mapping.h>
#include <linux/dmaengine.h>
#include <linux/interrupt.h>
#include <linux/iopoll.h>
#include <linux/module.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/rawnand.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/slab.h>

/*
 * NFC Page Data Layout:
 *	1024 bytes data + 4Bytes sys data + 28Bytes~124Bytes ECC data +
 *	1024 bytes data + 4Bytes sys data + 28Bytes~124Bytes ECC data +
 *	......
 * NAND Page Data Layout:
 *	1024 * n data + m Bytes oob
 * Original Bad Block Mask Location:
 *	First byte of oob(spare).
 * nand_chip->oob_poi data layout:
 *	4Bytes sys data + .... + 4Bytes sys data + ECC data.
 */

/* NAND controller register definition */
#define NFC_READ			(0)
#define NFC_WRITE			(1)

#define NFC_FMCTL			(0x00)
#define   FMCTL_CE_SEL_M		0xFF
#define   FMCTL_CE_SEL(x)		(1 << (x))
#define   FMCTL_WP			BIT(8)
#define   FMCTL_RDY			BIT(9)

#define NFC_FMWAIT			(0x04)
#define   FLCTL_RST			BIT(0)
#define   FLCTL_WR			(1)	/* 0: read, 1: write */
#define   FLCTL_XFER_ST			BIT(2)
#define   FLCTL_XFER_EN			BIT(3)
#define   FLCTL_ACORRECT		BIT(10) /* Auto correct error bits. */
#define   FLCTL_XFER_READY		BIT(20)
#define   FLCTL_XFER_SECTOR		(22)
#define   FLCTL_TOG_FIX			BIT(29)

#define   BCHCTL_BANK_M			(7 << 5)
#define   BCHCTL_BANK			(5)

#define   DMA_ST			BIT(0)
#define   DMA_WR			(1)	/* 0: write, 1: read */
#define   DMA_EN			BIT(2)
#define   DMA_AHB_SIZE			(3)	/* 0: 1, 1: 2, 2: 4 */
#define   DMA_BURST_SIZE		(6)	/* 0: 1, 3: 4, 5: 8, 7: 16 */
#define   DMA_INC_NUM			(9)	/* 1 - 16 */

#define ECC_ERR_CNT(x, e) ((((x) >> (e).low) & (e).low_mask) |\
	  (((x) >> (e).high) & (e).high_mask) << (e).low_bn)
#define   INT_DMA			BIT(0)
#define NFC_BANK			(0x800)
#define NFC_BANK_STEP			(0x100)
#define   BANK_DATA			(0x00)
#define   BANK_ADDR			(0x04)
#define   BANK_CMD			(0x08)
#define NFC_SRAM0			(0x1000)
#define NFC_SRAM1			(0x1400)
#define NFC_SRAM_SIZE			(0x400)
#define NFC_TIMEOUT			(500000)
#define NFC_MAX_OOB_PER_STEP		128
#define NFC_MIN_OOB_PER_STEP		64
#define MAX_DATA_SIZE			0xFFFC
#define MAX_ADDRESS_CYC			6
#define NFC_ECC_MAX_MODES		4
#define NFC_MAX_NSELS			(8) /* Some Socs only have 1 or 2 CSs. */
#define NFC_SYS_DATA_SIZE		(4) /* 4 bytes sys data in oob pre 1024 data.*/
#define RK_DEFAULT_CLOCK_RATE		(150 * 1000 * 1000) /* 150 Mhz */
#define ACCTIMING(csrw, rwpw, rwcs)	((csrw) << 12 | (rwpw) << 5 | (rwcs))

enum nfc_type {
	NFC_V6,
	NFC_V8,
	NFC_V9,
};

/**
 * struct rk_ecc_cnt_status: represent a ecc status data.
 * @err_flag_bit: error flag bit index at register.
 * @low: ECC count low bit index at register.
 * @low_mask: mask bit.
 * @low_bn: ECC count low bit number.
 * @high: ECC count high bit index at register.
 * @high_mask: mask bit
 */
struct ecc_cnt_status {
	u8 err_flag_bit;
	u8 low;
	u8 low_mask;
	u8 low_bn;
	u8 high;
	u8 high_mask;
};

/**
 * @type: NFC version
 * @ecc_strengths: ECC strengths
 * @ecc_cfgs: ECC config values
 * @flctl_off: FLCTL register offset
 * @bchctl_off: BCHCTL register offset
 * @dma_data_buf_off: DMA_DATA_BUF register offset
 * @dma_oob_buf_off: DMA_OOB_BUF register offset
 * @dma_cfg_off: DMA_CFG register offset
 * @dma_st_off: DMA_ST register offset
 * @bch_st_off: BCG_ST register offset
 * @randmz_off: RANDMZ register offset
 * @int_en_off: interrupt enable register offset
 * @int_clr_off: interrupt clean register offset
 * @int_st_off: interrupt status register offset
 * @oob0_off: oob0 register offset
 * @oob1_off: oob1 register offset
 * @ecc0: represent ECC0 status data
 * @ecc1: represent ECC1 status data
 */
struct nfc_cfg {
	enum nfc_type type;
	u8 ecc_strengths[NFC_ECC_MAX_MODES];
	u32 ecc_cfgs[NFC_ECC_MAX_MODES];
	u32 flctl_off;
	u32 bchctl_off;
	u32 dma_cfg_off;
	u32 dma_data_buf_off;
	u32 dma_oob_buf_off;
	u32 dma_st_off;
	u32 bch_st_off;
	u32 randmz_off;
	u32 int_en_off;
	u32 int_clr_off;
	u32 int_st_off;
	u32 oob0_off;
	u32 oob1_off;
	struct ecc_cnt_status ecc0;
	struct ecc_cnt_status ecc1;
};

struct rk_nfc_nand_chip {
	struct list_head node;
	struct nand_chip chip;

	u16 boot_blks;
	u16 metadata_size;
	u32 boot_ecc;
	u32 timing;

	u8 nsels;
	u8 sels[] __counted_by(nsels);
};

struct rk_nfc {
	struct nand_controller controller;
	const struct nfc_cfg *cfg;
	struct device *dev;

	struct clk *nfc_clk;
	struct clk *ahb_clk;
	void __iomem *regs;

	u32 selected_bank;
	u32 band_offset;
	u32 cur_ecc;
	u32 cur_timing;

	struct completion done;
	struct list_head chips;

	u8 *page_buf;
	u32 *oob_buf;
	u32 page_buf_size;
	u32 oob_buf_size;

	unsigned long assigned_cs;
};

static inline struct rk_nfc_nand_chip *rk_nfc_to_rknand(struct nand_chip *chip)
{
	return container_of(chip, struct rk_nfc_nand_chip, chip);
}

static inline u8 *rk_nfc_buf_to_data_ptr(struct nand_chip *chip, const u8 *p, int i)
{
	return (u8 *)p + i * chip->ecc.size;
}

static inline u8 *rk_nfc_buf_to_oob_ptr(struct nand_chip *chip, int i)
{
	u8 *poi;

	poi = chip->oob_poi + i * NFC_SYS_DATA_SIZE;

	return poi;
}

static inline u8 *rk_nfc_buf_to_oob_ecc_ptr(struct nand_chip *chip, int i)
{
	struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
	u8 *poi;

	poi = chip->oob_poi + rknand->metadata_size + chip->ecc.bytes * i;

	return poi;
}

static inline int rk_nfc_data_len(struct nand_chip *chip)
{
	return chip->ecc.size + chip->ecc.bytes + NFC_SYS_DATA_SIZE;
}

static inline u8 *rk_nfc_data_ptr(struct nand_chip *chip, int i)
{
	struct rk_nfc *nfc = nand_get_controller_data(chip);

	return nfc->page_buf + i * rk_nfc_data_len(chip);
}

static inline u8 *rk_nfc_oob_ptr(struct nand_chip *chip, int i)
{
	struct rk_nfc *nfc = nand_get_controller_data(chip);

	return nfc->page_buf + i * rk_nfc_data_len(chip) + chip->ecc.size;
}

static int rk_nfc_hw_ecc_setup(struct nand_chip *chip, u32 strength)
{
	struct rk_nfc *nfc = nand_get_controller_data(chip);
	u32 reg, i;

	for (i = 0; i < NFC_ECC_MAX_MODES; i++) {
		if (strength == nfc->cfg->ecc_strengths[i]) {
			reg = nfc->cfg->ecc_cfgs[i];
			break;
		}
	}

	if (i >= NFC_ECC_MAX_MODES)
		return -EINVAL;

	writel(reg, nfc->regs + nfc->cfg->bchctl_off);

	/* Save chip ECC setting */
	nfc->cur_ecc = strength;

	return 0;
}

static void rk_nfc_select_chip(struct nand_chip *chip, int cs)
{
	struct rk_nfc *nfc = nand_get_controller_data(chip);
	struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
	struct nand_ecc_ctrl *ecc = &chip->ecc;
	u32 val;

	if (cs < 0) {
		nfc->selected_bank = -1;
		/* Deselect the currently selected target. */
		val = readl_relaxed(nfc->regs + NFC_FMCTL);
		val &= ~FMCTL_CE_SEL_M;
		writel(val, nfc->regs + NFC_FMCTL);
		return;
	}

	nfc->selected_bank = rknand->sels[cs];
	nfc->band_offset = NFC_BANK + nfc->selected_bank * NFC_BANK_STEP;

	val = readl_relaxed(nfc->regs + NFC_FMCTL);
	val &= ~FMCTL_CE_SEL_M;
	val |= FMCTL_CE_SEL(nfc->selected_bank);

	writel(val, nfc->regs + NFC_FMCTL);

	/*
	 * Compare current chip timing with selected chip timing and
	 * change if needed.
	 */
	if (nfc->cur_timing != rknand->timing) {
		writel(rknand->timing, nfc->regs + NFC_FMWAIT);
		nfc->cur_timing = rknand->timing;
	}

	/*
	 * Compare current chip ECC setting with selected chip ECC setting and
	 * change if needed.
	 */
	if (nfc->cur_ecc != ecc->strength)
		rk_nfc_hw_ecc_setup(chip, ecc->strength);
}

static inline int rk_nfc_wait_ioready(struct rk_nfc *nfc)
{
	int rc;
	u32 val;

	rc = readl_relaxed_poll_timeout(nfc->regs + NFC_FMCTL, val,
					val & FMCTL_RDY, 10, NFC_TIMEOUT);

	return rc;
}

static void rk_nfc_read_buf(struct rk_nfc *nfc, u8 *buf, int len)
{
	int i;

	for (i = 0; i < len; i++)
		buf[i] = readb_relaxed(nfc->regs + nfc->band_offset +
				       BANK_DATA);
}

static void rk_nfc_write_buf(struct rk_nfc *nfc, const u8 *buf, int len)
{
	int i;

	for (i = 0; i < len; i++)
		writeb(buf[i], nfc->regs + nfc->band_offset + BANK_DATA);
}

static int rk_nfc_cmd(struct nand_chip *chip,
		      const struct nand_subop *subop)
{
	struct rk_nfc *nfc = nand_get_controller_data(chip);
	unsigned int i, j, remaining, start;
	int reg_offset = nfc->band_offset;
	u8 *inbuf = NULL;
	const u8 *outbuf;
	u32 cnt = 0;
	int ret = 0;

	for (i = 0; i < subop->ninstrs; i++) {
		const struct nand_op_instr *instr = &subop->instrs[i];

		switch (instr->type) {
		case NAND_OP_CMD_INSTR:
			writeb(instr->ctx.cmd.opcode,
			       nfc->regs + reg_offset + BANK_CMD);
			break;

		case NAND_OP_ADDR_INSTR:
			remaining = nand_subop_get_num_addr_cyc(subop, i);
			start = nand_subop_get_addr_start_off(subop, i);

			for (j = 0; j < 8 && j + start < remaining; j++)
				writeb(instr->ctx.addr.addrs[j + start],
				       nfc->regs + reg_offset + BANK_ADDR);
			break;

		case NAND_OP_DATA_IN_INSTR:
		case NAND_OP_DATA_OUT_INSTR:
			start = nand_subop_get_data_start_off(subop, i);
			cnt = nand_subop_get_data_len(subop, i);

			if (instr->type == NAND_OP_DATA_OUT_INSTR) {
				outbuf = instr->ctx.data.buf.out + start;
				rk_nfc_write_buf(nfc, outbuf, cnt);
			} else {
				inbuf = instr->ctx.data.buf.in + start;
				rk_nfc_read_buf(nfc, inbuf, cnt);
			}
			break;

		case NAND_OP_WAITRDY_INSTR:
			if (rk_nfc_wait_ioready(nfc) < 0) {
				ret = -ETIMEDOUT;
				dev_err(nfc->dev, "IO not ready\n");
			}
			break;
		}
	}

	return ret;
}

static const struct nand_op_parser rk_nfc_op_parser = NAND_OP_PARSER(
	NAND_OP_PARSER_PATTERN(
		rk_nfc_cmd,
		NAND_OP_PARSER_PAT_CMD_ELEM(true),
		NAND_OP_PARSER_PAT_ADDR_ELEM(true, MAX_ADDRESS_CYC),
		NAND_OP_PARSER_PAT_CMD_ELEM(true),
		NAND_OP_PARSER_PAT_WAITRDY_ELEM(true),
		NAND_OP_PARSER_PAT_DATA_IN_ELEM(true, MAX_DATA_SIZE)),
	NAND_OP_PARSER_PATTERN(
		rk_nfc_cmd,
		NAND_OP_PARSER_PAT_CMD_ELEM(true),
		NAND_OP_PARSER_PAT_ADDR_ELEM(true, MAX_ADDRESS_CYC),
		NAND_OP_PARSER_PAT_DATA_OUT_ELEM(true, MAX_DATA_SIZE),
		NAND_OP_PARSER_PAT_CMD_ELEM(true),
		NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)),
);

static int rk_nfc_exec_op(struct nand_chip *chip,
			  const struct nand_operation *op,
			  bool check_only)
{
	if (!check_only)
		rk_nfc_select_chip(chip, op->cs);

	return nand_op_parser_exec_op(chip, &rk_nfc_op_parser, op,
				      check_only);
}

static int rk_nfc_setup_interface(struct nand_chip *chip, int target,
				  const struct nand_interface_config *conf)
{
	struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
	struct rk_nfc *nfc = nand_get_controller_data(chip);
	const struct nand_sdr_timings *timings;
	u32 rate, tc2rw, trwpw, trw2c;
	u32 temp;

	if (target < 0)
		return 0;

	timings = nand_get_sdr_timings(conf);
	if (IS_ERR(timings))
		return -EOPNOTSUPP;

	if (IS_ERR(nfc->nfc_clk))
		rate = clk_get_rate(nfc->ahb_clk);
	else
		rate = clk_get_rate(nfc->nfc_clk);

	/* Turn clock rate into kHz. */
	rate /= 1000;

	tc2rw = 1;
	trw2c = 1;

	trwpw = max(timings->tWC_min, timings->tRC_min) / 1000;
	trwpw = DIV_ROUND_UP(trwpw * rate, 1000000);

	temp = timings->tREA_max / 1000;
	temp = DIV_ROUND_UP(temp * rate, 1000000);

	if (trwpw < temp)
		trwpw = temp;

	/*
	 * ACCON: access timing control register
	 * -------------------------------------
	 * 31:18: reserved
	 * 17:12: csrw, clock cycles from the falling edge of CSn to the
	 *   falling edge of RDn or WRn
	 * 11:11: reserved
	 * 10:05: rwpw, the width of RDn or WRn in processor clock cycles
	 * 04:00: rwcs, clock cycles from the rising edge of RDn or WRn to the
	 *   rising edge of CSn
	 */

	/* Save chip timing */
	rknand->timing = ACCTIMING(tc2rw, trwpw, trw2c);

	return 0;
}

static void rk_nfc_xfer_start(struct rk_nfc *nfc, u8 rw, u8 n_KB,
			      dma_addr_t dma_data, dma_addr_t dma_oob)
{
	u32 dma_reg, fl_reg, bch_reg;

	dma_reg = DMA_ST | ((!rw) << DMA_WR) | DMA_EN | (2 << DMA_AHB_SIZE) |
	      (7 << DMA_BURST_SIZE) | (16 << DMA_INC_NUM);

	fl_reg = (rw << FLCTL_WR) | FLCTL_XFER_EN | FLCTL_ACORRECT |
		 (n_KB << FLCTL_XFER_SECTOR) | FLCTL_TOG_FIX;

	if (nfc->cfg->type == NFC_V6 || nfc->cfg->type == NFC_V8) {
		bch_reg = readl_relaxed(nfc->regs + nfc->cfg->bchctl_off);
		bch_reg = (bch_reg & (~BCHCTL_BANK_M)) |
			  (nfc->selected_bank << BCHCTL_BANK);
		writel(bch_reg, nfc->regs + nfc->cfg->bchctl_off);
	}

	writel(dma_reg, nfc->regs + nfc->cfg->dma_cfg_off);
	writel((u32)dma_data, nfc->regs + nfc->cfg->dma_data_buf_off);
	writel((u32)dma_oob, nfc->regs + nfc->cfg->dma_oob_buf_off);
	writel(fl_reg, nfc->regs + nfc->cfg->flctl_off);
	fl_reg |= FLCTL_XFER_ST;
	writel(fl_reg, nfc->regs + nfc->cfg->flctl_off);
}

static int rk_nfc_wait_for_xfer_done(struct rk_nfc *nfc)
{
	void __iomem *ptr;
	u32 reg;

	ptr = nfc->regs + nfc->cfg->flctl_off;

	return readl_relaxed_poll_timeout(ptr, reg,
					 reg & FLCTL_XFER_READY,
					 10, NFC_TIMEOUT);
}

static int rk_nfc_write_page_raw(struct nand_chip *chip, const u8 *buf,
				 int oob_on, int page)
{
	struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
	struct rk_nfc *nfc = nand_get_controller_data(chip);
	struct mtd_info *mtd = nand_to_mtd(chip);
	struct nand_ecc_ctrl *ecc = &chip->ecc;
	int i, pages_per_blk;

	pages_per_blk = mtd->erasesize / mtd->writesize;
	if ((chip->options & NAND_IS_BOOT_MEDIUM) &&
	    (page < (pages_per_blk * rknand->boot_blks)) &&
	    rknand->boot_ecc != ecc->strength) {
		/*
		 * There's currently no method to notify the MTD framework that
		 * a different ECC strength is in use for the boot blocks.
		 */
		return -EIO;
	}

	if (!buf)
		memset(nfc->page_buf, 0xff, mtd->writesize + mtd->oobsize);

	for (i = 0; i < ecc->steps; i++) {
		/* Copy data to the NFC buffer. */
		if (buf)
			memcpy(rk_nfc_data_ptr(chip, i),
			       rk_nfc_buf_to_data_ptr(chip, buf, i),
			       ecc->size);
		/*
		 * The first four bytes of OOB are reserved for the
		 * boot ROM. In some debugging cases, such as with a
		 * read, erase and write back test these 4 bytes stored
		 * in OOB also need to be written back.
		 *
		 * The function nand_block_bad detects bad blocks like:
		 *
		 * bad = chip->oob_poi[chip->badblockpos];
		 *
		 * chip->badblockpos == 0 for a large page NAND Flash,
		 * so chip->oob_poi[0] is the bad block mask (BBM).
		 *
		 * The OOB data layout on the NFC is:
		 *
		 *    PA0  PA1  PA2  PA3  | BBM OOB1 OOB2 OOB3 | ...
		 *
		 * or
		 *
		 *    0xFF 0xFF 0xFF 0xFF | BBM OOB1 OOB2 OOB3 | ...
		 *
		 * The code here just swaps the first 4 bytes with the last
		 * 4 bytes without losing any data.
		 *
		 * The chip->oob_poi data layout:
		 *
		 *    BBM  OOB1 OOB2 OOB3 |......|  PA0  PA1  PA2  PA3
		 *
		 * The rk_nfc_ooblayout_free() function already has reserved
		 * these 4 bytes together with 2 bytes for BBM
		 * by reducing it's length:
		 *
		 * oob_region->length = rknand->metadata_size - NFC_SYS_DATA_SIZE - 2;
		 */
		if (!i)
			memcpy(rk_nfc_oob_ptr(chip, i),
			       rk_nfc_buf_to_oob_ptr(chip, ecc->steps - 1),
			       NFC_SYS_DATA_SIZE);
		else
			memcpy(rk_nfc_oob_ptr(chip, i),
			       rk_nfc_buf_to_oob_ptr(chip, i - 1),
			       NFC_SYS_DATA_SIZE);
		/* Copy ECC data to the NFC buffer. */
		memcpy(rk_nfc_oob_ptr(chip, i) + NFC_SYS_DATA_SIZE,
		       rk_nfc_buf_to_oob_ecc_ptr(chip, i),
		       ecc->bytes);
	}

	nand_prog_page_begin_op(chip, page, 0, NULL, 0);
	rk_nfc_write_buf(nfc, buf, mtd->writesize + mtd->oobsize);
	return nand_prog_page_end_op(chip);
}

static int rk_nfc_write_page_hwecc(struct nand_chip *chip, const u8 *buf,
				   int oob_on, int page)
{
	struct mtd_info *mtd = nand_to_mtd(chip);
	struct rk_nfc *nfc = nand_get_controller_data(chip);
	struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
	struct nand_ecc_ctrl *ecc = &chip->ecc;
	int oob_step = (ecc->bytes > 60) ? NFC_MAX_OOB_PER_STEP :
			NFC_MIN_OOB_PER_STEP;
	int pages_per_blk = mtd->erasesize / mtd->writesize;
	int ret = 0, i, boot_rom_mode = 0;
	dma_addr_t dma_data, dma_oob;
	u32 tmp;
	u8 *oob;

	nand_prog_page_begin_op(chip, page, 0, NULL, 0);

	if (buf)
		memcpy(nfc->page_buf, buf, mtd->writesize);
	else
		memset(nfc->page_buf, 0xFF, mtd->writesize);

	/*
	 * The first blocks (4, 8 or 16 depending on the device) are used
	 * by the boot ROM and the first 32 bits of OOB need to link to
	 * the next page address in the same block. We can't directly copy
	 * OOB data from the MTD framework, because this page address
	 * conflicts for example with the bad block marker (BBM),
	 * so we shift all OOB data including the BBM with 4 byte positions.
	 * As a consequence the OOB size available to the MTD framework is
	 * also reduced with 4 bytes.
	 *
	 *    PA0  PA1  PA2  PA3 | BBM OOB1 OOB2 OOB3 | ...
	 *
	 * If a NAND is not a boot medium or the page is not a boot block,
	 * the first 4 bytes are left untouched by writing 0xFF to them.
	 *
	 *   0xFF 0xFF 0xFF 0xFF | BBM OOB1 OOB2 OOB3 | ...
	 *
	 * The code here just swaps the first 4 bytes with the last
	 * 4 bytes without losing any data.
	 *
	 * The chip->oob_poi data layout:
	 *
	 *    BBM  OOB1 OOB2 OOB3 |......|  PA0  PA1  PA2  PA3
	 *
	 * Configure the ECC algorithm supported by the boot ROM.
	 */
	if ((page < (pages_per_blk * rknand->boot_blks)) &&
	    (chip->options & NAND_IS_BOOT_MEDIUM)) {
		boot_rom_mode = 1;
		if (rknand->boot_ecc != ecc->strength)
			rk_nfc_hw_ecc_setup(chip, rknand->boot_ecc);
	}

	for (i = 0; i < ecc->steps; i++) {
		if (!i)
			oob = chip->oob_poi + (ecc->steps - 1) * NFC_SYS_DATA_SIZE;
		else
			oob = chip->oob_poi + (i - 1) * NFC_SYS_DATA_SIZE;

		tmp = oob[0] | oob[1] << 8 | oob[2] << 16 | oob[3] << 24;

		if (nfc->cfg->type == NFC_V9)
			nfc->oob_buf[i] = tmp;
		else
			nfc->oob_buf[i * (oob_step / 4)] = tmp;
	}

	dma_data = dma_map_single(nfc->dev, (void *)nfc->page_buf,
				  mtd->writesize, DMA_TO_DEVICE);
	dma_oob = dma_map_single(nfc->dev, nfc->oob_buf,
				 ecc->steps * oob_step,
				 DMA_TO_DEVICE);

	reinit_completion(&nfc->done);
	writel(INT_DMA, nfc->regs + nfc->cfg->int_en_off);

	rk_nfc_xfer_start(nfc, NFC_WRITE, ecc->steps, dma_data,
			  dma_oob);
	ret = wait_for_completion_timeout(&nfc->done,
					  msecs_to_jiffies(100));
	if (!ret)
		dev_warn(nfc->dev, "write: wait dma done timeout.\n");
	/*
	 * Whether the DMA transfer is completed or not. The driver
	 * needs to check the NFC`s status register to see if the data
	 * transfer was completed.
	 */
	ret = rk_nfc_wait_for_xfer_done(nfc);

	dma_unmap_single(nfc->dev, dma_data, mtd->writesize,
			 DMA_TO_DEVICE);
	dma_unmap_single(nfc->dev, dma_oob, ecc->steps * oob_step,
			 DMA_TO_DEVICE);

	if (boot_rom_mode && rknand->boot_ecc != ecc->strength)
		rk_nfc_hw_ecc_setup(chip, ecc->strength);

	if (ret) {
		dev_err(nfc->dev, "write: wait transfer done timeout.\n");
		return -ETIMEDOUT;
	}

	return nand_prog_page_end_op(chip);
}

static int rk_nfc_write_oob(struct nand_chip *chip, int page)
{
	return rk_nfc_write_page_hwecc(chip, NULL, 1, page);
}

static int rk_nfc_read_page_raw(struct nand_chip *chip, u8 *buf, int oob_on,
				int page)
{
	struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
	struct rk_nfc *nfc = nand_get_controller_data(chip);
	struct mtd_info *mtd = nand_to_mtd(chip);
	struct nand_ecc_ctrl *ecc = &chip->ecc;
	int i, pages_per_blk;

	pages_per_blk = mtd->erasesize / mtd->writesize;
	if ((chip->options & NAND_IS_BOOT_MEDIUM) &&
	    (page < (pages_per_blk * rknand->boot_blks)) &&
	    rknand->boot_ecc != ecc->strength) {
		/*
		 * There's currently no method to notify the MTD framework that
		 * a different ECC strength is in use for the boot blocks.
		 */
		return -EIO;
	}

	nand_read_page_op(chip, page, 0, NULL, 0);
	rk_nfc_read_buf(nfc, nfc->page_buf, mtd->writesize + mtd->oobsize);
	for (i = 0; i < ecc->steps; i++) {
		/*
		 * The first four bytes of OOB are reserved for the
		 * boot ROM. In some debugging cases, such as with a read,
		 * erase and write back test, these 4 bytes also must be
		 * saved somewhere, otherwise this information will be
		 * lost during a write back.
		 */
		if (!i)
			memcpy(rk_nfc_buf_to_oob_ptr(chip, ecc->steps - 1),
			       rk_nfc_oob_ptr(chip, i),
			       NFC_SYS_DATA_SIZE);
		else
			memcpy(rk_nfc_buf_to_oob_ptr(chip, i - 1),
			       rk_nfc_oob_ptr(chip, i),
			       NFC_SYS_DATA_SIZE);

		/* Copy ECC data from the NFC buffer. */
		memcpy(rk_nfc_buf_to_oob_ecc_ptr(chip, i),
		       rk_nfc_oob_ptr(chip, i) + NFC_SYS_DATA_SIZE,
		       ecc->bytes);

		/* Copy data from the NFC buffer. */
		if (buf)
			memcpy(rk_nfc_buf_to_data_ptr(chip, buf, i),
			       rk_nfc_data_ptr(chip, i),
			       ecc->size);
	}

	return 0;
}

static int rk_nfc_read_page_hwecc(struct nand_chip *chip, u8 *buf, int oob_on,
				  int page)
{
	struct mtd_info *mtd = nand_to_mtd(chip);
	struct rk_nfc *nfc = nand_get_controller_data(chip);
	struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
	struct nand_ecc_ctrl *ecc = &chip->ecc;
	int oob_step = (ecc->bytes > 60) ? NFC_MAX_OOB_PER_STEP :
			NFC_MIN_OOB_PER_STEP;
	int pages_per_blk = mtd->erasesize / mtd->writesize;
	dma_addr_t dma_data, dma_oob;
	int ret = 0, i, cnt, boot_rom_mode = 0;
	int max_bitflips = 0, bch_st, ecc_fail = 0;
	u8 *oob;
	u32 tmp;

	nand_read_page_op(chip, page, 0, NULL, 0);

	dma_data = dma_map_single(nfc->dev, nfc->page_buf,
				  mtd->writesize,
				  DMA_FROM_DEVICE);
	dma_oob = dma_map_single(nfc->dev, nfc->oob_buf,
				 ecc->steps * oob_step,
				 DMA_FROM_DEVICE);

	/*
	 * The first blocks (4, 8 or 16 depending on the device)
	 * are used by the boot ROM.
	 * Configure the ECC algorithm supported by the boot ROM.
	 */
	if ((page < (pages_per_blk * rknand->boot_blks)) &&
	    (chip->options & NAND_IS_BOOT_MEDIUM)) {
		boot_rom_mode = 1;
		if (rknand->boot_ecc != ecc->strength)
			rk_nfc_hw_ecc_setup(chip, rknand->boot_ecc);
	}

	reinit_completion(&nfc->done);
	writel(INT_DMA, nfc->regs + nfc->cfg->int_en_off);
	rk_nfc_xfer_start(nfc, NFC_READ, ecc->steps, dma_data,
			  dma_oob);
	ret = wait_for_completion_timeout(&nfc->done,
					  msecs_to_jiffies(100));
	if (!ret)
		dev_warn(nfc->dev, "read: wait dma done timeout.\n");
	/*
	 * Whether the DMA transfer is completed or not. The driver
	 * needs to check the NFC`s status register to see if the data
	 * transfer was completed.
	 */
	ret = rk_nfc_wait_for_xfer_done(nfc);

	dma_unmap_single(nfc->dev, dma_data, mtd->writesize,
			 DMA_FROM_DEVICE);
	dma_unmap_single(nfc->dev, dma_oob, ecc->steps * oob_step,
			 DMA_FROM_DEVICE);

	if (ret) {
		ret = -ETIMEDOUT;
		dev_err(nfc->dev, "read: wait transfer done timeout.\n");
		goto timeout_err;
	}

	for (i = 0; i < ecc->steps; i++) {
		if (!i)
			oob = chip->oob_poi + (ecc->steps - 1) * NFC_SYS_DATA_SIZE;
		else
			oob = chip->oob_poi + (i - 1) * NFC_SYS_DATA_SIZE;

		if (nfc->cfg->type == NFC_V9)
			tmp = nfc->oob_buf[i];
		else
			tmp = nfc->oob_buf[i * (oob_step / 4)];

		*oob++ = (u8)tmp;
		*oob++ = (u8)(tmp >> 8);
		*oob++ = (u8)(tmp >> 16);
		*oob++ = (u8)(tmp >> 24);
	}

	for (i = 0; i < (ecc->steps / 2); i++) {
		bch_st = readl_relaxed(nfc->regs +
				       nfc->cfg->bch_st_off + i * 4);
		if (bch_st & BIT(nfc->cfg->ecc0.err_flag_bit) ||
		    bch_st & BIT(nfc->cfg->ecc1.err_flag_bit)) {
			mtd->ecc_stats.failed++;
			ecc_fail = 1;
		} else {
			cnt = ECC_ERR_CNT(bch_st, nfc->cfg->ecc0);
			mtd->ecc_stats.corrected += cnt;
			max_bitflips = max_t(u32, max_bitflips, cnt);

			cnt = ECC_ERR_CNT(bch_st, nfc->cfg->ecc1);
			mtd->ecc_stats.corrected += cnt;
			max_bitflips = max_t(u32, max_bitflips, cnt);
		}
	}

	if (buf)
		memcpy(buf, nfc->page_buf, mtd->writesize);

timeout_err:
	if (boot_rom_mode && rknand->boot_ecc != ecc->strength)
		rk_nfc_hw_ecc_setup(chip, ecc->strength);

	if (ret)
		return ret;

	if (ecc_fail) {
		dev_err(nfc->dev, "read page: %x ecc error!\n", page);
		return 0;
	}

	return max_bitflips;
}

static int rk_nfc_read_oob(struct nand_chip *chip, int page)
{
	return rk_nfc_read_page_hwecc(chip, NULL, 1, page);
}

static inline void rk_nfc_hw_init(struct rk_nfc *nfc)
{
	/* Disable flash wp. */
	writel(FMCTL_WP, nfc->regs + NFC_FMCTL);
	/* Config default timing 40ns at 150 Mhz NFC clock. */
	writel(0x1081, nfc->regs + NFC_FMWAIT);
	nfc->cur_timing = 0x1081;
	/* Disable randomizer and DMA. */
	writel(0, nfc->regs + nfc->cfg->randmz_off);
	writel(0, nfc->regs + nfc->cfg->dma_cfg_off);
	writel(FLCTL_RST, nfc->regs + nfc->cfg->flctl_off);
}

static irqreturn_t rk_nfc_irq(int irq, void *id)
{
	struct rk_nfc *nfc = id;
	u32 sta, ien;

	sta = readl_relaxed(nfc->regs + nfc->cfg->int_st_off);
	ien = readl_relaxed(nfc->regs + nfc->cfg->int_en_off);

	if (!(sta & ien))
		return IRQ_NONE;

	writel(sta, nfc->regs + nfc->cfg->int_clr_off);
	writel(~sta & ien, nfc->regs + nfc->cfg->int_en_off);

	complete(&nfc->done);

	return IRQ_HANDLED;
}

static int rk_nfc_enable_clks(struct device *dev, struct rk_nfc *nfc)
{
	int ret;

	if (!IS_ERR(nfc->nfc_clk)) {
		ret = clk_prepare_enable(nfc->nfc_clk);
		if (ret) {
			dev_err(dev, "failed to enable NFC clk\n");
			return ret;
		}
	}

	ret = clk_prepare_enable(nfc->ahb_clk);
	if (ret) {
		dev_err(dev, "failed to enable ahb clk\n");
		clk_disable_unprepare(nfc->nfc_clk);
		return ret;
	}

	return 0;
}

static void rk_nfc_disable_clks(struct rk_nfc *nfc)
{
	clk_disable_unprepare(nfc->nfc_clk);
	clk_disable_unprepare(nfc->ahb_clk);
}

static int rk_nfc_ooblayout_free(struct mtd_info *mtd, int section,
				 struct mtd_oob_region *oob_region)
{
	struct nand_chip *chip = mtd_to_nand(mtd);
	struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);

	if (section)
		return -ERANGE;

	oob_region->length = rknand->metadata_size - NFC_SYS_DATA_SIZE - 2;
	oob_region->offset = 2;

	return 0;
}

static int rk_nfc_ooblayout_ecc(struct mtd_info *mtd, int section,
				struct mtd_oob_region *oob_region)
{
	struct nand_chip *chip = mtd_to_nand(mtd);
	struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);

	if (section)
		return -ERANGE;

	oob_region->length = mtd->oobsize - rknand->metadata_size;
	oob_region->offset = rknand->metadata_size;

	return 0;
}

static const struct mtd_ooblayout_ops rk_nfc_ooblayout_ops = {
	.free = rk_nfc_ooblayout_free,
	.ecc = rk_nfc_ooblayout_ecc,
};

static int rk_nfc_ecc_init(struct device *dev, struct mtd_info *mtd)
{
	struct nand_chip *chip = mtd_to_nand(mtd);
	struct rk_nfc *nfc = nand_get_controller_data(chip);
	struct nand_ecc_ctrl *ecc = &chip->ecc;
	const u8 *strengths = nfc->cfg->ecc_strengths;
	u8 max_strength, nfc_max_strength;
	int i;

	nfc_max_strength = nfc->cfg->ecc_strengths[0];
	/* If optional dt settings not present. */
	if (!ecc->size || !ecc->strength ||
	    ecc->strength > nfc_max_strength) {
		chip->ecc.size = 1024;
		ecc->steps = mtd->writesize / ecc->size;

		/*
		 * HW ECC always requests the number of ECC bytes per 1024 byte
		 * blocks. The first 4 OOB bytes are reserved for sys data.
		 */
		max_strength = ((mtd->oobsize / ecc->steps) - 4) * 8 /
				 fls(8 * 1024);
		if (max_strength > nfc_max_strength)
			max_strength = nfc_max_strength;

		for (i = 0; i < 4; i++) {
			if (max_strength >= strengths[i])
				break;
		}

		if (i >= 4) {
			dev_err(nfc->dev, "unsupported ECC strength\n");
			return -EOPNOTSUPP;
		}

		ecc->strength = strengths[i];
	}
	ecc->steps = mtd->writesize / ecc->size;
	ecc->bytes = DIV_ROUND_UP(ecc->strength * fls(8 * chip->ecc.size), 8);

	return 0;
}

static int rk_nfc_attach_chip(struct nand_chip *chip)
{
	struct mtd_info *mtd = nand_to_mtd(chip);
	struct device *dev = mtd->dev.parent;
	struct rk_nfc *nfc = nand_get_controller_data(chip);
	struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
	struct nand_ecc_ctrl *ecc = &chip->ecc;
	int new_page_len, new_oob_len;
	void *buf;
	int ret;

	if (chip->options & NAND_BUSWIDTH_16) {
		dev_err(dev, "16 bits bus width not supported");
		return -EINVAL;
	}

	if (ecc->engine_type != NAND_ECC_ENGINE_TYPE_ON_HOST)
		return 0;

	ret = rk_nfc_ecc_init(dev, mtd);
	if (ret)
		return ret;

	rknand->metadata_size = NFC_SYS_DATA_SIZE * ecc->steps;

	if (rknand->metadata_size < NFC_SYS_DATA_SIZE + 2) {
		dev_err(dev,
			"driver needs at least %d bytes of meta data\n",
			NFC_SYS_DATA_SIZE + 2);
		return -EIO;
	}

	/* Check buffer first, avoid duplicate alloc buffer. */
	new_page_len = mtd->writesize + mtd->oobsize;
	if (nfc->page_buf && new_page_len > nfc->page_buf_size) {
		buf = krealloc(nfc->page_buf, new_page_len,
			       GFP_KERNEL | GFP_DMA);
		if (!buf)
			return -ENOMEM;
		nfc->page_buf = buf;
		nfc->page_buf_size = new_page_len;
	}

	new_oob_len = ecc->steps * NFC_MAX_OOB_PER_STEP;
	if (nfc->oob_buf && new_oob_len > nfc->oob_buf_size) {
		buf = krealloc(nfc->oob_buf, new_oob_len,
			       GFP_KERNEL | GFP_DMA);
		if (!buf) {
			kfree(nfc->page_buf);
			nfc->page_buf = NULL;
			return -ENOMEM;
		}
		nfc->oob_buf = buf;
		nfc->oob_buf_size = new_oob_len;
	}

	if (!nfc->page_buf) {
		nfc->page_buf = kzalloc(new_page_len, GFP_KERNEL | GFP_DMA);
		if (!nfc->page_buf)
			return -ENOMEM;
		nfc->page_buf_size = new_page_len;
	}

	if (!nfc->oob_buf) {
		nfc->oob_buf = kzalloc(new_oob_len, GFP_KERNEL | GFP_DMA);
		if (!nfc->oob_buf) {
			kfree(nfc->page_buf);
			nfc->page_buf = NULL;
			return -ENOMEM;
		}
		nfc->oob_buf_size = new_oob_len;
	}

	chip->ecc.write_page_raw = rk_nfc_write_page_raw;
	chip->ecc.write_page = rk_nfc_write_page_hwecc;
	chip->ecc.write_oob = rk_nfc_write_oob;

	chip->ecc.read_page_raw = rk_nfc_read_page_raw;
	chip->ecc.read_page = rk_nfc_read_page_hwecc;
	chip->ecc.read_oob = rk_nfc_read_oob;

	return 0;
}

static const struct nand_controller_ops rk_nfc_controller_ops = {
	.attach_chip = rk_nfc_attach_chip,
	.exec_op = rk_nfc_exec_op,
	.setup_interface = rk_nfc_setup_interface,
};

static int rk_nfc_nand_chip_init(struct device *dev, struct rk_nfc *nfc,
				 struct device_node *np)
{
	struct rk_nfc_nand_chip *rknand;
	struct nand_chip *chip;
	struct mtd_info *mtd;
	int nsels;
	u32 tmp;
	int ret;
	int i;

	if (!of_get_property(np, "reg", &nsels))
		return -ENODEV;
	nsels /= sizeof(u32);
	if (!nsels || nsels > NFC_MAX_NSELS) {
		dev_err(dev, "invalid reg property size %d\n", nsels);
		return -EINVAL;
	}

	rknand = devm_kzalloc(dev, struct_size(rknand, sels, nsels),
			      GFP_KERNEL);
	if (!rknand)
		return -ENOMEM;

	rknand->nsels = nsels;
	for (i = 0; i < nsels; i++) {
		ret = of_property_read_u32_index(np, "reg", i, &tmp);
		if (ret) {
			dev_err(dev, "reg property failure : %d\n", ret);
			return ret;
		}

		if (tmp >= NFC_MAX_NSELS) {
			dev_err(dev, "invalid CS: %u\n", tmp);
			return -EINVAL;
		}

		if (test_and_set_bit(tmp, &nfc->assigned_cs)) {
			dev_err(dev, "CS %u already assigned\n", tmp);
			return -EINVAL;
		}

		rknand->sels[i] = tmp;
	}

	chip = &rknand->chip;
	chip->controller = &nfc->controller;

	nand_set_flash_node(chip, np);

	nand_set_controller_data(chip, nfc);

	chip->options |= NAND_USES_DMA | NAND_NO_SUBPAGE_WRITE;
	chip->bbt_options = NAND_BBT_USE_FLASH | NAND_BBT_NO_OOB;

	/* Set default mode in case dt entry is missing. */
	chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST;

	mtd = nand_to_mtd(chip);
	mtd->owner = THIS_MODULE;
	mtd->dev.parent = dev;

	if (!mtd->name) {
		dev_err(nfc->dev, "NAND label property is mandatory\n");
		return -EINVAL;
	}

	mtd_set_ooblayout(mtd, &rk_nfc_ooblayout_ops);
	rk_nfc_hw_init(nfc);
	ret = nand_scan(chip, nsels);
	if (ret)
		return ret;

	if (chip->options & NAND_IS_BOOT_MEDIUM) {
		ret = of_property_read_u32(np, "rockchip,boot-blks", &tmp);
		rknand->boot_blks = ret ? 0 : tmp;

		ret = of_property_read_u32(np, "rockchip,boot-ecc-strength",
					   &tmp);
		rknand->boot_ecc = ret ? chip->ecc.strength : tmp;
	}

	ret = mtd_device_register(mtd, NULL, 0);
	if (ret) {
		dev_err(dev, "MTD parse partition error\n");
		nand_cleanup(chip);
		return ret;
	}

	list_add_tail(&rknand->node, &nfc->chips);

	return 0;
}

static void rk_nfc_chips_cleanup(struct rk_nfc *nfc)
{
	struct rk_nfc_nand_chip *rknand, *tmp;
	struct nand_chip *chip;
	int ret;

	list_for_each_entry_safe(rknand, tmp, &nfc->chips, node) {
		chip = &rknand->chip;
		ret = mtd_device_unregister(nand_to_mtd(chip));
		WARN_ON(ret);
		nand_cleanup(chip);
		list_del(&rknand->node);
	}
}

static int rk_nfc_nand_chips_init(struct device *dev, struct rk_nfc *nfc)
{
	struct device_node *np = dev->of_node, *nand_np;
	int nchips = of_get_child_count(np);
	int ret;

	if (!nchips || nchips > NFC_MAX_NSELS) {
		dev_err(nfc->dev, "incorrect number of NAND chips (%d)\n",
			nchips);
		return -EINVAL;
	}

	for_each_child_of_node(np, nand_np) {
		ret = rk_nfc_nand_chip_init(dev, nfc, nand_np);
		if (ret) {
			of_node_put(nand_np);
			rk_nfc_chips_cleanup(nfc);
			return ret;
		}
	}

	return 0;
}

static struct nfc_cfg nfc_v6_cfg = {
		.type			= NFC_V6,
		.ecc_strengths		= {60, 40, 24, 16},
		.ecc_cfgs		= {
			0x00040011, 0x00040001, 0x00000011, 0x00000001,
		},
		.flctl_off		= 0x08,
		.bchctl_off		= 0x0C,
		.dma_cfg_off		= 0x10,
		.dma_data_buf_off	= 0x14,
		.dma_oob_buf_off	= 0x18,
		.dma_st_off		= 0x1C,
		.bch_st_off		= 0x20,
		.randmz_off		= 0x150,
		.int_en_off		= 0x16C,
		.int_clr_off		= 0x170,
		.int_st_off		= 0x174,
		.oob0_off		= 0x200,
		.oob1_off		= 0x230,
		.ecc0			= {
			.err_flag_bit	= 2,
			.low		= 3,
			.low_mask	= 0x1F,
			.low_bn		= 5,
			.high		= 27,
			.high_mask	= 0x1,
		},
		.ecc1			= {
			.err_flag_bit	= 15,
			.low		= 16,
			.low_mask	= 0x1F,
			.low_bn		= 5,
			.high		= 29,
			.high_mask	= 0x1,
		},
};

static struct nfc_cfg nfc_v8_cfg = {
		.type			= NFC_V8,
		.ecc_strengths		= {16, 16, 16, 16},
		.ecc_cfgs		= {
			0x00000001, 0x00000001, 0x00000001, 0x00000001,
		},
		.flctl_off		= 0x08,
		.bchctl_off		= 0x0C,
		.dma_cfg_off		= 0x10,
		.dma_data_buf_off	= 0x14,
		.dma_oob_buf_off	= 0x18,
		.dma_st_off		= 0x1C,
		.bch_st_off		= 0x20,
		.randmz_off		= 0x150,
		.int_en_off		= 0x16C,
		.int_clr_off		= 0x170,
		.int_st_off		= 0x174,
		.oob0_off		= 0x200,
		.oob1_off		= 0x230,
		.ecc0			= {
			.err_flag_bit	= 2,
			.low		= 3,
			.low_mask	= 0x1F,
			.low_bn		= 5,
			.high		= 27,
			.high_mask	= 0x1,
		},
		.ecc1			= {
			.err_flag_bit	= 15,
			.low		= 16,
			.low_mask	= 0x1F,
			.low_bn		= 5,
			.high		= 29,
			.high_mask	= 0x1,
		},
};

static struct nfc_cfg nfc_v9_cfg = {
		.type			= NFC_V9,
		.ecc_strengths		= {70, 60, 40, 16},
		.ecc_cfgs		= {
			0x00000001, 0x06000001, 0x04000001, 0x02000001,
		},
		.flctl_off		= 0x10,
		.bchctl_off		= 0x20,
		.dma_cfg_off		= 0x30,
		.dma_data_buf_off	= 0x34,
		.dma_oob_buf_off	= 0x38,
		.dma_st_off		= 0x3C,
		.bch_st_off		= 0x150,
		.randmz_off		= 0x208,
		.int_en_off		= 0x120,
		.int_clr_off		= 0x124,
		.int_st_off		= 0x128,
		.oob0_off		= 0x200,
		.oob1_off		= 0x204,
		.ecc0			= {
			.err_flag_bit	= 2,
			.low		= 3,
			.low_mask	= 0x7F,
			.low_bn		= 7,
			.high		= 0,
			.high_mask	= 0x0,
		},
		.ecc1			= {
			.err_flag_bit	= 18,
			.low		= 19,
			.low_mask	= 0x7F,
			.low_bn		= 7,
			.high		= 0,
			.high_mask	= 0x0,
		},
};

static const struct of_device_id rk_nfc_id_table[] = {
	{
		.compatible = "rockchip,px30-nfc",
		.data = &nfc_v9_cfg
	},
	{
		.compatible = "rockchip,rk2928-nfc",
		.data = &nfc_v6_cfg
	},
	{
		.compatible = "rockchip,rv1108-nfc",
		.data = &nfc_v8_cfg
	},
	{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, rk_nfc_id_table);

static int rk_nfc_probe(struct platform_device *pdev)
{
	struct device *dev = &pdev->dev;
	struct rk_nfc *nfc;
	int ret, irq;

	nfc = devm_kzalloc(dev, sizeof(*nfc), GFP_KERNEL);
	if (!nfc)
		return -ENOMEM;

	nand_controller_init(&nfc->controller);
	INIT_LIST_HEAD(&nfc->chips);
	nfc->controller.ops = &rk_nfc_controller_ops;

	nfc->cfg = of_device_get_match_data(dev);
	nfc->dev = dev;

	init_completion(&nfc->done);

	nfc->regs = devm_platform_ioremap_resource(pdev, 0);
	if (IS_ERR(nfc->regs)) {
		ret = PTR_ERR(nfc->regs);
		goto release_nfc;
	}

	nfc->nfc_clk = devm_clk_get(dev, "nfc");
	if (IS_ERR(nfc->nfc_clk)) {
		dev_dbg(dev, "no NFC clk\n");
		/* Some earlier models, such as rk3066, have no NFC clk. */
	}

	nfc->ahb_clk = devm_clk_get(dev, "ahb");
	if (IS_ERR(nfc->ahb_clk)) {
		dev_err(dev, "no ahb clk\n");
		ret = PTR_ERR(nfc->ahb_clk);
		goto release_nfc;
	}

	ret = rk_nfc_enable_clks(dev, nfc);
	if (ret)
		goto release_nfc;

	irq = platform_get_irq(pdev, 0);
	if (irq < 0) {
		ret = -EINVAL;
		goto clk_disable;
	}

	writel(0, nfc->regs + nfc->cfg->int_en_off);
	ret = devm_request_irq(dev, irq, rk_nfc_irq, 0x0, "rk-nand", nfc);
	if (ret) {
		dev_err(dev, "failed to request NFC irq\n");
		goto clk_disable;
	}

	platform_set_drvdata(pdev, nfc);

	ret = rk_nfc_nand_chips_init(dev, nfc);
	if (ret) {
		dev_err(dev, "failed to init NAND chips\n");
		goto clk_disable;
	}
	return 0;

clk_disable:
	rk_nfc_disable_clks(nfc);
release_nfc:
	return ret;
}

static void rk_nfc_remove(struct platform_device *pdev)
{
	struct rk_nfc *nfc = platform_get_drvdata(pdev);

	kfree(nfc->page_buf);
	kfree(nfc->oob_buf);
	rk_nfc_chips_cleanup(nfc);
	rk_nfc_disable_clks(nfc);
}

static int __maybe_unused rk_nfc_suspend(struct device *dev)
{
	struct rk_nfc *nfc = dev_get_drvdata(dev);

	rk_nfc_disable_clks(nfc);

	return 0;
}

static int __maybe_unused rk_nfc_resume(struct device *dev)
{
	struct rk_nfc *nfc = dev_get_drvdata(dev);
	struct rk_nfc_nand_chip *rknand;
	struct nand_chip *chip;
	int ret;
	u32 i;

	ret = rk_nfc_enable_clks(dev, nfc);
	if (ret)
		return ret;

	/* Reset NAND chip if VCC was powered off. */
	list_for_each_entry(rknand, &nfc->chips, node) {
		chip = &rknand->chip;
		for (i = 0; i < rknand->nsels; i++)
			nand_reset(chip, i);
	}

	return 0;
}

static const struct dev_pm_ops rk_nfc_pm_ops = {
	SET_SYSTEM_SLEEP_PM_OPS(rk_nfc_suspend, rk_nfc_resume)
};

static struct platform_driver rk_nfc_driver = {
	.probe = rk_nfc_probe,
	.remove_new = rk_nfc_remove,
	.driver = {
		.name = "rockchip-nfc",
		.of_match_table = rk_nfc_id_table,
		.pm = &rk_nfc_pm_ops,
	},
};

module_platform_driver(rk_nfc_driver);

MODULE_LICENSE("Dual MIT/GPL");
MODULE_AUTHOR("Yifeng Zhao <yifeng.zhao@rock-chips.com>");
MODULE_DESCRIPTION("Rockchip Nand Flash Controller Driver");
MODULE_ALIAS("platform:rockchip-nand-controller");