// SPDX-License-Identifier: GPL-2.0-only /* Copyright (C) 2024 Marvell. */ #include #include "octep_vdpa.h" enum octep_mbox_ids { OCTEP_MBOX_MSG_SET_VQ_STATE = 1, OCTEP_MBOX_MSG_GET_VQ_STATE, }; #define OCTEP_HW_TIMEOUT 10000000 #define MBOX_OFFSET 64 #define MBOX_RSP_MASK 0x00000001 #define MBOX_RC_MASK 0x0000FFFE #define MBOX_RSP_TO_ERR(val) (-(((val) & MBOX_RC_MASK) >> 2)) #define MBOX_AVAIL(val) (((val) & MBOX_RSP_MASK)) #define MBOX_RSP(val) ((val) & (MBOX_RC_MASK | MBOX_RSP_MASK)) #define DEV_RST_ACK_BIT 7 #define FEATURE_SEL_ACK_BIT 15 #define QUEUE_SEL_ACK_BIT 15 struct octep_mbox_hdr { u8 ver; u8 rsvd1; u16 id; u16 rsvd2; #define MBOX_REQ_SIG (0xdead) #define MBOX_RSP_SIG (0xbeef) u16 sig; }; struct octep_mbox_sts { u16 rsp:1; u16 rc:15; u16 rsvd; }; struct octep_mbox { struct octep_mbox_hdr hdr; struct octep_mbox_sts sts; u64 rsvd; u32 data[]; }; static inline struct octep_mbox __iomem *octep_get_mbox(struct octep_hw *oct_hw) { return (struct octep_mbox __iomem *)(oct_hw->dev_cfg + MBOX_OFFSET); } static inline int octep_wait_for_mbox_avail(struct octep_mbox __iomem *mbox) { u32 val; return readx_poll_timeout(ioread32, &mbox->sts, val, MBOX_AVAIL(val), 10, OCTEP_HW_TIMEOUT); } static inline int octep_wait_for_mbox_rsp(struct octep_mbox __iomem *mbox) { u32 val; return readx_poll_timeout(ioread32, &mbox->sts, val, MBOX_RSP(val), 10, OCTEP_HW_TIMEOUT); } static inline void octep_write_hdr(struct octep_mbox __iomem *mbox, u16 id, u16 sig) { iowrite16(id, &mbox->hdr.id); iowrite16(sig, &mbox->hdr.sig); } static inline u32 octep_read_sig(struct octep_mbox __iomem *mbox) { return ioread16(&mbox->hdr.sig); } static inline void octep_write_sts(struct octep_mbox __iomem *mbox, u32 sts) { iowrite32(sts, &mbox->sts); } static inline u32 octep_read_sts(struct octep_mbox __iomem *mbox) { return ioread32(&mbox->sts); } static inline u32 octep_read32_word(struct octep_mbox __iomem *mbox, u16 word_idx) { return ioread32(&mbox->data[word_idx]); } static inline void octep_write32_word(struct octep_mbox __iomem *mbox, u16 word_idx, u32 word) { return iowrite32(word, &mbox->data[word_idx]); } static int octep_process_mbox(struct octep_hw *oct_hw, u16 id, u16 qid, void *buffer, u32 buf_size, bool write) { struct octep_mbox __iomem *mbox = octep_get_mbox(oct_hw); struct pci_dev *pdev = oct_hw->pdev; u32 *p = (u32 *)buffer; u16 data_wds; int ret, i; u32 val; if (!IS_ALIGNED(buf_size, 4)) return -EINVAL; /* Make sure mbox space is available */ ret = octep_wait_for_mbox_avail(mbox); if (ret) { dev_warn(&pdev->dev, "Timeout waiting for previous mbox data to be consumed\n"); return ret; } data_wds = buf_size / 4; if (write) { for (i = 1; i <= data_wds; i++) { octep_write32_word(mbox, i, *p); p++; } } octep_write32_word(mbox, 0, (u32)qid); octep_write_sts(mbox, 0); octep_write_hdr(mbox, id, MBOX_REQ_SIG); ret = octep_wait_for_mbox_rsp(mbox); if (ret) { dev_warn(&pdev->dev, "Timeout waiting for mbox : %d response\n", id); return ret; } val = octep_read_sig(mbox); if ((val & 0xFFFF) != MBOX_RSP_SIG) { dev_warn(&pdev->dev, "Invalid Signature from mbox : %d response\n", id); return ret; } val = octep_read_sts(mbox); if (val & MBOX_RC_MASK) { ret = MBOX_RSP_TO_ERR(val); dev_warn(&pdev->dev, "Error while processing mbox : %d, err %d\n", id, ret); return ret; } if (!write) for (i = 1; i <= data_wds; i++) *p++ = octep_read32_word(mbox, i); return 0; } static void octep_mbox_init(struct octep_mbox __iomem *mbox) { iowrite32(1, &mbox->sts); } int octep_verify_features(u64 features) { /* Minimum features to expect */ if (!(features & BIT_ULL(VIRTIO_F_VERSION_1))) return -EOPNOTSUPP; if (!(features & BIT_ULL(VIRTIO_F_NOTIFICATION_DATA))) return -EOPNOTSUPP; if (!(features & BIT_ULL(VIRTIO_F_RING_PACKED))) return -EOPNOTSUPP; return 0; } u8 octep_hw_get_status(struct octep_hw *oct_hw) { return ioread8(&oct_hw->common_cfg->device_status); } void octep_hw_set_status(struct octep_hw *oct_hw, u8 status) { iowrite8(status, &oct_hw->common_cfg->device_status); } void octep_hw_reset(struct octep_hw *oct_hw) { u8 val; octep_hw_set_status(oct_hw, 0 | BIT(DEV_RST_ACK_BIT)); if (readx_poll_timeout(ioread8, &oct_hw->common_cfg->device_status, val, !val, 10, OCTEP_HW_TIMEOUT)) { dev_warn(&oct_hw->pdev->dev, "Octeon device reset timeout\n"); return; } } static int feature_sel_write_with_timeout(struct octep_hw *oct_hw, u32 select, void __iomem *addr) { u32 val; iowrite32(select | BIT(FEATURE_SEL_ACK_BIT), addr); if (readx_poll_timeout(ioread32, addr, val, val == select, 10, OCTEP_HW_TIMEOUT)) { dev_warn(&oct_hw->pdev->dev, "Feature select%d write timeout\n", select); return -1; } return 0; } u64 octep_hw_get_dev_features(struct octep_hw *oct_hw) { u32 features_lo, features_hi; if (feature_sel_write_with_timeout(oct_hw, 0, &oct_hw->common_cfg->device_feature_select)) return 0; features_lo = ioread32(&oct_hw->common_cfg->device_feature); if (feature_sel_write_with_timeout(oct_hw, 1, &oct_hw->common_cfg->device_feature_select)) return 0; features_hi = ioread32(&oct_hw->common_cfg->device_feature); return ((u64)features_hi << 32) | features_lo; } u64 octep_hw_get_drv_features(struct octep_hw *oct_hw) { u32 features_lo, features_hi; if (feature_sel_write_with_timeout(oct_hw, 0, &oct_hw->common_cfg->guest_feature_select)) return 0; features_lo = ioread32(&oct_hw->common_cfg->guest_feature); if (feature_sel_write_with_timeout(oct_hw, 1, &oct_hw->common_cfg->guest_feature_select)) return 0; features_hi = ioread32(&oct_hw->common_cfg->guest_feature); return ((u64)features_hi << 32) | features_lo; } void octep_hw_set_drv_features(struct octep_hw *oct_hw, u64 features) { if (feature_sel_write_with_timeout(oct_hw, 0, &oct_hw->common_cfg->guest_feature_select)) return; iowrite32(features & (BIT_ULL(32) - 1), &oct_hw->common_cfg->guest_feature); if (feature_sel_write_with_timeout(oct_hw, 1, &oct_hw->common_cfg->guest_feature_select)) return; iowrite32(features >> 32, &oct_hw->common_cfg->guest_feature); } void octep_write_queue_select(struct octep_hw *oct_hw, u16 queue_id) { u16 val; iowrite16(queue_id | BIT(QUEUE_SEL_ACK_BIT), &oct_hw->common_cfg->queue_select); if (readx_poll_timeout(ioread16, &oct_hw->common_cfg->queue_select, val, val == queue_id, 10, OCTEP_HW_TIMEOUT)) { dev_warn(&oct_hw->pdev->dev, "Queue select write timeout\n"); return; } } void octep_notify_queue(struct octep_hw *oct_hw, u16 qid) { iowrite16(qid, oct_hw->vqs[qid].notify_addr); } void octep_read_dev_config(struct octep_hw *oct_hw, u64 offset, void *dst, int length) { u8 old_gen, new_gen, *p; int i; if (WARN_ON(offset + length > oct_hw->config_size)) return; do { old_gen = ioread8(&oct_hw->common_cfg->config_generation); p = dst; for (i = 0; i < length; i++) *p++ = ioread8(oct_hw->dev_cfg + offset + i); new_gen = ioread8(&oct_hw->common_cfg->config_generation); } while (old_gen != new_gen); } int octep_set_vq_address(struct octep_hw *oct_hw, u16 qid, u64 desc_area, u64 driver_area, u64 device_area) { struct virtio_pci_common_cfg __iomem *cfg = oct_hw->common_cfg; octep_write_queue_select(oct_hw, qid); vp_iowrite64_twopart(desc_area, &cfg->queue_desc_lo, &cfg->queue_desc_hi); vp_iowrite64_twopart(driver_area, &cfg->queue_avail_lo, &cfg->queue_avail_hi); vp_iowrite64_twopart(device_area, &cfg->queue_used_lo, &cfg->queue_used_hi); return 0; } int octep_get_vq_state(struct octep_hw *oct_hw, u16 qid, struct vdpa_vq_state *state) { return octep_process_mbox(oct_hw, OCTEP_MBOX_MSG_GET_VQ_STATE, qid, state, sizeof(*state), 0); } int octep_set_vq_state(struct octep_hw *oct_hw, u16 qid, const struct vdpa_vq_state *state) { struct vdpa_vq_state q_state; memcpy(&q_state, state, sizeof(struct vdpa_vq_state)); return octep_process_mbox(oct_hw, OCTEP_MBOX_MSG_SET_VQ_STATE, qid, &q_state, sizeof(*state), 1); } void octep_set_vq_num(struct octep_hw *oct_hw, u16 qid, u32 num) { struct virtio_pci_common_cfg __iomem *cfg = oct_hw->common_cfg; octep_write_queue_select(oct_hw, qid); iowrite16(num, &cfg->queue_size); } void octep_set_vq_ready(struct octep_hw *oct_hw, u16 qid, bool ready) { struct virtio_pci_common_cfg __iomem *cfg = oct_hw->common_cfg; octep_write_queue_select(oct_hw, qid); iowrite16(ready, &cfg->queue_enable); } bool octep_get_vq_ready(struct octep_hw *oct_hw, u16 qid) { struct virtio_pci_common_cfg __iomem *cfg = oct_hw->common_cfg; octep_write_queue_select(oct_hw, qid); return ioread16(&cfg->queue_enable); } u16 octep_get_vq_size(struct octep_hw *oct_hw) { octep_write_queue_select(oct_hw, 0); return ioread16(&oct_hw->common_cfg->queue_size); } static u32 octep_get_config_size(struct octep_hw *oct_hw) { return sizeof(struct virtio_net_config); } static void __iomem *octep_get_cap_addr(struct octep_hw *oct_hw, struct virtio_pci_cap *cap) { struct device *dev = &oct_hw->pdev->dev; u32 length = le32_to_cpu(cap->length); u32 offset = le32_to_cpu(cap->offset); u8 bar = cap->bar; u32 len; if (bar != OCTEP_HW_CAPS_BAR) { dev_err(dev, "Invalid bar: %u\n", bar); return NULL; } if (offset + length < offset) { dev_err(dev, "offset(%u) + length(%u) overflows\n", offset, length); return NULL; } len = pci_resource_len(oct_hw->pdev, bar); if (offset + length > len) { dev_err(dev, "invalid cap: overflows bar space: %u > %u\n", offset + length, len); return NULL; } return oct_hw->base[bar] + offset; } /* In Octeon DPU device, the virtio config space is completely * emulated by the device's firmware. So, the standard pci config * read apis can't be used for reading the virtio capability. */ static void octep_pci_caps_read(struct octep_hw *oct_hw, void *buf, size_t len, off_t offset) { u8 __iomem *bar = oct_hw->base[OCTEP_HW_CAPS_BAR]; u8 *p = buf; size_t i; for (i = 0; i < len; i++) *p++ = ioread8(bar + offset + i); } static int octep_pci_signature_verify(struct octep_hw *oct_hw) { u32 signature[2]; octep_pci_caps_read(oct_hw, &signature, sizeof(signature), 0); if (signature[0] != OCTEP_FW_READY_SIGNATURE0) return -1; if (signature[1] != OCTEP_FW_READY_SIGNATURE1) return -1; return 0; } int octep_hw_caps_read(struct octep_hw *oct_hw, struct pci_dev *pdev) { struct octep_mbox __iomem *mbox; struct device *dev = &pdev->dev; struct virtio_pci_cap cap; u16 notify_off; int i, ret; u8 pos; oct_hw->pdev = pdev; ret = octep_pci_signature_verify(oct_hw); if (ret) { dev_err(dev, "Octeon Virtio FW is not initialized\n"); return -EIO; } octep_pci_caps_read(oct_hw, &pos, 1, PCI_CAPABILITY_LIST); while (pos) { octep_pci_caps_read(oct_hw, &cap, 2, pos); if (cap.cap_vndr != PCI_CAP_ID_VNDR) { dev_err(dev, "Found invalid capability vndr id: %d\n", cap.cap_vndr); break; } octep_pci_caps_read(oct_hw, &cap, sizeof(cap), pos); dev_info(dev, "[%2x] cfg type: %u, bar: %u, offset: %04x, len: %u\n", pos, cap.cfg_type, cap.bar, cap.offset, cap.length); switch (cap.cfg_type) { case VIRTIO_PCI_CAP_COMMON_CFG: oct_hw->common_cfg = octep_get_cap_addr(oct_hw, &cap); break; case VIRTIO_PCI_CAP_NOTIFY_CFG: octep_pci_caps_read(oct_hw, &oct_hw->notify_off_multiplier, 4, pos + sizeof(cap)); oct_hw->notify_base = octep_get_cap_addr(oct_hw, &cap); oct_hw->notify_bar = cap.bar; oct_hw->notify_base_pa = pci_resource_start(pdev, cap.bar) + le32_to_cpu(cap.offset); break; case VIRTIO_PCI_CAP_DEVICE_CFG: oct_hw->dev_cfg = octep_get_cap_addr(oct_hw, &cap); break; case VIRTIO_PCI_CAP_ISR_CFG: oct_hw->isr = octep_get_cap_addr(oct_hw, &cap); break; } pos = cap.cap_next; } if (!oct_hw->common_cfg || !oct_hw->notify_base || !oct_hw->dev_cfg || !oct_hw->isr) { dev_err(dev, "Incomplete PCI capabilities"); return -EIO; } dev_info(dev, "common cfg mapped at: 0x%016llx\n", (u64)(uintptr_t)oct_hw->common_cfg); dev_info(dev, "device cfg mapped at: 0x%016llx\n", (u64)(uintptr_t)oct_hw->dev_cfg); dev_info(dev, "isr cfg mapped at: 0x%016llx\n", (u64)(uintptr_t)oct_hw->isr); dev_info(dev, "notify base: 0x%016llx, notify off multiplier: %u\n", (u64)(uintptr_t)oct_hw->notify_base, oct_hw->notify_off_multiplier); oct_hw->config_size = octep_get_config_size(oct_hw); oct_hw->features = octep_hw_get_dev_features(oct_hw); ret = octep_verify_features(oct_hw->features); if (ret) { dev_err(&pdev->dev, "Couldn't read features from the device FW\n"); return ret; } oct_hw->nr_vring = vp_ioread16(&oct_hw->common_cfg->num_queues); oct_hw->vqs = devm_kcalloc(&pdev->dev, oct_hw->nr_vring, sizeof(*oct_hw->vqs), GFP_KERNEL); if (!oct_hw->vqs) return -ENOMEM; oct_hw->irq = -1; dev_info(&pdev->dev, "Device features : %llx\n", oct_hw->features); dev_info(&pdev->dev, "Maximum queues : %u\n", oct_hw->nr_vring); for (i = 0; i < oct_hw->nr_vring; i++) { octep_write_queue_select(oct_hw, i); notify_off = vp_ioread16(&oct_hw->common_cfg->queue_notify_off); oct_hw->vqs[i].notify_addr = oct_hw->notify_base + notify_off * oct_hw->notify_off_multiplier; oct_hw->vqs[i].cb_notify_addr = (u32 __iomem *)oct_hw->vqs[i].notify_addr + 1; oct_hw->vqs[i].notify_pa = oct_hw->notify_base_pa + notify_off * oct_hw->notify_off_multiplier; } mbox = octep_get_mbox(oct_hw); octep_mbox_init(mbox); dev_info(dev, "mbox mapped at: 0x%016llx\n", (u64)(uintptr_t)mbox); return 0; }