summaryrefslogtreecommitdiff
path: root/arch/arm64/kvm/hyp/pgtable.c
blob: bdf8e55ed308e7b8cd25819108ccb517f0db6662 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
// SPDX-License-Identifier: GPL-2.0-only
/*
 * Stand-alone page-table allocator for hyp stage-1 and guest stage-2.
 * No bombay mix was harmed in the writing of this file.
 *
 * Copyright (C) 2020 Google LLC
 * Author: Will Deacon <will@kernel.org>
 */

#include <linux/bitfield.h>
#include <asm/kvm_pgtable.h>

#define KVM_PGTABLE_MAX_LEVELS		4U

#define KVM_PTE_VALID			BIT(0)

#define KVM_PTE_TYPE			BIT(1)
#define KVM_PTE_TYPE_BLOCK		0
#define KVM_PTE_TYPE_PAGE		1
#define KVM_PTE_TYPE_TABLE		1

#define KVM_PTE_ADDR_MASK		GENMASK(47, PAGE_SHIFT)
#define KVM_PTE_ADDR_51_48		GENMASK(15, 12)

#define KVM_PTE_LEAF_ATTR_LO		GENMASK(11, 2)

#define KVM_PTE_LEAF_ATTR_LO_S1_ATTRIDX	GENMASK(4, 2)
#define KVM_PTE_LEAF_ATTR_LO_S1_AP	GENMASK(7, 6)
#define KVM_PTE_LEAF_ATTR_LO_S1_AP_RO	3
#define KVM_PTE_LEAF_ATTR_LO_S1_AP_RW	1
#define KVM_PTE_LEAF_ATTR_LO_S1_SH	GENMASK(9, 8)
#define KVM_PTE_LEAF_ATTR_LO_S1_SH_IS	3
#define KVM_PTE_LEAF_ATTR_LO_S1_AF	BIT(10)

#define KVM_PTE_LEAF_ATTR_LO_S2_MEMATTR	GENMASK(5, 2)
#define KVM_PTE_LEAF_ATTR_LO_S2_S2AP_R	BIT(6)
#define KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W	BIT(7)
#define KVM_PTE_LEAF_ATTR_LO_S2_SH	GENMASK(9, 8)
#define KVM_PTE_LEAF_ATTR_LO_S2_SH_IS	3
#define KVM_PTE_LEAF_ATTR_LO_S2_AF	BIT(10)

#define KVM_PTE_LEAF_ATTR_HI		GENMASK(63, 51)

#define KVM_PTE_LEAF_ATTR_HI_S1_XN	BIT(54)

#define KVM_PTE_LEAF_ATTR_HI_S2_XN	BIT(54)

struct kvm_pgtable_walk_data {
	struct kvm_pgtable		*pgt;
	struct kvm_pgtable_walker	*walker;

	u64				addr;
	u64				end;
};

static u64 kvm_granule_shift(u32 level)
{
	/* Assumes KVM_PGTABLE_MAX_LEVELS is 4 */
	return ARM64_HW_PGTABLE_LEVEL_SHIFT(level);
}

static u64 kvm_granule_size(u32 level)
{
	return BIT(kvm_granule_shift(level));
}

static bool kvm_block_mapping_supported(u64 addr, u64 end, u64 phys, u32 level)
{
	u64 granule = kvm_granule_size(level);

	/*
	 * Reject invalid block mappings and don't bother with 4TB mappings for
	 * 52-bit PAs.
	 */
	if (level == 0 || (PAGE_SIZE != SZ_4K && level == 1))
		return false;

	if (granule > (end - addr))
		return false;

	return IS_ALIGNED(addr, granule) && IS_ALIGNED(phys, granule);
}

static u32 kvm_pgtable_idx(struct kvm_pgtable_walk_data *data, u32 level)
{
	u64 shift = kvm_granule_shift(level);
	u64 mask = BIT(PAGE_SHIFT - 3) - 1;

	return (data->addr >> shift) & mask;
}

static u32 __kvm_pgd_page_idx(struct kvm_pgtable *pgt, u64 addr)
{
	u64 shift = kvm_granule_shift(pgt->start_level - 1); /* May underflow */
	u64 mask = BIT(pgt->ia_bits) - 1;

	return (addr & mask) >> shift;
}

static u32 kvm_pgd_page_idx(struct kvm_pgtable_walk_data *data)
{
	return __kvm_pgd_page_idx(data->pgt, data->addr);
}

static u32 kvm_pgd_pages(u32 ia_bits, u32 start_level)
{
	struct kvm_pgtable pgt = {
		.ia_bits	= ia_bits,
		.start_level	= start_level,
	};

	return __kvm_pgd_page_idx(&pgt, -1ULL) + 1;
}

static bool kvm_pte_valid(kvm_pte_t pte)
{
	return pte & KVM_PTE_VALID;
}

static bool kvm_pte_table(kvm_pte_t pte, u32 level)
{
	if (level == KVM_PGTABLE_MAX_LEVELS - 1)
		return false;

	if (!kvm_pte_valid(pte))
		return false;

	return FIELD_GET(KVM_PTE_TYPE, pte) == KVM_PTE_TYPE_TABLE;
}

static u64 kvm_pte_to_phys(kvm_pte_t pte)
{
	u64 pa = pte & KVM_PTE_ADDR_MASK;

	if (PAGE_SHIFT == 16)
		pa |= FIELD_GET(KVM_PTE_ADDR_51_48, pte) << 48;

	return pa;
}

static kvm_pte_t kvm_phys_to_pte(u64 pa)
{
	kvm_pte_t pte = pa & KVM_PTE_ADDR_MASK;

	if (PAGE_SHIFT == 16)
		pte |= FIELD_PREP(KVM_PTE_ADDR_51_48, pa >> 48);

	return pte;
}

static kvm_pte_t *kvm_pte_follow(kvm_pte_t pte)
{
	return __va(kvm_pte_to_phys(pte));
}

static void kvm_set_invalid_pte(kvm_pte_t *ptep)
{
	kvm_pte_t pte = *ptep;
	WRITE_ONCE(*ptep, pte & ~KVM_PTE_VALID);
}

static void kvm_set_table_pte(kvm_pte_t *ptep, kvm_pte_t *childp)
{
	kvm_pte_t old = *ptep, pte = kvm_phys_to_pte(__pa(childp));

	pte |= FIELD_PREP(KVM_PTE_TYPE, KVM_PTE_TYPE_TABLE);
	pte |= KVM_PTE_VALID;

	WARN_ON(kvm_pte_valid(old));
	smp_store_release(ptep, pte);
}

static bool kvm_set_valid_leaf_pte(kvm_pte_t *ptep, u64 pa, kvm_pte_t attr,
				   u32 level)
{
	kvm_pte_t old = *ptep, pte = kvm_phys_to_pte(pa);
	u64 type = (level == KVM_PGTABLE_MAX_LEVELS - 1) ? KVM_PTE_TYPE_PAGE :
							   KVM_PTE_TYPE_BLOCK;

	pte |= attr & (KVM_PTE_LEAF_ATTR_LO | KVM_PTE_LEAF_ATTR_HI);
	pte |= FIELD_PREP(KVM_PTE_TYPE, type);
	pte |= KVM_PTE_VALID;

	/* Tolerate KVM recreating the exact same mapping. */
	if (kvm_pte_valid(old))
		return old == pte;

	smp_store_release(ptep, pte);
	return true;
}

static int kvm_pgtable_visitor_cb(struct kvm_pgtable_walk_data *data, u64 addr,
				  u32 level, kvm_pte_t *ptep,
				  enum kvm_pgtable_walk_flags flag)
{
	struct kvm_pgtable_walker *walker = data->walker;
	return walker->cb(addr, data->end, level, ptep, flag, walker->arg);
}

static int __kvm_pgtable_walk(struct kvm_pgtable_walk_data *data,
			      kvm_pte_t *pgtable, u32 level);

static inline int __kvm_pgtable_visit(struct kvm_pgtable_walk_data *data,
				      kvm_pte_t *ptep, u32 level)
{
	int ret = 0;
	u64 addr = data->addr;
	kvm_pte_t *childp, pte = *ptep;
	bool table = kvm_pte_table(pte, level);
	enum kvm_pgtable_walk_flags flags = data->walker->flags;

	if (table && (flags & KVM_PGTABLE_WALK_TABLE_PRE)) {
		ret = kvm_pgtable_visitor_cb(data, addr, level, ptep,
					     KVM_PGTABLE_WALK_TABLE_PRE);
	}

	if (!table && (flags & KVM_PGTABLE_WALK_LEAF)) {
		ret = kvm_pgtable_visitor_cb(data, addr, level, ptep,
					     KVM_PGTABLE_WALK_LEAF);
		pte = *ptep;
		table = kvm_pte_table(pte, level);
	}

	if (ret)
		goto out;

	if (!table) {
		data->addr += kvm_granule_size(level);
		goto out;
	}

	childp = kvm_pte_follow(pte);
	ret = __kvm_pgtable_walk(data, childp, level + 1);
	if (ret)
		goto out;

	if (flags & KVM_PGTABLE_WALK_TABLE_POST) {
		ret = kvm_pgtable_visitor_cb(data, addr, level, ptep,
					     KVM_PGTABLE_WALK_TABLE_POST);
	}

out:
	return ret;
}

static int __kvm_pgtable_walk(struct kvm_pgtable_walk_data *data,
			      kvm_pte_t *pgtable, u32 level)
{
	u32 idx;
	int ret = 0;

	if (WARN_ON_ONCE(level >= KVM_PGTABLE_MAX_LEVELS))
		return -EINVAL;

	for (idx = kvm_pgtable_idx(data, level); idx < PTRS_PER_PTE; ++idx) {
		kvm_pte_t *ptep = &pgtable[idx];

		if (data->addr >= data->end)
			break;

		ret = __kvm_pgtable_visit(data, ptep, level);
		if (ret)
			break;
	}

	return ret;
}

static int _kvm_pgtable_walk(struct kvm_pgtable_walk_data *data)
{
	u32 idx;
	int ret = 0;
	struct kvm_pgtable *pgt = data->pgt;
	u64 limit = BIT(pgt->ia_bits);

	if (data->addr > limit || data->end > limit)
		return -ERANGE;

	if (!pgt->pgd)
		return -EINVAL;

	for (idx = kvm_pgd_page_idx(data); data->addr < data->end; ++idx) {
		kvm_pte_t *ptep = &pgt->pgd[idx * PTRS_PER_PTE];

		ret = __kvm_pgtable_walk(data, ptep, pgt->start_level);
		if (ret)
			break;
	}

	return ret;
}

int kvm_pgtable_walk(struct kvm_pgtable *pgt, u64 addr, u64 size,
		     struct kvm_pgtable_walker *walker)
{
	struct kvm_pgtable_walk_data walk_data = {
		.pgt	= pgt,
		.addr	= ALIGN_DOWN(addr, PAGE_SIZE),
		.end	= PAGE_ALIGN(walk_data.addr + size),
		.walker	= walker,
	};

	return _kvm_pgtable_walk(&walk_data);
}

struct hyp_map_data {
	u64		phys;
	kvm_pte_t	attr;
};

static int hyp_map_set_prot_attr(enum kvm_pgtable_prot prot,
				 struct hyp_map_data *data)
{
	bool device = prot & KVM_PGTABLE_PROT_DEVICE;
	u32 mtype = device ? MT_DEVICE_nGnRE : MT_NORMAL;
	kvm_pte_t attr = FIELD_PREP(KVM_PTE_LEAF_ATTR_LO_S1_ATTRIDX, mtype);
	u32 sh = KVM_PTE_LEAF_ATTR_LO_S1_SH_IS;
	u32 ap = (prot & KVM_PGTABLE_PROT_W) ? KVM_PTE_LEAF_ATTR_LO_S1_AP_RW :
					       KVM_PTE_LEAF_ATTR_LO_S1_AP_RO;

	if (!(prot & KVM_PGTABLE_PROT_R))
		return -EINVAL;

	if (prot & KVM_PGTABLE_PROT_X) {
		if (prot & KVM_PGTABLE_PROT_W)
			return -EINVAL;

		if (device)
			return -EINVAL;
	} else {
		attr |= KVM_PTE_LEAF_ATTR_HI_S1_XN;
	}

	attr |= FIELD_PREP(KVM_PTE_LEAF_ATTR_LO_S1_AP, ap);
	attr |= FIELD_PREP(KVM_PTE_LEAF_ATTR_LO_S1_SH, sh);
	attr |= KVM_PTE_LEAF_ATTR_LO_S1_AF;
	data->attr = attr;
	return 0;
}

static bool hyp_map_walker_try_leaf(u64 addr, u64 end, u32 level,
				    kvm_pte_t *ptep, struct hyp_map_data *data)
{
	u64 granule = kvm_granule_size(level), phys = data->phys;

	if (!kvm_block_mapping_supported(addr, end, phys, level))
		return false;

	WARN_ON(!kvm_set_valid_leaf_pte(ptep, phys, data->attr, level));
	data->phys += granule;
	return true;
}

static int hyp_map_walker(u64 addr, u64 end, u32 level, kvm_pte_t *ptep,
			  enum kvm_pgtable_walk_flags flag, void * const arg)
{
	kvm_pte_t *childp;

	if (hyp_map_walker_try_leaf(addr, end, level, ptep, arg))
		return 0;

	if (WARN_ON(level == KVM_PGTABLE_MAX_LEVELS - 1))
		return -EINVAL;

	childp = (kvm_pte_t *)get_zeroed_page(GFP_KERNEL);
	if (!childp)
		return -ENOMEM;

	kvm_set_table_pte(ptep, childp);
	return 0;
}

int kvm_pgtable_hyp_map(struct kvm_pgtable *pgt, u64 addr, u64 size, u64 phys,
			enum kvm_pgtable_prot prot)
{
	int ret;
	struct hyp_map_data map_data = {
		.phys	= ALIGN_DOWN(phys, PAGE_SIZE),
	};
	struct kvm_pgtable_walker walker = {
		.cb	= hyp_map_walker,
		.flags	= KVM_PGTABLE_WALK_LEAF,
		.arg	= &map_data,
	};

	ret = hyp_map_set_prot_attr(prot, &map_data);
	if (ret)
		return ret;

	ret = kvm_pgtable_walk(pgt, addr, size, &walker);
	dsb(ishst);
	isb();
	return ret;
}

int kvm_pgtable_hyp_init(struct kvm_pgtable *pgt, u32 va_bits)
{
	u64 levels = ARM64_HW_PGTABLE_LEVELS(va_bits);

	pgt->pgd = (kvm_pte_t *)get_zeroed_page(GFP_KERNEL);
	if (!pgt->pgd)
		return -ENOMEM;

	pgt->ia_bits		= va_bits;
	pgt->start_level	= KVM_PGTABLE_MAX_LEVELS - levels;
	pgt->mmu		= NULL;
	return 0;
}

static int hyp_free_walker(u64 addr, u64 end, u32 level, kvm_pte_t *ptep,
			   enum kvm_pgtable_walk_flags flag, void * const arg)
{
	free_page((unsigned long)kvm_pte_follow(*ptep));
	return 0;
}

void kvm_pgtable_hyp_destroy(struct kvm_pgtable *pgt)
{
	struct kvm_pgtable_walker walker = {
		.cb	= hyp_free_walker,
		.flags	= KVM_PGTABLE_WALK_TABLE_POST,
	};

	WARN_ON(kvm_pgtable_walk(pgt, 0, BIT(pgt->ia_bits), &walker));
	free_page((unsigned long)pgt->pgd);
	pgt->pgd = NULL;
}

struct stage2_map_data {
	u64				phys;
	kvm_pte_t			attr;

	kvm_pte_t			*anchor;

	struct kvm_s2_mmu		*mmu;
	struct kvm_mmu_memory_cache	*memcache;
};

static int stage2_map_set_prot_attr(enum kvm_pgtable_prot prot,
				    struct stage2_map_data *data)
{
	bool device = prot & KVM_PGTABLE_PROT_DEVICE;
	kvm_pte_t attr = device ? PAGE_S2_MEMATTR(DEVICE_nGnRE) :
			    PAGE_S2_MEMATTR(NORMAL);
	u32 sh = KVM_PTE_LEAF_ATTR_LO_S2_SH_IS;

	if (!(prot & KVM_PGTABLE_PROT_X))
		attr |= KVM_PTE_LEAF_ATTR_HI_S2_XN;
	else if (device)
		return -EINVAL;

	if (prot & KVM_PGTABLE_PROT_R)
		attr |= KVM_PTE_LEAF_ATTR_LO_S2_S2AP_R;

	if (prot & KVM_PGTABLE_PROT_W)
		attr |= KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W;

	attr |= FIELD_PREP(KVM_PTE_LEAF_ATTR_LO_S2_SH, sh);
	attr |= KVM_PTE_LEAF_ATTR_LO_S2_AF;
	data->attr = attr;
	return 0;
}

static bool stage2_map_walker_try_leaf(u64 addr, u64 end, u32 level,
				       kvm_pte_t *ptep,
				       struct stage2_map_data *data)
{
	u64 granule = kvm_granule_size(level), phys = data->phys;

	if (!kvm_block_mapping_supported(addr, end, phys, level))
		return false;

	/*
	 * If the PTE was already valid, drop the refcount on the table
	 * early, as it will be bumped-up again in stage2_map_walk_leaf().
	 * This ensures that the refcount stays constant across a valid to
	 * valid PTE update.
	 */
	if (kvm_pte_valid(*ptep))
		put_page(virt_to_page(ptep));

	if (kvm_set_valid_leaf_pte(ptep, phys, data->attr, level))
		goto out;

	/* There's an existing valid leaf entry, so perform break-before-make */
	kvm_set_invalid_pte(ptep);
	kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, data->mmu, addr, level);
	kvm_set_valid_leaf_pte(ptep, phys, data->attr, level);
out:
	data->phys += granule;
	return true;
}

static int stage2_map_walk_table_pre(u64 addr, u64 end, u32 level,
				     kvm_pte_t *ptep,
				     struct stage2_map_data *data)
{
	if (data->anchor)
		return 0;

	if (!kvm_block_mapping_supported(addr, end, data->phys, level))
		return 0;

	kvm_set_invalid_pte(ptep);

	/*
	 * Invalidate the whole stage-2, as we may have numerous leaf
	 * entries below us which would otherwise need invalidating
	 * individually.
	 */
	kvm_call_hyp(__kvm_tlb_flush_vmid, data->mmu);
	data->anchor = ptep;
	return 0;
}

static int stage2_map_walk_leaf(u64 addr, u64 end, u32 level, kvm_pte_t *ptep,
				struct stage2_map_data *data)
{
	kvm_pte_t *childp, pte = *ptep;
	struct page *page = virt_to_page(ptep);

	if (data->anchor) {
		if (kvm_pte_valid(pte))
			put_page(page);

		return 0;
	}

	if (stage2_map_walker_try_leaf(addr, end, level, ptep, data))
		goto out_get_page;

	if (WARN_ON(level == KVM_PGTABLE_MAX_LEVELS - 1))
		return -EINVAL;

	if (!data->memcache)
		return -ENOMEM;

	childp = kvm_mmu_memory_cache_alloc(data->memcache);
	if (!childp)
		return -ENOMEM;

	/*
	 * If we've run into an existing block mapping then replace it with
	 * a table. Accesses beyond 'end' that fall within the new table
	 * will be mapped lazily.
	 */
	if (kvm_pte_valid(pte)) {
		kvm_set_invalid_pte(ptep);
		kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, data->mmu, addr, level);
		put_page(page);
	}

	kvm_set_table_pte(ptep, childp);

out_get_page:
	get_page(page);
	return 0;
}

static int stage2_map_walk_table_post(u64 addr, u64 end, u32 level,
				      kvm_pte_t *ptep,
				      struct stage2_map_data *data)
{
	int ret = 0;

	if (!data->anchor)
		return 0;

	free_page((unsigned long)kvm_pte_follow(*ptep));
	put_page(virt_to_page(ptep));

	if (data->anchor == ptep) {
		data->anchor = NULL;
		ret = stage2_map_walk_leaf(addr, end, level, ptep, data);
	}

	return ret;
}

/*
 * This is a little fiddly, as we use all three of the walk flags. The idea
 * is that the TABLE_PRE callback runs for table entries on the way down,
 * looking for table entries which we could conceivably replace with a
 * block entry for this mapping. If it finds one, then it sets the 'anchor'
 * field in 'struct stage2_map_data' to point at the table entry, before
 * clearing the entry to zero and descending into the now detached table.
 *
 * The behaviour of the LEAF callback then depends on whether or not the
 * anchor has been set. If not, then we're not using a block mapping higher
 * up the table and we perform the mapping at the existing leaves instead.
 * If, on the other hand, the anchor _is_ set, then we drop references to
 * all valid leaves so that the pages beneath the anchor can be freed.
 *
 * Finally, the TABLE_POST callback does nothing if the anchor has not
 * been set, but otherwise frees the page-table pages while walking back up
 * the page-table, installing the block entry when it revisits the anchor
 * pointer and clearing the anchor to NULL.
 */
static int stage2_map_walker(u64 addr, u64 end, u32 level, kvm_pte_t *ptep,
			     enum kvm_pgtable_walk_flags flag, void * const arg)
{
	struct stage2_map_data *data = arg;

	switch (flag) {
	case KVM_PGTABLE_WALK_TABLE_PRE:
		return stage2_map_walk_table_pre(addr, end, level, ptep, data);
	case KVM_PGTABLE_WALK_LEAF:
		return stage2_map_walk_leaf(addr, end, level, ptep, data);
	case KVM_PGTABLE_WALK_TABLE_POST:
		return stage2_map_walk_table_post(addr, end, level, ptep, data);
	}

	return -EINVAL;
}

int kvm_pgtable_stage2_map(struct kvm_pgtable *pgt, u64 addr, u64 size,
			   u64 phys, enum kvm_pgtable_prot prot,
			   struct kvm_mmu_memory_cache *mc)
{
	int ret;
	struct stage2_map_data map_data = {
		.phys		= ALIGN_DOWN(phys, PAGE_SIZE),
		.mmu		= pgt->mmu,
		.memcache	= mc,
	};
	struct kvm_pgtable_walker walker = {
		.cb		= stage2_map_walker,
		.flags		= KVM_PGTABLE_WALK_TABLE_PRE |
				  KVM_PGTABLE_WALK_LEAF |
				  KVM_PGTABLE_WALK_TABLE_POST,
		.arg		= &map_data,
	};

	ret = stage2_map_set_prot_attr(prot, &map_data);
	if (ret)
		return ret;

	ret = kvm_pgtable_walk(pgt, addr, size, &walker);
	dsb(ishst);
	return ret;
}

static void stage2_flush_dcache(void *addr, u64 size)
{
	if (cpus_have_const_cap(ARM64_HAS_STAGE2_FWB))
		return;

	__flush_dcache_area(addr, size);
}

static bool stage2_pte_cacheable(kvm_pte_t pte)
{
	u64 memattr = pte & KVM_PTE_LEAF_ATTR_LO_S2_MEMATTR;
	return memattr == PAGE_S2_MEMATTR(NORMAL);
}

static int stage2_unmap_walker(u64 addr, u64 end, u32 level, kvm_pte_t *ptep,
			       enum kvm_pgtable_walk_flags flag,
			       void * const arg)
{
	struct kvm_s2_mmu *mmu = arg;
	kvm_pte_t pte = *ptep, *childp = NULL;
	bool need_flush = false;

	if (!kvm_pte_valid(pte))
		return 0;

	if (kvm_pte_table(pte, level)) {
		childp = kvm_pte_follow(pte);

		if (page_count(virt_to_page(childp)) != 1)
			return 0;
	} else if (stage2_pte_cacheable(pte)) {
		need_flush = true;
	}

	/*
	 * This is similar to the map() path in that we unmap the entire
	 * block entry and rely on the remaining portions being faulted
	 * back lazily.
	 */
	kvm_set_invalid_pte(ptep);
	kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, mmu, addr, level);
	put_page(virt_to_page(ptep));

	if (need_flush) {
		stage2_flush_dcache(kvm_pte_follow(pte),
				    kvm_granule_size(level));
	}

	if (childp)
		free_page((unsigned long)childp);

	return 0;
}

int kvm_pgtable_stage2_unmap(struct kvm_pgtable *pgt, u64 addr, u64 size)
{
	struct kvm_pgtable_walker walker = {
		.cb	= stage2_unmap_walker,
		.arg	= pgt->mmu,
		.flags	= KVM_PGTABLE_WALK_LEAF | KVM_PGTABLE_WALK_TABLE_POST,
	};

	return kvm_pgtable_walk(pgt, addr, size, &walker);
}

struct stage2_attr_data {
	kvm_pte_t	attr_set;
	kvm_pte_t	attr_clr;
	kvm_pte_t	pte;
	u32		level;
};

static int stage2_attr_walker(u64 addr, u64 end, u32 level, kvm_pte_t *ptep,
			      enum kvm_pgtable_walk_flags flag,
			      void * const arg)
{
	kvm_pte_t pte = *ptep;
	struct stage2_attr_data *data = arg;

	if (!kvm_pte_valid(pte))
		return 0;

	data->level = level;
	data->pte = pte;
	pte &= ~data->attr_clr;
	pte |= data->attr_set;

	/*
	 * We may race with the CPU trying to set the access flag here,
	 * but worst-case the access flag update gets lost and will be
	 * set on the next access instead.
	 */
	if (data->pte != pte)
		WRITE_ONCE(*ptep, pte);

	return 0;
}

static int stage2_update_leaf_attrs(struct kvm_pgtable *pgt, u64 addr,
				    u64 size, kvm_pte_t attr_set,
				    kvm_pte_t attr_clr, kvm_pte_t *orig_pte,
				    u32 *level)
{
	int ret;
	kvm_pte_t attr_mask = KVM_PTE_LEAF_ATTR_LO | KVM_PTE_LEAF_ATTR_HI;
	struct stage2_attr_data data = {
		.attr_set	= attr_set & attr_mask,
		.attr_clr	= attr_clr & attr_mask,
	};
	struct kvm_pgtable_walker walker = {
		.cb		= stage2_attr_walker,
		.arg		= &data,
		.flags		= KVM_PGTABLE_WALK_LEAF,
	};

	ret = kvm_pgtable_walk(pgt, addr, size, &walker);
	if (ret)
		return ret;

	if (orig_pte)
		*orig_pte = data.pte;

	if (level)
		*level = data.level;
	return 0;
}

int kvm_pgtable_stage2_wrprotect(struct kvm_pgtable *pgt, u64 addr, u64 size)
{
	return stage2_update_leaf_attrs(pgt, addr, size, 0,
					KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W,
					NULL, NULL);
}

kvm_pte_t kvm_pgtable_stage2_mkyoung(struct kvm_pgtable *pgt, u64 addr)
{
	kvm_pte_t pte = 0;
	stage2_update_leaf_attrs(pgt, addr, 1, KVM_PTE_LEAF_ATTR_LO_S2_AF, 0,
				 &pte, NULL);
	dsb(ishst);
	return pte;
}

kvm_pte_t kvm_pgtable_stage2_mkold(struct kvm_pgtable *pgt, u64 addr)
{
	kvm_pte_t pte = 0;
	stage2_update_leaf_attrs(pgt, addr, 1, 0, KVM_PTE_LEAF_ATTR_LO_S2_AF,
				 &pte, NULL);
	/*
	 * "But where's the TLBI?!", you scream.
	 * "Over in the core code", I sigh.
	 *
	 * See the '->clear_flush_young()' callback on the KVM mmu notifier.
	 */
	return pte;
}

bool kvm_pgtable_stage2_is_young(struct kvm_pgtable *pgt, u64 addr)
{
	kvm_pte_t pte = 0;
	stage2_update_leaf_attrs(pgt, addr, 1, 0, 0, &pte, NULL);
	return pte & KVM_PTE_LEAF_ATTR_LO_S2_AF;
}

int kvm_pgtable_stage2_relax_perms(struct kvm_pgtable *pgt, u64 addr,
				   enum kvm_pgtable_prot prot)
{
	int ret;
	u32 level;
	kvm_pte_t set = 0, clr = 0;

	if (prot & KVM_PGTABLE_PROT_R)
		set |= KVM_PTE_LEAF_ATTR_LO_S2_S2AP_R;

	if (prot & KVM_PGTABLE_PROT_W)
		set |= KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W;

	if (prot & KVM_PGTABLE_PROT_X)
		clr |= KVM_PTE_LEAF_ATTR_HI_S2_XN;

	ret = stage2_update_leaf_attrs(pgt, addr, 1, set, clr, NULL, &level);
	if (!ret)
		kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, pgt->mmu, addr, level);
	return ret;
}

static int stage2_flush_walker(u64 addr, u64 end, u32 level, kvm_pte_t *ptep,
			       enum kvm_pgtable_walk_flags flag,
			       void * const arg)
{
	kvm_pte_t pte = *ptep;

	if (!kvm_pte_valid(pte) || !stage2_pte_cacheable(pte))
		return 0;

	stage2_flush_dcache(kvm_pte_follow(pte), kvm_granule_size(level));
	return 0;
}

int kvm_pgtable_stage2_flush(struct kvm_pgtable *pgt, u64 addr, u64 size)
{
	struct kvm_pgtable_walker walker = {
		.cb	= stage2_flush_walker,
		.flags	= KVM_PGTABLE_WALK_LEAF,
	};

	if (cpus_have_const_cap(ARM64_HAS_STAGE2_FWB))
		return 0;

	return kvm_pgtable_walk(pgt, addr, size, &walker);
}

int kvm_pgtable_stage2_init(struct kvm_pgtable *pgt, struct kvm *kvm)
{
	size_t pgd_sz;
	u64 vtcr = kvm->arch.vtcr;
	u32 ia_bits = VTCR_EL2_IPA(vtcr);
	u32 sl0 = FIELD_GET(VTCR_EL2_SL0_MASK, vtcr);
	u32 start_level = VTCR_EL2_TGRAN_SL0_BASE - sl0;

	pgd_sz = kvm_pgd_pages(ia_bits, start_level) * PAGE_SIZE;
	pgt->pgd = alloc_pages_exact(pgd_sz, GFP_KERNEL_ACCOUNT | __GFP_ZERO);
	if (!pgt->pgd)
		return -ENOMEM;

	pgt->ia_bits		= ia_bits;
	pgt->start_level	= start_level;
	pgt->mmu		= &kvm->arch.mmu;

	/* Ensure zeroed PGD pages are visible to the hardware walker */
	dsb(ishst);
	return 0;
}

static int stage2_free_walker(u64 addr, u64 end, u32 level, kvm_pte_t *ptep,
			      enum kvm_pgtable_walk_flags flag,
			      void * const arg)
{
	kvm_pte_t pte = *ptep;

	if (!kvm_pte_valid(pte))
		return 0;

	put_page(virt_to_page(ptep));

	if (kvm_pte_table(pte, level))
		free_page((unsigned long)kvm_pte_follow(pte));

	return 0;
}

void kvm_pgtable_stage2_destroy(struct kvm_pgtable *pgt)
{
	size_t pgd_sz;
	struct kvm_pgtable_walker walker = {
		.cb	= stage2_free_walker,
		.flags	= KVM_PGTABLE_WALK_LEAF |
			  KVM_PGTABLE_WALK_TABLE_POST,
	};

	WARN_ON(kvm_pgtable_walk(pgt, 0, BIT(pgt->ia_bits), &walker));
	pgd_sz = kvm_pgd_pages(pgt->ia_bits, pgt->start_level) * PAGE_SIZE;
	free_pages_exact(pgt->pgd, pgd_sz);
	pgt->pgd = NULL;
}