/* Montage Technology DS3000/TS2020 - DVBS/S2 Demodulator/Tuner driver Copyright (C) 2009 Konstantin Dimitrov Copyright (C) 2009 TurboSight.com This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #include #include #include #include #include #include #include "dvb_frontend.h" #include "ds3000.h" static int debug; #define dprintk(args...) \ do { \ if (debug) \ printk(args); \ } while (0) /* as of March 2009 current DS3000 firmware version is 1.78 */ /* DS3000 FW v1.78 MD5: a32d17910c4f370073f9346e71d34b80 */ #define DS3000_DEFAULT_FIRMWARE "dvb-fe-ds3000.fw" #define DS3000_SAMPLE_RATE 96000 /* in kHz */ #define DS3000_XTAL_FREQ 27000 /* in kHz */ /* Register values to initialise the demod in DVB-S mode */ static u8 ds3000_dvbs_init_tab[] = { 0x23, 0x05, 0x08, 0x03, 0x0c, 0x00, 0x21, 0x54, 0x25, 0x82, 0x27, 0x31, 0x30, 0x08, 0x31, 0x40, 0x32, 0x32, 0x33, 0x35, 0x35, 0xff, 0x3a, 0x00, 0x37, 0x10, 0x38, 0x10, 0x39, 0x02, 0x42, 0x60, 0x4a, 0x40, 0x4b, 0x04, 0x4d, 0x91, 0x5d, 0xc8, 0x50, 0x77, 0x51, 0x77, 0x52, 0x36, 0x53, 0x36, 0x56, 0x01, 0x63, 0x43, 0x64, 0x30, 0x65, 0x40, 0x68, 0x26, 0x69, 0x4c, 0x70, 0x20, 0x71, 0x70, 0x72, 0x04, 0x73, 0x00, 0x70, 0x40, 0x71, 0x70, 0x72, 0x04, 0x73, 0x00, 0x70, 0x60, 0x71, 0x70, 0x72, 0x04, 0x73, 0x00, 0x70, 0x80, 0x71, 0x70, 0x72, 0x04, 0x73, 0x00, 0x70, 0xa0, 0x71, 0x70, 0x72, 0x04, 0x73, 0x00, 0x70, 0x1f, 0x76, 0x00, 0x77, 0xd1, 0x78, 0x0c, 0x79, 0x80, 0x7f, 0x04, 0x7c, 0x00, 0x80, 0x86, 0x81, 0xa6, 0x85, 0x04, 0xcd, 0xf4, 0x90, 0x33, 0xa0, 0x44, 0xc0, 0x18, 0xc3, 0x10, 0xc4, 0x08, 0xc5, 0x80, 0xc6, 0x80, 0xc7, 0x0a, 0xc8, 0x1a, 0xc9, 0x80, 0xfe, 0x92, 0xe0, 0xf8, 0xe6, 0x8b, 0xd0, 0x40, 0xf8, 0x20, 0xfa, 0x0f, 0xfd, 0x20, 0xad, 0x20, 0xae, 0x07, 0xb8, 0x00, }; /* Register values to initialise the demod in DVB-S2 mode */ static u8 ds3000_dvbs2_init_tab[] = { 0x23, 0x0f, 0x08, 0x07, 0x0c, 0x00, 0x21, 0x54, 0x25, 0x82, 0x27, 0x31, 0x30, 0x08, 0x31, 0x32, 0x32, 0x32, 0x33, 0x35, 0x35, 0xff, 0x3a, 0x00, 0x37, 0x10, 0x38, 0x10, 0x39, 0x02, 0x42, 0x60, 0x4a, 0x80, 0x4b, 0x04, 0x4d, 0x81, 0x5d, 0x88, 0x50, 0x36, 0x51, 0x36, 0x52, 0x36, 0x53, 0x36, 0x63, 0x60, 0x64, 0x10, 0x65, 0x10, 0x68, 0x04, 0x69, 0x29, 0x70, 0x20, 0x71, 0x70, 0x72, 0x04, 0x73, 0x00, 0x70, 0x40, 0x71, 0x70, 0x72, 0x04, 0x73, 0x00, 0x70, 0x60, 0x71, 0x70, 0x72, 0x04, 0x73, 0x00, 0x70, 0x80, 0x71, 0x70, 0x72, 0x04, 0x73, 0x00, 0x70, 0xa0, 0x71, 0x70, 0x72, 0x04, 0x73, 0x00, 0x70, 0x1f, 0xa0, 0x44, 0xc0, 0x08, 0xc1, 0x10, 0xc2, 0x08, 0xc3, 0x10, 0xc4, 0x08, 0xc5, 0xf0, 0xc6, 0xf0, 0xc7, 0x0a, 0xc8, 0x1a, 0xc9, 0x80, 0xca, 0x23, 0xcb, 0x24, 0xce, 0x74, 0x90, 0x03, 0x76, 0x80, 0x77, 0x42, 0x78, 0x0a, 0x79, 0x80, 0xad, 0x40, 0xae, 0x07, 0x7f, 0xd4, 0x7c, 0x00, 0x80, 0xa8, 0x81, 0xda, 0x7c, 0x01, 0x80, 0xda, 0x81, 0xec, 0x7c, 0x02, 0x80, 0xca, 0x81, 0xeb, 0x7c, 0x03, 0x80, 0xba, 0x81, 0xdb, 0x85, 0x08, 0x86, 0x00, 0x87, 0x02, 0x89, 0x80, 0x8b, 0x44, 0x8c, 0xaa, 0x8a, 0x10, 0xba, 0x00, 0xf5, 0x04, 0xfe, 0x44, 0xd2, 0x32, 0xb8, 0x00, }; struct ds3000_state { struct i2c_adapter *i2c; const struct ds3000_config *config; struct dvb_frontend frontend; u8 skip_fw_load; /* previous uncorrected block counter for DVB-S2 */ u16 prevUCBS2; }; static int ds3000_writereg(struct ds3000_state *state, int reg, int data) { u8 buf[] = { reg, data }; struct i2c_msg msg = { .addr = state->config->demod_address, .flags = 0, .buf = buf, .len = 2 }; int err; dprintk("%s: write reg 0x%02x, value 0x%02x\n", __func__, reg, data); err = i2c_transfer(state->i2c, &msg, 1); if (err != 1) { printk(KERN_ERR "%s: writereg error(err == %i, reg == 0x%02x," " value == 0x%02x)\n", __func__, err, reg, data); return -EREMOTEIO; } return 0; } static int ds3000_tuner_writereg(struct ds3000_state *state, int reg, int data) { u8 buf[] = { reg, data }; struct i2c_msg msg = { .addr = 0x60, .flags = 0, .buf = buf, .len = 2 }; int err; dprintk("%s: write reg 0x%02x, value 0x%02x\n", __func__, reg, data); ds3000_writereg(state, 0x03, 0x11); err = i2c_transfer(state->i2c, &msg, 1); if (err != 1) { printk("%s: writereg error(err == %i, reg == 0x%02x," " value == 0x%02x)\n", __func__, err, reg, data); return -EREMOTEIO; } return 0; } /* I2C write for 8k firmware load */ static int ds3000_writeFW(struct ds3000_state *state, int reg, const u8 *data, u16 len) { int i, ret = -EREMOTEIO; struct i2c_msg msg; u8 *buf; buf = kmalloc(33, GFP_KERNEL); if (buf == NULL) { printk(KERN_ERR "Unable to kmalloc\n"); ret = -ENOMEM; goto error; } *(buf) = reg; msg.addr = state->config->demod_address; msg.flags = 0; msg.buf = buf; msg.len = 33; for (i = 0; i < len; i += 32) { memcpy(buf + 1, data + i, 32); dprintk("%s: write reg 0x%02x, len = %d\n", __func__, reg, len); ret = i2c_transfer(state->i2c, &msg, 1); if (ret != 1) { printk(KERN_ERR "%s: write error(err == %i, " "reg == 0x%02x\n", __func__, ret, reg); ret = -EREMOTEIO; } } error: kfree(buf); return ret; } static int ds3000_readreg(struct ds3000_state *state, u8 reg) { int ret; u8 b0[] = { reg }; u8 b1[] = { 0 }; struct i2c_msg msg[] = { { .addr = state->config->demod_address, .flags = 0, .buf = b0, .len = 1 }, { .addr = state->config->demod_address, .flags = I2C_M_RD, .buf = b1, .len = 1 } }; ret = i2c_transfer(state->i2c, msg, 2); if (ret != 2) { printk(KERN_ERR "%s: reg=0x%x(error=%d)\n", __func__, reg, ret); return ret; } dprintk("%s: read reg 0x%02x, value 0x%02x\n", __func__, reg, b1[0]); return b1[0]; } static int ds3000_tuner_readreg(struct ds3000_state *state, u8 reg) { int ret; u8 b0[] = { reg }; u8 b1[] = { 0 }; struct i2c_msg msg[] = { { .addr = 0x60, .flags = 0, .buf = b0, .len = 1 }, { .addr = 0x60, .flags = I2C_M_RD, .buf = b1, .len = 1 } }; ds3000_writereg(state, 0x03, 0x12); ret = i2c_transfer(state->i2c, msg, 2); if (ret != 2) { printk(KERN_ERR "%s: reg=0x%x(error=%d)\n", __func__, reg, ret); return ret; } dprintk("%s: read reg 0x%02x, value 0x%02x\n", __func__, reg, b1[0]); return b1[0]; } static int ds3000_load_firmware(struct dvb_frontend *fe, const struct firmware *fw); static int ds3000_firmware_ondemand(struct dvb_frontend *fe) { struct ds3000_state *state = fe->demodulator_priv; const struct firmware *fw; int ret = 0; dprintk("%s()\n", __func__); if (ds3000_readreg(state, 0xb2) <= 0) return ret; if (state->skip_fw_load) return 0; /* Load firmware */ /* request the firmware, this will block until someone uploads it */ printk(KERN_INFO "%s: Waiting for firmware upload (%s)...\n", __func__, DS3000_DEFAULT_FIRMWARE); ret = request_firmware(&fw, DS3000_DEFAULT_FIRMWARE, state->i2c->dev.parent); printk(KERN_INFO "%s: Waiting for firmware upload(2)...\n", __func__); if (ret) { printk(KERN_ERR "%s: No firmware uploaded (timeout or file not " "found?)\n", __func__); return ret; } /* Make sure we don't recurse back through here during loading */ state->skip_fw_load = 1; ret = ds3000_load_firmware(fe, fw); if (ret) printk("%s: Writing firmware to device failed\n", __func__); release_firmware(fw); dprintk("%s: Firmware upload %s\n", __func__, ret == 0 ? "complete" : "failed"); /* Ensure firmware is always loaded if required */ state->skip_fw_load = 0; return ret; } static int ds3000_load_firmware(struct dvb_frontend *fe, const struct firmware *fw) { struct ds3000_state *state = fe->demodulator_priv; dprintk("%s\n", __func__); dprintk("Firmware is %zu bytes (%02x %02x .. %02x %02x)\n", fw->size, fw->data[0], fw->data[1], fw->data[fw->size - 2], fw->data[fw->size - 1]); /* Begin the firmware load process */ ds3000_writereg(state, 0xb2, 0x01); /* write the entire firmware */ ds3000_writeFW(state, 0xb0, fw->data, fw->size); ds3000_writereg(state, 0xb2, 0x00); return 0; } static int ds3000_set_voltage(struct dvb_frontend *fe, fe_sec_voltage_t voltage) { struct ds3000_state *state = fe->demodulator_priv; u8 data; dprintk("%s(%d)\n", __func__, voltage); data = ds3000_readreg(state, 0xa2); data |= 0x03; /* bit0 V/H, bit1 off/on */ switch (voltage) { case SEC_VOLTAGE_18: data &= ~0x03; break; case SEC_VOLTAGE_13: data &= ~0x03; data |= 0x01; break; case SEC_VOLTAGE_OFF: break; } ds3000_writereg(state, 0xa2, data); return 0; } static int ds3000_read_status(struct dvb_frontend *fe, fe_status_t* status) { struct ds3000_state *state = fe->demodulator_priv; struct dtv_frontend_properties *c = &fe->dtv_property_cache; int lock; *status = 0; switch (c->delivery_system) { case SYS_DVBS: lock = ds3000_readreg(state, 0xd1); if ((lock & 0x07) == 0x07) *status = FE_HAS_SIGNAL | FE_HAS_CARRIER | FE_HAS_VITERBI | FE_HAS_SYNC | FE_HAS_LOCK; break; case SYS_DVBS2: lock = ds3000_readreg(state, 0x0d); if ((lock & 0x8f) == 0x8f) *status = FE_HAS_SIGNAL | FE_HAS_CARRIER | FE_HAS_VITERBI | FE_HAS_SYNC | FE_HAS_LOCK; break; default: return 1; } dprintk("%s: status = 0x%02x\n", __func__, lock); return 0; } /* read DS3000 BER value */ static int ds3000_read_ber(struct dvb_frontend *fe, u32* ber) { struct ds3000_state *state = fe->demodulator_priv; struct dtv_frontend_properties *c = &fe->dtv_property_cache; u8 data; u32 ber_reading, lpdc_frames; dprintk("%s()\n", __func__); switch (c->delivery_system) { case SYS_DVBS: /* set the number of bytes checked during BER estimation */ ds3000_writereg(state, 0xf9, 0x04); /* read BER estimation status */ data = ds3000_readreg(state, 0xf8); /* check if BER estimation is ready */ if ((data & 0x10) == 0) { /* this is the number of error bits, to calculate the bit error rate divide to 8388608 */ *ber = (ds3000_readreg(state, 0xf7) << 8) | ds3000_readreg(state, 0xf6); /* start counting error bits */ /* need to be set twice otherwise it fails sometimes */ data |= 0x10; ds3000_writereg(state, 0xf8, data); ds3000_writereg(state, 0xf8, data); } else /* used to indicate that BER estimation is not ready, i.e. BER is unknown */ *ber = 0xffffffff; break; case SYS_DVBS2: /* read the number of LPDC decoded frames */ lpdc_frames = (ds3000_readreg(state, 0xd7) << 16) | (ds3000_readreg(state, 0xd6) << 8) | ds3000_readreg(state, 0xd5); /* read the number of packets with bad CRC */ ber_reading = (ds3000_readreg(state, 0xf8) << 8) | ds3000_readreg(state, 0xf7); if (lpdc_frames > 750) { /* clear LPDC frame counters */ ds3000_writereg(state, 0xd1, 0x01); /* clear bad packets counter */ ds3000_writereg(state, 0xf9, 0x01); /* enable bad packets counter */ ds3000_writereg(state, 0xf9, 0x00); /* enable LPDC frame counters */ ds3000_writereg(state, 0xd1, 0x00); *ber = ber_reading; } else /* used to indicate that BER estimation is not ready, i.e. BER is unknown */ *ber = 0xffffffff; break; default: return 1; } return 0; } /* read TS2020 signal strength */ static int ds3000_read_signal_strength(struct dvb_frontend *fe, u16 *signal_strength) { struct ds3000_state *state = fe->demodulator_priv; u16 sig_reading, sig_strength; u8 rfgain, bbgain; dprintk("%s()\n", __func__); rfgain = ds3000_tuner_readreg(state, 0x3d) & 0x1f; bbgain = ds3000_tuner_readreg(state, 0x21) & 0x1f; if (rfgain > 15) rfgain = 15; if (bbgain > 13) bbgain = 13; sig_reading = rfgain * 2 + bbgain * 3; sig_strength = 40 + (64 - sig_reading) * 50 / 64 ; /* cook the value to be suitable for szap-s2 human readable output */ *signal_strength = sig_strength * 1000; dprintk("%s: raw / cooked = 0x%04x / 0x%04x\n", __func__, sig_reading, *signal_strength); return 0; } /* calculate DS3000 snr value in dB */ static int ds3000_read_snr(struct dvb_frontend *fe, u16 *snr) { struct ds3000_state *state = fe->demodulator_priv; struct dtv_frontend_properties *c = &fe->dtv_property_cache; u8 snr_reading, snr_value; u32 dvbs2_signal_reading, dvbs2_noise_reading, tmp; static const u16 dvbs_snr_tab[] = { /* 20 x Table (rounded up) */ 0x0000, 0x1b13, 0x2aea, 0x3627, 0x3ede, 0x45fe, 0x4c03, 0x513a, 0x55d4, 0x59f2, 0x5dab, 0x6111, 0x6431, 0x6717, 0x69c9, 0x6c4e, 0x6eac, 0x70e8, 0x7304, 0x7505 }; static const u16 dvbs2_snr_tab[] = { /* 80 x Table (rounded up) */ 0x0000, 0x0bc2, 0x12a3, 0x1785, 0x1b4e, 0x1e65, 0x2103, 0x2347, 0x2546, 0x2710, 0x28ae, 0x2a28, 0x2b83, 0x2cc5, 0x2df1, 0x2f09, 0x3010, 0x3109, 0x31f4, 0x32d2, 0x33a6, 0x3470, 0x3531, 0x35ea, 0x369b, 0x3746, 0x37ea, 0x3888, 0x3920, 0x39b3, 0x3a42, 0x3acc, 0x3b51, 0x3bd3, 0x3c51, 0x3ccb, 0x3d42, 0x3db6, 0x3e27, 0x3e95, 0x3f00, 0x3f68, 0x3fcf, 0x4033, 0x4094, 0x40f4, 0x4151, 0x41ac, 0x4206, 0x425e, 0x42b4, 0x4308, 0x435b, 0x43ac, 0x43fc, 0x444a, 0x4497, 0x44e2, 0x452d, 0x4576, 0x45bd, 0x4604, 0x4649, 0x468e, 0x46d1, 0x4713, 0x4755, 0x4795, 0x47d4, 0x4813, 0x4851, 0x488d, 0x48c9, 0x4904, 0x493f, 0x4978, 0x49b1, 0x49e9, 0x4a20, 0x4a57 }; dprintk("%s()\n", __func__); switch (c->delivery_system) { case SYS_DVBS: snr_reading = ds3000_readreg(state, 0xff); snr_reading /= 8; if (snr_reading == 0) *snr = 0x0000; else { if (snr_reading > 20) snr_reading = 20; snr_value = dvbs_snr_tab[snr_reading - 1] * 10 / 23026; /* cook the value to be suitable for szap-s2 human readable output */ *snr = snr_value * 8 * 655; } dprintk("%s: raw / cooked = 0x%02x / 0x%04x\n", __func__, snr_reading, *snr); break; case SYS_DVBS2: dvbs2_noise_reading = (ds3000_readreg(state, 0x8c) & 0x3f) + (ds3000_readreg(state, 0x8d) << 4); dvbs2_signal_reading = ds3000_readreg(state, 0x8e); tmp = dvbs2_signal_reading * dvbs2_signal_reading >> 1; if (tmp == 0) { *snr = 0x0000; return 0; } if (dvbs2_noise_reading == 0) { snr_value = 0x0013; /* cook the value to be suitable for szap-s2 human readable output */ *snr = 0xffff; return 0; } if (tmp > dvbs2_noise_reading) { snr_reading = tmp / dvbs2_noise_reading; if (snr_reading > 80) snr_reading = 80; snr_value = dvbs2_snr_tab[snr_reading - 1] / 1000; /* cook the value to be suitable for szap-s2 human readable output */ *snr = snr_value * 5 * 655; } else { snr_reading = dvbs2_noise_reading / tmp; if (snr_reading > 80) snr_reading = 80; *snr = -(dvbs2_snr_tab[snr_reading] / 1000); } dprintk("%s: raw / cooked = 0x%02x / 0x%04x\n", __func__, snr_reading, *snr); break; default: return 1; } return 0; } /* read DS3000 uncorrected blocks */ static int ds3000_read_ucblocks(struct dvb_frontend *fe, u32 *ucblocks) { struct ds3000_state *state = fe->demodulator_priv; struct dtv_frontend_properties *c = &fe->dtv_property_cache; u8 data; u16 _ucblocks; dprintk("%s()\n", __func__); switch (c->delivery_system) { case SYS_DVBS: *ucblocks = (ds3000_readreg(state, 0xf5) << 8) | ds3000_readreg(state, 0xf4); data = ds3000_readreg(state, 0xf8); /* clear packet counters */ data &= ~0x20; ds3000_writereg(state, 0xf8, data); /* enable packet counters */ data |= 0x20; ds3000_writereg(state, 0xf8, data); break; case SYS_DVBS2: _ucblocks = (ds3000_readreg(state, 0xe2) << 8) | ds3000_readreg(state, 0xe1); if (_ucblocks > state->prevUCBS2) *ucblocks = _ucblocks - state->prevUCBS2; else *ucblocks = state->prevUCBS2 - _ucblocks; state->prevUCBS2 = _ucblocks; break; default: return 1; } return 0; } static int ds3000_set_tone(struct dvb_frontend *fe, fe_sec_tone_mode_t tone) { struct ds3000_state *state = fe->demodulator_priv; u8 data; dprintk("%s(%d)\n", __func__, tone); if ((tone != SEC_TONE_ON) && (tone != SEC_TONE_OFF)) { printk(KERN_ERR "%s: Invalid, tone=%d\n", __func__, tone); return -EINVAL; } data = ds3000_readreg(state, 0xa2); data &= ~0xc0; ds3000_writereg(state, 0xa2, data); switch (tone) { case SEC_TONE_ON: dprintk("%s: setting tone on\n", __func__); data = ds3000_readreg(state, 0xa1); data &= ~0x43; data |= 0x04; ds3000_writereg(state, 0xa1, data); break; case SEC_TONE_OFF: dprintk("%s: setting tone off\n", __func__); data = ds3000_readreg(state, 0xa2); data |= 0x80; ds3000_writereg(state, 0xa2, data); break; } return 0; } static int ds3000_send_diseqc_msg(struct dvb_frontend *fe, struct dvb_diseqc_master_cmd *d) { struct ds3000_state *state = fe->demodulator_priv; int i; u8 data; /* Dump DiSEqC message */ dprintk("%s(", __func__); for (i = 0 ; i < d->msg_len;) { dprintk("0x%02x", d->msg[i]); if (++i < d->msg_len) dprintk(", "); } /* enable DiSEqC message send pin */ data = ds3000_readreg(state, 0xa2); data &= ~0xc0; ds3000_writereg(state, 0xa2, data); /* DiSEqC message */ for (i = 0; i < d->msg_len; i++) ds3000_writereg(state, 0xa3 + i, d->msg[i]); data = ds3000_readreg(state, 0xa1); /* clear DiSEqC message length and status, enable DiSEqC message send */ data &= ~0xf8; /* set DiSEqC mode, modulation active during 33 pulses, set DiSEqC message length */ data |= ((d->msg_len - 1) << 3) | 0x07; ds3000_writereg(state, 0xa1, data); /* wait up to 150ms for DiSEqC transmission to complete */ for (i = 0; i < 15; i++) { data = ds3000_readreg(state, 0xa1); if ((data & 0x40) == 0) break; msleep(10); } /* DiSEqC timeout after 150ms */ if (i == 15) { data = ds3000_readreg(state, 0xa1); data &= ~0x80; data |= 0x40; ds3000_writereg(state, 0xa1, data); data = ds3000_readreg(state, 0xa2); data &= ~0xc0; data |= 0x80; ds3000_writereg(state, 0xa2, data); return 1; } data = ds3000_readreg(state, 0xa2); data &= ~0xc0; data |= 0x80; ds3000_writereg(state, 0xa2, data); return 0; } /* Send DiSEqC burst */ static int ds3000_diseqc_send_burst(struct dvb_frontend *fe, fe_sec_mini_cmd_t burst) { struct ds3000_state *state = fe->demodulator_priv; int i; u8 data; dprintk("%s()\n", __func__); data = ds3000_readreg(state, 0xa2); data &= ~0xc0; ds3000_writereg(state, 0xa2, data); /* DiSEqC burst */ if (burst == SEC_MINI_A) /* Unmodulated tone burst */ ds3000_writereg(state, 0xa1, 0x02); else if (burst == SEC_MINI_B) /* Modulated tone burst */ ds3000_writereg(state, 0xa1, 0x01); else return -EINVAL; msleep(13); for (i = 0; i < 5; i++) { data = ds3000_readreg(state, 0xa1); if ((data & 0x40) == 0) break; msleep(1); } if (i == 5) { data = ds3000_readreg(state, 0xa1); data &= ~0x80; data |= 0x40; ds3000_writereg(state, 0xa1, data); data = ds3000_readreg(state, 0xa2); data &= ~0xc0; data |= 0x80; ds3000_writereg(state, 0xa2, data); return 1; } data = ds3000_readreg(state, 0xa2); data &= ~0xc0; data |= 0x80; ds3000_writereg(state, 0xa2, data); return 0; } static void ds3000_release(struct dvb_frontend *fe) { struct ds3000_state *state = fe->demodulator_priv; dprintk("%s\n", __func__); kfree(state); } static struct dvb_frontend_ops ds3000_ops; struct dvb_frontend *ds3000_attach(const struct ds3000_config *config, struct i2c_adapter *i2c) { struct ds3000_state *state = NULL; int ret; dprintk("%s\n", __func__); /* allocate memory for the internal state */ state = kzalloc(sizeof(struct ds3000_state), GFP_KERNEL); if (state == NULL) { printk(KERN_ERR "Unable to kmalloc\n"); goto error2; } state->config = config; state->i2c = i2c; state->prevUCBS2 = 0; /* check if the demod is present */ ret = ds3000_readreg(state, 0x00) & 0xfe; if (ret != 0xe0) { printk(KERN_ERR "Invalid probe, probably not a DS3000\n"); goto error3; } printk(KERN_INFO "DS3000 chip version: %d.%d attached.\n", ds3000_readreg(state, 0x02), ds3000_readreg(state, 0x01)); memcpy(&state->frontend.ops, &ds3000_ops, sizeof(struct dvb_frontend_ops)); state->frontend.demodulator_priv = state; return &state->frontend; error3: kfree(state); error2: return NULL; } EXPORT_SYMBOL(ds3000_attach); static int ds3000_set_carrier_offset(struct dvb_frontend *fe, s32 carrier_offset_khz) { struct ds3000_state *state = fe->demodulator_priv; s32 tmp; tmp = carrier_offset_khz; tmp *= 65536; tmp = (2 * tmp + DS3000_SAMPLE_RATE) / (2 * DS3000_SAMPLE_RATE); if (tmp < 0) tmp += 65536; ds3000_writereg(state, 0x5f, tmp >> 8); ds3000_writereg(state, 0x5e, tmp & 0xff); return 0; } static int ds3000_set_frontend(struct dvb_frontend *fe) { struct ds3000_state *state = fe->demodulator_priv; struct dtv_frontend_properties *c = &fe->dtv_property_cache; int i; fe_status_t status; u8 mlpf, mlpf_new, mlpf_max, mlpf_min, nlpf, div4; s32 offset_khz; u16 value, ndiv; u32 f3db; dprintk("%s() ", __func__); if (state->config->set_ts_params) state->config->set_ts_params(fe, 0); /* Tune */ /* unknown */ ds3000_tuner_writereg(state, 0x07, 0x02); ds3000_tuner_writereg(state, 0x10, 0x00); ds3000_tuner_writereg(state, 0x60, 0x79); ds3000_tuner_writereg(state, 0x08, 0x01); ds3000_tuner_writereg(state, 0x00, 0x01); div4 = 0; /* calculate and set freq divider */ if (c->frequency < 1146000) { ds3000_tuner_writereg(state, 0x10, 0x11); div4 = 1; ndiv = ((c->frequency * (6 + 8) * 4) + (DS3000_XTAL_FREQ / 2)) / DS3000_XTAL_FREQ - 1024; } else { ds3000_tuner_writereg(state, 0x10, 0x01); ndiv = ((c->frequency * (6 + 8) * 2) + (DS3000_XTAL_FREQ / 2)) / DS3000_XTAL_FREQ - 1024; } ds3000_tuner_writereg(state, 0x01, (ndiv & 0x0f00) >> 8); ds3000_tuner_writereg(state, 0x02, ndiv & 0x00ff); /* set pll */ ds3000_tuner_writereg(state, 0x03, 0x06); ds3000_tuner_writereg(state, 0x51, 0x0f); ds3000_tuner_writereg(state, 0x51, 0x1f); ds3000_tuner_writereg(state, 0x50, 0x10); ds3000_tuner_writereg(state, 0x50, 0x00); msleep(5); /* unknown */ ds3000_tuner_writereg(state, 0x51, 0x17); ds3000_tuner_writereg(state, 0x51, 0x1f); ds3000_tuner_writereg(state, 0x50, 0x08); ds3000_tuner_writereg(state, 0x50, 0x00); msleep(5); value = ds3000_tuner_readreg(state, 0x3d); value &= 0x0f; if ((value > 4) && (value < 15)) { value -= 3; if (value < 4) value = 4; value = ((value << 3) | 0x01) & 0x79; } ds3000_tuner_writereg(state, 0x60, value); ds3000_tuner_writereg(state, 0x51, 0x17); ds3000_tuner_writereg(state, 0x51, 0x1f); ds3000_tuner_writereg(state, 0x50, 0x08); ds3000_tuner_writereg(state, 0x50, 0x00); /* set low-pass filter period */ ds3000_tuner_writereg(state, 0x04, 0x2e); ds3000_tuner_writereg(state, 0x51, 0x1b); ds3000_tuner_writereg(state, 0x51, 0x1f); ds3000_tuner_writereg(state, 0x50, 0x04); ds3000_tuner_writereg(state, 0x50, 0x00); msleep(5); f3db = ((c->symbol_rate / 1000) << 2) / 5 + 2000; if ((c->symbol_rate / 1000) < 5000) f3db += 3000; if (f3db < 7000) f3db = 7000; if (f3db > 40000) f3db = 40000; /* set low-pass filter baseband */ value = ds3000_tuner_readreg(state, 0x26); mlpf = 0x2e * 207 / ((value << 1) + 151); mlpf_max = mlpf * 135 / 100; mlpf_min = mlpf * 78 / 100; if (mlpf_max > 63) mlpf_max = 63; /* rounded to the closest integer */ nlpf = ((mlpf * f3db * 1000) + (2766 * DS3000_XTAL_FREQ / 2)) / (2766 * DS3000_XTAL_FREQ); if (nlpf > 23) nlpf = 23; if (nlpf < 1) nlpf = 1; /* rounded to the closest integer */ mlpf_new = ((DS3000_XTAL_FREQ * nlpf * 2766) + (1000 * f3db / 2)) / (1000 * f3db); if (mlpf_new < mlpf_min) { nlpf++; mlpf_new = ((DS3000_XTAL_FREQ * nlpf * 2766) + (1000 * f3db / 2)) / (1000 * f3db); } if (mlpf_new > mlpf_max) mlpf_new = mlpf_max; ds3000_tuner_writereg(state, 0x04, mlpf_new); ds3000_tuner_writereg(state, 0x06, nlpf); ds3000_tuner_writereg(state, 0x51, 0x1b); ds3000_tuner_writereg(state, 0x51, 0x1f); ds3000_tuner_writereg(state, 0x50, 0x04); ds3000_tuner_writereg(state, 0x50, 0x00); msleep(5); /* unknown */ ds3000_tuner_writereg(state, 0x51, 0x1e); ds3000_tuner_writereg(state, 0x51, 0x1f); ds3000_tuner_writereg(state, 0x50, 0x01); ds3000_tuner_writereg(state, 0x50, 0x00); msleep(60); offset_khz = (ndiv - ndiv % 2 + 1024) * DS3000_XTAL_FREQ / (6 + 8) / (div4 + 1) / 2 - c->frequency; /* ds3000 global reset */ ds3000_writereg(state, 0x07, 0x80); ds3000_writereg(state, 0x07, 0x00); /* ds3000 build-in uC reset */ ds3000_writereg(state, 0xb2, 0x01); /* ds3000 software reset */ ds3000_writereg(state, 0x00, 0x01); switch (c->delivery_system) { case SYS_DVBS: /* initialise the demod in DVB-S mode */ for (i = 0; i < sizeof(ds3000_dvbs_init_tab); i += 2) ds3000_writereg(state, ds3000_dvbs_init_tab[i], ds3000_dvbs_init_tab[i + 1]); value = ds3000_readreg(state, 0xfe); value &= 0xc0; value |= 0x1b; ds3000_writereg(state, 0xfe, value); break; case SYS_DVBS2: /* initialise the demod in DVB-S2 mode */ for (i = 0; i < sizeof(ds3000_dvbs2_init_tab); i += 2) ds3000_writereg(state, ds3000_dvbs2_init_tab[i], ds3000_dvbs2_init_tab[i + 1]); ds3000_writereg(state, 0xfe, 0x98); break; default: return 1; } /* enable 27MHz clock output */ ds3000_writereg(state, 0x29, 0x80); /* enable ac coupling */ ds3000_writereg(state, 0x25, 0x8a); /* enhance symbol rate performance */ if ((c->symbol_rate / 1000) <= 5000) { value = 29777 / (c->symbol_rate / 1000) + 1; if (value % 2 != 0) value++; ds3000_writereg(state, 0xc3, 0x0d); ds3000_writereg(state, 0xc8, value); ds3000_writereg(state, 0xc4, 0x10); ds3000_writereg(state, 0xc7, 0x0e); } else if ((c->symbol_rate / 1000) <= 10000) { value = 92166 / (c->symbol_rate / 1000) + 1; if (value % 2 != 0) value++; ds3000_writereg(state, 0xc3, 0x07); ds3000_writereg(state, 0xc8, value); ds3000_writereg(state, 0xc4, 0x09); ds3000_writereg(state, 0xc7, 0x12); } else if ((c->symbol_rate / 1000) <= 20000) { value = 64516 / (c->symbol_rate / 1000) + 1; ds3000_writereg(state, 0xc3, value); ds3000_writereg(state, 0xc8, 0x0e); ds3000_writereg(state, 0xc4, 0x07); ds3000_writereg(state, 0xc7, 0x18); } else { value = 129032 / (c->symbol_rate / 1000) + 1; ds3000_writereg(state, 0xc3, value); ds3000_writereg(state, 0xc8, 0x0a); ds3000_writereg(state, 0xc4, 0x05); ds3000_writereg(state, 0xc7, 0x24); } /* normalized symbol rate rounded to the closest integer */ value = (((c->symbol_rate / 1000) << 16) + (DS3000_SAMPLE_RATE / 2)) / DS3000_SAMPLE_RATE; ds3000_writereg(state, 0x61, value & 0x00ff); ds3000_writereg(state, 0x62, (value & 0xff00) >> 8); /* co-channel interference cancellation disabled */ ds3000_writereg(state, 0x56, 0x00); /* equalizer disabled */ ds3000_writereg(state, 0x76, 0x00); /*ds3000_writereg(state, 0x08, 0x03); ds3000_writereg(state, 0xfd, 0x22); ds3000_writereg(state, 0x08, 0x07); ds3000_writereg(state, 0xfd, 0x42); ds3000_writereg(state, 0x08, 0x07);*/ if (state->config->ci_mode) { switch (c->delivery_system) { case SYS_DVBS: default: ds3000_writereg(state, 0xfd, 0x80); break; case SYS_DVBS2: ds3000_writereg(state, 0xfd, 0x01); break; } } /* ds3000 out of software reset */ ds3000_writereg(state, 0x00, 0x00); /* start ds3000 build-in uC */ ds3000_writereg(state, 0xb2, 0x00); ds3000_set_carrier_offset(fe, offset_khz); for (i = 0; i < 30 ; i++) { ds3000_read_status(fe, &status); if (status && FE_HAS_LOCK) break; msleep(10); } return 0; } static int ds3000_tune(struct dvb_frontend *fe, bool re_tune, unsigned int mode_flags, unsigned int *delay, fe_status_t *status) { if (re_tune) { int ret = ds3000_set_frontend(fe); if (ret) return ret; } *delay = HZ / 5; return ds3000_read_status(fe, status); } static enum dvbfe_algo ds3000_get_algo(struct dvb_frontend *fe) { dprintk("%s()\n", __func__); return DVBFE_ALGO_HW; } /* * Initialise or wake up device * * Power config will reset and load initial firmware if required */ static int ds3000_initfe(struct dvb_frontend *fe) { struct ds3000_state *state = fe->demodulator_priv; int ret; dprintk("%s()\n", __func__); /* hard reset */ ds3000_writereg(state, 0x08, 0x01 | ds3000_readreg(state, 0x08)); msleep(1); /* TS2020 init */ ds3000_tuner_writereg(state, 0x42, 0x73); ds3000_tuner_writereg(state, 0x05, 0x01); ds3000_tuner_writereg(state, 0x62, 0xf5); /* Load the firmware if required */ ret = ds3000_firmware_ondemand(fe); if (ret != 0) { printk(KERN_ERR "%s: Unable initialize firmware\n", __func__); return ret; } return 0; } /* Put device to sleep */ static int ds3000_sleep(struct dvb_frontend *fe) { dprintk("%s()\n", __func__); return 0; } static struct dvb_frontend_ops ds3000_ops = { .delsys = { SYS_DVBS, SYS_DVBS2}, .info = { .name = "Montage Technology DS3000/TS2020", .frequency_min = 950000, .frequency_max = 2150000, .frequency_stepsize = 1011, /* kHz for QPSK frontends */ .frequency_tolerance = 5000, .symbol_rate_min = 1000000, .symbol_rate_max = 45000000, .caps = FE_CAN_INVERSION_AUTO | FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 | FE_CAN_FEC_4_5 | FE_CAN_FEC_5_6 | FE_CAN_FEC_6_7 | FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO | FE_CAN_2G_MODULATION | FE_CAN_QPSK | FE_CAN_RECOVER }, .release = ds3000_release, .init = ds3000_initfe, .sleep = ds3000_sleep, .read_status = ds3000_read_status, .read_ber = ds3000_read_ber, .read_signal_strength = ds3000_read_signal_strength, .read_snr = ds3000_read_snr, .read_ucblocks = ds3000_read_ucblocks, .set_voltage = ds3000_set_voltage, .set_tone = ds3000_set_tone, .diseqc_send_master_cmd = ds3000_send_diseqc_msg, .diseqc_send_burst = ds3000_diseqc_send_burst, .get_frontend_algo = ds3000_get_algo, .set_frontend = ds3000_set_frontend, .tune = ds3000_tune, }; module_param(debug, int, 0644); MODULE_PARM_DESC(debug, "Activates frontend debugging (default:0)"); MODULE_DESCRIPTION("DVB Frontend module for Montage Technology " "DS3000/TS2020 hardware"); MODULE_AUTHOR("Konstantin Dimitrov"); MODULE_LICENSE("GPL");