summaryrefslogtreecommitdiff
path: root/arch/powerpc/include/asm/kvm_book3s_64.h
blob: d8729ec81ca083cdc4ac219f954b323f59afe279 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
/* SPDX-License-Identifier: GPL-2.0-only */
/*
 *
 * Copyright SUSE Linux Products GmbH 2010
 *
 * Authors: Alexander Graf <agraf@suse.de>
 */

#ifndef __ASM_KVM_BOOK3S_64_H__
#define __ASM_KVM_BOOK3S_64_H__

#include <linux/string.h>
#include <asm/bitops.h>
#include <asm/book3s/64/mmu-hash.h>
#include <asm/cpu_has_feature.h>
#include <asm/ppc-opcode.h>
#include <asm/pte-walk.h>

/*
 * Structure for a nested guest, that is, for a guest that is managed by
 * one of our guests.
 */
struct kvm_nested_guest {
	struct kvm *l1_host;		/* L1 VM that owns this nested guest */
	int l1_lpid;			/* lpid L1 guest thinks this guest is */
	int shadow_lpid;		/* real lpid of this nested guest */
	pgd_t *shadow_pgtable;		/* our page table for this guest */
	u64 l1_gr_to_hr;		/* L1's addr of part'n-scoped table */
	u64 process_table;		/* process table entry for this guest */
	long refcnt;			/* number of pointers to this struct */
	struct mutex tlb_lock;		/* serialize page faults and tlbies */
	struct kvm_nested_guest *next;
	cpumask_t need_tlb_flush;
	short prev_cpu[NR_CPUS];
	u8 radix;			/* is this nested guest radix */
};

/*
 * We define a nested rmap entry as a single 64-bit quantity
 * 0xFFF0000000000000	12-bit lpid field
 * 0x000FFFFFFFFFF000	40-bit guest 4k page frame number
 * 0x0000000000000001	1-bit  single entry flag
 */
#define RMAP_NESTED_LPID_MASK		0xFFF0000000000000UL
#define RMAP_NESTED_LPID_SHIFT		(52)
#define RMAP_NESTED_GPA_MASK		0x000FFFFFFFFFF000UL
#define RMAP_NESTED_IS_SINGLE_ENTRY	0x0000000000000001UL

/* Structure for a nested guest rmap entry */
struct rmap_nested {
	struct llist_node list;
	u64 rmap;
};

/*
 * for_each_nest_rmap_safe - iterate over the list of nested rmap entries
 *			     safe against removal of the list entry or NULL list
 * @pos:	a (struct rmap_nested *) to use as a loop cursor
 * @node:	pointer to the first entry
 *		NOTE: this can be NULL
 * @rmapp:	an (unsigned long *) in which to return the rmap entries on each
 *		iteration
 *		NOTE: this must point to already allocated memory
 *
 * The nested_rmap is a llist of (struct rmap_nested) entries pointed to by the
 * rmap entry in the memslot. The list is always terminated by a "single entry"
 * stored in the list element of the final entry of the llist. If there is ONLY
 * a single entry then this is itself in the rmap entry of the memslot, not a
 * llist head pointer.
 *
 * Note that the iterator below assumes that a nested rmap entry is always
 * non-zero.  This is true for our usage because the LPID field is always
 * non-zero (zero is reserved for the host).
 *
 * This should be used to iterate over the list of rmap_nested entries with
 * processing done on the u64 rmap value given by each iteration. This is safe
 * against removal of list entries and it is always safe to call free on (pos).
 *
 * e.g.
 * struct rmap_nested *cursor;
 * struct llist_node *first;
 * unsigned long rmap;
 * for_each_nest_rmap_safe(cursor, first, &rmap) {
 *	do_something(rmap);
 *	free(cursor);
 * }
 */
#define for_each_nest_rmap_safe(pos, node, rmapp)			       \
	for ((pos) = llist_entry((node), typeof(*(pos)), list);		       \
	     (node) &&							       \
	     (*(rmapp) = ((RMAP_NESTED_IS_SINGLE_ENTRY & ((u64) (node))) ?     \
			  ((u64) (node)) : ((pos)->rmap))) &&		       \
	     (((node) = ((RMAP_NESTED_IS_SINGLE_ENTRY & ((u64) (node))) ?      \
			 ((struct llist_node *) ((pos) = NULL)) :	       \
			 (pos)->list.next)), true);			       \
	     (pos) = llist_entry((node), typeof(*(pos)), list))

struct kvm_nested_guest *kvmhv_get_nested(struct kvm *kvm, int l1_lpid,
					  bool create);
void kvmhv_put_nested(struct kvm_nested_guest *gp);
int kvmhv_nested_next_lpid(struct kvm *kvm, int lpid);

/* Encoding of first parameter for H_TLB_INVALIDATE */
#define H_TLBIE_P1_ENC(ric, prs, r)	(___PPC_RIC(ric) | ___PPC_PRS(prs) | \
					 ___PPC_R(r))

/* Power architecture requires HPT is at least 256kiB, at most 64TiB */
#define PPC_MIN_HPT_ORDER	18
#define PPC_MAX_HPT_ORDER	46

#ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
static inline struct kvmppc_book3s_shadow_vcpu *svcpu_get(struct kvm_vcpu *vcpu)
{
	preempt_disable();
	return &get_paca()->shadow_vcpu;
}

static inline void svcpu_put(struct kvmppc_book3s_shadow_vcpu *svcpu)
{
	preempt_enable();
}
#endif

#ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE

static inline bool kvm_is_radix(struct kvm *kvm)
{
	return kvm->arch.radix;
}

static inline bool kvmhv_vcpu_is_radix(struct kvm_vcpu *vcpu)
{
	bool radix;

	if (vcpu->arch.nested)
		radix = vcpu->arch.nested->radix;
	else
		radix = kvm_is_radix(vcpu->kvm);

	return radix;
}

unsigned long kvmppc_msr_hard_disable_set_facilities(struct kvm_vcpu *vcpu, unsigned long msr);

int kvmhv_vcpu_entry_p9(struct kvm_vcpu *vcpu, u64 time_limit, unsigned long lpcr, u64 *tb);

#define KVM_DEFAULT_HPT_ORDER	24	/* 16MB HPT by default */
#endif

/*
 * Invalid HDSISR value which is used to indicate when HW has not set the reg.
 * Used to work around an errata.
 */
#define HDSISR_CANARY	0x7fff

/*
 * We use a lock bit in HPTE dword 0 to synchronize updates and
 * accesses to each HPTE, and another bit to indicate non-present
 * HPTEs.
 */
#define HPTE_V_HVLOCK	0x40UL
#define HPTE_V_ABSENT	0x20UL

/*
 * We use this bit in the guest_rpte field of the revmap entry
 * to indicate a modified HPTE.
 */
#define HPTE_GR_MODIFIED	(1ul << 62)

/* These bits are reserved in the guest view of the HPTE */
#define HPTE_GR_RESERVED	HPTE_GR_MODIFIED

static inline long try_lock_hpte(__be64 *hpte, unsigned long bits)
{
	unsigned long tmp, old;
	__be64 be_lockbit, be_bits;

	/*
	 * We load/store in native endian, but the HTAB is in big endian. If
	 * we byte swap all data we apply on the PTE we're implicitly correct
	 * again.
	 */
	be_lockbit = cpu_to_be64(HPTE_V_HVLOCK);
	be_bits = cpu_to_be64(bits);

	asm volatile("	ldarx	%0,0,%2\n"
		     "	and.	%1,%0,%3\n"
		     "	bne	2f\n"
		     "	or	%0,%0,%4\n"
		     "  stdcx.	%0,0,%2\n"
		     "	beq+	2f\n"
		     "	mr	%1,%3\n"
		     "2:	isync"
		     : "=&r" (tmp), "=&r" (old)
		     : "r" (hpte), "r" (be_bits), "r" (be_lockbit)
		     : "cc", "memory");
	return old == 0;
}

static inline void unlock_hpte(__be64 *hpte, unsigned long hpte_v)
{
	hpte_v &= ~HPTE_V_HVLOCK;
	asm volatile(PPC_RELEASE_BARRIER "" : : : "memory");
	hpte[0] = cpu_to_be64(hpte_v);
}

/* Without barrier */
static inline void __unlock_hpte(__be64 *hpte, unsigned long hpte_v)
{
	hpte_v &= ~HPTE_V_HVLOCK;
	hpte[0] = cpu_to_be64(hpte_v);
}

/*
 * These functions encode knowledge of the POWER7/8/9 hardware
 * interpretations of the HPTE LP (large page size) field.
 */
static inline int kvmppc_hpte_page_shifts(unsigned long h, unsigned long l)
{
	unsigned int lphi;

	if (!(h & HPTE_V_LARGE))
		return 12;	/* 4kB */
	lphi = (l >> 16) & 0xf;
	switch ((l >> 12) & 0xf) {
	case 0:
		return !lphi ? 24 : 0;		/* 16MB */
		break;
	case 1:
		return 16;			/* 64kB */
		break;
	case 3:
		return !lphi ? 34 : 0;		/* 16GB */
		break;
	case 7:
		return (16 << 8) + 12;		/* 64kB in 4kB */
		break;
	case 8:
		if (!lphi)
			return (24 << 8) + 16;	/* 16MB in 64kkB */
		if (lphi == 3)
			return (24 << 8) + 12;	/* 16MB in 4kB */
		break;
	}
	return 0;
}

static inline int kvmppc_hpte_base_page_shift(unsigned long h, unsigned long l)
{
	return kvmppc_hpte_page_shifts(h, l) & 0xff;
}

static inline int kvmppc_hpte_actual_page_shift(unsigned long h, unsigned long l)
{
	int tmp = kvmppc_hpte_page_shifts(h, l);

	if (tmp >= 0x100)
		tmp >>= 8;
	return tmp;
}

static inline unsigned long kvmppc_actual_pgsz(unsigned long v, unsigned long r)
{
	int shift = kvmppc_hpte_actual_page_shift(v, r);

	if (shift)
		return 1ul << shift;
	return 0;
}

static inline int kvmppc_pgsize_lp_encoding(int base_shift, int actual_shift)
{
	switch (base_shift) {
	case 12:
		switch (actual_shift) {
		case 12:
			return 0;
		case 16:
			return 7;
		case 24:
			return 0x38;
		}
		break;
	case 16:
		switch (actual_shift) {
		case 16:
			return 1;
		case 24:
			return 8;
		}
		break;
	case 24:
		return 0;
	}
	return -1;
}

static inline unsigned long compute_tlbie_rb(unsigned long v, unsigned long r,
					     unsigned long pte_index)
{
	int a_pgshift, b_pgshift;
	unsigned long rb = 0, va_low, sllp;

	b_pgshift = a_pgshift = kvmppc_hpte_page_shifts(v, r);
	if (a_pgshift >= 0x100) {
		b_pgshift &= 0xff;
		a_pgshift >>= 8;
	}

	/*
	 * Ignore the top 14 bits of va
	 * v have top two bits covering segment size, hence move
	 * by 16 bits, Also clear the lower HPTE_V_AVPN_SHIFT (7) bits.
	 * AVA field in v also have the lower 23 bits ignored.
	 * For base page size 4K we need 14 .. 65 bits (so need to
	 * collect extra 11 bits)
	 * For others we need 14..14+i
	 */
	/* This covers 14..54 bits of va*/
	rb = (v & ~0x7fUL) << 16;		/* AVA field */

	/*
	 * AVA in v had cleared lower 23 bits. We need to derive
	 * that from pteg index
	 */
	va_low = pte_index >> 3;
	if (v & HPTE_V_SECONDARY)
		va_low = ~va_low;
	/*
	 * get the vpn bits from va_low using reverse of hashing.
	 * In v we have va with 23 bits dropped and then left shifted
	 * HPTE_V_AVPN_SHIFT (7) bits. Now to find vsid we need
	 * right shift it with (SID_SHIFT - (23 - 7))
	 */
	if (!(v & HPTE_V_1TB_SEG))
		va_low ^= v >> (SID_SHIFT - 16);
	else
		va_low ^= v >> (SID_SHIFT_1T - 16);
	va_low &= 0x7ff;

	if (b_pgshift <= 12) {
		if (a_pgshift > 12) {
			sllp = (a_pgshift == 16) ? 5 : 4;
			rb |= sllp << 5;	/*  AP field */
		}
		rb |= (va_low & 0x7ff) << 12;	/* remaining 11 bits of AVA */
	} else {
		int aval_shift;
		/*
		 * remaining bits of AVA/LP fields
		 * Also contain the rr bits of LP
		 */
		rb |= (va_low << b_pgshift) & 0x7ff000;
		/*
		 * Now clear not needed LP bits based on actual psize
		 */
		rb &= ~((1ul << a_pgshift) - 1);
		/*
		 * AVAL field 58..77 - base_page_shift bits of va
		 * we have space for 58..64 bits, Missing bits should
		 * be zero filled. +1 is to take care of L bit shift
		 */
		aval_shift = 64 - (77 - b_pgshift) + 1;
		rb |= ((va_low << aval_shift) & 0xfe);

		rb |= 1;		/* L field */
		rb |= r & 0xff000 & ((1ul << a_pgshift) - 1); /* LP field */
	}
	/*
	 * This sets both bits of the B field in the PTE. 0b1x values are
	 * reserved, but those will have been filtered by kvmppc_do_h_enter.
	 */
	rb |= (v >> HPTE_V_SSIZE_SHIFT) << 8;	/* B field */
	return rb;
}

static inline unsigned long hpte_rpn(unsigned long ptel, unsigned long psize)
{
	return ((ptel & HPTE_R_RPN) & ~(psize - 1)) >> PAGE_SHIFT;
}

static inline int hpte_is_writable(unsigned long ptel)
{
	unsigned long pp = ptel & (HPTE_R_PP0 | HPTE_R_PP);

	return pp != PP_RXRX && pp != PP_RXXX;
}

static inline unsigned long hpte_make_readonly(unsigned long ptel)
{
	if ((ptel & HPTE_R_PP0) || (ptel & HPTE_R_PP) == PP_RWXX)
		ptel = (ptel & ~HPTE_R_PP) | PP_RXXX;
	else
		ptel |= PP_RXRX;
	return ptel;
}

static inline bool hpte_cache_flags_ok(unsigned long hptel, bool is_ci)
{
	unsigned int wimg = hptel & HPTE_R_WIMG;

	/* Handle SAO */
	if (wimg == (HPTE_R_W | HPTE_R_I | HPTE_R_M) &&
	    cpu_has_feature(CPU_FTR_ARCH_206))
		wimg = HPTE_R_M;

	if (!is_ci)
		return wimg == HPTE_R_M;
	/*
	 * if host is mapped cache inhibited, make sure hptel also have
	 * cache inhibited.
	 */
	if (wimg & HPTE_R_W) /* FIXME!! is this ok for all guest. ? */
		return false;
	return !!(wimg & HPTE_R_I);
}

/*
 * If it's present and writable, atomically set dirty and referenced bits and
 * return the PTE, otherwise return 0.
 */
static inline pte_t kvmppc_read_update_linux_pte(pte_t *ptep, int writing)
{
	pte_t old_pte, new_pte = __pte(0);

	while (1) {
		/*
		 * Make sure we don't reload from ptep
		 */
		old_pte = READ_ONCE(*ptep);
		/*
		 * wait until H_PAGE_BUSY is clear then set it atomically
		 */
		if (unlikely(pte_val(old_pte) & H_PAGE_BUSY)) {
			cpu_relax();
			continue;
		}
		/* If pte is not present return None */
		if (unlikely(!pte_present(old_pte)))
			return __pte(0);

		new_pte = pte_mkyoung(old_pte);
		if (writing && pte_write(old_pte))
			new_pte = pte_mkdirty(new_pte);

		if (pte_xchg(ptep, old_pte, new_pte))
			break;
	}
	return new_pte;
}

static inline bool hpte_read_permission(unsigned long pp, unsigned long key)
{
	if (key)
		return PP_RWRX <= pp && pp <= PP_RXRX;
	return true;
}

static inline bool hpte_write_permission(unsigned long pp, unsigned long key)
{
	if (key)
		return pp == PP_RWRW;
	return pp <= PP_RWRW;
}

static inline int hpte_get_skey_perm(unsigned long hpte_r, unsigned long amr)
{
	unsigned long skey;

	skey = ((hpte_r & HPTE_R_KEY_HI) >> 57) |
		((hpte_r & HPTE_R_KEY_LO) >> 9);
	return (amr >> (62 - 2 * skey)) & 3;
}

static inline void lock_rmap(unsigned long *rmap)
{
	do {
		while (test_bit(KVMPPC_RMAP_LOCK_BIT, rmap))
			cpu_relax();
	} while (test_and_set_bit_lock(KVMPPC_RMAP_LOCK_BIT, rmap));
}

static inline void unlock_rmap(unsigned long *rmap)
{
	__clear_bit_unlock(KVMPPC_RMAP_LOCK_BIT, rmap);
}

static inline bool slot_is_aligned(struct kvm_memory_slot *memslot,
				   unsigned long pagesize)
{
	unsigned long mask = (pagesize >> PAGE_SHIFT) - 1;

	if (pagesize <= PAGE_SIZE)
		return true;
	return !(memslot->base_gfn & mask) && !(memslot->npages & mask);
}

/*
 * This works for 4k, 64k and 16M pages on POWER7,
 * and 4k and 16M pages on PPC970.
 */
static inline unsigned long slb_pgsize_encoding(unsigned long psize)
{
	unsigned long senc = 0;

	if (psize > 0x1000) {
		senc = SLB_VSID_L;
		if (psize == 0x10000)
			senc |= SLB_VSID_LP_01;
	}
	return senc;
}

static inline int is_vrma_hpte(unsigned long hpte_v)
{
	return (hpte_v & ~0xffffffUL) ==
		(HPTE_V_1TB_SEG | (VRMA_VSID << (40 - 16)));
}

#ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
/*
 * Note modification of an HPTE; set the HPTE modified bit
 * if anyone is interested.
 */
static inline void note_hpte_modification(struct kvm *kvm,
					  struct revmap_entry *rev)
{
	if (atomic_read(&kvm->arch.hpte_mod_interest))
		rev->guest_rpte |= HPTE_GR_MODIFIED;
}

/*
 * Like kvm_memslots(), but for use in real mode when we can't do
 * any RCU stuff (since the secondary threads are offline from the
 * kernel's point of view), and we can't print anything.
 * Thus we use rcu_dereference_raw() rather than rcu_dereference_check().
 */
static inline struct kvm_memslots *kvm_memslots_raw(struct kvm *kvm)
{
	return rcu_dereference_raw_check(kvm->memslots[0]);
}

extern void kvmppc_mmu_debugfs_init(struct kvm *kvm);
extern void kvmhv_radix_debugfs_init(struct kvm *kvm);

extern void kvmhv_rm_send_ipi(int cpu);

static inline unsigned long kvmppc_hpt_npte(struct kvm_hpt_info *hpt)
{
	/* HPTEs are 2**4 bytes long */
	return 1UL << (hpt->order - 4);
}

static inline unsigned long kvmppc_hpt_mask(struct kvm_hpt_info *hpt)
{
	/* 128 (2**7) bytes in each HPTEG */
	return (1UL << (hpt->order - 7)) - 1;
}

/* Set bits in a dirty bitmap, which is in LE format */
static inline void set_dirty_bits(unsigned long *map, unsigned long i,
				  unsigned long npages)
{

	if (npages >= 8)
		memset((char *)map + i / 8, 0xff, npages / 8);
	else
		for (; npages; ++i, --npages)
			__set_bit_le(i, map);
}

static inline void set_dirty_bits_atomic(unsigned long *map, unsigned long i,
					 unsigned long npages)
{
	if (npages >= 8)
		memset((char *)map + i / 8, 0xff, npages / 8);
	else
		for (; npages; ++i, --npages)
			set_bit_le(i, map);
}

static inline u64 sanitize_msr(u64 msr)
{
	msr &= ~MSR_HV;
	msr |= MSR_ME;
	return msr;
}

#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
static inline void copy_from_checkpoint(struct kvm_vcpu *vcpu)
{
	vcpu->arch.regs.ccr  = vcpu->arch.cr_tm;
	vcpu->arch.regs.xer = vcpu->arch.xer_tm;
	vcpu->arch.regs.link  = vcpu->arch.lr_tm;
	vcpu->arch.regs.ctr = vcpu->arch.ctr_tm;
	vcpu->arch.amr = vcpu->arch.amr_tm;
	vcpu->arch.ppr = vcpu->arch.ppr_tm;
	vcpu->arch.dscr = vcpu->arch.dscr_tm;
	vcpu->arch.tar = vcpu->arch.tar_tm;
	memcpy(vcpu->arch.regs.gpr, vcpu->arch.gpr_tm,
	       sizeof(vcpu->arch.regs.gpr));
	vcpu->arch.fp  = vcpu->arch.fp_tm;
	vcpu->arch.vr  = vcpu->arch.vr_tm;
	vcpu->arch.vrsave = vcpu->arch.vrsave_tm;
}

static inline void copy_to_checkpoint(struct kvm_vcpu *vcpu)
{
	vcpu->arch.cr_tm  = vcpu->arch.regs.ccr;
	vcpu->arch.xer_tm = vcpu->arch.regs.xer;
	vcpu->arch.lr_tm  = vcpu->arch.regs.link;
	vcpu->arch.ctr_tm = vcpu->arch.regs.ctr;
	vcpu->arch.amr_tm = vcpu->arch.amr;
	vcpu->arch.ppr_tm = vcpu->arch.ppr;
	vcpu->arch.dscr_tm = vcpu->arch.dscr;
	vcpu->arch.tar_tm = vcpu->arch.tar;
	memcpy(vcpu->arch.gpr_tm, vcpu->arch.regs.gpr,
	       sizeof(vcpu->arch.regs.gpr));
	vcpu->arch.fp_tm  = vcpu->arch.fp;
	vcpu->arch.vr_tm  = vcpu->arch.vr;
	vcpu->arch.vrsave_tm = vcpu->arch.vrsave;
}
#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */

extern int kvmppc_create_pte(struct kvm *kvm, pgd_t *pgtable, pte_t pte,
			     unsigned long gpa, unsigned int level,
			     unsigned long mmu_seq, u64 lpid,
			     unsigned long *rmapp, struct rmap_nested **n_rmap);
extern void kvmhv_insert_nest_rmap(struct kvm *kvm, unsigned long *rmapp,
				   struct rmap_nested **n_rmap);
extern void kvmhv_update_nest_rmap_rc_list(struct kvm *kvm, unsigned long *rmapp,
					   unsigned long clr, unsigned long set,
					   unsigned long hpa, unsigned long nbytes);
extern void kvmhv_remove_nest_rmap_range(struct kvm *kvm,
				const struct kvm_memory_slot *memslot,
				unsigned long gpa, unsigned long hpa,
				unsigned long nbytes);

static inline pte_t *
find_kvm_secondary_pte_unlocked(struct kvm *kvm, unsigned long ea,
				unsigned *hshift)
{
	pte_t *pte;

	pte = __find_linux_pte(kvm->arch.pgtable, ea, NULL, hshift);
	return pte;
}

static inline pte_t *find_kvm_secondary_pte(struct kvm *kvm, unsigned long ea,
					    unsigned *hshift)
{
	pte_t *pte;

	VM_WARN(!spin_is_locked(&kvm->mmu_lock),
		"%s called with kvm mmu_lock not held \n", __func__);
	pte = __find_linux_pte(kvm->arch.pgtable, ea, NULL, hshift);

	return pte;
}

static inline pte_t *find_kvm_host_pte(struct kvm *kvm, unsigned long mmu_seq,
				       unsigned long ea, unsigned *hshift)
{
	pte_t *pte;

	VM_WARN(!spin_is_locked(&kvm->mmu_lock),
		"%s called with kvm mmu_lock not held \n", __func__);

	if (mmu_invalidate_retry(kvm, mmu_seq))
		return NULL;

	pte = __find_linux_pte(kvm->mm->pgd, ea, NULL, hshift);

	return pte;
}

extern pte_t *find_kvm_nested_guest_pte(struct kvm *kvm, unsigned long lpid,
					unsigned long ea, unsigned *hshift);

int kvmhv_nestedv2_vcpu_create(struct kvm_vcpu *vcpu, struct kvmhv_nestedv2_io *io);
void kvmhv_nestedv2_vcpu_free(struct kvm_vcpu *vcpu, struct kvmhv_nestedv2_io *io);
int kvmhv_nestedv2_flush_vcpu(struct kvm_vcpu *vcpu, u64 time_limit);
int kvmhv_nestedv2_set_ptbl_entry(unsigned long lpid, u64 dw0, u64 dw1);
int kvmhv_nestedv2_parse_output(struct kvm_vcpu *vcpu);
int kvmhv_nestedv2_set_vpa(struct kvm_vcpu *vcpu, unsigned long vpa);

#endif /* CONFIG_KVM_BOOK3S_HV_POSSIBLE */

#endif /* __ASM_KVM_BOOK3S_64_H__ */