/******************************************************************************* Copyright(c) 1999 - 2004 Intel Corporation. All rights reserved. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. The full GNU General Public License is included in this distribution in the file called LICENSE. Contact Information: Linux NICS Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 *******************************************************************************/ /* * e100.c: Intel(R) PRO/100 ethernet driver * * (Re)written 2003 by scott.feldman@intel.com. Based loosely on * original e100 driver, but better described as a munging of * e100, e1000, eepro100, tg3, 8139cp, and other drivers. * * References: * Intel 8255x 10/100 Mbps Ethernet Controller Family, * Open Source Software Developers Manual, * http://sourceforge.net/projects/e1000 * * * Theory of Operation * * I. General * * The driver supports Intel(R) 10/100 Mbps PCI Fast Ethernet * controller family, which includes the 82557, 82558, 82559, 82550, * 82551, and 82562 devices. 82558 and greater controllers * integrate the Intel 82555 PHY. The controllers are used in * server and client network interface cards, as well as in * LAN-On-Motherboard (LOM), CardBus, MiniPCI, and ICHx * configurations. 8255x supports a 32-bit linear addressing * mode and operates at 33Mhz PCI clock rate. * * II. Driver Operation * * Memory-mapped mode is used exclusively to access the device's * shared-memory structure, the Control/Status Registers (CSR). All * setup, configuration, and control of the device, including queuing * of Tx, Rx, and configuration commands is through the CSR. * cmd_lock serializes accesses to the CSR command register. cb_lock * protects the shared Command Block List (CBL). * * 8255x is highly MII-compliant and all access to the PHY go * through the Management Data Interface (MDI). Consequently, the * driver leverages the mii.c library shared with other MII-compliant * devices. * * Big- and Little-Endian byte order as well as 32- and 64-bit * archs are supported. Weak-ordered memory and non-cache-coherent * archs are supported. * * III. Transmit * * A Tx skb is mapped and hangs off of a TCB. TCBs are linked * together in a fixed-size ring (CBL) thus forming the flexible mode * memory structure. A TCB marked with the suspend-bit indicates * the end of the ring. The last TCB processed suspends the * controller, and the controller can be restarted by issue a CU * resume command to continue from the suspend point, or a CU start * command to start at a given position in the ring. * * Non-Tx commands (config, multicast setup, etc) are linked * into the CBL ring along with Tx commands. The common structure * used for both Tx and non-Tx commands is the Command Block (CB). * * cb_to_use is the next CB to use for queuing a command; cb_to_clean * is the next CB to check for completion; cb_to_send is the first * CB to start on in case of a previous failure to resume. CB clean * up happens in interrupt context in response to a CU interrupt. * cbs_avail keeps track of number of free CB resources available. * * Hardware padding of short packets to minimum packet size is * enabled. 82557 pads with 7Eh, while the later controllers pad * with 00h. * * IV. Recieve * * The Receive Frame Area (RFA) comprises a ring of Receive Frame * Descriptors (RFD) + data buffer, thus forming the simplified mode * memory structure. Rx skbs are allocated to contain both the RFD * and the data buffer, but the RFD is pulled off before the skb is * indicated. The data buffer is aligned such that encapsulated * protocol headers are u32-aligned. Since the RFD is part of the * mapped shared memory, and completion status is contained within * the RFD, the RFD must be dma_sync'ed to maintain a consistent * view from software and hardware. * * Under typical operation, the receive unit (RU) is start once, * and the controller happily fills RFDs as frames arrive. If * replacement RFDs cannot be allocated, or the RU goes non-active, * the RU must be restarted. Frame arrival generates an interrupt, * and Rx indication and re-allocation happen in the same context, * therefore no locking is required. A software-generated interrupt * is generated from the watchdog to recover from a failed allocation * senario where all Rx resources have been indicated and none re- * placed. * * V. Miscellaneous * * VLAN offloading of tagging, stripping and filtering is not * supported, but driver will accommodate the extra 4-byte VLAN tag * for processing by upper layers. Tx/Rx Checksum offloading is not * supported. Tx Scatter/Gather is not supported. Jumbo Frames is * not supported (hardware limitation). * * MagicPacket(tm) WoL support is enabled/disabled via ethtool. * * Thanks to JC (jchapman@katalix.com) for helping with * testing/troubleshooting the development driver. * * TODO: * o several entry points race with dev->close * o check for tx-no-resources/stop Q races with tx clean/wake Q */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define DRV_NAME "e100" #define DRV_EXT "-NAPI" #define DRV_VERSION "3.4.8-k2"DRV_EXT #define DRV_DESCRIPTION "Intel(R) PRO/100 Network Driver" #define DRV_COPYRIGHT "Copyright(c) 1999-2005 Intel Corporation" #define PFX DRV_NAME ": " #define E100_WATCHDOG_PERIOD (2 * HZ) #define E100_NAPI_WEIGHT 16 MODULE_DESCRIPTION(DRV_DESCRIPTION); MODULE_AUTHOR(DRV_COPYRIGHT); MODULE_LICENSE("GPL"); MODULE_VERSION(DRV_VERSION); static int debug = 3; module_param(debug, int, 0); MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)"); #define DPRINTK(nlevel, klevel, fmt, args...) \ (void)((NETIF_MSG_##nlevel & nic->msg_enable) && \ printk(KERN_##klevel PFX "%s: %s: " fmt, nic->netdev->name, \ __FUNCTION__ , ## args)) #define INTEL_8255X_ETHERNET_DEVICE(device_id, ich) {\ PCI_VENDOR_ID_INTEL, device_id, PCI_ANY_ID, PCI_ANY_ID, \ PCI_CLASS_NETWORK_ETHERNET << 8, 0xFFFF00, ich } static struct pci_device_id e100_id_table[] = { INTEL_8255X_ETHERNET_DEVICE(0x1029, 0), INTEL_8255X_ETHERNET_DEVICE(0x1030, 0), INTEL_8255X_ETHERNET_DEVICE(0x1031, 3), INTEL_8255X_ETHERNET_DEVICE(0x1032, 3), INTEL_8255X_ETHERNET_DEVICE(0x1033, 3), INTEL_8255X_ETHERNET_DEVICE(0x1034, 3), INTEL_8255X_ETHERNET_DEVICE(0x1038, 3), INTEL_8255X_ETHERNET_DEVICE(0x1039, 4), INTEL_8255X_ETHERNET_DEVICE(0x103A, 4), INTEL_8255X_ETHERNET_DEVICE(0x103B, 4), INTEL_8255X_ETHERNET_DEVICE(0x103C, 4), INTEL_8255X_ETHERNET_DEVICE(0x103D, 4), INTEL_8255X_ETHERNET_DEVICE(0x103E, 4), INTEL_8255X_ETHERNET_DEVICE(0x1050, 5), INTEL_8255X_ETHERNET_DEVICE(0x1051, 5), INTEL_8255X_ETHERNET_DEVICE(0x1052, 5), INTEL_8255X_ETHERNET_DEVICE(0x1053, 5), INTEL_8255X_ETHERNET_DEVICE(0x1054, 5), INTEL_8255X_ETHERNET_DEVICE(0x1055, 5), INTEL_8255X_ETHERNET_DEVICE(0x1056, 5), INTEL_8255X_ETHERNET_DEVICE(0x1057, 5), INTEL_8255X_ETHERNET_DEVICE(0x1059, 0), INTEL_8255X_ETHERNET_DEVICE(0x1064, 6), INTEL_8255X_ETHERNET_DEVICE(0x1065, 6), INTEL_8255X_ETHERNET_DEVICE(0x1066, 6), INTEL_8255X_ETHERNET_DEVICE(0x1067, 6), INTEL_8255X_ETHERNET_DEVICE(0x1068, 6), INTEL_8255X_ETHERNET_DEVICE(0x1069, 6), INTEL_8255X_ETHERNET_DEVICE(0x106A, 6), INTEL_8255X_ETHERNET_DEVICE(0x106B, 6), INTEL_8255X_ETHERNET_DEVICE(0x1091, 7), INTEL_8255X_ETHERNET_DEVICE(0x1092, 7), INTEL_8255X_ETHERNET_DEVICE(0x1093, 7), INTEL_8255X_ETHERNET_DEVICE(0x1094, 7), INTEL_8255X_ETHERNET_DEVICE(0x1095, 7), INTEL_8255X_ETHERNET_DEVICE(0x1209, 0), INTEL_8255X_ETHERNET_DEVICE(0x1229, 0), INTEL_8255X_ETHERNET_DEVICE(0x2449, 2), INTEL_8255X_ETHERNET_DEVICE(0x2459, 2), INTEL_8255X_ETHERNET_DEVICE(0x245D, 2), INTEL_8255X_ETHERNET_DEVICE(0x27DC, 7), { 0, } }; MODULE_DEVICE_TABLE(pci, e100_id_table); enum mac { mac_82557_D100_A = 0, mac_82557_D100_B = 1, mac_82557_D100_C = 2, mac_82558_D101_A4 = 4, mac_82558_D101_B0 = 5, mac_82559_D101M = 8, mac_82559_D101S = 9, mac_82550_D102 = 12, mac_82550_D102_C = 13, mac_82551_E = 14, mac_82551_F = 15, mac_82551_10 = 16, mac_unknown = 0xFF, }; enum phy { phy_100a = 0x000003E0, phy_100c = 0x035002A8, phy_82555_tx = 0x015002A8, phy_nsc_tx = 0x5C002000, phy_82562_et = 0x033002A8, phy_82562_em = 0x032002A8, phy_82562_ek = 0x031002A8, phy_82562_eh = 0x017002A8, phy_unknown = 0xFFFFFFFF, }; /* CSR (Control/Status Registers) */ struct csr { struct { u8 status; u8 stat_ack; u8 cmd_lo; u8 cmd_hi; u32 gen_ptr; } scb; u32 port; u16 flash_ctrl; u8 eeprom_ctrl_lo; u8 eeprom_ctrl_hi; u32 mdi_ctrl; u32 rx_dma_count; }; enum scb_status { rus_ready = 0x10, rus_mask = 0x3C, }; enum ru_state { RU_SUSPENDED = 0, RU_RUNNING = 1, RU_UNINITIALIZED = -1, }; enum scb_stat_ack { stat_ack_not_ours = 0x00, stat_ack_sw_gen = 0x04, stat_ack_rnr = 0x10, stat_ack_cu_idle = 0x20, stat_ack_frame_rx = 0x40, stat_ack_cu_cmd_done = 0x80, stat_ack_not_present = 0xFF, stat_ack_rx = (stat_ack_sw_gen | stat_ack_rnr | stat_ack_frame_rx), stat_ack_tx = (stat_ack_cu_idle | stat_ack_cu_cmd_done), }; enum scb_cmd_hi { irq_mask_none = 0x00, irq_mask_all = 0x01, irq_sw_gen = 0x02, }; enum scb_cmd_lo { cuc_nop = 0x00, ruc_start = 0x01, ruc_load_base = 0x06, cuc_start = 0x10, cuc_resume = 0x20, cuc_dump_addr = 0x40, cuc_dump_stats = 0x50, cuc_load_base = 0x60, cuc_dump_reset = 0x70, }; enum cuc_dump { cuc_dump_complete = 0x0000A005, cuc_dump_reset_complete = 0x0000A007, }; enum port { software_reset = 0x0000, selftest = 0x0001, selective_reset = 0x0002, }; enum eeprom_ctrl_lo { eesk = 0x01, eecs = 0x02, eedi = 0x04, eedo = 0x08, }; enum mdi_ctrl { mdi_write = 0x04000000, mdi_read = 0x08000000, mdi_ready = 0x10000000, }; enum eeprom_op { op_write = 0x05, op_read = 0x06, op_ewds = 0x10, op_ewen = 0x13, }; enum eeprom_offsets { eeprom_cnfg_mdix = 0x03, eeprom_id = 0x0A, eeprom_config_asf = 0x0D, eeprom_smbus_addr = 0x90, }; enum eeprom_cnfg_mdix { eeprom_mdix_enabled = 0x0080, }; enum eeprom_id { eeprom_id_wol = 0x0020, }; enum eeprom_config_asf { eeprom_asf = 0x8000, eeprom_gcl = 0x4000, }; enum cb_status { cb_complete = 0x8000, cb_ok = 0x2000, }; enum cb_command { cb_nop = 0x0000, cb_iaaddr = 0x0001, cb_config = 0x0002, cb_multi = 0x0003, cb_tx = 0x0004, cb_ucode = 0x0005, cb_dump = 0x0006, cb_tx_sf = 0x0008, cb_cid = 0x1f00, cb_i = 0x2000, cb_s = 0x4000, cb_el = 0x8000, }; struct rfd { u16 status; u16 command; u32 link; u32 rbd; u16 actual_size; u16 size; }; struct rx { struct rx *next, *prev; struct sk_buff *skb; dma_addr_t dma_addr; }; #if defined(__BIG_ENDIAN_BITFIELD) #define X(a,b) b,a #else #define X(a,b) a,b #endif struct config { /*0*/ u8 X(byte_count:6, pad0:2); /*1*/ u8 X(X(rx_fifo_limit:4, tx_fifo_limit:3), pad1:1); /*2*/ u8 adaptive_ifs; /*3*/ u8 X(X(X(X(mwi_enable:1, type_enable:1), read_align_enable:1), term_write_cache_line:1), pad3:4); /*4*/ u8 X(rx_dma_max_count:7, pad4:1); /*5*/ u8 X(tx_dma_max_count:7, dma_max_count_enable:1); /*6*/ u8 X(X(X(X(X(X(X(late_scb_update:1, direct_rx_dma:1), tno_intr:1), cna_intr:1), standard_tcb:1), standard_stat_counter:1), rx_discard_overruns:1), rx_save_bad_frames:1); /*7*/ u8 X(X(X(X(X(rx_discard_short_frames:1, tx_underrun_retry:2), pad7:2), rx_extended_rfd:1), tx_two_frames_in_fifo:1), tx_dynamic_tbd:1); /*8*/ u8 X(X(mii_mode:1, pad8:6), csma_disabled:1); /*9*/ u8 X(X(X(X(X(rx_tcpudp_checksum:1, pad9:3), vlan_arp_tco:1), link_status_wake:1), arp_wake:1), mcmatch_wake:1); /*10*/ u8 X(X(X(pad10:3, no_source_addr_insertion:1), preamble_length:2), loopback:2); /*11*/ u8 X(linear_priority:3, pad11:5); /*12*/ u8 X(X(linear_priority_mode:1, pad12:3), ifs:4); /*13*/ u8 ip_addr_lo; /*14*/ u8 ip_addr_hi; /*15*/ u8 X(X(X(X(X(X(X(promiscuous_mode:1, broadcast_disabled:1), wait_after_win:1), pad15_1:1), ignore_ul_bit:1), crc_16_bit:1), pad15_2:1), crs_or_cdt:1); /*16*/ u8 fc_delay_lo; /*17*/ u8 fc_delay_hi; /*18*/ u8 X(X(X(X(X(rx_stripping:1, tx_padding:1), rx_crc_transfer:1), rx_long_ok:1), fc_priority_threshold:3), pad18:1); /*19*/ u8 X(X(X(X(X(X(X(addr_wake:1, magic_packet_disable:1), fc_disable:1), fc_restop:1), fc_restart:1), fc_reject:1), full_duplex_force:1), full_duplex_pin:1); /*20*/ u8 X(X(X(pad20_1:5, fc_priority_location:1), multi_ia:1), pad20_2:1); /*21*/ u8 X(X(pad21_1:3, multicast_all:1), pad21_2:4); /*22*/ u8 X(X(rx_d102_mode:1, rx_vlan_drop:1), pad22:6); u8 pad_d102[9]; }; #define E100_MAX_MULTICAST_ADDRS 64 struct multi { u16 count; u8 addr[E100_MAX_MULTICAST_ADDRS * ETH_ALEN + 2/*pad*/]; }; /* Important: keep total struct u32-aligned */ #define UCODE_SIZE 134 struct cb { u16 status; u16 command; u32 link; union { u8 iaaddr[ETH_ALEN]; u32 ucode[UCODE_SIZE]; struct config config; struct multi multi; struct { u32 tbd_array; u16 tcb_byte_count; u8 threshold; u8 tbd_count; struct { u32 buf_addr; u16 size; u16 eol; } tbd; } tcb; u32 dump_buffer_addr; } u; struct cb *next, *prev; dma_addr_t dma_addr; struct sk_buff *skb; }; enum loopback { lb_none = 0, lb_mac = 1, lb_phy = 3, }; struct stats { u32 tx_good_frames, tx_max_collisions, tx_late_collisions, tx_underruns, tx_lost_crs, tx_deferred, tx_single_collisions, tx_multiple_collisions, tx_total_collisions; u32 rx_good_frames, rx_crc_errors, rx_alignment_errors, rx_resource_errors, rx_overrun_errors, rx_cdt_errors, rx_short_frame_errors; u32 fc_xmt_pause, fc_rcv_pause, fc_rcv_unsupported; u16 xmt_tco_frames, rcv_tco_frames; u32 complete; }; struct mem { struct { u32 signature; u32 result; } selftest; struct stats stats; u8 dump_buf[596]; }; struct param_range { u32 min; u32 max; u32 count; }; struct params { struct param_range rfds; struct param_range cbs; }; struct nic { /* Begin: frequently used values: keep adjacent for cache effect */ u32 msg_enable ____cacheline_aligned; struct net_device *netdev; struct pci_dev *pdev; struct rx *rxs ____cacheline_aligned; struct rx *rx_to_use; struct rx *rx_to_clean; struct rfd blank_rfd; enum ru_state ru_running; spinlock_t cb_lock ____cacheline_aligned; spinlock_t cmd_lock; struct csr __iomem *csr; enum scb_cmd_lo cuc_cmd; unsigned int cbs_avail; struct cb *cbs; struct cb *cb_to_use; struct cb *cb_to_send; struct cb *cb_to_clean; u16 tx_command; /* End: frequently used values: keep adjacent for cache effect */ enum { ich = (1 << 0), promiscuous = (1 << 1), multicast_all = (1 << 2), wol_magic = (1 << 3), ich_10h_workaround = (1 << 4), } flags ____cacheline_aligned; enum mac mac; enum phy phy; struct params params; struct net_device_stats net_stats; struct timer_list watchdog; struct timer_list blink_timer; struct mii_if_info mii; struct work_struct tx_timeout_task; enum loopback loopback; struct mem *mem; dma_addr_t dma_addr; dma_addr_t cbs_dma_addr; u8 adaptive_ifs; u8 tx_threshold; u32 tx_frames; u32 tx_collisions; u32 tx_deferred; u32 tx_single_collisions; u32 tx_multiple_collisions; u32 tx_fc_pause; u32 tx_tco_frames; u32 rx_fc_pause; u32 rx_fc_unsupported; u32 rx_tco_frames; u32 rx_over_length_errors; u8 rev_id; u16 leds; u16 eeprom_wc; u16 eeprom[256]; }; static inline void e100_write_flush(struct nic *nic) { /* Flush previous PCI writes through intermediate bridges * by doing a benign read */ (void)readb(&nic->csr->scb.status); } static inline void e100_enable_irq(struct nic *nic) { unsigned long flags; spin_lock_irqsave(&nic->cmd_lock, flags); writeb(irq_mask_none, &nic->csr->scb.cmd_hi); spin_unlock_irqrestore(&nic->cmd_lock, flags); e100_write_flush(nic); } static inline void e100_disable_irq(struct nic *nic) { unsigned long flags; spin_lock_irqsave(&nic->cmd_lock, flags); writeb(irq_mask_all, &nic->csr->scb.cmd_hi); spin_unlock_irqrestore(&nic->cmd_lock, flags); e100_write_flush(nic); } static void e100_hw_reset(struct nic *nic) { /* Put CU and RU into idle with a selective reset to get * device off of PCI bus */ writel(selective_reset, &nic->csr->port); e100_write_flush(nic); udelay(20); /* Now fully reset device */ writel(software_reset, &nic->csr->port); e100_write_flush(nic); udelay(20); /* Mask off our interrupt line - it's unmasked after reset */ e100_disable_irq(nic); } static int e100_self_test(struct nic *nic) { u32 dma_addr = nic->dma_addr + offsetof(struct mem, selftest); /* Passing the self-test is a pretty good indication * that the device can DMA to/from host memory */ nic->mem->selftest.signature = 0; nic->mem->selftest.result = 0xFFFFFFFF; writel(selftest | dma_addr, &nic->csr->port); e100_write_flush(nic); /* Wait 10 msec for self-test to complete */ msleep(10); /* Interrupts are enabled after self-test */ e100_disable_irq(nic); /* Check results of self-test */ if(nic->mem->selftest.result != 0) { DPRINTK(HW, ERR, "Self-test failed: result=0x%08X\n", nic->mem->selftest.result); return -ETIMEDOUT; } if(nic->mem->selftest.signature == 0) { DPRINTK(HW, ERR, "Self-test failed: timed out\n"); return -ETIMEDOUT; } return 0; } static void e100_eeprom_write(struct nic *nic, u16 addr_len, u16 addr, u16 data) { u32 cmd_addr_data[3]; u8 ctrl; int i, j; /* Three cmds: write/erase enable, write data, write/erase disable */ cmd_addr_data[0] = op_ewen << (addr_len - 2); cmd_addr_data[1] = (((op_write << addr_len) | addr) << 16) | cpu_to_le16(data); cmd_addr_data[2] = op_ewds << (addr_len - 2); /* Bit-bang cmds to write word to eeprom */ for(j = 0; j < 3; j++) { /* Chip select */ writeb(eecs | eesk, &nic->csr->eeprom_ctrl_lo); e100_write_flush(nic); udelay(4); for(i = 31; i >= 0; i--) { ctrl = (cmd_addr_data[j] & (1 << i)) ? eecs | eedi : eecs; writeb(ctrl, &nic->csr->eeprom_ctrl_lo); e100_write_flush(nic); udelay(4); writeb(ctrl | eesk, &nic->csr->eeprom_ctrl_lo); e100_write_flush(nic); udelay(4); } /* Wait 10 msec for cmd to complete */ msleep(10); /* Chip deselect */ writeb(0, &nic->csr->eeprom_ctrl_lo); e100_write_flush(nic); udelay(4); } }; /* General technique stolen from the eepro100 driver - very clever */ static u16 e100_eeprom_read(struct nic *nic, u16 *addr_len, u16 addr) { u32 cmd_addr_data; u16 data = 0; u8 ctrl; int i; cmd_addr_data = ((op_read << *addr_len) | addr) << 16; /* Chip select */ writeb(eecs | eesk, &nic->csr->eeprom_ctrl_lo); e100_write_flush(nic); udelay(4); /* Bit-bang to read word from eeprom */ for(i = 31; i >= 0; i--) { ctrl = (cmd_addr_data & (1 << i)) ? eecs | eedi : eecs; writeb(ctrl, &nic->csr->eeprom_ctrl_lo); e100_write_flush(nic); udelay(4); writeb(ctrl | eesk, &nic->csr->eeprom_ctrl_lo); e100_write_flush(nic); udelay(4); /* Eeprom drives a dummy zero to EEDO after receiving * complete address. Use this to adjust addr_len. */ ctrl = readb(&nic->csr->eeprom_ctrl_lo); if(!(ctrl & eedo) && i > 16) { *addr_len -= (i - 16); i = 17; } data = (data << 1) | (ctrl & eedo ? 1 : 0); } /* Chip deselect */ writeb(0, &nic->csr->eeprom_ctrl_lo); e100_write_flush(nic); udelay(4); return le16_to_cpu(data); }; /* Load entire EEPROM image into driver cache and validate checksum */ static int e100_eeprom_load(struct nic *nic) { u16 addr, addr_len = 8, checksum = 0; /* Try reading with an 8-bit addr len to discover actual addr len */ e100_eeprom_read(nic, &addr_len, 0); nic->eeprom_wc = 1 << addr_len; for(addr = 0; addr < nic->eeprom_wc; addr++) { nic->eeprom[addr] = e100_eeprom_read(nic, &addr_len, addr); if(addr < nic->eeprom_wc - 1) checksum += cpu_to_le16(nic->eeprom[addr]); } /* The checksum, stored in the last word, is calculated such that * the sum of words should be 0xBABA */ checksum = le16_to_cpu(0xBABA - checksum); if(checksum != nic->eeprom[nic->eeprom_wc - 1]) { DPRINTK(PROBE, ERR, "EEPROM corrupted\n"); return -EAGAIN; } return 0; } /* Save (portion of) driver EEPROM cache to device and update checksum */ static int e100_eeprom_save(struct nic *nic, u16 start, u16 count) { u16 addr, addr_len = 8, checksum = 0; /* Try reading with an 8-bit addr len to discover actual addr len */ e100_eeprom_read(nic, &addr_len, 0); nic->eeprom_wc = 1 << addr_len; if(start + count >= nic->eeprom_wc) return -EINVAL; for(addr = start; addr < start + count; addr++) e100_eeprom_write(nic, addr_len, addr, nic->eeprom[addr]); /* The checksum, stored in the last word, is calculated such that * the sum of words should be 0xBABA */ for(addr = 0; addr < nic->eeprom_wc - 1; addr++) checksum += cpu_to_le16(nic->eeprom[addr]); nic->eeprom[nic->eeprom_wc - 1] = le16_to_cpu(0xBABA - checksum); e100_eeprom_write(nic, addr_len, nic->eeprom_wc - 1, nic->eeprom[nic->eeprom_wc - 1]); return 0; } #define E100_WAIT_SCB_TIMEOUT 20000 /* we might have to wait 100ms!!! */ #define E100_WAIT_SCB_FAST 20 /* delay like the old code */ static inline int e100_exec_cmd(struct nic *nic, u8 cmd, dma_addr_t dma_addr) { unsigned long flags; unsigned int i; int err = 0; spin_lock_irqsave(&nic->cmd_lock, flags); /* Previous command is accepted when SCB clears */ for(i = 0; i < E100_WAIT_SCB_TIMEOUT; i++) { if(likely(!readb(&nic->csr->scb.cmd_lo))) break; cpu_relax(); if(unlikely(i > E100_WAIT_SCB_FAST)) udelay(5); } if(unlikely(i == E100_WAIT_SCB_TIMEOUT)) { err = -EAGAIN; goto err_unlock; } if(unlikely(cmd != cuc_resume)) writel(dma_addr, &nic->csr->scb.gen_ptr); writeb(cmd, &nic->csr->scb.cmd_lo); err_unlock: spin_unlock_irqrestore(&nic->cmd_lock, flags); return err; } static inline int e100_exec_cb(struct nic *nic, struct sk_buff *skb, void (*cb_prepare)(struct nic *, struct cb *, struct sk_buff *)) { struct cb *cb; unsigned long flags; int err = 0; spin_lock_irqsave(&nic->cb_lock, flags); if(unlikely(!nic->cbs_avail)) { err = -ENOMEM; goto err_unlock; } cb = nic->cb_to_use; nic->cb_to_use = cb->next; nic->cbs_avail--; cb->skb = skb; if(unlikely(!nic->cbs_avail)) err = -ENOSPC; cb_prepare(nic, cb, skb); /* Order is important otherwise we'll be in a race with h/w: * set S-bit in current first, then clear S-bit in previous. */ cb->command |= cpu_to_le16(cb_s); wmb(); cb->prev->command &= cpu_to_le16(~cb_s); while(nic->cb_to_send != nic->cb_to_use) { if(unlikely(e100_exec_cmd(nic, nic->cuc_cmd, nic->cb_to_send->dma_addr))) { /* Ok, here's where things get sticky. It's * possible that we can't schedule the command * because the controller is too busy, so * let's just queue the command and try again * when another command is scheduled. */ if(err == -ENOSPC) { //request a reset schedule_work(&nic->tx_timeout_task); } break; } else { nic->cuc_cmd = cuc_resume; nic->cb_to_send = nic->cb_to_send->next; } } err_unlock: spin_unlock_irqrestore(&nic->cb_lock, flags); return err; } static u16 mdio_ctrl(struct nic *nic, u32 addr, u32 dir, u32 reg, u16 data) { u32 data_out = 0; unsigned int i; writel((reg << 16) | (addr << 21) | dir | data, &nic->csr->mdi_ctrl); for(i = 0; i < 100; i++) { udelay(20); if((data_out = readl(&nic->csr->mdi_ctrl)) & mdi_ready) break; } DPRINTK(HW, DEBUG, "%s:addr=%d, reg=%d, data_in=0x%04X, data_out=0x%04X\n", dir == mdi_read ? "READ" : "WRITE", addr, reg, data, data_out); return (u16)data_out; } static int mdio_read(struct net_device *netdev, int addr, int reg) { return mdio_ctrl(netdev_priv(netdev), addr, mdi_read, reg, 0); } static void mdio_write(struct net_device *netdev, int addr, int reg, int data) { mdio_ctrl(netdev_priv(netdev), addr, mdi_write, reg, data); } static void e100_get_defaults(struct nic *nic) { struct param_range rfds = { .min = 16, .max = 256, .count = 64 }; struct param_range cbs = { .min = 64, .max = 256, .count = 64 }; pci_read_config_byte(nic->pdev, PCI_REVISION_ID, &nic->rev_id); /* MAC type is encoded as rev ID; exception: ICH is treated as 82559 */ nic->mac = (nic->flags & ich) ? mac_82559_D101M : nic->rev_id; if(nic->mac == mac_unknown) nic->mac = mac_82557_D100_A; nic->params.rfds = rfds; nic->params.cbs = cbs; /* Quadwords to DMA into FIFO before starting frame transmit */ nic->tx_threshold = 0xE0; /* no interrupt for every tx completion, delay = 256us if not 557*/ nic->tx_command = cpu_to_le16(cb_tx | cb_tx_sf | ((nic->mac >= mac_82558_D101_A4) ? cb_cid : cb_i)); /* Template for a freshly allocated RFD */ nic->blank_rfd.command = cpu_to_le16(cb_el); nic->blank_rfd.rbd = 0xFFFFFFFF; nic->blank_rfd.size = cpu_to_le16(VLAN_ETH_FRAME_LEN); /* MII setup */ nic->mii.phy_id_mask = 0x1F; nic->mii.reg_num_mask = 0x1F; nic->mii.dev = nic->netdev; nic->mii.mdio_read = mdio_read; nic->mii.mdio_write = mdio_write; } static void e100_configure(struct nic *nic, struct cb *cb, struct sk_buff *skb) { struct config *config = &cb->u.config; u8 *c = (u8 *)config; cb->command = cpu_to_le16(cb_config); memset(config, 0, sizeof(struct config)); config->byte_count = 0x16; /* bytes in this struct */ config->rx_fifo_limit = 0x8; /* bytes in FIFO before DMA */ config->direct_rx_dma = 0x1; /* reserved */ config->standard_tcb = 0x1; /* 1=standard, 0=extended */ config->standard_stat_counter = 0x1; /* 1=standard, 0=extended */ config->rx_discard_short_frames = 0x1; /* 1=discard, 0=pass */ config->tx_underrun_retry = 0x3; /* # of underrun retries */ config->mii_mode = 0x1; /* 1=MII mode, 0=503 mode */ config->pad10 = 0x6; config->no_source_addr_insertion = 0x1; /* 1=no, 0=yes */ config->preamble_length = 0x2; /* 0=1, 1=3, 2=7, 3=15 bytes */ config->ifs = 0x6; /* x16 = inter frame spacing */ config->ip_addr_hi = 0xF2; /* ARP IP filter - not used */ config->pad15_1 = 0x1; config->pad15_2 = 0x1; config->crs_or_cdt = 0x0; /* 0=CRS only, 1=CRS or CDT */ config->fc_delay_hi = 0x40; /* time delay for fc frame */ config->tx_padding = 0x1; /* 1=pad short frames */ config->fc_priority_threshold = 0x7; /* 7=priority fc disabled */ config->pad18 = 0x1; config->full_duplex_pin = 0x1; /* 1=examine FDX# pin */ config->pad20_1 = 0x1F; config->fc_priority_location = 0x1; /* 1=byte#31, 0=byte#19 */ config->pad21_1 = 0x5; config->adaptive_ifs = nic->adaptive_ifs; config->loopback = nic->loopback; if(nic->mii.force_media && nic->mii.full_duplex) config->full_duplex_force = 0x1; /* 1=force, 0=auto */ if(nic->flags & promiscuous || nic->loopback) { config->rx_save_bad_frames = 0x1; /* 1=save, 0=discard */ config->rx_discard_short_frames = 0x0; /* 1=discard, 0=save */ config->promiscuous_mode = 0x1; /* 1=on, 0=off */ } if(nic->flags & multicast_all) config->multicast_all = 0x1; /* 1=accept, 0=no */ /* disable WoL when up */ if(netif_running(nic->netdev) || !(nic->flags & wol_magic)) config->magic_packet_disable = 0x1; /* 1=off, 0=on */ if(nic->mac >= mac_82558_D101_A4) { config->fc_disable = 0x1; /* 1=Tx fc off, 0=Tx fc on */ config->mwi_enable = 0x1; /* 1=enable, 0=disable */ config->standard_tcb = 0x0; /* 1=standard, 0=extended */ config->rx_long_ok = 0x1; /* 1=VLANs ok, 0=standard */ if(nic->mac >= mac_82559_D101M) config->tno_intr = 0x1; /* TCO stats enable */ else config->standard_stat_counter = 0x0; } DPRINTK(HW, DEBUG, "[00-07]=%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n", c[0], c[1], c[2], c[3], c[4], c[5], c[6], c[7]); DPRINTK(HW, DEBUG, "[08-15]=%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n", c[8], c[9], c[10], c[11], c[12], c[13], c[14], c[15]); DPRINTK(HW, DEBUG, "[16-23]=%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n", c[16], c[17], c[18], c[19], c[20], c[21], c[22], c[23]); } static void e100_load_ucode(struct nic *nic, struct cb *cb, struct sk_buff *skb) { int i; static const u32 ucode[UCODE_SIZE] = { /* NFS packets are misinterpreted as TCO packets and * incorrectly routed to the BMC over SMBus. This * microcode patch checks the fragmented IP bit in the * NFS/UDP header to distinguish between NFS and TCO. */ 0x0EF70E36, 0x1FFF1FFF, 0x1FFF1FFF, 0x1FFF1FFF, 0x1FFF1FFF, 0x1FFF1FFF, 0x00906E41, 0x00800E3C, 0x00E00E39, 0x00000000, 0x00906EFD, 0x00900EFD, 0x00E00EF8, }; if(nic->mac == mac_82551_F || nic->mac == mac_82551_10) { for(i = 0; i < UCODE_SIZE; i++) cb->u.ucode[i] = cpu_to_le32(ucode[i]); cb->command = cpu_to_le16(cb_ucode); } else cb->command = cpu_to_le16(cb_nop); } static void e100_setup_iaaddr(struct nic *nic, struct cb *cb, struct sk_buff *skb) { cb->command = cpu_to_le16(cb_iaaddr); memcpy(cb->u.iaaddr, nic->netdev->dev_addr, ETH_ALEN); } static void e100_dump(struct nic *nic, struct cb *cb, struct sk_buff *skb) { cb->command = cpu_to_le16(cb_dump); cb->u.dump_buffer_addr = cpu_to_le32(nic->dma_addr + offsetof(struct mem, dump_buf)); } #define NCONFIG_AUTO_SWITCH 0x0080 #define MII_NSC_CONG MII_RESV1 #define NSC_CONG_ENABLE 0x0100 #define NSC_CONG_TXREADY 0x0400 #define ADVERTISE_FC_SUPPORTED 0x0400 static int e100_phy_init(struct nic *nic) { struct net_device *netdev = nic->netdev; u32 addr; u16 bmcr, stat, id_lo, id_hi, cong; /* Discover phy addr by searching addrs in order {1,0,2,..., 31} */ for(addr = 0; addr < 32; addr++) { nic->mii.phy_id = (addr == 0) ? 1 : (addr == 1) ? 0 : addr; bmcr = mdio_read(netdev, nic->mii.phy_id, MII_BMCR); stat = mdio_read(netdev, nic->mii.phy_id, MII_BMSR); stat = mdio_read(netdev, nic->mii.phy_id, MII_BMSR); if(!((bmcr == 0xFFFF) || ((stat == 0) && (bmcr == 0)))) break; } DPRINTK(HW, DEBUG, "phy_addr = %d\n", nic->mii.phy_id); if(addr == 32) return -EAGAIN; /* Selected the phy and isolate the rest */ for(addr = 0; addr < 32; addr++) { if(addr != nic->mii.phy_id) { mdio_write(netdev, addr, MII_BMCR, BMCR_ISOLATE); } else { bmcr = mdio_read(netdev, addr, MII_BMCR); mdio_write(netdev, addr, MII_BMCR, bmcr & ~BMCR_ISOLATE); } } /* Get phy ID */ id_lo = mdio_read(netdev, nic->mii.phy_id, MII_PHYSID1); id_hi = mdio_read(netdev, nic->mii.phy_id, MII_PHYSID2); nic->phy = (u32)id_hi << 16 | (u32)id_lo; DPRINTK(HW, DEBUG, "phy ID = 0x%08X\n", nic->phy); /* Handle National tx phys */ #define NCS_PHY_MODEL_MASK 0xFFF0FFFF if((nic->phy & NCS_PHY_MODEL_MASK) == phy_nsc_tx) { /* Disable congestion control */ cong = mdio_read(netdev, nic->mii.phy_id, MII_NSC_CONG); cong |= NSC_CONG_TXREADY; cong &= ~NSC_CONG_ENABLE; mdio_write(netdev, nic->mii.phy_id, MII_NSC_CONG, cong); } if((nic->mac >= mac_82550_D102) || ((nic->flags & ich) && (mdio_read(netdev, nic->mii.phy_id, MII_TPISTATUS) & 0x8000))) { /* enable/disable MDI/MDI-X auto-switching. MDI/MDI-X auto-switching is disabled for 82551ER/QM chips */ if((nic->mac == mac_82551_E) || (nic->mac == mac_82551_F) || (nic->mac == mac_82551_10) || (nic->mii.force_media) || !(nic->eeprom[eeprom_cnfg_mdix] & eeprom_mdix_enabled)) mdio_write(netdev, nic->mii.phy_id, MII_NCONFIG, 0); else mdio_write(netdev, nic->mii.phy_id, MII_NCONFIG, NCONFIG_AUTO_SWITCH); } return 0; } static int e100_hw_init(struct nic *nic) { int err; e100_hw_reset(nic); DPRINTK(HW, ERR, "e100_hw_init\n"); if(!in_interrupt() && (err = e100_self_test(nic))) return err; if((err = e100_phy_init(nic))) return err; if((err = e100_exec_cmd(nic, cuc_load_base, 0))) return err; if((err = e100_exec_cmd(nic, ruc_load_base, 0))) return err; if((err = e100_exec_cb(nic, NULL, e100_load_ucode))) return err; if((err = e100_exec_cb(nic, NULL, e100_configure))) return err; if((err = e100_exec_cb(nic, NULL, e100_setup_iaaddr))) return err; if((err = e100_exec_cmd(nic, cuc_dump_addr, nic->dma_addr + offsetof(struct mem, stats)))) return err; if((err = e100_exec_cmd(nic, cuc_dump_reset, 0))) return err; e100_disable_irq(nic); return 0; } static void e100_multi(struct nic *nic, struct cb *cb, struct sk_buff *skb) { struct net_device *netdev = nic->netdev; struct dev_mc_list *list = netdev->mc_list; u16 i, count = min(netdev->mc_count, E100_MAX_MULTICAST_ADDRS); cb->command = cpu_to_le16(cb_multi); cb->u.multi.count = cpu_to_le16(count * ETH_ALEN); for(i = 0; list && i < count; i++, list = list->next) memcpy(&cb->u.multi.addr[i*ETH_ALEN], &list->dmi_addr, ETH_ALEN); } static void e100_set_multicast_list(struct net_device *netdev) { struct nic *nic = netdev_priv(netdev); DPRINTK(HW, DEBUG, "mc_count=%d, flags=0x%04X\n", netdev->mc_count, netdev->flags); if(netdev->flags & IFF_PROMISC) nic->flags |= promiscuous; else nic->flags &= ~promiscuous; if(netdev->flags & IFF_ALLMULTI || netdev->mc_count > E100_MAX_MULTICAST_ADDRS) nic->flags |= multicast_all; else nic->flags &= ~multicast_all; e100_exec_cb(nic, NULL, e100_configure); e100_exec_cb(nic, NULL, e100_multi); } static void e100_update_stats(struct nic *nic) { struct net_device_stats *ns = &nic->net_stats; struct stats *s = &nic->mem->stats; u32 *complete = (nic->mac < mac_82558_D101_A4) ? &s->fc_xmt_pause : (nic->mac < mac_82559_D101M) ? (u32 *)&s->xmt_tco_frames : &s->complete; /* Device's stats reporting may take several microseconds to * complete, so where always waiting for results of the * previous command. */ if(*complete == le32_to_cpu(cuc_dump_reset_complete)) { *complete = 0; nic->tx_frames = le32_to_cpu(s->tx_good_frames); nic->tx_collisions = le32_to_cpu(s->tx_total_collisions); ns->tx_aborted_errors += le32_to_cpu(s->tx_max_collisions); ns->tx_window_errors += le32_to_cpu(s->tx_late_collisions); ns->tx_carrier_errors += le32_to_cpu(s->tx_lost_crs); ns->tx_fifo_errors += le32_to_cpu(s->tx_underruns); ns->collisions += nic->tx_collisions; ns->tx_errors += le32_to_cpu(s->tx_max_collisions) + le32_to_cpu(s->tx_lost_crs); ns->rx_dropped += le32_to_cpu(s->rx_resource_errors); ns->rx_length_errors += le32_to_cpu(s->rx_short_frame_errors) + nic->rx_over_length_errors; ns->rx_crc_errors += le32_to_cpu(s->rx_crc_errors); ns->rx_frame_errors += le32_to_cpu(s->rx_alignment_errors); ns->rx_over_errors += le32_to_cpu(s->rx_overrun_errors); ns->rx_fifo_errors += le32_to_cpu(s->rx_overrun_errors); ns->rx_errors += le32_to_cpu(s->rx_crc_errors) + le32_to_cpu(s->rx_alignment_errors) + le32_to_cpu(s->rx_short_frame_errors) + le32_to_cpu(s->rx_cdt_errors); nic->tx_deferred += le32_to_cpu(s->tx_deferred); nic->tx_single_collisions += le32_to_cpu(s->tx_single_collisions); nic->tx_multiple_collisions += le32_to_cpu(s->tx_multiple_collisions); if(nic->mac >= mac_82558_D101_A4) { nic->tx_fc_pause += le32_to_cpu(s->fc_xmt_pause); nic->rx_fc_pause += le32_to_cpu(s->fc_rcv_pause); nic->rx_fc_unsupported += le32_to_cpu(s->fc_rcv_unsupported); if(nic->mac >= mac_82559_D101M) { nic->tx_tco_frames += le16_to_cpu(s->xmt_tco_frames); nic->rx_tco_frames += le16_to_cpu(s->rcv_tco_frames); } } } if(e100_exec_cmd(nic, cuc_dump_reset, 0)) DPRINTK(TX_ERR, DEBUG, "exec cuc_dump_reset failed\n"); } static void e100_adjust_adaptive_ifs(struct nic *nic, int speed, int duplex) { /* Adjust inter-frame-spacing (IFS) between two transmits if * we're getting collisions on a half-duplex connection. */ if(duplex == DUPLEX_HALF) { u32 prev = nic->adaptive_ifs; u32 min_frames = (speed == SPEED_100) ? 1000 : 100; if((nic->tx_frames / 32 < nic->tx_collisions) && (nic->tx_frames > min_frames)) { if(nic->adaptive_ifs < 60) nic->adaptive_ifs += 5; } else if (nic->tx_frames < min_frames) { if(nic->adaptive_ifs >= 5) nic->adaptive_ifs -= 5; } if(nic->adaptive_ifs != prev) e100_exec_cb(nic, NULL, e100_configure); } } static void e100_watchdog(unsigned long data) { struct nic *nic = (struct nic *)data; struct ethtool_cmd cmd; DPRINTK(TIMER, DEBUG, "right now = %ld\n", jiffies); /* mii library handles link maintenance tasks */ mii_ethtool_gset(&nic->mii, &cmd); if(mii_link_ok(&nic->mii) && !netif_carrier_ok(nic->netdev)) { DPRINTK(LINK, INFO, "link up, %sMbps, %s-duplex\n", cmd.speed == SPEED_100 ? "100" : "10", cmd.duplex == DUPLEX_FULL ? "full" : "half"); } else if(!mii_link_ok(&nic->mii) && netif_carrier_ok(nic->netdev)) { DPRINTK(LINK, INFO, "link down\n"); } mii_check_link(&nic->mii); /* Software generated interrupt to recover from (rare) Rx * allocation failure. * Unfortunately have to use a spinlock to not re-enable interrupts * accidentally, due to hardware that shares a register between the * interrupt mask bit and the SW Interrupt generation bit */ spin_lock_irq(&nic->cmd_lock); writeb(readb(&nic->csr->scb.cmd_hi) | irq_sw_gen,&nic->csr->scb.cmd_hi); spin_unlock_irq(&nic->cmd_lock); e100_write_flush(nic); e100_update_stats(nic); e100_adjust_adaptive_ifs(nic, cmd.speed, cmd.duplex); if(nic->mac <= mac_82557_D100_C) /* Issue a multicast command to workaround a 557 lock up */ e100_set_multicast_list(nic->netdev); if(nic->flags & ich && cmd.speed==SPEED_10 && cmd.duplex==DUPLEX_HALF) /* Need SW workaround for ICH[x] 10Mbps/half duplex Tx hang. */ nic->flags |= ich_10h_workaround; else nic->flags &= ~ich_10h_workaround; mod_timer(&nic->watchdog, jiffies + E100_WATCHDOG_PERIOD); } static inline void e100_xmit_prepare(struct nic *nic, struct cb *cb, struct sk_buff *skb) { cb->command = nic->tx_command; /* interrupt every 16 packets regardless of delay */ if((nic->cbs_avail & ~15) == nic->cbs_avail) cb->command |= cpu_to_le16(cb_i); cb->u.tcb.tbd_array = cb->dma_addr + offsetof(struct cb, u.tcb.tbd); cb->u.tcb.tcb_byte_count = 0; cb->u.tcb.threshold = nic->tx_threshold; cb->u.tcb.tbd_count = 1; cb->u.tcb.tbd.buf_addr = cpu_to_le32(pci_map_single(nic->pdev, skb->data, skb->len, PCI_DMA_TODEVICE)); // check for mapping failure? cb->u.tcb.tbd.size = cpu_to_le16(skb->len); } static int e100_xmit_frame(struct sk_buff *skb, struct net_device *netdev) { struct nic *nic = netdev_priv(netdev); int err; if(nic->flags & ich_10h_workaround) { /* SW workaround for ICH[x] 10Mbps/half duplex Tx hang. Issue a NOP command followed by a 1us delay before issuing the Tx command. */ if(e100_exec_cmd(nic, cuc_nop, 0)) DPRINTK(TX_ERR, DEBUG, "exec cuc_nop failed\n"); udelay(1); } err = e100_exec_cb(nic, skb, e100_xmit_prepare); switch(err) { case -ENOSPC: /* We queued the skb, but now we're out of space. */ DPRINTK(TX_ERR, DEBUG, "No space for CB\n"); netif_stop_queue(netdev); break; case -ENOMEM: /* This is a hard error - log it. */ DPRINTK(TX_ERR, DEBUG, "Out of Tx resources, returning skb\n"); netif_stop_queue(netdev); return 1; } netdev->trans_start = jiffies; return 0; } static inline int e100_tx_clean(struct nic *nic) { struct cb *cb; int tx_cleaned = 0; spin_lock(&nic->cb_lock); DPRINTK(TX_DONE, DEBUG, "cb->status = 0x%04X\n", nic->cb_to_clean->status); /* Clean CBs marked complete */ for(cb = nic->cb_to_clean; cb->status & cpu_to_le16(cb_complete); cb = nic->cb_to_clean = cb->next) { if(likely(cb->skb != NULL)) { nic->net_stats.tx_packets++; nic->net_stats.tx_bytes += cb->skb->len; pci_unmap_single(nic->pdev, le32_to_cpu(cb->u.tcb.tbd.buf_addr), le16_to_cpu(cb->u.tcb.tbd.size), PCI_DMA_TODEVICE); dev_kfree_skb_any(cb->skb); cb->skb = NULL; tx_cleaned = 1; } cb->status = 0; nic->cbs_avail++; } spin_unlock(&nic->cb_lock); /* Recover from running out of Tx resources in xmit_frame */ if(unlikely(tx_cleaned && netif_queue_stopped(nic->netdev))) netif_wake_queue(nic->netdev); return tx_cleaned; } static void e100_clean_cbs(struct nic *nic) { if(nic->cbs) { while(nic->cbs_avail != nic->params.cbs.count) { struct cb *cb = nic->cb_to_clean; if(cb->skb) { pci_unmap_single(nic->pdev, le32_to_cpu(cb->u.tcb.tbd.buf_addr), le16_to_cpu(cb->u.tcb.tbd.size), PCI_DMA_TODEVICE); dev_kfree_skb(cb->skb); } nic->cb_to_clean = nic->cb_to_clean->next; nic->cbs_avail++; } pci_free_consistent(nic->pdev, sizeof(struct cb) * nic->params.cbs.count, nic->cbs, nic->cbs_dma_addr); nic->cbs = NULL; nic->cbs_avail = 0; } nic->cuc_cmd = cuc_start; nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean = nic->cbs; } static int e100_alloc_cbs(struct nic *nic) { struct cb *cb; unsigned int i, count = nic->params.cbs.count; nic->cuc_cmd = cuc_start; nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean = NULL; nic->cbs_avail = 0; nic->cbs = pci_alloc_consistent(nic->pdev, sizeof(struct cb) * count, &nic->cbs_dma_addr); if(!nic->cbs) return -ENOMEM; for(cb = nic->cbs, i = 0; i < count; cb++, i++) { cb->next = (i + 1 < count) ? cb + 1 : nic->cbs; cb->prev = (i == 0) ? nic->cbs + count - 1 : cb - 1; cb->dma_addr = nic->cbs_dma_addr + i * sizeof(struct cb); cb->link = cpu_to_le32(nic->cbs_dma_addr + ((i+1) % count) * sizeof(struct cb)); cb->skb = NULL; } nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean = nic->cbs; nic->cbs_avail = count; return 0; } static inline void e100_start_receiver(struct nic *nic, struct rx *rx) { if(!nic->rxs) return; if(RU_SUSPENDED != nic->ru_running) return; /* handle init time starts */ if(!rx) rx = nic->rxs; /* (Re)start RU if suspended or idle and RFA is non-NULL */ if(rx->skb) { e100_exec_cmd(nic, ruc_start, rx->dma_addr); nic->ru_running = RU_RUNNING; } } #define RFD_BUF_LEN (sizeof(struct rfd) + VLAN_ETH_FRAME_LEN) static inline int e100_rx_alloc_skb(struct nic *nic, struct rx *rx) { if(!(rx->skb = dev_alloc_skb(RFD_BUF_LEN + NET_IP_ALIGN))) return -ENOMEM; /* Align, init, and map the RFD. */ rx->skb->dev = nic->netdev; skb_reserve(rx->skb, NET_IP_ALIGN); memcpy(rx->skb->data, &nic->blank_rfd, sizeof(struct rfd)); rx->dma_addr = pci_map_single(nic->pdev, rx->skb->data, RFD_BUF_LEN, PCI_DMA_BIDIRECTIONAL); if(pci_dma_mapping_error(rx->dma_addr)) { dev_kfree_skb_any(rx->skb); rx->skb = 0; rx->dma_addr = 0; return -ENOMEM; } /* Link the RFD to end of RFA by linking previous RFD to * this one, and clearing EL bit of previous. */ if(rx->prev->skb) { struct rfd *prev_rfd = (struct rfd *)rx->prev->skb->data; put_unaligned(cpu_to_le32(rx->dma_addr), (u32 *)&prev_rfd->link); wmb(); prev_rfd->command &= ~cpu_to_le16(cb_el); pci_dma_sync_single_for_device(nic->pdev, rx->prev->dma_addr, sizeof(struct rfd), PCI_DMA_TODEVICE); } return 0; } static inline int e100_rx_indicate(struct nic *nic, struct rx *rx, unsigned int *work_done, unsigned int work_to_do) { struct sk_buff *skb = rx->skb; struct rfd *rfd = (struct rfd *)skb->data; u16 rfd_status, actual_size; if(unlikely(work_done && *work_done >= work_to_do)) return -EAGAIN; /* Need to sync before taking a peek at cb_complete bit */ pci_dma_sync_single_for_cpu(nic->pdev, rx->dma_addr, sizeof(struct rfd), PCI_DMA_FROMDEVICE); rfd_status = le16_to_cpu(rfd->status); DPRINTK(RX_STATUS, DEBUG, "status=0x%04X\n", rfd_status); /* If data isn't ready, nothing to indicate */ if(unlikely(!(rfd_status & cb_complete))) return -ENODATA; /* Get actual data size */ actual_size = le16_to_cpu(rfd->actual_size) & 0x3FFF; if(unlikely(actual_size > RFD_BUF_LEN - sizeof(struct rfd))) actual_size = RFD_BUF_LEN - sizeof(struct rfd); /* Get data */ pci_unmap_single(nic->pdev, rx->dma_addr, RFD_BUF_LEN, PCI_DMA_FROMDEVICE); /* this allows for a fast restart without re-enabling interrupts */ if(le16_to_cpu(rfd->command) & cb_el) nic->ru_running = RU_SUSPENDED; /* Pull off the RFD and put the actual data (minus eth hdr) */ skb_reserve(skb, sizeof(struct rfd)); skb_put(skb, actual_size); skb->protocol = eth_type_trans(skb, nic->netdev); if(unlikely(!(rfd_status & cb_ok))) { /* Don't indicate if hardware indicates errors */ nic->net_stats.rx_dropped++; dev_kfree_skb_any(skb); } else if(actual_size > ETH_DATA_LEN + VLAN_ETH_HLEN) { /* Don't indicate oversized frames */ nic->rx_over_length_errors++; nic->net_stats.rx_dropped++; dev_kfree_skb_any(skb); } else { nic->net_stats.rx_packets++; nic->net_stats.rx_bytes += actual_size; nic->netdev->last_rx = jiffies; netif_receive_skb(skb); if(work_done) (*work_done)++; } rx->skb = NULL; return 0; } static inline void e100_rx_clean(struct nic *nic, unsigned int *work_done, unsigned int work_to_do) { struct rx *rx; int restart_required = 0; struct rx *rx_to_start = NULL; /* are we already rnr? then pay attention!!! this ensures that * the state machine progression never allows a start with a * partially cleaned list, avoiding a race between hardware * and rx_to_clean when in NAPI mode */ if(RU_SUSPENDED == nic->ru_running) restart_required = 1; /* Indicate newly arrived packets */ for(rx = nic->rx_to_clean; rx->skb; rx = nic->rx_to_clean = rx->next) { int err = e100_rx_indicate(nic, rx, work_done, work_to_do); if(-EAGAIN == err) { /* hit quota so have more work to do, restart once * cleanup is complete */ restart_required = 0; break; } else if(-ENODATA == err) break; /* No more to clean */ } /* save our starting point as the place we'll restart the receiver */ if(restart_required) rx_to_start = nic->rx_to_clean; /* Alloc new skbs to refill list */ for(rx = nic->rx_to_use; !rx->skb; rx = nic->rx_to_use = rx->next) { if(unlikely(e100_rx_alloc_skb(nic, rx))) break; /* Better luck next time (see watchdog) */ } if(restart_required) { // ack the rnr? writeb(stat_ack_rnr, &nic->csr->scb.stat_ack); e100_start_receiver(nic, rx_to_start); if(work_done) (*work_done)++; } } static void e100_rx_clean_list(struct nic *nic) { struct rx *rx; unsigned int i, count = nic->params.rfds.count; nic->ru_running = RU_UNINITIALIZED; if(nic->rxs) { for(rx = nic->rxs, i = 0; i < count; rx++, i++) { if(rx->skb) { pci_unmap_single(nic->pdev, rx->dma_addr, RFD_BUF_LEN, PCI_DMA_FROMDEVICE); dev_kfree_skb(rx->skb); } } kfree(nic->rxs); nic->rxs = NULL; } nic->rx_to_use = nic->rx_to_clean = NULL; } static int e100_rx_alloc_list(struct nic *nic) { struct rx *rx; unsigned int i, count = nic->params.rfds.count; nic->rx_to_use = nic->rx_to_clean = NULL; nic->ru_running = RU_UNINITIALIZED; if(!(nic->rxs = kmalloc(sizeof(struct rx) * count, GFP_ATOMIC))) return -ENOMEM; memset(nic->rxs, 0, sizeof(struct rx) * count); for(rx = nic->rxs, i = 0; i < count; rx++, i++) { rx->next = (i + 1 < count) ? rx + 1 : nic->rxs; rx->prev = (i == 0) ? nic->rxs + count - 1 : rx - 1; if(e100_rx_alloc_skb(nic, rx)) { e100_rx_clean_list(nic); return -ENOMEM; } } nic->rx_to_use = nic->rx_to_clean = nic->rxs; nic->ru_running = RU_SUSPENDED; return 0; } static irqreturn_t e100_intr(int irq, void *dev_id, struct pt_regs *regs) { struct net_device *netdev = dev_id; struct nic *nic = netdev_priv(netdev); u8 stat_ack = readb(&nic->csr->scb.stat_ack); DPRINTK(INTR, DEBUG, "stat_ack = 0x%02X\n", stat_ack); if(stat_ack == stat_ack_not_ours || /* Not our interrupt */ stat_ack == stat_ack_not_present) /* Hardware is ejected */ return IRQ_NONE; /* Ack interrupt(s) */ writeb(stat_ack, &nic->csr->scb.stat_ack); /* We hit Receive No Resource (RNR); restart RU after cleaning */ if(stat_ack & stat_ack_rnr) nic->ru_running = RU_SUSPENDED; if(likely(netif_rx_schedule_prep(netdev))) { e100_disable_irq(nic); __netif_rx_schedule(netdev); } return IRQ_HANDLED; } static int e100_poll(struct net_device *netdev, int *budget) { struct nic *nic = netdev_priv(netdev); unsigned int work_to_do = min(netdev->quota, *budget); unsigned int work_done = 0; int tx_cleaned; e100_rx_clean(nic, &work_done, work_to_do); tx_cleaned = e100_tx_clean(nic); /* If no Rx and Tx cleanup work was done, exit polling mode. */ if((!tx_cleaned && (work_done == 0)) || !netif_running(netdev)) { netif_rx_complete(netdev); e100_enable_irq(nic); return 0; } *budget -= work_done; netdev->quota -= work_done; return 1; } #ifdef CONFIG_NET_POLL_CONTROLLER static void e100_netpoll(struct net_device *netdev) { struct nic *nic = netdev_priv(netdev); e100_disable_irq(nic); e100_intr(nic->pdev->irq, netdev, NULL); e100_tx_clean(nic); e100_enable_irq(nic); } #endif static struct net_device_stats *e100_get_stats(struct net_device *netdev) { struct nic *nic = netdev_priv(netdev); return &nic->net_stats; } static int e100_set_mac_address(struct net_device *netdev, void *p) { struct nic *nic = netdev_priv(netdev); struct sockaddr *addr = p; if (!is_valid_ether_addr(addr->sa_data)) return -EADDRNOTAVAIL; memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len); e100_exec_cb(nic, NULL, e100_setup_iaaddr); return 0; } static int e100_change_mtu(struct net_device *netdev, int new_mtu) { if(new_mtu < ETH_ZLEN || new_mtu > ETH_DATA_LEN) return -EINVAL; netdev->mtu = new_mtu; return 0; } #ifdef CONFIG_PM static int e100_asf(struct nic *nic) { /* ASF can be enabled from eeprom */ return((nic->pdev->device >= 0x1050) && (nic->pdev->device <= 0x1057) && (nic->eeprom[eeprom_config_asf] & eeprom_asf) && !(nic->eeprom[eeprom_config_asf] & eeprom_gcl) && ((nic->eeprom[eeprom_smbus_addr] & 0xFF) != 0xFE)); } #endif static int e100_up(struct nic *nic) { int err; if((err = e100_rx_alloc_list(nic))) return err; if((err = e100_alloc_cbs(nic))) goto err_rx_clean_list; if((err = e100_hw_init(nic))) goto err_clean_cbs; e100_set_multicast_list(nic->netdev); e100_start_receiver(nic, 0); mod_timer(&nic->watchdog, jiffies); if((err = request_irq(nic->pdev->irq, e100_intr, SA_SHIRQ, nic->netdev->name, nic->netdev))) goto err_no_irq; netif_wake_queue(nic->netdev); netif_poll_enable(nic->netdev); /* enable ints _after_ enabling poll, preventing a race between * disable ints+schedule */ e100_enable_irq(nic); return 0; err_no_irq: del_timer_sync(&nic->watchdog); err_clean_cbs: e100_clean_cbs(nic); err_rx_clean_list: e100_rx_clean_list(nic); return err; } static void e100_down(struct nic *nic) { /* wait here for poll to complete */ netif_poll_disable(nic->netdev); netif_stop_queue(nic->netdev); e100_hw_reset(nic); free_irq(nic->pdev->irq, nic->netdev); del_timer_sync(&nic->watchdog); netif_carrier_off(nic->netdev); e100_clean_cbs(nic); e100_rx_clean_list(nic); } static void e100_tx_timeout(struct net_device *netdev) { struct nic *nic = netdev_priv(netdev); /* Reset outside of interrupt context, to avoid request_irq * in interrupt context */ schedule_work(&nic->tx_timeout_task); } static void e100_tx_timeout_task(struct net_device *netdev) { struct nic *nic = netdev_priv(netdev); DPRINTK(TX_ERR, DEBUG, "scb.status=0x%02X\n", readb(&nic->csr->scb.status)); e100_down(netdev_priv(netdev)); e100_up(netdev_priv(netdev)); } static int e100_loopback_test(struct nic *nic, enum loopback loopback_mode) { int err; struct sk_buff *skb; /* Use driver resources to perform internal MAC or PHY * loopback test. A single packet is prepared and transmitted * in loopback mode, and the test passes if the received * packet compares byte-for-byte to the transmitted packet. */ if((err = e100_rx_alloc_list(nic))) return err; if((err = e100_alloc_cbs(nic))) goto err_clean_rx; /* ICH PHY loopback is broken so do MAC loopback instead */ if(nic->flags & ich && loopback_mode == lb_phy) loopback_mode = lb_mac; nic->loopback = loopback_mode; if((err = e100_hw_init(nic))) goto err_loopback_none; if(loopback_mode == lb_phy) mdio_write(nic->netdev, nic->mii.phy_id, MII_BMCR, BMCR_LOOPBACK); e100_start_receiver(nic, 0); if(!(skb = dev_alloc_skb(ETH_DATA_LEN))) { err = -ENOMEM; goto err_loopback_none; } skb_put(skb, ETH_DATA_LEN); memset(skb->data, 0xFF, ETH_DATA_LEN); e100_xmit_frame(skb, nic->netdev); msleep(10); if(memcmp(nic->rx_to_clean->skb->data + sizeof(struct rfd), skb->data, ETH_DATA_LEN)) err = -EAGAIN; err_loopback_none: mdio_write(nic->netdev, nic->mii.phy_id, MII_BMCR, 0); nic->loopback = lb_none; e100_hw_init(nic); e100_clean_cbs(nic); err_clean_rx: e100_rx_clean_list(nic); return err; } #define MII_LED_CONTROL 0x1B static void e100_blink_led(unsigned long data) { struct nic *nic = (struct nic *)data; enum led_state { led_on = 0x01, led_off = 0x04, led_on_559 = 0x05, led_on_557 = 0x07, }; nic->leds = (nic->leds & led_on) ? led_off : (nic->mac < mac_82559_D101M) ? led_on_557 : led_on_559; mdio_write(nic->netdev, nic->mii.phy_id, MII_LED_CONTROL, nic->leds); mod_timer(&nic->blink_timer, jiffies + HZ / 4); } static int e100_get_settings(struct net_device *netdev, struct ethtool_cmd *cmd) { struct nic *nic = netdev_priv(netdev); return mii_ethtool_gset(&nic->mii, cmd); } static int e100_set_settings(struct net_device *netdev, struct ethtool_cmd *cmd) { struct nic *nic = netdev_priv(netdev); int err; mdio_write(netdev, nic->mii.phy_id, MII_BMCR, BMCR_RESET); err = mii_ethtool_sset(&nic->mii, cmd); e100_exec_cb(nic, NULL, e100_configure); return err; } static void e100_get_drvinfo(struct net_device *netdev, struct ethtool_drvinfo *info) { struct nic *nic = netdev_priv(netdev); strcpy(info->driver, DRV_NAME); strcpy(info->version, DRV_VERSION); strcpy(info->fw_version, "N/A"); strcpy(info->bus_info, pci_name(nic->pdev)); } static int e100_get_regs_len(struct net_device *netdev) { struct nic *nic = netdev_priv(netdev); #define E100_PHY_REGS 0x1C #define E100_REGS_LEN 1 + E100_PHY_REGS + \ sizeof(nic->mem->dump_buf) / sizeof(u32) return E100_REGS_LEN * sizeof(u32); } static void e100_get_regs(struct net_device *netdev, struct ethtool_regs *regs, void *p) { struct nic *nic = netdev_priv(netdev); u32 *buff = p; int i; regs->version = (1 << 24) | nic->rev_id; buff[0] = readb(&nic->csr->scb.cmd_hi) << 24 | readb(&nic->csr->scb.cmd_lo) << 16 | readw(&nic->csr->scb.status); for(i = E100_PHY_REGS; i >= 0; i--) buff[1 + E100_PHY_REGS - i] = mdio_read(netdev, nic->mii.phy_id, i); memset(nic->mem->dump_buf, 0, sizeof(nic->mem->dump_buf)); e100_exec_cb(nic, NULL, e100_dump); msleep(10); memcpy(&buff[2 + E100_PHY_REGS], nic->mem->dump_buf, sizeof(nic->mem->dump_buf)); } static void e100_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol) { struct nic *nic = netdev_priv(netdev); wol->supported = (nic->mac >= mac_82558_D101_A4) ? WAKE_MAGIC : 0; wol->wolopts = (nic->flags & wol_magic) ? WAKE_MAGIC : 0; } static int e100_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol) { struct nic *nic = netdev_priv(netdev); if(wol->wolopts != WAKE_MAGIC && wol->wolopts != 0) return -EOPNOTSUPP; if(wol->wolopts) nic->flags |= wol_magic; else nic->flags &= ~wol_magic; e100_exec_cb(nic, NULL, e100_configure); return 0; } static u32 e100_get_msglevel(struct net_device *netdev) { struct nic *nic = netdev_priv(netdev); return nic->msg_enable; } static void e100_set_msglevel(struct net_device *netdev, u32 value) { struct nic *nic = netdev_priv(netdev); nic->msg_enable = value; } static int e100_nway_reset(struct net_device *netdev) { struct nic *nic = netdev_priv(netdev); return mii_nway_restart(&nic->mii); } static u32 e100_get_link(struct net_device *netdev) { struct nic *nic = netdev_priv(netdev); return mii_link_ok(&nic->mii); } static int e100_get_eeprom_len(struct net_device *netdev) { struct nic *nic = netdev_priv(netdev); return nic->eeprom_wc << 1; } #define E100_EEPROM_MAGIC 0x1234 static int e100_get_eeprom(struct net_device *netdev, struct ethtool_eeprom *eeprom, u8 *bytes) { struct nic *nic = netdev_priv(netdev); eeprom->magic = E100_EEPROM_MAGIC; memcpy(bytes, &((u8 *)nic->eeprom)[eeprom->offset], eeprom->len); return 0; } static int e100_set_eeprom(struct net_device *netdev, struct ethtool_eeprom *eeprom, u8 *bytes) { struct nic *nic = netdev_priv(netdev); if(eeprom->magic != E100_EEPROM_MAGIC) return -EINVAL; memcpy(&((u8 *)nic->eeprom)[eeprom->offset], bytes, eeprom->len); return e100_eeprom_save(nic, eeprom->offset >> 1, (eeprom->len >> 1) + 1); } static void e100_get_ringparam(struct net_device *netdev, struct ethtool_ringparam *ring) { struct nic *nic = netdev_priv(netdev); struct param_range *rfds = &nic->params.rfds; struct param_range *cbs = &nic->params.cbs; ring->rx_max_pending = rfds->max; ring->tx_max_pending = cbs->max; ring->rx_mini_max_pending = 0; ring->rx_jumbo_max_pending = 0; ring->rx_pending = rfds->count; ring->tx_pending = cbs->count; ring->rx_mini_pending = 0; ring->rx_jumbo_pending = 0; } static int e100_set_ringparam(struct net_device *netdev, struct ethtool_ringparam *ring) { struct nic *nic = netdev_priv(netdev); struct param_range *rfds = &nic->params.rfds; struct param_range *cbs = &nic->params.cbs; if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending)) return -EINVAL; if(netif_running(netdev)) e100_down(nic); rfds->count = max(ring->rx_pending, rfds->min); rfds->count = min(rfds->count, rfds->max); cbs->count = max(ring->tx_pending, cbs->min); cbs->count = min(cbs->count, cbs->max); DPRINTK(DRV, INFO, "Ring Param settings: rx: %d, tx %d\n", rfds->count, cbs->count); if(netif_running(netdev)) e100_up(nic); return 0; } static const char e100_gstrings_test[][ETH_GSTRING_LEN] = { "Link test (on/offline)", "Eeprom test (on/offline)", "Self test (offline)", "Mac loopback (offline)", "Phy loopback (offline)", }; #define E100_TEST_LEN sizeof(e100_gstrings_test) / ETH_GSTRING_LEN static int e100_diag_test_count(struct net_device *netdev) { return E100_TEST_LEN; } static void e100_diag_test(struct net_device *netdev, struct ethtool_test *test, u64 *data) { struct ethtool_cmd cmd; struct nic *nic = netdev_priv(netdev); int i, err; memset(data, 0, E100_TEST_LEN * sizeof(u64)); data[0] = !mii_link_ok(&nic->mii); data[1] = e100_eeprom_load(nic); if(test->flags & ETH_TEST_FL_OFFLINE) { /* save speed, duplex & autoneg settings */ err = mii_ethtool_gset(&nic->mii, &cmd); if(netif_running(netdev)) e100_down(nic); data[2] = e100_self_test(nic); data[3] = e100_loopback_test(nic, lb_mac); data[4] = e100_loopback_test(nic, lb_phy); /* restore speed, duplex & autoneg settings */ err = mii_ethtool_sset(&nic->mii, &cmd); if(netif_running(netdev)) e100_up(nic); } for(i = 0; i < E100_TEST_LEN; i++) test->flags |= data[i] ? ETH_TEST_FL_FAILED : 0; msleep_interruptible(4 * 1000); } static int e100_phys_id(struct net_device *netdev, u32 data) { struct nic *nic = netdev_priv(netdev); if(!data || data > (u32)(MAX_SCHEDULE_TIMEOUT / HZ)) data = (u32)(MAX_SCHEDULE_TIMEOUT / HZ); mod_timer(&nic->blink_timer, jiffies); msleep_interruptible(data * 1000); del_timer_sync(&nic->blink_timer); mdio_write(netdev, nic->mii.phy_id, MII_LED_CONTROL, 0); return 0; } static const char e100_gstrings_stats[][ETH_GSTRING_LEN] = { "rx_packets", "tx_packets", "rx_bytes", "tx_bytes", "rx_errors", "tx_errors", "rx_dropped", "tx_dropped", "multicast", "collisions", "rx_length_errors", "rx_over_errors", "rx_crc_errors", "rx_frame_errors", "rx_fifo_errors", "rx_missed_errors", "tx_aborted_errors", "tx_carrier_errors", "tx_fifo_errors", "tx_heartbeat_errors", "tx_window_errors", /* device-specific stats */ "tx_deferred", "tx_single_collisions", "tx_multi_collisions", "tx_flow_control_pause", "rx_flow_control_pause", "rx_flow_control_unsupported", "tx_tco_packets", "rx_tco_packets", }; #define E100_NET_STATS_LEN 21 #define E100_STATS_LEN sizeof(e100_gstrings_stats) / ETH_GSTRING_LEN static int e100_get_stats_count(struct net_device *netdev) { return E100_STATS_LEN; } static void e100_get_ethtool_stats(struct net_device *netdev, struct ethtool_stats *stats, u64 *data) { struct nic *nic = netdev_priv(netdev); int i; for(i = 0; i < E100_NET_STATS_LEN; i++) data[i] = ((unsigned long *)&nic->net_stats)[i]; data[i++] = nic->tx_deferred; data[i++] = nic->tx_single_collisions; data[i++] = nic->tx_multiple_collisions; data[i++] = nic->tx_fc_pause; data[i++] = nic->rx_fc_pause; data[i++] = nic->rx_fc_unsupported; data[i++] = nic->tx_tco_frames; data[i++] = nic->rx_tco_frames; } static void e100_get_strings(struct net_device *netdev, u32 stringset, u8 *data) { switch(stringset) { case ETH_SS_TEST: memcpy(data, *e100_gstrings_test, sizeof(e100_gstrings_test)); break; case ETH_SS_STATS: memcpy(data, *e100_gstrings_stats, sizeof(e100_gstrings_stats)); break; } } static struct ethtool_ops e100_ethtool_ops = { .get_settings = e100_get_settings, .set_settings = e100_set_settings, .get_drvinfo = e100_get_drvinfo, .get_regs_len = e100_get_regs_len, .get_regs = e100_get_regs, .get_wol = e100_get_wol, .set_wol = e100_set_wol, .get_msglevel = e100_get_msglevel, .set_msglevel = e100_set_msglevel, .nway_reset = e100_nway_reset, .get_link = e100_get_link, .get_eeprom_len = e100_get_eeprom_len, .get_eeprom = e100_get_eeprom, .set_eeprom = e100_set_eeprom, .get_ringparam = e100_get_ringparam, .set_ringparam = e100_set_ringparam, .self_test_count = e100_diag_test_count, .self_test = e100_diag_test, .get_strings = e100_get_strings, .phys_id = e100_phys_id, .get_stats_count = e100_get_stats_count, .get_ethtool_stats = e100_get_ethtool_stats, }; static int e100_do_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) { struct nic *nic = netdev_priv(netdev); return generic_mii_ioctl(&nic->mii, if_mii(ifr), cmd, NULL); } static int e100_alloc(struct nic *nic) { nic->mem = pci_alloc_consistent(nic->pdev, sizeof(struct mem), &nic->dma_addr); return nic->mem ? 0 : -ENOMEM; } static void e100_free(struct nic *nic) { if(nic->mem) { pci_free_consistent(nic->pdev, sizeof(struct mem), nic->mem, nic->dma_addr); nic->mem = NULL; } } static int e100_open(struct net_device *netdev) { struct nic *nic = netdev_priv(netdev); int err = 0; netif_carrier_off(netdev); if((err = e100_up(nic))) DPRINTK(IFUP, ERR, "Cannot open interface, aborting.\n"); return err; } static int e100_close(struct net_device *netdev) { e100_down(netdev_priv(netdev)); return 0; } static int __devinit e100_probe(struct pci_dev *pdev, const struct pci_device_id *ent) { struct net_device *netdev; struct nic *nic; int err; if(!(netdev = alloc_etherdev(sizeof(struct nic)))) { if(((1 << debug) - 1) & NETIF_MSG_PROBE) printk(KERN_ERR PFX "Etherdev alloc failed, abort.\n"); return -ENOMEM; } netdev->open = e100_open; netdev->stop = e100_close; netdev->hard_start_xmit = e100_xmit_frame; netdev->get_stats = e100_get_stats; netdev->set_multicast_list = e100_set_multicast_list; netdev->set_mac_address = e100_set_mac_address; netdev->change_mtu = e100_change_mtu; netdev->do_ioctl = e100_do_ioctl; SET_ETHTOOL_OPS(netdev, &e100_ethtool_ops); netdev->tx_timeout = e100_tx_timeout; netdev->watchdog_timeo = E100_WATCHDOG_PERIOD; netdev->poll = e100_poll; netdev->weight = E100_NAPI_WEIGHT; #ifdef CONFIG_NET_POLL_CONTROLLER netdev->poll_controller = e100_netpoll; #endif strcpy(netdev->name, pci_name(pdev)); nic = netdev_priv(netdev); nic->netdev = netdev; nic->pdev = pdev; nic->msg_enable = (1 << debug) - 1; pci_set_drvdata(pdev, netdev); if((err = pci_enable_device(pdev))) { DPRINTK(PROBE, ERR, "Cannot enable PCI device, aborting.\n"); goto err_out_free_dev; } if(!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) { DPRINTK(PROBE, ERR, "Cannot find proper PCI device " "base address, aborting.\n"); err = -ENODEV; goto err_out_disable_pdev; } if((err = pci_request_regions(pdev, DRV_NAME))) { DPRINTK(PROBE, ERR, "Cannot obtain PCI resources, aborting.\n"); goto err_out_disable_pdev; } if((err = pci_set_dma_mask(pdev, DMA_32BIT_MASK))) { DPRINTK(PROBE, ERR, "No usable DMA configuration, aborting.\n"); goto err_out_free_res; } SET_MODULE_OWNER(netdev); SET_NETDEV_DEV(netdev, &pdev->dev); nic->csr = ioremap(pci_resource_start(pdev, 0), sizeof(struct csr)); if(!nic->csr) { DPRINTK(PROBE, ERR, "Cannot map device registers, aborting.\n"); err = -ENOMEM; goto err_out_free_res; } if(ent->driver_data) nic->flags |= ich; else nic->flags &= ~ich; e100_get_defaults(nic); /* locks must be initialized before calling hw_reset */ spin_lock_init(&nic->cb_lock); spin_lock_init(&nic->cmd_lock); /* Reset the device before pci_set_master() in case device is in some * funky state and has an interrupt pending - hint: we don't have the * interrupt handler registered yet. */ e100_hw_reset(nic); pci_set_master(pdev); init_timer(&nic->watchdog); nic->watchdog.function = e100_watchdog; nic->watchdog.data = (unsigned long)nic; init_timer(&nic->blink_timer); nic->blink_timer.function = e100_blink_led; nic->blink_timer.data = (unsigned long)nic; INIT_WORK(&nic->tx_timeout_task, (void (*)(void *))e100_tx_timeout_task, netdev); if((err = e100_alloc(nic))) { DPRINTK(PROBE, ERR, "Cannot alloc driver memory, aborting.\n"); goto err_out_iounmap; } if((err = e100_eeprom_load(nic))) goto err_out_free; e100_phy_init(nic); memcpy(netdev->dev_addr, nic->eeprom, ETH_ALEN); if(!is_valid_ether_addr(netdev->dev_addr)) { DPRINTK(PROBE, ERR, "Invalid MAC address from " "EEPROM, aborting.\n"); err = -EAGAIN; goto err_out_free; } /* Wol magic packet can be enabled from eeprom */ if((nic->mac >= mac_82558_D101_A4) && (nic->eeprom[eeprom_id] & eeprom_id_wol)) nic->flags |= wol_magic; /* ack any pending wake events, disable PME */ pci_enable_wake(pdev, 0, 0); strcpy(netdev->name, "eth%d"); if((err = register_netdev(netdev))) { DPRINTK(PROBE, ERR, "Cannot register net device, aborting.\n"); goto err_out_free; } DPRINTK(PROBE, INFO, "addr 0x%lx, irq %d, " "MAC addr %02X:%02X:%02X:%02X:%02X:%02X\n", pci_resource_start(pdev, 0), pdev->irq, netdev->dev_addr[0], netdev->dev_addr[1], netdev->dev_addr[2], netdev->dev_addr[3], netdev->dev_addr[4], netdev->dev_addr[5]); return 0; err_out_free: e100_free(nic); err_out_iounmap: iounmap(nic->csr); err_out_free_res: pci_release_regions(pdev); err_out_disable_pdev: pci_disable_device(pdev); err_out_free_dev: pci_set_drvdata(pdev, NULL); free_netdev(netdev); return err; } static void __devexit e100_remove(struct pci_dev *pdev) { struct net_device *netdev = pci_get_drvdata(pdev); if(netdev) { struct nic *nic = netdev_priv(netdev); unregister_netdev(netdev); e100_free(nic); iounmap(nic->csr); free_netdev(netdev); pci_release_regions(pdev); pci_disable_device(pdev); pci_set_drvdata(pdev, NULL); } } #ifdef CONFIG_PM static int e100_suspend(struct pci_dev *pdev, pm_message_t state) { struct net_device *netdev = pci_get_drvdata(pdev); struct nic *nic = netdev_priv(netdev); if(netif_running(netdev)) e100_down(nic); e100_hw_reset(nic); netif_device_detach(netdev); pci_save_state(pdev); pci_enable_wake(pdev, pci_choose_state(pdev, state), nic->flags & (wol_magic | e100_asf(nic))); pci_disable_device(pdev); pci_set_power_state(pdev, pci_choose_state(pdev, state)); return 0; } static int e100_resume(struct pci_dev *pdev) { struct net_device *netdev = pci_get_drvdata(pdev); struct nic *nic = netdev_priv(netdev); pci_set_power_state(pdev, PCI_D0); pci_restore_state(pdev); /* ack any pending wake events, disable PME */ pci_enable_wake(pdev, 0, 0); if(e100_hw_init(nic)) DPRINTK(HW, ERR, "e100_hw_init failed\n"); netif_device_attach(netdev); if(netif_running(netdev)) e100_up(nic); return 0; } #endif static void e100_shutdown(struct pci_dev *pdev) { struct net_device *netdev = pci_get_drvdata(pdev); struct nic *nic = netdev_priv(netdev); #ifdef CONFIG_PM pci_enable_wake(pdev, 0, nic->flags & (wol_magic | e100_asf(nic))); #else pci_enable_wake(pdev, 0, nic->flags & (wol_magic)); #endif } static struct pci_driver e100_driver = { .name = DRV_NAME, .id_table = e100_id_table, .probe = e100_probe, .remove = __devexit_p(e100_remove), #ifdef CONFIG_PM .suspend = e100_suspend, .resume = e100_resume, #endif .shutdown = e100_shutdown, }; static int __init e100_init_module(void) { if(((1 << debug) - 1) & NETIF_MSG_DRV) { printk(KERN_INFO PFX "%s, %s\n", DRV_DESCRIPTION, DRV_VERSION); printk(KERN_INFO PFX "%s\n", DRV_COPYRIGHT); } return pci_module_init(&e100_driver); } static void __exit e100_cleanup_module(void) { pci_unregister_driver(&e100_driver); } module_init(e100_init_module); module_exit(e100_cleanup_module);